Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their m...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 3; pp. e2206387 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Highly efficient and stable flexible inverted perovskite solar cells are developed through modifying the interface between perovskite and hole transport layer via pentylammonium acetate molecule, which achieve a record power conversion efficiency of 23.68% (0.08 cm2, certified: 23.35%) and excellent mechanical stability. |
---|---|
AbstractList | Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA
and Ac
have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm
, certified: 23.35%) with a high open-circuit voltage (V
) of 1.17 V. Large-area devices (1.0 cm
) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac- have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2 , certified: 23.35%) with a high open-circuit voltage (VOC ) of 1.17 V. Large-area devices (1.0 cm2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac- have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2 , certified: 23.35%) with a high open-circuit voltage (VOC ) of 1.17 V. Large-area devices (1.0 cm2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA + and Ac − have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm 2 , certified: 23.35%) with a high open‐circuit voltage ( V OC ) of 1.17 V. Large‐area devices (1.0 cm 2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. Highly efficient and stable flexible inverted perovskite solar cells are developed through modifying the interface between perovskite and hole transport layer via pentylammonium acetate molecule, which achieve a record power conversion efficiency of 23.68% (0.08 cm2, certified: 23.35%) and excellent mechanical stability. Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac− have strong chemical binding with both acceptor and donor defects of surface‐terminating ends on perovskite films. The PenAAc‐modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2, certified: 23.35%) with a high open‐circuit voltage (VOC) of 1.17 V. Large‐area devices (1.0 cm2) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends. |
Author | Li, Zhen Yang, Shangfeng Xiao, Shuang Li, Nan Zhang, Chunlei Li, Zhenjiang Wu, Xin Zhao, Dan Gao, Danpeng Zhang, Shoufeng Jen, Alex K.‐Y. Wang, Yan Li, Bo Zhu, Zonglong Choy, Wallace C. H. Jiang, Xiaofen |
Author_xml | – sequence: 1 givenname: Danpeng surname: Gao fullname: Gao, Danpeng organization: City University of Hong Kong – sequence: 2 givenname: Bo surname: Li fullname: Li, Bo organization: City University of Hong Kong – sequence: 3 givenname: Zhen surname: Li fullname: Li, Zhen organization: City University of Hong Kong – sequence: 4 givenname: Xin surname: Wu fullname: Wu, Xin organization: City University of Hong Kong – sequence: 5 givenname: Shoufeng surname: Zhang fullname: Zhang, Shoufeng organization: City University of Hong Kong – sequence: 6 givenname: Dan surname: Zhao fullname: Zhao, Dan organization: City University of Hong Kong – sequence: 7 givenname: Xiaofen surname: Jiang fullname: Jiang, Xiaofen organization: University of Science and Technology of China – sequence: 8 givenname: Chunlei surname: Zhang fullname: Zhang, Chunlei organization: City University of Hong Kong – sequence: 9 givenname: Yan surname: Wang fullname: Wang, Yan organization: City University of Hong Kong – sequence: 10 givenname: Zhenjiang surname: Li fullname: Li, Zhenjiang organization: City University of Hong Kong – sequence: 11 givenname: Nan surname: Li fullname: Li, Nan organization: The Chinese University of Hong Kong – sequence: 12 givenname: Shuang surname: Xiao fullname: Xiao, Shuang organization: Shenzhen Technology University – sequence: 13 givenname: Wallace C. H. surname: Choy fullname: Choy, Wallace C. H. organization: University of Hong Kong – sequence: 14 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. organization: City University of Hong Kong – sequence: 15 givenname: Shangfeng surname: Yang fullname: Yang, Shangfeng email: sfyang@ustc.edu.cn organization: University of Science and Technology of China – sequence: 16 givenname: Zonglong orcidid: 0000-0002-8285-9665 surname: Zhu fullname: Zhu, Zonglong email: zonglzhu@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36349808$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9vFCEYhompsdvq1aMh8eJlVn4NDMfN2lqTNpqoZ8IA06UyQwXGOif_danb1qSJ8UQCz_MC33sEDqY4OQBeYrTGCJG32o56TRAhiNNOPAEr3BLcMCTbA7BCkraN5Kw7BEc5XyGEJEf8GTiknDLZoW4Ffp35y11Y4MkweOPdVOBpcD99Hxz85FL8kb_54uDnGHSCWxdChmWX4ny5q8dTWYIexzj5eYQb44qu6EW0vkbp4uMEb3zZVS2VuuXswyVmgXGAhK5p-xw8HXTI7sXdegy-np582Z415x_ff9huzhtDBRVNjw2SnRvwwJlAWguDSG-FsAb3vbSOk5ZxQzratkZi0TNKO4N6ga2wHHeWHoM3-9zrFL_PLhc1-mzqh_Tk4pwVEZRxzBBtK_r6EXoV5zTV11WKc0koEbhSr-6ouR-dVdfJjzot6n60FWB7wKSYc3KDMr78GUtJ2geFkbptUN02qB4arNr6kXaf_E9B7oUbH9zyH1pt3l1s_rq_AWpercU |
CitedBy_id | crossref_primary_10_1002_ange_202309398 crossref_primary_10_1002_anie_202307225 crossref_primary_10_1016_j_cej_2024_150977 crossref_primary_10_1016_j_apsusc_2023_157003 crossref_primary_10_1021_acsanm_3c03612 crossref_primary_10_3390_catal13060953 crossref_primary_10_1039_D4TA01511H crossref_primary_10_1039_D4TA03904A crossref_primary_10_1002_adma_202311025 crossref_primary_10_1021_acsnano_4c04768 crossref_primary_10_1039_D3QM00236E crossref_primary_10_1002_smll_202410716 crossref_primary_10_1021_acs_jpcc_4c03745 crossref_primary_10_1002_ange_202405878 crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_1016_j_jallcom_2024_177648 crossref_primary_10_1039_D4EE03503H crossref_primary_10_1002_adfm_202310194 crossref_primary_10_1002_adma_202416150 crossref_primary_10_1039_D3RA01639K crossref_primary_10_1002_solr_202500052 crossref_primary_10_1002_smsc_202200108 crossref_primary_10_1038_s41467_024_46620_1 crossref_primary_10_1016_j_solener_2024_112382 crossref_primary_10_1007_s10853_023_08704_z crossref_primary_10_1007_s10854_024_12446_2 crossref_primary_10_1021_acsnano_3c07784 crossref_primary_10_1002_adma_202401236 crossref_primary_10_1002_adfm_202311554 crossref_primary_10_1002_smll_202309827 crossref_primary_10_1063_5_0189309 crossref_primary_10_1038_s41598_023_37018_y crossref_primary_10_56767_jfpe_2023_2_2_145 crossref_primary_10_1021_acsami_5c01338 crossref_primary_10_1021_acs_energyfuels_4c03898 crossref_primary_10_1002_smll_202401456 crossref_primary_10_1002_adfm_202213961 crossref_primary_10_1002_adfm_202418792 crossref_primary_10_1002_anie_202412409 crossref_primary_10_3390_coatings15010015 crossref_primary_10_1002_anie_202309398 crossref_primary_10_1038_s41467_024_55652_6 crossref_primary_10_1039_D4TA03926B crossref_primary_10_1021_acs_energyfuels_3c03679 crossref_primary_10_1002_ange_202316898 crossref_primary_10_1002_ange_202424483 crossref_primary_10_1002_anie_202412819 crossref_primary_10_1002_anie_202424483 crossref_primary_10_1002_solr_202300283 crossref_primary_10_1039_D4TA06793B crossref_primary_10_1002_adma_202308039 crossref_primary_10_1002_advs_202304733 crossref_primary_10_1021_acsnano_3c05583 crossref_primary_10_1021_acsaem_3c02581 crossref_primary_10_1002_aenm_202301259 crossref_primary_10_1002_advs_202404725 crossref_primary_10_1002_eom2_12352 crossref_primary_10_1364_OE_522984 crossref_primary_10_1002_smll_202310868 crossref_primary_10_1021_acsaem_3c02887 crossref_primary_10_1002_ente_202300958 crossref_primary_10_1002_anie_202316898 crossref_primary_10_1021_acsnano_4c08378 crossref_primary_10_1002_adfm_202307310 crossref_primary_10_1016_j_cej_2024_158389 crossref_primary_10_1002_ange_202412409 crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1002_adma_202313524 crossref_primary_10_1021_acsenergylett_4c00140 crossref_primary_10_1002_adfm_202314472 crossref_primary_10_1016_j_nanoen_2023_108241 crossref_primary_10_1126_sciadv_adr2290 crossref_primary_10_1002_solr_202400243 crossref_primary_10_1021_acsnano_4c16440 crossref_primary_10_1002_adma_202208431 crossref_primary_10_1016_j_apmate_2023_100142 crossref_primary_10_1002_ange_202412819 crossref_primary_10_1039_D4TC00053F crossref_primary_10_1002_aenm_202403706 crossref_primary_10_1002_anie_202405878 crossref_primary_10_1002_adfm_202312209 crossref_primary_10_1002_adfm_202408487 crossref_primary_10_1002_aenm_202303173 crossref_primary_10_1002_aenm_202300700 crossref_primary_10_15541_jim20230105 crossref_primary_10_1002_adma_202408036 crossref_primary_10_1002_aenm_202300661 crossref_primary_10_1021_acsmaterialslett_3c00929 crossref_primary_10_1002_adfm_202422014 crossref_primary_10_1002_aenm_202303859 crossref_primary_10_1002_aenm_202300382 crossref_primary_10_1021_acsami_3c08980 crossref_primary_10_1007_s40843_023_2843_8 crossref_primary_10_1088_1402_4896_acff28 crossref_primary_10_1038_s41570_023_00510_0 crossref_primary_10_1021_acsami_3c10430 crossref_primary_10_1002_ange_202307225 crossref_primary_10_1016_j_nanoen_2023_109112 crossref_primary_10_1002_adma_202300513 crossref_primary_10_1002_solr_202400184 crossref_primary_10_1039_D4EE02279C crossref_primary_10_1063_5_0171128 crossref_primary_10_3390_su17051820 crossref_primary_10_1002_adma_202312041 crossref_primary_10_1016_j_rser_2025_115488 crossref_primary_10_1039_D3EE02569A |
Cites_doi | 10.1038/s41560-020-00721-5 10.1016/j.cej.2022.137144 10.1126/sciadv.1600097 10.1002/adma.202203794 10.1126/science.abc4417 10.1016/j.joule.2019.07.023 10.1002/aenm.201803766 10.1038/nenergy.2017.102 10.1016/j.joule.2021.04.014 10.1016/j.matlet.2021.129559 10.1002/adfm.202007447 10.1038/s41586-021-03285-w 10.1021/acsenergylett.9b00503 10.1002/adma.202002333 10.26599/NRE.2022.9120011 10.1126/science.abd4860 10.1002/eem2.12089 10.1039/D1CS00841B 10.1039/D0TA02222E 10.1002/anie.202104201 10.1039/C4EE02441A 10.1002/adma.201900428 10.1002/anie.202016085 10.1002/aenm.202000361 10.1126/science.abb7167 10.1002/anie.202003813 10.1002/aenm.201902279 10.1126/science.abm8566 10.1016/j.nanoen.2020.105701 10.1126/science.abf7652 10.1002/anie.202102096 10.1002/smll.202005608 10.1002/adma.202201681 10.1021/jacs.0c09845 10.1016/j.scib.2020.10.023 10.1021/accountsmr.1c00154 10.1021/acsaem.9b00391 10.1002/adma.202109879 10.1002/aenm.202100967 10.1002/aenm.202101538 10.1038/nmat4388 10.1016/j.chempr.2019.02.025 10.1016/j.jechem.2019.11.015 10.1038/s41586-021-03406-5 10.1002/aenm.202103236 10.1002/aenm.201902579 10.1002/aenm.201902650 10.1016/j.egypro.2017.07.457 10.1126/sciadv.aao5616 10.1039/D0TA06033J 10.1002/adma.202102816 10.1007/s11426-022-1352-7 10.1002/anie.201904195 10.1002/adma.202105539 10.1002/adma.201801418 10.1002/aenm.201703421 10.1039/D0EE02164D 10.1038/s41566-017-0012-4 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202206387 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36349808 10_1002_adma_202206387 ADMA202206387 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Innovation and Technology Fund funderid: ITS/095/20; GHP/100/20SZ; GHP/102/20GD; MRP/040/21X – fundername: Natural Science Foundation of Guangdong Province funderid: 2019A1515010761 – fundername: Research Grants Council of Hong Kong, Green Tech Fund funderid: GTF202020164 – fundername: GRF funderid: 11306521 – fundername: National Key Research and Development Program of China funderid: 2017YFA0402800 – fundername: Science Technology and Innovation Committee of Shenzhen Municipality funderid: SGDX20210823104002015 – fundername: ECS funderid: 21301319 – fundername: Guangdong Provincial Science and Technology Plan funderid: 2021A0505110003 – fundername: National Natural Science Foundation of China funderid: 51925206; U1932214 – fundername: Innovation and Technology Fund grantid: GHP/100/20SZ – fundername: Innovation and Technology Fund grantid: MRP/040/21X – fundername: Research Grants Council of Hong Kong, Green Tech Fund grantid: GTF202020164 – fundername: Science Technology and Innovation Committee of Shenzhen Municipality grantid: SGDX20210823104002015 – fundername: ECS grantid: 21301319 – fundername: Natural Science Foundation of Guangdong Province grantid: 2019A1515010761 – fundername: National Key Research and Development Program of China grantid: 2017YFA0402800 – fundername: Innovation and Technology Fund grantid: ITS/095/20 – fundername: National Natural Science Foundation of China grantid: U1932214 – fundername: GRF grantid: 11306521 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3737-b1c098ef1f6470aa7c02bd77dc1bb9de62546c28355c917b4338c0b71d7d618d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:45:40 EDT 2025 Fri Jul 25 03:37:38 EDT 2025 Thu Apr 03 07:08:53 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Tue Jul 01 02:33:24 EDT 2025 Wed Jan 22 16:18:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | perovskites high efficiency flexible solar cells interface modification mechanical stability |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-b1c098ef1f6470aa7c02bd77dc1bb9de62546c28355c917b4338c0b71d7d618d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8285-9665 |
PMID | 36349808 |
PQID | 2766923271 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2734614035 proquest_journals_2766923271 pubmed_primary_36349808 crossref_citationtrail_10_1002_adma_202206387 crossref_primary_10_1002_adma_202206387 wiley_primary_10_1002_adma_202206387_ADMA202206387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 376 2015; 14 2021; 6 2019; 9 2019; 4 2021; 5 2019; 3 2021; 4 2017; 2 2017; 3 2021; 2 2021; 66 2019; 5 2019; 31 2019; 2 2020; 142 2019; 58 2020; 369 2020; 59 2020; 13 2022; 65 2020; 10 2020; 32 2021; 50 2015; 8 2020; 8 2018; 8 2021; 31 2016; 2 2021; 33 2021; 11 2022; 4 2017; 11 2021; 17 2020; 370 2022; 34 2022; 12 2021; 292 2021; 371 2021; 590 2018; 30 2020; 46 2021; 592 2022; 1 2017; 122 2021; 60 2021; 82 2022; 446 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Gu H. (e_1_2_7_44_1) 2022; 4 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 371 start-page: 636 year: 2021 publication-title: Science – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 292 year: 2021 publication-title: Mater. Lett. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 6 start-page: 38 year: 2021 publication-title: Nat. Energy – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 start-page: 916 year: 2015 publication-title: Energy Environ. Sci. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 726 year: 2017 publication-title: Nat. Photonics – volume: 82 year: 2021 publication-title: Nano Energy – volume: 122 start-page: 409 year: 2017 publication-title: Energy Procedia – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 370 start-page: 108 year: 2020 publication-title: Science – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1850 year: 2019 publication-title: Joule – volume: 65 start-page: 1895 year: 2022 publication-title: Sci. China: Chem. – volume: 58 start-page: 8520 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 8313 year: 2020 publication-title: J. Mater. Chem. A – volume: 60 start-page: 7227 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 1032 year: 2015 publication-title: Nat. Mater. – volume: 5 start-page: 995 year: 2019 publication-title: Chem – volume: 371 start-page: 1359 year: 2021 publication-title: Science – volume: 4 start-page: 95 year: 2021 publication-title: Energy Environ. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 13 start-page: 4854 year: 2020 publication-title: Energy Environ. Sci. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 46 start-page: 173 year: 2020 publication-title: J. Energy Chem. – volume: 592 start-page: 381 year: 2021 publication-title: Nature – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 66 start-page: 527 year: 2021 publication-title: Sci. Bull. – volume: 369 start-page: 1615 year: 2020 publication-title: Science – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 50 year: 2021 publication-title: Chem. Soc. Rev. – volume: 4 year: 2022 publication-title: CCS Chem. – volume: 5 start-page: 1587 year: 2021 publication-title: Joule – volume: 446 year: 2022 publication-title: Chem. Eng. J. – volume: 2 start-page: 1059 year: 2021 publication-title: Acc. Mater. Res. – volume: 376 start-page: 416 year: 2022 publication-title: Science – volume: 1 year: 2022 publication-title: Nano Res. Energy – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 590 start-page: 587 year: 2021 publication-title: Nature – volume: 4 start-page: 1065 year: 2019 publication-title: ACS Energy Lett. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 2 start-page: 3676 year: 2019 publication-title: ACS Appl. Energy Mater. – ident: e_1_2_7_43_1 doi: 10.1038/s41560-020-00721-5 – ident: e_1_2_7_49_1 doi: 10.1016/j.cej.2022.137144 – ident: e_1_2_7_15_1 doi: 10.1126/sciadv.1600097 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202203794 – ident: e_1_2_7_1_1 doi: 10.1126/science.abc4417 – ident: e_1_2_7_27_1 doi: 10.1016/j.joule.2019.07.023 – ident: e_1_2_7_56_1 doi: 10.1002/aenm.201803766 – ident: e_1_2_7_50_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_7_41_1 doi: 10.1016/j.joule.2021.04.014 – ident: e_1_2_7_58_1 doi: 10.1016/j.matlet.2021.129559 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.202007447 – ident: e_1_2_7_5_1 doi: 10.1038/s41586-021-03285-w – ident: e_1_2_7_12_1 doi: 10.1021/acsenergylett.9b00503 – ident: e_1_2_7_25_1 doi: 10.1002/adma.202002333 – ident: e_1_2_7_37_1 doi: 10.26599/NRE.2022.9120011 – ident: e_1_2_7_3_1 doi: 10.1126/science.abd4860 – ident: e_1_2_7_35_1 doi: 10.1002/eem2.12089 – ident: e_1_2_7_10_1 doi: 10.1039/D1CS00841B – ident: e_1_2_7_55_1 doi: 10.1039/D0TA02222E – ident: e_1_2_7_16_1 doi: 10.1002/anie.202104201 – ident: e_1_2_7_18_1 doi: 10.1039/C4EE02441A – ident: e_1_2_7_36_1 doi: 10.1002/adma.201900428 – ident: e_1_2_7_24_1 doi: 10.1002/anie.202016085 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202000361 – ident: e_1_2_7_2_1 doi: 10.1126/science.abb7167 – ident: e_1_2_7_39_1 doi: 10.1002/anie.202003813 – ident: e_1_2_7_57_1 doi: 10.1002/aenm.201902279 – ident: e_1_2_7_7_1 doi: 10.1126/science.abm8566 – ident: e_1_2_7_21_1 doi: 10.1016/j.nanoen.2020.105701 – ident: e_1_2_7_4_1 doi: 10.1126/science.abf7652 – ident: e_1_2_7_53_1 doi: 10.1002/anie.202102096 – ident: e_1_2_7_51_1 doi: 10.1002/smll.202005608 – ident: e_1_2_7_32_1 doi: 10.1002/adma.202201681 – volume: 4 start-page: 202101629 year: 2022 ident: e_1_2_7_44_1 publication-title: CCS Chem. – ident: e_1_2_7_47_1 doi: 10.1021/jacs.0c09845 – ident: e_1_2_7_38_1 doi: 10.1016/j.scib.2020.10.023 – ident: e_1_2_7_9_1 doi: 10.1021/accountsmr.1c00154 – ident: e_1_2_7_30_1 doi: 10.1021/acsaem.9b00391 – ident: e_1_2_7_26_1 doi: 10.1002/adma.202109879 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.202100967 – ident: e_1_2_7_54_1 doi: 10.1002/aenm.202101538 – ident: e_1_2_7_11_1 doi: 10.1038/nmat4388 – ident: e_1_2_7_45_1 doi: 10.1016/j.chempr.2019.02.025 – ident: e_1_2_7_48_1 doi: 10.1016/j.jechem.2019.11.015 – ident: e_1_2_7_6_1 doi: 10.1038/s41586-021-03406-5 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.202103236 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201902579 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201902650 – ident: e_1_2_7_17_1 doi: 10.1016/j.egypro.2017.07.457 – ident: e_1_2_7_59_1 doi: 10.1126/sciadv.aao5616 – ident: e_1_2_7_40_1 doi: 10.1039/D0TA06033J – ident: e_1_2_7_20_1 doi: 10.1002/adma.202102816 – ident: e_1_2_7_8_1 doi: 10.1007/s11426-022-1352-7 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201904195 – ident: e_1_2_7_14_1 doi: 10.1002/adma.202105539 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201801418 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.201703421 – ident: e_1_2_7_28_1 doi: 10.1039/D0EE02164D – ident: e_1_2_7_52_1 doi: 10.1038/s41566-017-0012-4 |
SSID | ssj0009606 |
Score | 2.7034187 |
Snippet | Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2206387 |
SubjectTerms | Bends Circuits Energy conversion efficiency flexible solar cells high efficiency interface modification Materials science mechanical stability Perovskites Photovoltaic cells Solar cells |
Title | Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202206387 https://www.ncbi.nlm.nih.gov/pubmed/36349808 https://www.proquest.com/docview/2766923271 https://www.proquest.com/docview/2734614035 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA-yp_mgm5_VKREEn3LX5KRJ-3iZuwzhiqiDvZV8FcSulfsxuHvZv25O29vtKiLoW0sSkqa_k_xycvILIW8BDEgrFQORGyY9cGYEr1ioIncwVphgcUd3_lGdncsPF9nFnVP8vT7E6HBDy-jGazRwY5fHt6Khxne6QULgpIvHyTFgC1nR51v9KKTnndgeZKxQMt-qNqbieLf47qz0G9XcZa7d1DN7SMy20X3EyffJemUn7voXPcf_-aoD8mDgpXTaA-mQ3AvNI3L_jlrhY3KDMSH1hp52qhNxsqIzVNO0daCfwqK9WqIjmH7BtTI9CXW9pMMlQDG5WW0i9CLkv60v6dRhjGOg89ZjoFKHDYoO4VhsgbFLwY-VuA1tKypgAtkTcj47_Xpyxob7G5gDDZpZ7tIiDxWvlNSpMdqlwnqtvePWFj4o1OJ3KPiWubhqtDIul11qNffaK557eEr2mrYJzwnlcaAI2oKNQwhCy-aVCy7Sx8JpgGATwrb_r3SDuDnesVGXvSyzKLFjy7FjE_JuzP-jl_X4Y86jLRzKwbyXpdBKRWYsNE_ImzE5GibutpgmtGvMA1KhGmKWkGc9jMaqQIEs8jRPiOjA8Jc2lNP38-n49uJfCr0k-_EZeufREdlbLdbhVaRTK_u6M5mfavcWKA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRygB96PQAEjgThlG9uJnRw4rLpdbWm3QtBKvYX4EQk1JGgfoOXCb-Kv8Ivw5FUWhJCQeuCY2Ikte2Y8nkw-AzzjPOOhCoXPWZz5oeHUzxjNfZs73yFTLLMKv-hOj8TkJHx1Gp1uwLfuX5iGD9EH3FAzanuNCo4B6Z1zamhmanAQY7jqyjav8sCuPrtd2_zl_shN8XPGxnvHuxO_PVjA11xy6SuqgyS2Oc1FKIMskzpgykhpNFUqMVYgJF4jiSzSbjujQreP04GS1EgjaGy4e-8luIzHiCOuf_TmnFiFG4Ia78cjPxFh3HEiA7az3t_1dfA353bdV64Xu_F1-N4NU5PjcjZYLtRAf_mFIPlfjeMNuNa63mTY6MpN2LDlLdj6Cch4G75i2kuxIns1WMOtx2SMwFBVWPLazqpPc4x1k7cYDiC7tijmpD3nyBWXi5XTLqfV75cfyFBjGqcl08pgLlYt_gRj3u6xGaZnWdM3olekygnjAx7dgZMLGYG7sFlWpb0PhDpbaKXiyllJ1B4V59pq5yEnWnJulQd-JzCpbvnteIxIkTbkaZbiRKb9RHrwoq__sSGX_LHmdid_aWvB5imTQjjnn0nqwdO-2Nke_KCUlbZaYh0eCgQ-Rh7ca-S2b4oLHiZxEHvAaun7Sx_S4Wg67K8e_MtDT-DK5Hh6mB7uHx08hKvuPm9iZduwuZgt7SPnPS7U41pfCby7aMH-ARAIc2g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRUJwKDuEFjASiFOmie3YyYHDqNNRS5mqAir1FuIlEiIk1SxFw4W_1L_CP8IvWxkQQkLqgWNiO7bst_vlewDPGcsYV1z4jMaZzw0L_YyGuW9zZztkimZW4Y3u5FDsHfPXJ9HJGpx3_8I0-BB9wA05o5bXyOCnJt--AA3NTI0bRCkqXdmmVR7Y5RfntM1e7Y_cCb-gdLz7fmfPb-sK-JpJJn0V6iCJbR7mgssgy6QOqDJSGh0qlRgrECNeIxBZpJ03o7hz43SgZGikEWFsmPvuFbjKRZBgsYjR2wvAKvQHanQ_FvmJ4HEHExnQ7dX1rqrB32zbVVO51nXjm_C926UmxeXTYDFXA_31FwDJ_2kbb8FGa3iTYcMpt2HNlnfgxk9wjHfhGya9FEuyW8NqOG1MxggXqgpLjuy0OpthpJu8w2AA2bFFMSNtlSPXXM6XjrccT39cfCZDjUmclkwqg5lYNfETjHi7YVNMzrKmn0QvSZUTygYsugfHl7ID92G9rEr7EEjoJKGViiknI5F3VJxrq519nGjJmFUe-B29pLpFb8ciIkXa4E7TFA8y7Q_Sg5d9_9MGt-SPPbc68ktb-TVLqRTCmf5Uhh4865ud5MHrpKy01QL7MC4Q7jHy4EFDtv1UTDCexEHsAa2J7y9rSIejybB_evQvg57CtaPROH2zf3iwCdfda9YEyrZgfT5d2MfOdJyrJzW3Evhw2XT9AyC1chc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Flexible+Perovskite+Solar+Cells+through+Pentylammonium+Acetate+Modification+with+Certified+Efficiency+of+23.35&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gao%2C+Danpeng&rft.au=Li%2C+Bo&rft.au=Li%2C+Zhen&rft.au=Wu%2C+Xin&rft.date=2023-01-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=3&rft.spage=e2206387&rft_id=info:doi/10.1002%2Fadma.202206387&rft_id=info%3Apmid%2F36349808&rft.externalDocID=36349808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |