Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35

Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 3; pp. e2206387 - n/a
Main Authors Gao, Danpeng, Li, Bo, Li, Zhen, Wu, Xin, Zhang, Shoufeng, Zhao, Dan, Jiang, Xiaofen, Zhang, Chunlei, Wang, Yan, Li, Zhenjiang, Li, Nan, Xiao, Shuang, Choy, Wallace C. H., Jen, Alex K.‐Y., Yang, Shangfeng, Zhu, Zonglong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Highly efficient and stable flexible inverted perovskite solar cells are developed through modifying the interface between perovskite and hole transport layer via pentylammonium acetate molecule, which achieve a record power conversion efficiency of 23.68% (0.08 cm2, certified: 23.35%) and excellent mechanical stability.
AbstractList Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA and Ac have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm , certified: 23.35%) with a high open-circuit voltage (V ) of 1.17 V. Large-area devices (1.0 cm ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac- have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2 , certified: 23.35%) with a high open-circuit voltage (VOC ) of 1.17 V. Large-area devices (1.0 cm2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac- have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2 , certified: 23.35%) with a high open-circuit voltage (VOC ) of 1.17 V. Large-area devices (1.0 cm2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA + and Ac − have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm 2 , certified: 23.35%) with a high open‐circuit voltage ( V OC ) of 1.17 V. Large‐area devices (1.0 cm 2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Highly efficient and stable flexible inverted perovskite solar cells are developed through modifying the interface between perovskite and hole transport layer via pentylammonium acetate molecule, which achieve a record power conversion efficiency of 23.68% (0.08 cm2, certified: 23.35%) and excellent mechanical stability.
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Author Li, Zhen
Yang, Shangfeng
Xiao, Shuang
Li, Nan
Zhang, Chunlei
Li, Zhenjiang
Wu, Xin
Zhao, Dan
Gao, Danpeng
Zhang, Shoufeng
Jen, Alex K.‐Y.
Wang, Yan
Li, Bo
Zhu, Zonglong
Choy, Wallace C. H.
Jiang, Xiaofen
Author_xml – sequence: 1
  givenname: Danpeng
  surname: Gao
  fullname: Gao, Danpeng
  organization: City University of Hong Kong
– sequence: 2
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: City University of Hong Kong
– sequence: 3
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: City University of Hong Kong
– sequence: 4
  givenname: Xin
  surname: Wu
  fullname: Wu, Xin
  organization: City University of Hong Kong
– sequence: 5
  givenname: Shoufeng
  surname: Zhang
  fullname: Zhang, Shoufeng
  organization: City University of Hong Kong
– sequence: 6
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: City University of Hong Kong
– sequence: 7
  givenname: Xiaofen
  surname: Jiang
  fullname: Jiang, Xiaofen
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Chunlei
  surname: Zhang
  fullname: Zhang, Chunlei
  organization: City University of Hong Kong
– sequence: 9
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: City University of Hong Kong
– sequence: 10
  givenname: Zhenjiang
  surname: Li
  fullname: Li, Zhenjiang
  organization: City University of Hong Kong
– sequence: 11
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  organization: The Chinese University of Hong Kong
– sequence: 12
  givenname: Shuang
  surname: Xiao
  fullname: Xiao, Shuang
  organization: Shenzhen Technology University
– sequence: 13
  givenname: Wallace C. H.
  surname: Choy
  fullname: Choy, Wallace C. H.
  organization: University of Hong Kong
– sequence: 14
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  organization: City University of Hong Kong
– sequence: 15
  givenname: Shangfeng
  surname: Yang
  fullname: Yang, Shangfeng
  email: sfyang@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 16
  givenname: Zonglong
  orcidid: 0000-0002-8285-9665
  surname: Zhu
  fullname: Zhu, Zonglong
  email: zonglzhu@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36349808$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9vFCEYhompsdvq1aMh8eJlVn4NDMfN2lqTNpqoZ8IA06UyQwXGOif_danb1qSJ8UQCz_MC33sEDqY4OQBeYrTGCJG32o56TRAhiNNOPAEr3BLcMCTbA7BCkraN5Kw7BEc5XyGEJEf8GTiknDLZoW4Ffp35y11Y4MkweOPdVOBpcD99Hxz85FL8kb_54uDnGHSCWxdChmWX4ny5q8dTWYIexzj5eYQb44qu6EW0vkbp4uMEb3zZVS2VuuXswyVmgXGAhK5p-xw8HXTI7sXdegy-np582Z415x_ff9huzhtDBRVNjw2SnRvwwJlAWguDSG-FsAb3vbSOk5ZxQzratkZi0TNKO4N6ga2wHHeWHoM3-9zrFL_PLhc1-mzqh_Tk4pwVEZRxzBBtK_r6EXoV5zTV11WKc0koEbhSr-6ouR-dVdfJjzot6n60FWB7wKSYc3KDMr78GUtJ2geFkbptUN02qB4arNr6kXaf_E9B7oUbH9zyH1pt3l1s_rq_AWpercU
CitedBy_id crossref_primary_10_1002_ange_202309398
crossref_primary_10_1002_anie_202307225
crossref_primary_10_1016_j_cej_2024_150977
crossref_primary_10_1016_j_apsusc_2023_157003
crossref_primary_10_1021_acsanm_3c03612
crossref_primary_10_3390_catal13060953
crossref_primary_10_1039_D4TA01511H
crossref_primary_10_1039_D4TA03904A
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1021_acsnano_4c04768
crossref_primary_10_1039_D3QM00236E
crossref_primary_10_1002_smll_202410716
crossref_primary_10_1021_acs_jpcc_4c03745
crossref_primary_10_1002_ange_202405878
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_1016_j_jallcom_2024_177648
crossref_primary_10_1039_D4EE03503H
crossref_primary_10_1002_adfm_202310194
crossref_primary_10_1002_adma_202416150
crossref_primary_10_1039_D3RA01639K
crossref_primary_10_1002_solr_202500052
crossref_primary_10_1002_smsc_202200108
crossref_primary_10_1038_s41467_024_46620_1
crossref_primary_10_1016_j_solener_2024_112382
crossref_primary_10_1007_s10853_023_08704_z
crossref_primary_10_1007_s10854_024_12446_2
crossref_primary_10_1021_acsnano_3c07784
crossref_primary_10_1002_adma_202401236
crossref_primary_10_1002_adfm_202311554
crossref_primary_10_1002_smll_202309827
crossref_primary_10_1063_5_0189309
crossref_primary_10_1038_s41598_023_37018_y
crossref_primary_10_56767_jfpe_2023_2_2_145
crossref_primary_10_1021_acsami_5c01338
crossref_primary_10_1021_acs_energyfuels_4c03898
crossref_primary_10_1002_smll_202401456
crossref_primary_10_1002_adfm_202213961
crossref_primary_10_1002_adfm_202418792
crossref_primary_10_1002_anie_202412409
crossref_primary_10_3390_coatings15010015
crossref_primary_10_1002_anie_202309398
crossref_primary_10_1038_s41467_024_55652_6
crossref_primary_10_1039_D4TA03926B
crossref_primary_10_1021_acs_energyfuels_3c03679
crossref_primary_10_1002_ange_202316898
crossref_primary_10_1002_ange_202424483
crossref_primary_10_1002_anie_202412819
crossref_primary_10_1002_anie_202424483
crossref_primary_10_1002_solr_202300283
crossref_primary_10_1039_D4TA06793B
crossref_primary_10_1002_adma_202308039
crossref_primary_10_1002_advs_202304733
crossref_primary_10_1021_acsnano_3c05583
crossref_primary_10_1021_acsaem_3c02581
crossref_primary_10_1002_aenm_202301259
crossref_primary_10_1002_advs_202404725
crossref_primary_10_1002_eom2_12352
crossref_primary_10_1364_OE_522984
crossref_primary_10_1002_smll_202310868
crossref_primary_10_1021_acsaem_3c02887
crossref_primary_10_1002_ente_202300958
crossref_primary_10_1002_anie_202316898
crossref_primary_10_1021_acsnano_4c08378
crossref_primary_10_1002_adfm_202307310
crossref_primary_10_1016_j_cej_2024_158389
crossref_primary_10_1002_ange_202412409
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1002_adma_202313524
crossref_primary_10_1021_acsenergylett_4c00140
crossref_primary_10_1002_adfm_202314472
crossref_primary_10_1016_j_nanoen_2023_108241
crossref_primary_10_1126_sciadv_adr2290
crossref_primary_10_1002_solr_202400243
crossref_primary_10_1021_acsnano_4c16440
crossref_primary_10_1002_adma_202208431
crossref_primary_10_1016_j_apmate_2023_100142
crossref_primary_10_1002_ange_202412819
crossref_primary_10_1039_D4TC00053F
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_1002_anie_202405878
crossref_primary_10_1002_adfm_202312209
crossref_primary_10_1002_adfm_202408487
crossref_primary_10_1002_aenm_202303173
crossref_primary_10_1002_aenm_202300700
crossref_primary_10_15541_jim20230105
crossref_primary_10_1002_adma_202408036
crossref_primary_10_1002_aenm_202300661
crossref_primary_10_1021_acsmaterialslett_3c00929
crossref_primary_10_1002_adfm_202422014
crossref_primary_10_1002_aenm_202303859
crossref_primary_10_1002_aenm_202300382
crossref_primary_10_1021_acsami_3c08980
crossref_primary_10_1007_s40843_023_2843_8
crossref_primary_10_1088_1402_4896_acff28
crossref_primary_10_1038_s41570_023_00510_0
crossref_primary_10_1021_acsami_3c10430
crossref_primary_10_1002_ange_202307225
crossref_primary_10_1016_j_nanoen_2023_109112
crossref_primary_10_1002_adma_202300513
crossref_primary_10_1002_solr_202400184
crossref_primary_10_1039_D4EE02279C
crossref_primary_10_1063_5_0171128
crossref_primary_10_3390_su17051820
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1016_j_rser_2025_115488
crossref_primary_10_1039_D3EE02569A
Cites_doi 10.1038/s41560-020-00721-5
10.1016/j.cej.2022.137144
10.1126/sciadv.1600097
10.1002/adma.202203794
10.1126/science.abc4417
10.1016/j.joule.2019.07.023
10.1002/aenm.201803766
10.1038/nenergy.2017.102
10.1016/j.joule.2021.04.014
10.1016/j.matlet.2021.129559
10.1002/adfm.202007447
10.1038/s41586-021-03285-w
10.1021/acsenergylett.9b00503
10.1002/adma.202002333
10.26599/NRE.2022.9120011
10.1126/science.abd4860
10.1002/eem2.12089
10.1039/D1CS00841B
10.1039/D0TA02222E
10.1002/anie.202104201
10.1039/C4EE02441A
10.1002/adma.201900428
10.1002/anie.202016085
10.1002/aenm.202000361
10.1126/science.abb7167
10.1002/anie.202003813
10.1002/aenm.201902279
10.1126/science.abm8566
10.1016/j.nanoen.2020.105701
10.1126/science.abf7652
10.1002/anie.202102096
10.1002/smll.202005608
10.1002/adma.202201681
10.1021/jacs.0c09845
10.1016/j.scib.2020.10.023
10.1021/accountsmr.1c00154
10.1021/acsaem.9b00391
10.1002/adma.202109879
10.1002/aenm.202100967
10.1002/aenm.202101538
10.1038/nmat4388
10.1016/j.chempr.2019.02.025
10.1016/j.jechem.2019.11.015
10.1038/s41586-021-03406-5
10.1002/aenm.202103236
10.1002/aenm.201902579
10.1002/aenm.201902650
10.1016/j.egypro.2017.07.457
10.1126/sciadv.aao5616
10.1039/D0TA06033J
10.1002/adma.202102816
10.1007/s11426-022-1352-7
10.1002/anie.201904195
10.1002/adma.202105539
10.1002/adma.201801418
10.1002/aenm.201703421
10.1039/D0EE02164D
10.1038/s41566-017-0012-4
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202206387
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36349808
10_1002_adma_202206387
ADMA202206387
Genre article
Journal Article
GrantInformation_xml – fundername: Innovation and Technology Fund
  funderid: ITS/095/20; GHP/100/20SZ; GHP/102/20GD; MRP/040/21X
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019A1515010761
– fundername: Research Grants Council of Hong Kong, Green Tech Fund
  funderid: GTF202020164
– fundername: GRF
  funderid: 11306521
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0402800
– fundername: Science Technology and Innovation Committee of Shenzhen Municipality
  funderid: SGDX20210823104002015
– fundername: ECS
  funderid: 21301319
– fundername: Guangdong Provincial Science and Technology Plan
  funderid: 2021A0505110003
– fundername: National Natural Science Foundation of China
  funderid: 51925206; U1932214
– fundername: Innovation and Technology Fund
  grantid: GHP/100/20SZ
– fundername: Innovation and Technology Fund
  grantid: MRP/040/21X
– fundername: Research Grants Council of Hong Kong, Green Tech Fund
  grantid: GTF202020164
– fundername: Science Technology and Innovation Committee of Shenzhen Municipality
  grantid: SGDX20210823104002015
– fundername: ECS
  grantid: 21301319
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2019A1515010761
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0402800
– fundername: Innovation and Technology Fund
  grantid: ITS/095/20
– fundername: National Natural Science Foundation of China
  grantid: U1932214
– fundername: GRF
  grantid: 11306521
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3737-b1c098ef1f6470aa7c02bd77dc1bb9de62546c28355c917b4338c0b71d7d618d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:45:40 EDT 2025
Fri Jul 25 03:37:38 EDT 2025
Thu Apr 03 07:08:53 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Tue Jul 01 02:33:24 EDT 2025
Wed Jan 22 16:18:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords perovskites
high efficiency
flexible solar cells
interface modification
mechanical stability
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-b1c098ef1f6470aa7c02bd77dc1bb9de62546c28355c917b4338c0b71d7d618d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8285-9665
PMID 36349808
PQID 2766923271
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2734614035
proquest_journals_2766923271
pubmed_primary_36349808
crossref_citationtrail_10_1002_adma_202206387
crossref_primary_10_1002_adma_202206387
wiley_primary_10_1002_adma_202206387_ADMA202206387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 376
2015; 14
2021; 6
2019; 9
2019; 4
2021; 5
2019; 3
2021; 4
2017; 2
2017; 3
2021; 2
2021; 66
2019; 5
2019; 31
2019; 2
2020; 142
2019; 58
2020; 369
2020; 59
2020; 13
2022; 65
2020; 10
2020; 32
2021; 50
2015; 8
2020; 8
2018; 8
2021; 31
2016; 2
2021; 33
2021; 11
2022; 4
2017; 11
2021; 17
2020; 370
2022; 34
2022; 12
2021; 292
2021; 371
2021; 590
2018; 30
2020; 46
2021; 592
2022; 1
2017; 122
2021; 60
2021; 82
2022; 446
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Gu H. (e_1_2_7_44_1) 2022; 4
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 371
  start-page: 636
  year: 2021
  publication-title: Science
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 292
  year: 2021
  publication-title: Mater. Lett.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 6
  start-page: 38
  year: 2021
  publication-title: Nat. Energy
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  start-page: 916
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 726
  year: 2017
  publication-title: Nat. Photonics
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 122
  start-page: 409
  year: 2017
  publication-title: Energy Procedia
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 370
  start-page: 108
  year: 2020
  publication-title: Science
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1850
  year: 2019
  publication-title: Joule
– volume: 65
  start-page: 1895
  year: 2022
  publication-title: Sci. China: Chem.
– volume: 58
  start-page: 8520
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 8313
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 7227
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 1032
  year: 2015
  publication-title: Nat. Mater.
– volume: 5
  start-page: 995
  year: 2019
  publication-title: Chem
– volume: 371
  start-page: 1359
  year: 2021
  publication-title: Science
– volume: 4
  start-page: 95
  year: 2021
  publication-title: Energy Environ. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 13
  start-page: 4854
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 46
  start-page: 173
  year: 2020
  publication-title: J. Energy Chem.
– volume: 592
  start-page: 381
  year: 2021
  publication-title: Nature
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 66
  start-page: 527
  year: 2021
  publication-title: Sci. Bull.
– volume: 369
  start-page: 1615
  year: 2020
  publication-title: Science
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2022
  publication-title: CCS Chem.
– volume: 5
  start-page: 1587
  year: 2021
  publication-title: Joule
– volume: 446
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1059
  year: 2021
  publication-title: Acc. Mater. Res.
– volume: 376
  start-page: 416
  year: 2022
  publication-title: Science
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– volume: 4
  start-page: 1065
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 3676
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– ident: e_1_2_7_43_1
  doi: 10.1038/s41560-020-00721-5
– ident: e_1_2_7_49_1
  doi: 10.1016/j.cej.2022.137144
– ident: e_1_2_7_15_1
  doi: 10.1126/sciadv.1600097
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202203794
– ident: e_1_2_7_1_1
  doi: 10.1126/science.abc4417
– ident: e_1_2_7_27_1
  doi: 10.1016/j.joule.2019.07.023
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.201803766
– ident: e_1_2_7_50_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_7_41_1
  doi: 10.1016/j.joule.2021.04.014
– ident: e_1_2_7_58_1
  doi: 10.1016/j.matlet.2021.129559
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.202007447
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_7_12_1
  doi: 10.1021/acsenergylett.9b00503
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.202002333
– ident: e_1_2_7_37_1
  doi: 10.26599/NRE.2022.9120011
– ident: e_1_2_7_3_1
  doi: 10.1126/science.abd4860
– ident: e_1_2_7_35_1
  doi: 10.1002/eem2.12089
– ident: e_1_2_7_10_1
  doi: 10.1039/D1CS00841B
– ident: e_1_2_7_55_1
  doi: 10.1039/D0TA02222E
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202104201
– ident: e_1_2_7_18_1
  doi: 10.1039/C4EE02441A
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201900428
– ident: e_1_2_7_24_1
  doi: 10.1002/anie.202016085
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202000361
– ident: e_1_2_7_2_1
  doi: 10.1126/science.abb7167
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.202003813
– ident: e_1_2_7_57_1
  doi: 10.1002/aenm.201902279
– ident: e_1_2_7_7_1
  doi: 10.1126/science.abm8566
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nanoen.2020.105701
– ident: e_1_2_7_4_1
  doi: 10.1126/science.abf7652
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.202102096
– ident: e_1_2_7_51_1
  doi: 10.1002/smll.202005608
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.202201681
– volume: 4
  start-page: 202101629
  year: 2022
  ident: e_1_2_7_44_1
  publication-title: CCS Chem.
– ident: e_1_2_7_47_1
  doi: 10.1021/jacs.0c09845
– ident: e_1_2_7_38_1
  doi: 10.1016/j.scib.2020.10.023
– ident: e_1_2_7_9_1
  doi: 10.1021/accountsmr.1c00154
– ident: e_1_2_7_30_1
  doi: 10.1021/acsaem.9b00391
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.202109879
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.202100967
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.202101538
– ident: e_1_2_7_11_1
  doi: 10.1038/nmat4388
– ident: e_1_2_7_45_1
  doi: 10.1016/j.chempr.2019.02.025
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jechem.2019.11.015
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-021-03406-5
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.202103236
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201902579
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201902650
– ident: e_1_2_7_17_1
  doi: 10.1016/j.egypro.2017.07.457
– ident: e_1_2_7_59_1
  doi: 10.1126/sciadv.aao5616
– ident: e_1_2_7_40_1
  doi: 10.1039/D0TA06033J
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202102816
– ident: e_1_2_7_8_1
  doi: 10.1007/s11426-022-1352-7
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201904195
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.202105539
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201801418
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.201703421
– ident: e_1_2_7_28_1
  doi: 10.1039/D0EE02164D
– ident: e_1_2_7_52_1
  doi: 10.1038/s41566-017-0012-4
SSID ssj0009606
Score 2.7034187
Snippet Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2206387
SubjectTerms Bends
Circuits
Energy conversion efficiency
flexible solar cells
high efficiency
interface modification
Materials science
mechanical stability
Perovskites
Photovoltaic cells
Solar cells
Title Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206387
https://www.ncbi.nlm.nih.gov/pubmed/36349808
https://www.proquest.com/docview/2766923271
https://www.proquest.com/docview/2734614035
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA-yp_mgm5_VKREEn3LX5KRJ-3iZuwzhiqiDvZV8FcSulfsxuHvZv25O29vtKiLoW0sSkqa_k_xycvILIW8BDEgrFQORGyY9cGYEr1ioIncwVphgcUd3_lGdncsPF9nFnVP8vT7E6HBDy-jGazRwY5fHt6Khxne6QULgpIvHyTFgC1nR51v9KKTnndgeZKxQMt-qNqbieLf47qz0G9XcZa7d1DN7SMy20X3EyffJemUn7voXPcf_-aoD8mDgpXTaA-mQ3AvNI3L_jlrhY3KDMSH1hp52qhNxsqIzVNO0daCfwqK9WqIjmH7BtTI9CXW9pMMlQDG5WW0i9CLkv60v6dRhjGOg89ZjoFKHDYoO4VhsgbFLwY-VuA1tKypgAtkTcj47_Xpyxob7G5gDDZpZ7tIiDxWvlNSpMdqlwnqtvePWFj4o1OJ3KPiWubhqtDIul11qNffaK557eEr2mrYJzwnlcaAI2oKNQwhCy-aVCy7Sx8JpgGATwrb_r3SDuDnesVGXvSyzKLFjy7FjE_JuzP-jl_X4Y86jLRzKwbyXpdBKRWYsNE_ImzE5GibutpgmtGvMA1KhGmKWkGc9jMaqQIEs8jRPiOjA8Jc2lNP38-n49uJfCr0k-_EZeufREdlbLdbhVaRTK_u6M5mfavcWKA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRygB96PQAEjgThlG9uJnRw4rLpdbWm3QtBKvYX4EQk1JGgfoOXCb-Kv8Ivw5FUWhJCQeuCY2Ikte2Y8nkw-AzzjPOOhCoXPWZz5oeHUzxjNfZs73yFTLLMKv-hOj8TkJHx1Gp1uwLfuX5iGD9EH3FAzanuNCo4B6Z1zamhmanAQY7jqyjav8sCuPrtd2_zl_shN8XPGxnvHuxO_PVjA11xy6SuqgyS2Oc1FKIMskzpgykhpNFUqMVYgJF4jiSzSbjujQreP04GS1EgjaGy4e-8luIzHiCOuf_TmnFiFG4Ia78cjPxFh3HEiA7az3t_1dfA353bdV64Xu_F1-N4NU5PjcjZYLtRAf_mFIPlfjeMNuNa63mTY6MpN2LDlLdj6Cch4G75i2kuxIns1WMOtx2SMwFBVWPLazqpPc4x1k7cYDiC7tijmpD3nyBWXi5XTLqfV75cfyFBjGqcl08pgLlYt_gRj3u6xGaZnWdM3olekygnjAx7dgZMLGYG7sFlWpb0PhDpbaKXiyllJ1B4V59pq5yEnWnJulQd-JzCpbvnteIxIkTbkaZbiRKb9RHrwoq__sSGX_LHmdid_aWvB5imTQjjnn0nqwdO-2Nke_KCUlbZaYh0eCgQ-Rh7ca-S2b4oLHiZxEHvAaun7Sx_S4Wg67K8e_MtDT-DK5Hh6mB7uHx08hKvuPm9iZduwuZgt7SPnPS7U41pfCby7aMH-ARAIc2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRUJwKDuEFjASiFOmie3YyYHDqNNRS5mqAir1FuIlEiIk1SxFw4W_1L_CP8IvWxkQQkLqgWNiO7bst_vlewDPGcsYV1z4jMaZzw0L_YyGuW9zZztkimZW4Y3u5FDsHfPXJ9HJGpx3_8I0-BB9wA05o5bXyOCnJt--AA3NTI0bRCkqXdmmVR7Y5RfntM1e7Y_cCb-gdLz7fmfPb-sK-JpJJn0V6iCJbR7mgssgy6QOqDJSGh0qlRgrECNeIxBZpJ03o7hz43SgZGikEWFsmPvuFbjKRZBgsYjR2wvAKvQHanQ_FvmJ4HEHExnQ7dX1rqrB32zbVVO51nXjm_C926UmxeXTYDFXA_31FwDJ_2kbb8FGa3iTYcMpt2HNlnfgxk9wjHfhGya9FEuyW8NqOG1MxggXqgpLjuy0OpthpJu8w2AA2bFFMSNtlSPXXM6XjrccT39cfCZDjUmclkwqg5lYNfETjHi7YVNMzrKmn0QvSZUTygYsugfHl7ID92G9rEr7EEjoJKGViiknI5F3VJxrq519nGjJmFUe-B29pLpFb8ciIkXa4E7TFA8y7Q_Sg5d9_9MGt-SPPbc68ktb-TVLqRTCmf5Uhh4865ud5MHrpKy01QL7MC4Q7jHy4EFDtv1UTDCexEHsAa2J7y9rSIejybB_evQvg57CtaPROH2zf3iwCdfda9YEyrZgfT5d2MfOdJyrJzW3Evhw2XT9AyC1chc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Flexible+Perovskite+Solar+Cells+through+Pentylammonium+Acetate+Modification+with+Certified+Efficiency+of+23.35&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gao%2C+Danpeng&rft.au=Li%2C+Bo&rft.au=Li%2C+Zhen&rft.au=Wu%2C+Xin&rft.date=2023-01-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=3&rft.spage=e2206387&rft_id=info:doi/10.1002%2Fadma.202206387&rft_id=info%3Apmid%2F36349808&rft.externalDocID=36349808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon