High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal

The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, wate...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 4; pp. e202112097 - n/a
Main Authors Zhu, Neng‐Xiu, Wei, Zhang‐Wen, Chen, Cheng‐Xia, Xiong, Xiao‐Hong, Xiong, Yang‐Yang, Zeng, Zheng, Wang, Wei, Jiang, Ji‐Jun, Fan, Ya‐Nan, Su, Cheng‐Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.01.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. A moderately hydrophilic MOF of UiO‐67‐4Me‐NH2‐38 % with high thermal, hydrolytic and acid‐base stability has been obtained by a pore‐nanospace post‐engineering strategy, which shows ideal S‐shaped water‐sorption isotherm, high water‐uptake working capacity and efficiency in the ASHRAE recommended humidity range, and prior capture ability of harmful organic and inorganic vapors, providing a promising candidate for autonomous indoor humidity control and air purification.
AbstractList The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH2‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application. A moderately hydrophilic MOF of UiO‐67‐4Me‐NH2‐38 % with high thermal, hydrolytic and acid‐base stability has been obtained by a pore‐nanospace post‐engineering strategy, which shows ideal S‐shaped water‐sorption isotherm, high water‐uptake working capacity and efficiency in the ASHRAE recommended humidity range, and prior capture ability of harmful organic and inorganic vapors, providing a promising candidate for autonomous indoor humidity control and air purification.
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore‐nanospace post‐engineering strategy to optimize the hydrophilicity, water‐uptake capacity and air‐purifying ability of metal‐organic frameworks (MOFs) with long‐term stability, offering an ideal candidate with autonomous multi‐functionality of moisture control and pollutants sequestration. Through variant tuning of organic‐linkers carrying hydrophobic and hydrophilic groups in the pore‐nanospaces of prototypical UiO‐67, a moderately hydrophilic MOF (UiO‐67‐4Me‐NH 2 ‐38 %) with high thermal, hydrolytic and acid‐base stability is screened out, featuring S‐shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %–65 % RH) and adverse health effects minimization (40–60 % RH). Its exceptional attributes of water‐uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
Author Chen, Cheng‐Xia
Fan, Ya‐Nan
Wang, Wei
Wei, Zhang‐Wen
Jiang, Ji‐Jun
Xiong, Xiao‐Hong
Zhu, Neng‐Xiu
Zeng, Zheng
Xiong, Yang‐Yang
Su, Cheng‐Yong
Author_xml – sequence: 1
  givenname: Neng‐Xiu
  surname: Zhu
  fullname: Zhu, Neng‐Xiu
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Zhang‐Wen
  surname: Wei
  fullname: Wei, Zhang‐Wen
  organization: Sun Yat-Sen University
– sequence: 3
  givenname: Cheng‐Xia
  surname: Chen
  fullname: Chen, Cheng‐Xia
  organization: Sun Yat-Sen University
– sequence: 4
  givenname: Xiao‐Hong
  surname: Xiong
  fullname: Xiong, Xiao‐Hong
  organization: Sun Yat-Sen University
– sequence: 5
  givenname: Yang‐Yang
  surname: Xiong
  fullname: Xiong, Yang‐Yang
  organization: Sun Yat-Sen University
– sequence: 6
  givenname: Zheng
  surname: Zeng
  fullname: Zeng, Zheng
  organization: Sun Yat-Sen University
– sequence: 7
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Sun Yat-Sen University
– sequence: 8
  givenname: Ji‐Jun
  surname: Jiang
  fullname: Jiang, Ji‐Jun
  organization: Sun Yat-Sen University
– sequence: 9
  givenname: Ya‐Nan
  surname: Fan
  fullname: Fan, Ya‐Nan
  organization: Sun Yat-Sen University
– sequence: 10
  givenname: Cheng‐Yong
  orcidid: 0000-0003-3604-7858
  surname: Su
  fullname: Su, Cheng‐Yong
  email: cesscy@mail.sysu.edu.cn
  organization: Lanzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34779556$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVIycXtNssg6CabcXWZkUZLY5LY4MaltHQp5BlNoqCRHEmT4KzyCHnGPEllnLQQKN3oiMP3HQ7nPwb7zjsNwAlGY4wQ-aKc0WOCCMYECb4HjnBFcEE5p_v5X1Ja8LrCh-A4xtvM1zViB-CQlpyLqmJHYDMz1zfwl0o6wEkbfVgn4x38uryI8MGkG7jMjd486hZ-80G_PD1fKefjWjU6ws5naUje-d4PEc5d63NnNvSmNWkDp96l4C1UbitbOyTlUoTfde_vlf0IPnTKRv3ptY7Az4vzH9NZsVhezqeTRdFQTnnRYFGtSEsUbdoSNZyhllUdKSvC1YoIKpAmuS0IpkKsFKKIsI7nBwnGKSrpCJzt5q6Dvxt0TLI3sdHWKqfz1pJUgtdYMMQy-vkdeuuH4PJ2krCMYEZ4nanTV2pY9bqV62B6FTby7agZKHdAE3yMQXeyMUlt75qCMlZiJLfZyW128k92WRu_094m_1MQO-HBWL35Dy0nV_Pzv-5vtb-r9w
CitedBy_id crossref_primary_10_1002_zaac_202300167
crossref_primary_10_1021_jacs_3c03036
crossref_primary_10_1021_jacs_3c11733
crossref_primary_10_1002_adsu_202400349
crossref_primary_10_1016_j_seppur_2025_131642
crossref_primary_10_1021_acs_chemmater_3c02450
crossref_primary_10_1007_s11426_024_2062_3
crossref_primary_10_1002_ange_202216710
crossref_primary_10_1002_ange_202208660
crossref_primary_10_1021_jacs_3c14699
crossref_primary_10_1021_acsami_3c10974
crossref_primary_10_1002_anie_202307274
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1002_ange_202305144
crossref_primary_10_1002_smll_202303897
crossref_primary_10_1002_anie_202307436
crossref_primary_10_1016_j_jclepro_2023_136253
crossref_primary_10_1002_advs_202204141
crossref_primary_10_1021_acs_est_3c03467
crossref_primary_10_1039_D3QM00484H
crossref_primary_10_1021_acsami_4c10825
crossref_primary_10_1021_jacs_3c00957
crossref_primary_10_1016_j_cej_2024_154770
crossref_primary_10_1021_jacs_4c02327
crossref_primary_10_1021_acs_jced_2c00145
crossref_primary_10_1021_acsmaterialslett_4c01113
crossref_primary_10_1007_s11426_023_1809_8
crossref_primary_10_1039_D2MH01016J
crossref_primary_10_1002_sstr_202300055
crossref_primary_10_1021_jacs_4c06088
crossref_primary_10_1021_jacs_4c01393
crossref_primary_10_1016_j_seppur_2024_130096
crossref_primary_10_1002_ange_202307274
crossref_primary_10_1002_anie_202305144
crossref_primary_10_1002_open_202300046
crossref_primary_10_1002_pol_20240098
crossref_primary_10_1002_advs_202308623
crossref_primary_10_1002_chem_202301929
crossref_primary_10_1021_jacs_4c06013
crossref_primary_10_1016_j_seppur_2024_127277
crossref_primary_10_1016_j_cej_2024_154925
crossref_primary_10_1039_D4MH01007H
crossref_primary_10_1002_adma_202411680
crossref_primary_10_1039_D4TA07564A
crossref_primary_10_1016_j_micrna_2024_208021
crossref_primary_10_1039_D4TA08090D
crossref_primary_10_3390_chemistry5010042
crossref_primary_10_1016_j_nxener_2023_100088
crossref_primary_10_1021_acs_chemmater_2c03662
crossref_primary_10_1039_D2TA07392G
crossref_primary_10_3390_buildings13051192
crossref_primary_10_1021_jacs_4c17145
crossref_primary_10_1016_j_energy_2023_130049
crossref_primary_10_1016_j_cej_2022_138241
crossref_primary_10_1021_jacs_2c11830
crossref_primary_10_1002_anie_202208660
crossref_primary_10_1002_adfm_202413200
crossref_primary_10_1021_jacs_2c12362
crossref_primary_10_1002_ange_202307436
crossref_primary_10_1039_D3SC06076D
crossref_primary_10_1002_adma_202211302
crossref_primary_10_1002_smll_202304477
crossref_primary_10_1002_anie_202216710
Cites_doi 10.1002/anie.201902229
10.1016/j.chempr.2017.11.005
10.1039/C9EN01321K
10.1039/C5CS00837A
10.1021/acsami.0c12693
10.1021/jacs.8b09655
10.15171/ijoem.2019.1540
10.1126/science.aam8743
10.1002/adfm.202006291
10.1039/C9SC03916C
10.1021/ja9061344
10.1021/cr5002589
10.1021/ja109810w
10.1039/C0CS00031K
10.1002/adma.201704304
10.1126/science.1230444
10.4209/aaqr.2019.07.0363
10.1021/acs.iecr.7b00106
10.1021/acscentsci.0c00678
10.1016/j.taap.2017.12.002
10.1039/C7CS00108H
10.1111/j.1600-0668.2004.00314.x
10.1016/j.ijheh.2021.113709
10.1038/s41560-018-0261-6
10.1039/C7CS00885F
10.1002/anie.201604023
10.1021/ja8057953
10.1039/C9TA07465A
10.1021/jacs.1c01027
10.1002/ange.201306923
10.1016/j.jes.2021.01.007
10.1021/jacs.0c09015
10.1021/acs.chemrev.9b00746
10.1016/j.seppur.2019.116213
10.1016/j.ccr.2020.213507
10.1021/acs.chemmater.9b00617
10.1002/ange.201909912
10.1021/cm3025445
10.1002/anie.201914762
10.1021/cr200304e
10.1021/jacs.8b12372
10.1002/ange.201604023
10.1021/cr4006473
10.1002/chem.202001052
10.1016/j.cej.2012.09.023
10.1039/C7TA07847A
10.1289/ehp.8665351
10.1073/pnas.0804900105
10.1016/j.desal.2016.11.008
10.1039/C4CS00003J
10.1016/j.jclepro.2018.03.037
10.1002/ange.201902229
10.1021/jacs.8b11042
10.1039/C9CS00250B
10.1002/anie.201909912
10.1039/C4TA04907A
10.1016/j.desal.2016.07.030
10.1002/ange.201914762
10.1063/1.5091783
10.1021/jacs.7b04132
10.1126/science.aam8310
10.1002/anie.201306923
10.1039/D1SC01609A
10.1021/jacs.8b13710
10.1021/jacs.6b04501
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202112097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34779556
10_1002_anie_202112097
ANIE202112097
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  funderid: 2017BT01C161, 2020A1515110365
– fundername: National Natural Science Foundation of China
  funderid: 21821003, 21890380, 21720102007, 21701200, 22001271
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2017BT01C161, 2020A1515110365
– fundername: National Natural Science Foundation of China
  grantid: 21821003, 21890380, 21720102007, 21701200, 22001271
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3737-c195b2d2a3cd40c760d65f24527ab29390e20c7921399ba03026f702609673043
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:49:46 EDT 2025
Fri Jul 25 10:35:59 EDT 2025
Wed Feb 19 02:26:48 EST 2025
Thu Apr 24 23:06:07 EDT 2025
Tue Jul 01 01:18:11 EDT 2025
Wed Jan 22 16:26:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords indoor air purification
MOF pore-nanospace engineering
high water-stable MOFs
indoor humidity control
water-adsorption based applications
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-c195b2d2a3cd40c760d65f24527ab29390e20c7921399ba03026f702609673043
Notes Dedicated to Professor Bei‐Sheng Kang on the occasion of her 80th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3604-7858
PMID 34779556
PQID 2619616278
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2597819606
proquest_journals_2619616278
pubmed_primary_34779556
crossref_citationtrail_10_1002_anie_202112097
crossref_primary_10_1002_anie_202112097
wiley_primary_10_1002_anie_202112097_ANIE202112097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 21, 2022
PublicationDateYYYYMMDD 2022-01-21
PublicationDate_xml – month: 01
  year: 2022
  text: January 21, 2022
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 5
2013; 25
2020; 120
2019; 10
2017; 46
2020 2020; 59 132
2019; 19
2008; 105
2020; 12
2017; 356
2018; 47
2017; 406
2020; 7
2020; 6
2018; 3
2021; 31
2012; 210
2018; 4
2021; 233
2018; 339
2018; 30
2016; 45
2017; 404
2019; 7
2018; 185
2018; 140
2015; 3
2019; 31
2021; 105
2011; 40
2020; 423
2013; 341
2009; 131
2021; 143
2019; 141
2014; 114
2019 2019; 58 131
2011; 133
2017; 139
2014; 43
2016 2016; 55 128
2021; 12
2012; 112
1986; 65
2004; 14
2019; 48
2017; 56
2020; 26
2018
2016; 138
2020; 235
2008; 130
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_2
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_45_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
Talmoudi R. (e_1_2_6_59_1) 2018
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 140
  start-page: 17591
  year: 2018
  end-page: 17596
  publication-title: J. Am. Chem. Soc.
– volume: 185
  start-page: 266
  year: 2018
  end-page: 274
  publication-title: J. Cleaner Prod.
– volume: 114
  start-page: 5695
  year: 2014
  end-page: 5727
  publication-title: Chem. Rev.
– volume: 120
  start-page: 8303
  year: 2020
  end-page: 8377
  publication-title: Chem. Rev.
– volume: 139
  start-page: 10715
  year: 2017
  end-page: 10722
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 40
  year: 2019
  end-page: 49
  publication-title: Int. J. Occup. Environ. Med.
– volume: 7
  start-page: 24973
  year: 2019
  end-page: 24981
  publication-title: J. Mater. Chem. A
– volume: 59 132
  start-page: 3905 3933
  year: 2020 2020
  end-page: 3909 3937
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2018
  publication-title: Int. J. Chem. Eng.
– volume: 404
  start-page: 192
  year: 2017
  end-page: 199
  publication-title: Desalination
– volume: 3
  start-page: 2057
  year: 2015
  end-page: 2064
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 4051
  year: 2019
  end-page: 4062
  publication-title: Chem. Mater.
– volume: 356
  start-page: 430
  year: 2017
  end-page: 434
  publication-title: Science
– volume: 14
  start-page: 98
  year: 2004
  end-page: 107
  publication-title: Indoor Air
– volume: 65
  start-page: 351
  year: 1986
  end-page: 361
  publication-title: Environ. Health Perspect.
– volume: 47
  start-page: 4729
  year: 2018
  end-page: 4756
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 2034
  year: 2011
  end-page: 2036
  publication-title: J. Am. Chem. Soc.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 356
  start-page: 731
  year: 2017
  end-page: 735
  publication-title: Science
– volume: 7
  start-page: 1319
  year: 2020
  end-page: 1347
  publication-title: Environ. Sci. Nano
– volume: 12
  start-page: 46057
  year: 2020
  end-page: 46064
  publication-title: ACS Appl. Mater. Interfaces
– volume: 105
  start-page: 11623
  year: 2008
  end-page: 11627
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 141
  start-page: 2900
  year: 2019
  end-page: 2905
  publication-title: J. Am. Chem. Soc.
– volume: 233
  year: 2021
  publication-title: Int. J. Hyg. Environ. Health
– volume: 105
  start-page: 184
  year: 2021
  end-page: 203
  publication-title: J. Environ. Sci.
– volume: 25
  start-page: 17
  year: 2013
  end-page: 26
  publication-title: Chem. Mater.
– volume: 26
  start-page: 8254
  year: 2020
  end-page: 8261
  publication-title: Chem. Eur. J.
– volume: 210
  start-page: 500
  year: 2012
  end-page: 509
  publication-title: Chem. Eng. J.
– volume: 423
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 2054
  year: 2019
  end-page: 2060
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 8393
  year: 2017
  end-page: 8398
  publication-title: Ind. Eng. Chem. Res.
– volume: 114
  start-page: 10575
  year: 2014
  end-page: 10612
  publication-title: Chem. Rev.
– volume: 406
  start-page: 25
  year: 2017
  end-page: 36
  publication-title: Desalination
– volume: 43
  start-page: 5561
  year: 2014
  end-page: 5593
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 13850
  year: 2008
  end-page: 13851
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6772
  year: 2021
  end-page: 6799
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 15188 15330
  year: 2019 2019
  end-page: 15205 15347
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 10209
  year: 2019
  end-page: 10230
  publication-title: Chem. Sci.
– volume: 53 126
  start-page: 4530 4618
  year: 2014 2014
  end-page: 4540 4628
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 4823
  year: 2019
  end-page: 4853
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 8912
  year: 2016
  end-page: 8919
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 9932 10086
  year: 2016 2016
  end-page: 9936 10090
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 985
  year: 2018
  end-page: 993
  publication-title: Nat. Energy
– volume: 58 131
  start-page: 17033 17189
  year: 2019 2019
  end-page: 17040 17196
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 22877
  year: 2017
  end-page: 22896
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 2327
  year: 2016
  end-page: 2367
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 5150
  year: 2021
  end-page: 5157
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 2056
  year: 2019
  end-page: 2069
  publication-title: Aerosol Air Qual. Res.
– volume: 7
  year: 2019
  publication-title: APL Mater.
– volume: 339
  start-page: 65
  year: 2018
  end-page: 72
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1348
  year: 2020
  end-page: 1354
  publication-title: ACS Cent. Sci.
– volume: 143
  start-page: 1798
  year: 2021
  end-page: 1806
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 3357
  year: 2017
  end-page: 3385
  publication-title: Chem. Soc. Rev.
– volume: 131
  start-page: 15834
  year: 2009
  end-page: 15842
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 94
  year: 2018
  end-page: 105
  publication-title: Chem
– volume: 112
  start-page: 933
  year: 2012
  end-page: 969
  publication-title: Chem. Rev.
– volume: 40
  start-page: 498
  year: 2011
  end-page: 519
  publication-title: Chem. Soc. Rev.
– volume: 235
  year: 2020
  publication-title: Sep. Purif. Technol.
– volume: 141
  start-page: 2589
  year: 2019
  end-page: 2593
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_39_1
  doi: 10.1002/anie.201902229
– ident: e_1_2_6_29_1
  doi: 10.1016/j.chempr.2017.11.005
– ident: e_1_2_6_34_1
  doi: 10.1039/C9EN01321K
– ident: e_1_2_6_37_1
  doi: 10.1039/C5CS00837A
– ident: e_1_2_6_31_1
  doi: 10.1021/acsami.0c12693
– ident: e_1_2_6_23_1
  doi: 10.1021/jacs.8b09655
– ident: e_1_2_6_8_1
  doi: 10.15171/ijoem.2019.1540
– ident: e_1_2_6_24_1
  doi: 10.1126/science.aam8743
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.202006291
– ident: e_1_2_6_17_1
  doi: 10.1039/C9SC03916C
– ident: e_1_2_6_14_1
  doi: 10.1021/ja9061344
– ident: e_1_2_6_13_1
  doi: 10.1021/cr5002589
– ident: e_1_2_6_52_1
  doi: 10.1021/ja109810w
– ident: e_1_2_6_47_1
  doi: 10.1039/C0CS00031K
– ident: e_1_2_6_51_1
  doi: 10.1002/adma.201704304
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1230444
– ident: e_1_2_6_9_1
  doi: 10.4209/aaqr.2019.07.0363
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.iecr.7b00106
– ident: e_1_2_6_25_1
  doi: 10.1021/acscentsci.0c00678
– ident: e_1_2_6_7_1
  doi: 10.1016/j.taap.2017.12.002
– ident: e_1_2_6_15_1
  doi: 10.1039/C7CS00108H
– ident: e_1_2_6_3_1
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1600-0668.2004.00314.x
– ident: e_1_2_6_1_1
  doi: 10.1016/j.ijheh.2021.113709
– ident: e_1_2_6_16_1
  doi: 10.1038/s41560-018-0261-6
– ident: e_1_2_6_35_1
  doi: 10.1039/C7CS00885F
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.201604023
– ident: e_1_2_6_49_1
  doi: 10.1021/ja8057953
– ident: e_1_2_6_55_1
  doi: 10.1039/C9TA07465A
– ident: e_1_2_6_28_1
  doi: 10.1021/jacs.1c01027
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.201306923
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jes.2021.01.007
– ident: e_1_2_6_50_1
  doi: 10.1021/jacs.0c09015
– ident: e_1_2_6_19_1
  doi: 10.1021/acs.chemrev.9b00746
– ident: e_1_2_6_60_1
  doi: 10.1016/j.seppur.2019.116213
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ccr.2020.213507
– ident: e_1_2_6_22_1
  doi: 10.1021/acs.chemmater.9b00617
– ident: e_1_2_6_33_2
  doi: 10.1002/ange.201909912
– ident: e_1_2_6_53_1
  doi: 10.1021/cm3025445
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201914762
– ident: e_1_2_6_36_1
  doi: 10.1021/cr200304e
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.8b12372
– ident: e_1_2_6_45_2
  doi: 10.1002/ange.201604023
– ident: e_1_2_6_11_1
  doi: 10.1021/cr4006473
– ident: e_1_2_6_43_1
  doi: 10.1002/chem.202001052
– ident: e_1_2_6_58_1
  doi: 10.1016/j.cej.2012.09.023
– ident: e_1_2_6_56_1
  doi: 10.1039/C7TA07847A
– start-page: 2316827
  year: 2018
  ident: e_1_2_6_59_1
  publication-title: Int. J. Chem. Eng.
– ident: e_1_2_6_4_1
  doi: 10.1289/ehp.8665351
– ident: e_1_2_6_57_1
  doi: 10.1073/pnas.0804900105
– ident: e_1_2_6_26_1
  doi: 10.1016/j.desal.2016.11.008
– ident: e_1_2_6_41_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_6_61_1
  doi: 10.1016/j.jclepro.2018.03.037
– ident: e_1_2_6_39_2
  doi: 10.1002/ange.201902229
– ident: e_1_2_6_38_1
  doi: 10.1021/jacs.8b11042
– ident: e_1_2_6_40_1
  doi: 10.1039/C9CS00250B
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201909912
– ident: e_1_2_6_54_1
  doi: 10.1039/C4TA04907A
– ident: e_1_2_6_27_1
  doi: 10.1016/j.desal.2016.07.030
– ident: e_1_2_6_30_2
  doi: 10.1002/ange.201914762
– ident: e_1_2_6_18_1
  doi: 10.1063/1.5091783
– ident: e_1_2_6_2_1
  doi: 10.1021/jacs.7b04132
– ident: e_1_2_6_10_1
  doi: 10.1126/science.aam8310
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201306923
– ident: e_1_2_6_5_1
  doi: 10.1039/D1SC01609A
– ident: e_1_2_6_32_1
  doi: 10.1021/jacs.8b13710
– ident: e_1_2_6_42_1
  doi: 10.1021/jacs.6b04501
SSID ssj0028806
Score 2.6104326
Snippet The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica‐gels are widely used for air...
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202112097
SubjectTerms Adsorbed water
Adsorption
Air Pollution, Indoor
Air quality
Contaminants
Control stability
Dehumidification
Gels
Health risks
high water-stable MOFs
Humidity
Humidity control
Hydrophilicity
Hydrophobicity
Indoor air pollution
indoor air purification
Indoor air quality
Indoor environments
indoor humidity control
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
MOF pore-nanospace engineering
Moisture control
Molecular Structure
Nanoparticles - chemistry
Optimization
Particle Size
Pollutant removal
Pollutants
Pollution control
Recyclability
Regeneration
Relative humidity
Silica
Silicon dioxide
Surface Properties
Water - chemistry
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - isolation & purification
Water purification
water-adsorption based applications
Work capacity
Zeolites
Title High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202112097
https://www.ncbi.nlm.nih.gov/pubmed/34779556
https://www.proquest.com/docview/2619616278
https://www.proquest.com/docview/2597819606
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCIKnapumyfa4LC4q-EAUvZW8CqK2st096Mmf4G_0lzjTbquriKD01DShaToz-SaZ-ULIjnFKt3nEvMAZDg5KqjwlOa42Rc6lLDaBxXXIk1NxeMWPb6KbT1n8FT9Es-CGmlHaa1RwpYv9D9JQzMAG_w4cGObHmE6OAVuIii4a_igGwlmlF4Whh6fQ16yNPtsfbz4-K32DmuPItZx6erNE1Z2uIk7u9oYDvWeev_A5_uer5sjMCJfSTiVI82TCZQtkqlsfB7dInjAihF4DNO3Tji3yfmlr6MlZr6C4mEvPoODh9tlZep733dvLKxjuHOwVGCIKyJh2hgNMoMiHBT3KbA4lIEq3FrwA2q3i5anKsPE9KANG59AL95CDIiyRq97BZffQG53b4JlQhtIzQRxpZpkKjeW-kcK3Ikpxi1cqDfAi9h2D4pgB-oy1AjPDRCqR3CwWYHB4uEwmszxzq4QKDZeNtBJWcNP2leUWnDArAodbmmmLePV_S8yI1BzP1rhPKjpmluCAJs2AtshuU_-xovP4seZGLQbJSK2LBN1NEQgm2y2y3TyGH4G7LCpzMIQJ-JMSYBY4hi2yUolP86qQSxlHETxhpRD80oekc3p00Nyt_aXROplmmLDhBx4LNsjkoD90mwCjBnqrVJV38rEUIg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOZQL5VkCBRYJiZNbe73ejY9R1CiBJkVVK7it9mWporVRHgd66k_ob-wvYcaOjQJCSCCfsvbKznpm_H2z8wB454KxfZHxKAlOIEEpTGSUIG9TFkLBc5d48kNOZ3J8Jj58ydpoQsqFaepDdA430ozaXpOCk0P64GfVUErBRoKHDIbHuboL96itd82qTroKUhzFs0kwStOI-tC3dRtjfrA5f_O79BvY3MSu9cdntAO2fewm5uTr_mpp993VLxUd_-t_PYQHa2jKBo0sPYI7oXwM28O2I9wT-E5BIewzotM5G_hFNa_NDZsejxaM_LnsGAcuz6-CZ5-qebi9vkHbXaHJQlvEEByzwWpJORTVasEmpa9wBKXp3CMRYMMmZJ6ZkiZfoD5QgA47CZcV6sJTOBsdng7H0bp1Q-RSlarIJXlmuecmdV7ETsnYy6ygXV5lLCKMPA4ch3OOADS3Bi0Nl4Wi-ma5RJsj0mewVVZleA5MWjx8Zo30Urh-bLzwyMO8TALtahY9iNoXp926rjm117jQTUVmrmlBdbegPXjfXf-tqejxxyv3WjnQa81eaGKcMpFc9XvwtjuNL4I2WkwZcAk1UkqFSAu5YQ92G_npbpUKpfIswzO8loK_PIMezCaH3a8X_zLpDWyPT6dH-mgy-_gS7nPK34iTiCd7sLWcr8IrRFVL-7rWmx8vhRg9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkNpeCn1Al0LrSpV6CiSOY2-Oq4UV25YFoaJysxzbkRCQoH0cyqk_ob-RX9KZZBPYoqpSq5zih-LYM-NvbM9ngA_Wm6wrEh5E3gp0UHITGCVotSnxPuepjRytQx6O5MGp-HSWnN2L4q_5IdoFN9KMyl6Tgl-7fPeONJQisNG_QweGh6l6BCtChl2S672TlkCKo3TW8UVxHNA19A1tY8h3F-svTksPsOYidK3mnsEqmKbV9ZGTi53ZNNuxN78ROv7Pb63BszkwZb1akp7Dki9ewJN-cx_cS_hOR0LYN8SmY9Zzk3JcGRt2eDSYMFrNZUeYcHV-4x07Lsf-9sdPtNwlGiy0RAyhMevNphRBUc4mbFi4ElNQls4dugGsXx-YZ6agypeoDXQ8h534qxI14RWcDva_9g-C-cUNgY1VrAIbpUnGHTexdSK0SoZOJjnt8SqTIb5IQ88xOeUIP9PMoJ3hMlfEbpZKtDgiXofloiz8a2Ayw8clmZFOCtsNjRMOvTAnI097mnkHgmbctJ2zmtPlGpe65mPmmjpUtx3agY9t-euaz-OPJbcaMdBzvZ5o8jdlJLnqduB9m40DQdsspvDYhRodSoU4Cz3DDmzU4tN-KhZKpUmCObwSgr-0QfdGw_32bfNfKr2Dx8d7A_1lOPr8Bp5yCt4Io4BHW7A8Hc_8NkKqafa20ppf6bYW9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Water+Adsorption+MOFs+with+Optimized+Pore-Nanospaces+for+Autonomous+Indoor+Humidity+Control+and+Pollutants+Removal&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Neng-Xiu&rft.au=Wei%2C+Zhang-Wen&rft.au=Chen%2C+Cheng-Xia&rft.au=Xiong%2C+Xiao-Hong&rft.date=2022-01-21&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=4&rft.spage=e202112097&rft_id=info:doi/10.1002%2Fanie.202112097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon