High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, wate...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 4; pp. e202112097 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.01.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
A moderately hydrophilic MOF of UiO‐67‐4Me‐NH2‐38 % with high thermal, hydrolytic and acid‐base stability has been obtained by a pore‐nanospace post‐engineering strategy, which shows ideal S‐shaped water‐sorption isotherm, high water‐uptake working capacity and efficiency in the ASHRAE recommended humidity range, and prior capture ability of harmful organic and inorganic vapors, providing a promising candidate for autonomous indoor humidity control and air purification. |
---|---|
AbstractList | The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH
-38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. A moderately hydrophilic MOF of UiO‐67‐4Me‐NH2‐38 % with high thermal, hydrolytic and acid‐base stability has been obtained by a pore‐nanospace post‐engineering strategy, which shows ideal S‐shaped water‐sorption isotherm, high water‐uptake working capacity and efficiency in the ASHRAE recommended humidity range, and prior capture ability of harmful organic and inorganic vapors, providing a promising candidate for autonomous indoor humidity control and air purification. The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH 2 ‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. |
Author | Chen, Cheng‐Xia Fan, Ya‐Nan Wang, Wei Wei, Zhang‐Wen Jiang, Ji‐Jun Xiong, Xiao‐Hong Zhu, Neng‐Xiu Zeng, Zheng Xiong, Yang‐Yang Su, Cheng‐Yong |
Author_xml | – sequence: 1 givenname: Neng‐Xiu surname: Zhu fullname: Zhu, Neng‐Xiu organization: Sun Yat-Sen University – sequence: 2 givenname: Zhang‐Wen surname: Wei fullname: Wei, Zhang‐Wen organization: Sun Yat-Sen University – sequence: 3 givenname: Cheng‐Xia surname: Chen fullname: Chen, Cheng‐Xia organization: Sun Yat-Sen University – sequence: 4 givenname: Xiao‐Hong surname: Xiong fullname: Xiong, Xiao‐Hong organization: Sun Yat-Sen University – sequence: 5 givenname: Yang‐Yang surname: Xiong fullname: Xiong, Yang‐Yang organization: Sun Yat-Sen University – sequence: 6 givenname: Zheng surname: Zeng fullname: Zeng, Zheng organization: Sun Yat-Sen University – sequence: 7 givenname: Wei surname: Wang fullname: Wang, Wei organization: Sun Yat-Sen University – sequence: 8 givenname: Ji‐Jun surname: Jiang fullname: Jiang, Ji‐Jun organization: Sun Yat-Sen University – sequence: 9 givenname: Ya‐Nan surname: Fan fullname: Fan, Ya‐Nan organization: Sun Yat-Sen University – sequence: 10 givenname: Cheng‐Yong orcidid: 0000-0003-3604-7858 surname: Su fullname: Su, Cheng‐Yong email: cesscy@mail.sysu.edu.cn organization: Lanzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34779556$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVIycXtNssg6CabcXWZkUZLY5LY4MaltHQp5BlNoqCRHEmT4KzyCHnGPEllnLQQKN3oiMP3HQ7nPwb7zjsNwAlGY4wQ-aKc0WOCCMYECb4HjnBFcEE5p_v5X1Ja8LrCh-A4xtvM1zViB-CQlpyLqmJHYDMz1zfwl0o6wEkbfVgn4x38uryI8MGkG7jMjd486hZ-80G_PD1fKefjWjU6ws5naUje-d4PEc5d63NnNvSmNWkDp96l4C1UbitbOyTlUoTfde_vlf0IPnTKRv3ptY7Az4vzH9NZsVhezqeTRdFQTnnRYFGtSEsUbdoSNZyhllUdKSvC1YoIKpAmuS0IpkKsFKKIsI7nBwnGKSrpCJzt5q6Dvxt0TLI3sdHWKqfz1pJUgtdYMMQy-vkdeuuH4PJ2krCMYEZ4nanTV2pY9bqV62B6FTby7agZKHdAE3yMQXeyMUlt75qCMlZiJLfZyW128k92WRu_094m_1MQO-HBWL35Dy0nV_Pzv-5vtb-r9w |
CitedBy_id | crossref_primary_10_1002_zaac_202300167 crossref_primary_10_1021_jacs_3c03036 crossref_primary_10_1021_jacs_3c11733 crossref_primary_10_1002_adsu_202400349 crossref_primary_10_1016_j_seppur_2025_131642 crossref_primary_10_1021_acs_chemmater_3c02450 crossref_primary_10_1007_s11426_024_2062_3 crossref_primary_10_1002_ange_202216710 crossref_primary_10_1002_ange_202208660 crossref_primary_10_1021_jacs_3c14699 crossref_primary_10_1021_acsami_3c10974 crossref_primary_10_1002_anie_202307274 crossref_primary_10_1002_eem2_12414 crossref_primary_10_1002_ange_202305144 crossref_primary_10_1002_smll_202303897 crossref_primary_10_1002_anie_202307436 crossref_primary_10_1016_j_jclepro_2023_136253 crossref_primary_10_1002_advs_202204141 crossref_primary_10_1021_acs_est_3c03467 crossref_primary_10_1039_D3QM00484H crossref_primary_10_1021_acsami_4c10825 crossref_primary_10_1021_jacs_3c00957 crossref_primary_10_1016_j_cej_2024_154770 crossref_primary_10_1021_jacs_4c02327 crossref_primary_10_1021_acs_jced_2c00145 crossref_primary_10_1021_acsmaterialslett_4c01113 crossref_primary_10_1007_s11426_023_1809_8 crossref_primary_10_1039_D2MH01016J crossref_primary_10_1002_sstr_202300055 crossref_primary_10_1021_jacs_4c06088 crossref_primary_10_1021_jacs_4c01393 crossref_primary_10_1016_j_seppur_2024_130096 crossref_primary_10_1002_ange_202307274 crossref_primary_10_1002_anie_202305144 crossref_primary_10_1002_open_202300046 crossref_primary_10_1002_pol_20240098 crossref_primary_10_1002_advs_202308623 crossref_primary_10_1002_chem_202301929 crossref_primary_10_1021_jacs_4c06013 crossref_primary_10_1016_j_seppur_2024_127277 crossref_primary_10_1016_j_cej_2024_154925 crossref_primary_10_1039_D4MH01007H crossref_primary_10_1002_adma_202411680 crossref_primary_10_1039_D4TA07564A crossref_primary_10_1016_j_micrna_2024_208021 crossref_primary_10_1039_D4TA08090D crossref_primary_10_3390_chemistry5010042 crossref_primary_10_1016_j_nxener_2023_100088 crossref_primary_10_1021_acs_chemmater_2c03662 crossref_primary_10_1039_D2TA07392G crossref_primary_10_3390_buildings13051192 crossref_primary_10_1021_jacs_4c17145 crossref_primary_10_1016_j_energy_2023_130049 crossref_primary_10_1016_j_cej_2022_138241 crossref_primary_10_1021_jacs_2c11830 crossref_primary_10_1002_anie_202208660 crossref_primary_10_1002_adfm_202413200 crossref_primary_10_1021_jacs_2c12362 crossref_primary_10_1002_ange_202307436 crossref_primary_10_1039_D3SC06076D crossref_primary_10_1002_adma_202211302 crossref_primary_10_1002_smll_202304477 crossref_primary_10_1002_anie_202216710 |
Cites_doi | 10.1002/anie.201902229 10.1016/j.chempr.2017.11.005 10.1039/C9EN01321K 10.1039/C5CS00837A 10.1021/acsami.0c12693 10.1021/jacs.8b09655 10.15171/ijoem.2019.1540 10.1126/science.aam8743 10.1002/adfm.202006291 10.1039/C9SC03916C 10.1021/ja9061344 10.1021/cr5002589 10.1021/ja109810w 10.1039/C0CS00031K 10.1002/adma.201704304 10.1126/science.1230444 10.4209/aaqr.2019.07.0363 10.1021/acs.iecr.7b00106 10.1021/acscentsci.0c00678 10.1016/j.taap.2017.12.002 10.1039/C7CS00108H 10.1111/j.1600-0668.2004.00314.x 10.1016/j.ijheh.2021.113709 10.1038/s41560-018-0261-6 10.1039/C7CS00885F 10.1002/anie.201604023 10.1021/ja8057953 10.1039/C9TA07465A 10.1021/jacs.1c01027 10.1002/ange.201306923 10.1016/j.jes.2021.01.007 10.1021/jacs.0c09015 10.1021/acs.chemrev.9b00746 10.1016/j.seppur.2019.116213 10.1016/j.ccr.2020.213507 10.1021/acs.chemmater.9b00617 10.1002/ange.201909912 10.1021/cm3025445 10.1002/anie.201914762 10.1021/cr200304e 10.1021/jacs.8b12372 10.1002/ange.201604023 10.1021/cr4006473 10.1002/chem.202001052 10.1016/j.cej.2012.09.023 10.1039/C7TA07847A 10.1289/ehp.8665351 10.1073/pnas.0804900105 10.1016/j.desal.2016.11.008 10.1039/C4CS00003J 10.1016/j.jclepro.2018.03.037 10.1002/ange.201902229 10.1021/jacs.8b11042 10.1039/C9CS00250B 10.1002/anie.201909912 10.1039/C4TA04907A 10.1016/j.desal.2016.07.030 10.1002/ange.201914762 10.1063/1.5091783 10.1021/jacs.7b04132 10.1126/science.aam8310 10.1002/anie.201306923 10.1039/D1SC01609A 10.1021/jacs.8b13710 10.1021/jacs.6b04501 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202112097 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34779556 10_1002_anie_202112097 ANIE202112097 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province funderid: 2017BT01C161, 2020A1515110365 – fundername: National Natural Science Foundation of China funderid: 21821003, 21890380, 21720102007, 21701200, 22001271 – fundername: Natural Science Foundation of Guangdong Province grantid: 2017BT01C161, 2020A1515110365 – fundername: National Natural Science Foundation of China grantid: 21821003, 21890380, 21720102007, 21701200, 22001271 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3737-c195b2d2a3cd40c760d65f24527ab29390e20c7921399ba03026f702609673043 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:49:46 EDT 2025 Fri Jul 25 10:35:59 EDT 2025 Wed Feb 19 02:26:48 EST 2025 Thu Apr 24 23:06:07 EDT 2025 Tue Jul 01 01:18:11 EDT 2025 Wed Jan 22 16:26:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | indoor air purification MOF pore-nanospace engineering high water-stable MOFs indoor humidity control water-adsorption based applications |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-c195b2d2a3cd40c760d65f24527ab29390e20c7921399ba03026f702609673043 |
Notes | Dedicated to Professor Bei‐Sheng Kang on the occasion of her 80th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3604-7858 |
PMID | 34779556 |
PQID | 2619616278 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2597819606 proquest_journals_2619616278 pubmed_primary_34779556 crossref_citationtrail_10_1002_anie_202112097 crossref_primary_10_1002_anie_202112097 wiley_primary_10_1002_anie_202112097_ANIE202112097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 21, 2022 |
PublicationDateYYYYMMDD | 2022-01-21 |
PublicationDate_xml | – month: 01 year: 2022 text: January 21, 2022 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 5 2013; 25 2020; 120 2019; 10 2017; 46 2020 2020; 59 132 2019; 19 2008; 105 2020; 12 2017; 356 2018; 47 2017; 406 2020; 7 2020; 6 2018; 3 2021; 31 2012; 210 2018; 4 2021; 233 2018; 339 2018; 30 2016; 45 2017; 404 2019; 7 2018; 185 2018; 140 2015; 3 2019; 31 2021; 105 2011; 40 2020; 423 2013; 341 2009; 131 2021; 143 2019; 141 2014; 114 2019 2019; 58 131 2011; 133 2017; 139 2014; 43 2016 2016; 55 128 2021; 12 2012; 112 1986; 65 2004; 14 2019; 48 2017; 56 2020; 26 2018 2016; 138 2020; 235 2008; 130 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_2 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_45_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 Talmoudi R. (e_1_2_6_59_1) 2018 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_2 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 140 start-page: 17591 year: 2018 end-page: 17596 publication-title: J. Am. Chem. Soc. – volume: 185 start-page: 266 year: 2018 end-page: 274 publication-title: J. Cleaner Prod. – volume: 114 start-page: 5695 year: 2014 end-page: 5727 publication-title: Chem. Rev. – volume: 120 start-page: 8303 year: 2020 end-page: 8377 publication-title: Chem. Rev. – volume: 139 start-page: 10715 year: 2017 end-page: 10722 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 40 year: 2019 end-page: 49 publication-title: Int. J. Occup. Environ. Med. – volume: 7 start-page: 24973 year: 2019 end-page: 24981 publication-title: J. Mater. Chem. A – volume: 59 132 start-page: 3905 3933 year: 2020 2020 end-page: 3909 3937 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2018 publication-title: Int. J. Chem. Eng. – volume: 404 start-page: 192 year: 2017 end-page: 199 publication-title: Desalination – volume: 3 start-page: 2057 year: 2015 end-page: 2064 publication-title: J. Mater. Chem. A – volume: 31 start-page: 4051 year: 2019 end-page: 4062 publication-title: Chem. Mater. – volume: 356 start-page: 430 year: 2017 end-page: 434 publication-title: Science – volume: 14 start-page: 98 year: 2004 end-page: 107 publication-title: Indoor Air – volume: 65 start-page: 351 year: 1986 end-page: 361 publication-title: Environ. Health Perspect. – volume: 47 start-page: 4729 year: 2018 end-page: 4756 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 2034 year: 2011 end-page: 2036 publication-title: J. Am. Chem. Soc. – volume: 341 year: 2013 publication-title: Science – volume: 356 start-page: 731 year: 2017 end-page: 735 publication-title: Science – volume: 7 start-page: 1319 year: 2020 end-page: 1347 publication-title: Environ. Sci. Nano – volume: 12 start-page: 46057 year: 2020 end-page: 46064 publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 11623 year: 2008 end-page: 11627 publication-title: Proc. Natl. Acad. Sci. USA – volume: 141 start-page: 2900 year: 2019 end-page: 2905 publication-title: J. Am. Chem. Soc. – volume: 233 year: 2021 publication-title: Int. J. Hyg. Environ. Health – volume: 105 start-page: 184 year: 2021 end-page: 203 publication-title: J. Environ. Sci. – volume: 25 start-page: 17 year: 2013 end-page: 26 publication-title: Chem. Mater. – volume: 26 start-page: 8254 year: 2020 end-page: 8261 publication-title: Chem. Eur. J. – volume: 210 start-page: 500 year: 2012 end-page: 509 publication-title: Chem. Eng. J. – volume: 423 year: 2020 publication-title: Coord. Chem. Rev. – volume: 141 start-page: 2054 year: 2019 end-page: 2060 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 8393 year: 2017 end-page: 8398 publication-title: Ind. Eng. Chem. Res. – volume: 114 start-page: 10575 year: 2014 end-page: 10612 publication-title: Chem. Rev. – volume: 406 start-page: 25 year: 2017 end-page: 36 publication-title: Desalination – volume: 43 start-page: 5561 year: 2014 end-page: 5593 publication-title: Chem. Soc. Rev. – volume: 130 start-page: 13850 year: 2008 end-page: 13851 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6772 year: 2021 end-page: 6799 publication-title: Chem. Sci. – volume: 58 131 start-page: 15188 15330 year: 2019 2019 end-page: 15205 15347 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 10209 year: 2019 end-page: 10230 publication-title: Chem. Sci. – volume: 53 126 start-page: 4530 4618 year: 2014 2014 end-page: 4540 4628 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 4823 year: 2019 end-page: 4853 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 8912 year: 2016 end-page: 8919 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 9932 10086 year: 2016 2016 end-page: 9936 10090 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 985 year: 2018 end-page: 993 publication-title: Nat. Energy – volume: 58 131 start-page: 17033 17189 year: 2019 2019 end-page: 17040 17196 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 22877 year: 2017 end-page: 22896 publication-title: J. Mater. Chem. A – volume: 45 start-page: 2327 year: 2016 end-page: 2367 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 5150 year: 2021 end-page: 5157 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 2056 year: 2019 end-page: 2069 publication-title: Aerosol Air Qual. Res. – volume: 7 year: 2019 publication-title: APL Mater. – volume: 339 start-page: 65 year: 2018 end-page: 72 publication-title: Toxicol. Appl. Pharmacol. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 1348 year: 2020 end-page: 1354 publication-title: ACS Cent. Sci. – volume: 143 start-page: 1798 year: 2021 end-page: 1806 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 3357 year: 2017 end-page: 3385 publication-title: Chem. Soc. Rev. – volume: 131 start-page: 15834 year: 2009 end-page: 15842 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 94 year: 2018 end-page: 105 publication-title: Chem – volume: 112 start-page: 933 year: 2012 end-page: 969 publication-title: Chem. Rev. – volume: 40 start-page: 498 year: 2011 end-page: 519 publication-title: Chem. Soc. Rev. – volume: 235 year: 2020 publication-title: Sep. Purif. Technol. – volume: 141 start-page: 2589 year: 2019 end-page: 2593 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_39_1 doi: 10.1002/anie.201902229 – ident: e_1_2_6_29_1 doi: 10.1016/j.chempr.2017.11.005 – ident: e_1_2_6_34_1 doi: 10.1039/C9EN01321K – ident: e_1_2_6_37_1 doi: 10.1039/C5CS00837A – ident: e_1_2_6_31_1 doi: 10.1021/acsami.0c12693 – ident: e_1_2_6_23_1 doi: 10.1021/jacs.8b09655 – ident: e_1_2_6_8_1 doi: 10.15171/ijoem.2019.1540 – ident: e_1_2_6_24_1 doi: 10.1126/science.aam8743 – ident: e_1_2_6_46_1 doi: 10.1002/adfm.202006291 – ident: e_1_2_6_17_1 doi: 10.1039/C9SC03916C – ident: e_1_2_6_14_1 doi: 10.1021/ja9061344 – ident: e_1_2_6_13_1 doi: 10.1021/cr5002589 – ident: e_1_2_6_52_1 doi: 10.1021/ja109810w – ident: e_1_2_6_47_1 doi: 10.1039/C0CS00031K – ident: e_1_2_6_51_1 doi: 10.1002/adma.201704304 – ident: e_1_2_6_12_1 doi: 10.1126/science.1230444 – ident: e_1_2_6_9_1 doi: 10.4209/aaqr.2019.07.0363 – ident: e_1_2_6_21_1 doi: 10.1021/acs.iecr.7b00106 – ident: e_1_2_6_25_1 doi: 10.1021/acscentsci.0c00678 – ident: e_1_2_6_7_1 doi: 10.1016/j.taap.2017.12.002 – ident: e_1_2_6_15_1 doi: 10.1039/C7CS00108H – ident: e_1_2_6_3_1 – ident: e_1_2_6_6_1 doi: 10.1111/j.1600-0668.2004.00314.x – ident: e_1_2_6_1_1 doi: 10.1016/j.ijheh.2021.113709 – ident: e_1_2_6_16_1 doi: 10.1038/s41560-018-0261-6 – ident: e_1_2_6_35_1 doi: 10.1039/C7CS00885F – ident: e_1_2_6_45_1 doi: 10.1002/anie.201604023 – ident: e_1_2_6_49_1 doi: 10.1021/ja8057953 – ident: e_1_2_6_55_1 doi: 10.1039/C9TA07465A – ident: e_1_2_6_28_1 doi: 10.1021/jacs.1c01027 – ident: e_1_2_6_48_2 doi: 10.1002/ange.201306923 – ident: e_1_2_6_62_1 doi: 10.1016/j.jes.2021.01.007 – ident: e_1_2_6_50_1 doi: 10.1021/jacs.0c09015 – ident: e_1_2_6_19_1 doi: 10.1021/acs.chemrev.9b00746 – ident: e_1_2_6_60_1 doi: 10.1016/j.seppur.2019.116213 – ident: e_1_2_6_20_1 doi: 10.1016/j.ccr.2020.213507 – ident: e_1_2_6_22_1 doi: 10.1021/acs.chemmater.9b00617 – ident: e_1_2_6_33_2 doi: 10.1002/ange.201909912 – ident: e_1_2_6_53_1 doi: 10.1021/cm3025445 – ident: e_1_2_6_30_1 doi: 10.1002/anie.201914762 – ident: e_1_2_6_36_1 doi: 10.1021/cr200304e – ident: e_1_2_6_44_1 doi: 10.1021/jacs.8b12372 – ident: e_1_2_6_45_2 doi: 10.1002/ange.201604023 – ident: e_1_2_6_11_1 doi: 10.1021/cr4006473 – ident: e_1_2_6_43_1 doi: 10.1002/chem.202001052 – ident: e_1_2_6_58_1 doi: 10.1016/j.cej.2012.09.023 – ident: e_1_2_6_56_1 doi: 10.1039/C7TA07847A – start-page: 2316827 year: 2018 ident: e_1_2_6_59_1 publication-title: Int. J. Chem. Eng. – ident: e_1_2_6_4_1 doi: 10.1289/ehp.8665351 – ident: e_1_2_6_57_1 doi: 10.1073/pnas.0804900105 – ident: e_1_2_6_26_1 doi: 10.1016/j.desal.2016.11.008 – ident: e_1_2_6_41_1 doi: 10.1039/C4CS00003J – ident: e_1_2_6_61_1 doi: 10.1016/j.jclepro.2018.03.037 – ident: e_1_2_6_39_2 doi: 10.1002/ange.201902229 – ident: e_1_2_6_38_1 doi: 10.1021/jacs.8b11042 – ident: e_1_2_6_40_1 doi: 10.1039/C9CS00250B – ident: e_1_2_6_33_1 doi: 10.1002/anie.201909912 – ident: e_1_2_6_54_1 doi: 10.1039/C4TA04907A – ident: e_1_2_6_27_1 doi: 10.1016/j.desal.2016.07.030 – ident: e_1_2_6_30_2 doi: 10.1002/ange.201914762 – ident: e_1_2_6_18_1 doi: 10.1063/1.5091783 – ident: e_1_2_6_2_1 doi: 10.1021/jacs.7b04132 – ident: e_1_2_6_10_1 doi: 10.1126/science.aam8310 – ident: e_1_2_6_48_1 doi: 10.1002/anie.201306923 – ident: e_1_2_6_5_1 doi: 10.1039/D1SC01609A – ident: e_1_2_6_32_1 doi: 10.1021/jacs.8b13710 – ident: e_1_2_6_42_1 doi: 10.1021/jacs.6b04501 |
SSID | ssj0028806 |
Score | 2.6104326 |
Snippet | The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air... The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202112097 |
SubjectTerms | Adsorbed water Adsorption Air Pollution, Indoor Air quality Contaminants Control stability Dehumidification Gels Health risks high water-stable MOFs Humidity Humidity control Hydrophilicity Hydrophobicity Indoor air pollution indoor air purification Indoor air quality Indoor environments indoor humidity control Metal-organic frameworks Metal-Organic Frameworks - chemistry MOF pore-nanospace engineering Moisture control Molecular Structure Nanoparticles - chemistry Optimization Particle Size Pollutant removal Pollutants Pollution control Recyclability Regeneration Relative humidity Silica Silicon dioxide Surface Properties Water - chemistry Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification Water purification water-adsorption based applications Work capacity Zeolites |
Title | High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112097 https://www.ncbi.nlm.nih.gov/pubmed/34779556 https://www.proquest.com/docview/2619616278 https://www.proquest.com/docview/2597819606 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKnapumyfa4LC4q-EAUvZW8CqK2st096Mmf4G_0lzjTbquriKD01DShaToz-SaZ-ULIjnFKt3nEvMAZDg5KqjwlOa42Rc6lLDaBxXXIk1NxeMWPb6KbT1n8FT9Es-CGmlHaa1RwpYv9D9JQzMAG_w4cGObHmE6OAVuIii4a_igGwlmlF4Whh6fQ16yNPtsfbz4-K32DmuPItZx6erNE1Z2uIk7u9oYDvWeev_A5_uer5sjMCJfSTiVI82TCZQtkqlsfB7dInjAihF4DNO3Tji3yfmlr6MlZr6C4mEvPoODh9tlZep733dvLKxjuHOwVGCIKyJh2hgNMoMiHBT3KbA4lIEq3FrwA2q3i5anKsPE9KANG59AL95CDIiyRq97BZffQG53b4JlQhtIzQRxpZpkKjeW-kcK3Ikpxi1cqDfAi9h2D4pgB-oy1AjPDRCqR3CwWYHB4uEwmszxzq4QKDZeNtBJWcNP2leUWnDArAodbmmmLePV_S8yI1BzP1rhPKjpmluCAJs2AtshuU_-xovP4seZGLQbJSK2LBN1NEQgm2y2y3TyGH4G7LCpzMIQJ-JMSYBY4hi2yUolP86qQSxlHETxhpRD80oekc3p00Nyt_aXROplmmLDhBx4LNsjkoD90mwCjBnqrVJV38rEUIg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOZQL5VkCBRYJiZNbe73ejY9R1CiBJkVVK7it9mWporVRHgd66k_ob-wvYcaOjQJCSCCfsvbKznpm_H2z8wB454KxfZHxKAlOIEEpTGSUIG9TFkLBc5d48kNOZ3J8Jj58ydpoQsqFaepDdA430ozaXpOCk0P64GfVUErBRoKHDIbHuboL96itd82qTroKUhzFs0kwStOI-tC3dRtjfrA5f_O79BvY3MSu9cdntAO2fewm5uTr_mpp993VLxUd_-t_PYQHa2jKBo0sPYI7oXwM28O2I9wT-E5BIewzotM5G_hFNa_NDZsejxaM_LnsGAcuz6-CZ5-qebi9vkHbXaHJQlvEEByzwWpJORTVasEmpa9wBKXp3CMRYMMmZJ6ZkiZfoD5QgA47CZcV6sJTOBsdng7H0bp1Q-RSlarIJXlmuecmdV7ETsnYy6ygXV5lLCKMPA4ch3OOADS3Bi0Nl4Wi-ma5RJsj0mewVVZleA5MWjx8Zo30Urh-bLzwyMO8TALtahY9iNoXp926rjm117jQTUVmrmlBdbegPXjfXf-tqejxxyv3WjnQa81eaGKcMpFc9XvwtjuNL4I2WkwZcAk1UkqFSAu5YQ92G_npbpUKpfIswzO8loK_PIMezCaH3a8X_zLpDWyPT6dH-mgy-_gS7nPK34iTiCd7sLWcr8IrRFVL-7rWmx8vhRg9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkNpeCn1Al0LrSpV6CiSOY2-Oq4UV25YFoaJysxzbkRCQoH0cyqk_ob-RX9KZZBPYoqpSq5zih-LYM-NvbM9ngA_Wm6wrEh5E3gp0UHITGCVotSnxPuepjRytQx6O5MGp-HSWnN2L4q_5IdoFN9KMyl6Tgl-7fPeONJQisNG_QweGh6l6BCtChl2S672TlkCKo3TW8UVxHNA19A1tY8h3F-svTksPsOYidK3mnsEqmKbV9ZGTi53ZNNuxN78ROv7Pb63BszkwZb1akp7Dki9ewJN-cx_cS_hOR0LYN8SmY9Zzk3JcGRt2eDSYMFrNZUeYcHV-4x07Lsf-9sdPtNwlGiy0RAyhMevNphRBUc4mbFi4ElNQls4dugGsXx-YZ6agypeoDXQ8h534qxI14RWcDva_9g-C-cUNgY1VrAIbpUnGHTexdSK0SoZOJjnt8SqTIb5IQ88xOeUIP9PMoJ3hMlfEbpZKtDgiXofloiz8a2Ayw8clmZFOCtsNjRMOvTAnI097mnkHgmbctJ2zmtPlGpe65mPmmjpUtx3agY9t-euaz-OPJbcaMdBzvZ5o8jdlJLnqduB9m40DQdsspvDYhRodSoU4Cz3DDmzU4tN-KhZKpUmCObwSgr-0QfdGw_32bfNfKr2Dx8d7A_1lOPr8Bp5yCt4Io4BHW7A8Hc_8NkKqafa20ppf6bYW9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Water+Adsorption+MOFs+with+Optimized+Pore-Nanospaces+for+Autonomous+Indoor+Humidity+Control+and+Pollutants+Removal&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Neng-Xiu&rft.au=Wei%2C+Zhang-Wen&rft.au=Chen%2C+Cheng-Xia&rft.au=Xiong%2C+Xiao-Hong&rft.date=2022-01-21&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=4&rft.spage=e202112097&rft_id=info:doi/10.1002%2Fanie.202112097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |