Liquid Gating Meniscus‐Shaped Deformable Magnetoelastic Membranes with Self‐Driven Regulation of Gas/Liquid Release

Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and vari...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 3; pp. e2107327 - n/a
Main Authors Liu, Jing, Xu, Xue, Lei, Yi, Zhang, Mengchuang, Sheng, Zhizhi, Wang, Huimeng, Cao, Min, Zhang, Jian, Hou, Xu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond. A liquid gating magnetoelastic membrane with meniscus‐shaped deformations actuated by magnetic stimuli is reported to actively regulate gas/liquid release. It introduces a universal and new self‐driven strategy for smart liquid gating membranes, combining fast and contactless operation and nonfouling behavior for energy‐saving multiphase fluid transport and separation, and visible gas/liquid mixture content monitoring.
AbstractList Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond.
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond. A liquid gating magnetoelastic membrane with meniscus‐shaped deformations actuated by magnetic stimuli is reported to actively regulate gas/liquid release. It introduces a universal and new self‐driven strategy for smart liquid gating membranes, combining fast and contactless operation and nonfouling behavior for energy‐saving multiphase fluid transport and separation, and visible gas/liquid mixture content monitoring.
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.
Author Xu, Xue
Hou, Xu
Zhang, Mengchuang
Liu, Jing
Wang, Huimeng
Zhang, Jian
Lei, Yi
Cao, Min
Sheng, Zhizhi
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Xiamen University
– sequence: 2
  givenname: Xue
  surname: Xu
  fullname: Xu, Xue
  organization: Xiamen University
– sequence: 3
  givenname: Yi
  surname: Lei
  fullname: Lei, Yi
  organization: Xiamen University
– sequence: 4
  givenname: Mengchuang
  surname: Zhang
  fullname: Zhang, Mengchuang
  organization: Xiamen University
– sequence: 5
  givenname: Zhizhi
  surname: Sheng
  fullname: Sheng, Zhizhi
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Huimeng
  surname: Wang
  fullname: Wang, Huimeng
  organization: Xiamen University
– sequence: 7
  givenname: Min
  surname: Cao
  fullname: Cao, Min
  organization: Xiamen University
– sequence: 8
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Xiamen University
– sequence: 9
  givenname: Xu
  orcidid: 0000-0002-9615-9547
  surname: Hou
  fullname: Hou, Xu
  email: houx@xmu.edu.cn
  organization: Tan Kah Kee Innovation Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34762328$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFLUsUiQ2bTP0TO_Fy1IGCNCOkFtaW49xMXTn21E4Ydccj8Ix9krrMFKRKiJU353z3-n4n6MgHDwi9JXhOMKZnuhv0nGJKcM1o_QLNCKekrLDkR2iGJeOlFFVzjE5SusEYS4HFK3TMqlpQRpsZ2q3s7WS74kKP1m-KNXibzJTuf_66utZb6Iol9CEOunVQrPXGwxjA6TRak9mhjdpDKnZ2vC6uwPVZW0b7A3xxCZvJ5czgi9Dn9HR2GHQJDnSC1-hlr12CN4f3FH3_9PHb-edy9fXiy_liVRpWs7psWuBNx5ipCJZdwzXWDAzFrdGyoUYYQ3vKwZgMiK5ujew0MQZEY7CsgLFT9GGfu43hdoI0qiF_EJzLi4cpKcrzfXiNG57R98_QmzBFn7dTVFAiCG6ozNS7AzW1A3RqG-2g4516OmkGqj1gYkgpQq-MHX9fYozaOkWwemxOPTan_jSXtfkz7Sn5n4LcCzvr4O4_tFos14u_7gMszq4j
CitedBy_id crossref_primary_10_1039_D4IM00037D
crossref_primary_10_1002_ange_202403919
crossref_primary_10_1016_j_mattod_2023_05_005
crossref_primary_10_1039_D3IM00122A
crossref_primary_10_1021_acs_langmuir_4c01085
crossref_primary_10_1002_adfm_202401970
crossref_primary_10_1021_acs_jpclett_4c01928
crossref_primary_10_1039_D4MH00913D
crossref_primary_10_3390_membranes12070642
crossref_primary_10_1002_dro2_110
crossref_primary_10_1002_ange_202201109
crossref_primary_10_1007_s12274_022_4866_5
crossref_primary_10_1039_D2NA00421F
crossref_primary_10_1007_s11426_023_1960_y
crossref_primary_10_1039_D2SM01547A
crossref_primary_10_1093_nsr_nwae423
crossref_primary_10_1021_acs_macromol_1c02647
crossref_primary_10_1039_D2MH01182D
crossref_primary_10_1002_smll_202303012
crossref_primary_10_1016_j_cej_2023_142193
crossref_primary_10_1021_acsnano_2c03785
crossref_primary_10_1002_anie_202201109
crossref_primary_10_1016_j_cej_2023_143998
crossref_primary_10_1002_smll_202404952
crossref_primary_10_1038_s44221_024_00290_x
crossref_primary_10_1002_admt_202300102
crossref_primary_10_1016_j_cjche_2022_06_006
crossref_primary_10_1002_adfm_202311997
crossref_primary_10_3390_biomimetics7020047
crossref_primary_10_1021_acs_langmuir_2c02944
crossref_primary_10_1063_5_0105641
crossref_primary_10_1021_acsami_3c04508
crossref_primary_10_1002_anie_202403919
crossref_primary_10_1002_adma_202108788
crossref_primary_10_1002_adma_202402527
Cites_doi 10.1016/j.chemosphere.2021.131207
10.1002/adma.201502762
10.1038/s41378-020-0159-x
10.1002/adfm.201808501
10.1021/acsami.0c15909
10.1021/acsami.6b03218
10.1073/pnas.1816731116
10.1002/adma.201104994
10.1039/C8RA01374H
10.1039/C7SM02337E
10.1002/anie.201814752
10.1038/nature25443
10.1126/sciadv.aao6724
10.1002/adma.201906657
10.1038/s41586-018-0250-8
10.1016/j.fmre.2021.07.012
10.1002/adma.201600797
10.1002/adma.201903497
10.1016/j.progpolymsci.2019.101164
10.1021/accountsmr.1c00024
10.1038/nature10447
10.1039/D0CS00347F
10.1039/C5CS00692A
10.1002/adma.201704446
10.1515/ci-2020-0402
10.1515/pac-2021-0402
10.1038/ncomms12263
10.3390/mi11020172
10.1002/adma.202005664
10.1126/sciadv.abe8706
10.1039/D0EE03648J
10.1016/j.jenvman.2017.08.039
10.1039/C9TA08283B
10.1038/nature14253
10.1126/sciadv.aau8767
10.1007/s10853-018-2012-2
10.1016/j.memsci.2018.03.028
10.1126/sciadv.abb4700
10.1002/admi.201600025
10.1038/s41377-021-00568-9
10.1002/chem.202001942
10.1021/jacs.5b10800
10.1039/C7CC01576C
10.1002/adma.202006191
10.1093/nsr/nwaa301
10.1126/scirobotics.aay2627
10.1016/j.jmmm.2014.11.010
10.1039/D0SM01082K
10.1039/D1MH00641J
10.1002/adma.202100336
10.1002/anie.201800594
10.1002/adma.201900561
10.1021/acs.langmuir.9b01055
10.1021/acsnano.6b05682
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202107327
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34762328
10_1002_adma_202107327
ADMA202107327
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
  funderid: 20720190037
– fundername: 111 Project
  funderid: B16029
– fundername: National Natural Science Foundation of China
  funderid: 52025132; 21975209; 21621091; 21808191
– fundername: National Science Foundation of Jiangsu Province
  funderid: BK2021109
– fundername: National Key R&D Program of China
  funderid: 2018YFA0209500
– fundername: National Natural Science Foundation of China
  grantid: 52025132
– fundername: National Natural Science Foundation of China
  grantid: 21808191
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 20720190037
– fundername: National Natural Science Foundation of China
  grantid: 21975209
– fundername: 111 Project
  grantid: B16029
– fundername: National Natural Science Foundation of China
  grantid: 21621091
– fundername: National Key R&D Program of China
  grantid: 2018YFA0209500
– fundername: National Science Foundation of Jiangsu Province
  grantid: BK2021109
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3737-8be58d33c4109d85a0a3ec20bca982c6cc2f25eccc416d7bc9da1cce68c094e33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 07:58:21 EDT 2025
Fri Jul 25 08:38:18 EDT 2025
Mon Jul 21 05:29:11 EDT 2025
Tue Jul 01 02:33:10 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:26:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords liquid gating technology
magnetoelastic membranes
gas/liquid release
meniscus-shaped deformations
mixture content monitoring
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-8be58d33c4109d85a0a3ec20bca982c6cc2f25eccc416d7bc9da1cce68c094e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9615-9547
PMID 34762328
PQID 2621610829
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2596457085
proquest_journals_2621610829
pubmed_primary_34762328
crossref_citationtrail_10_1002_adma_202107327
crossref_primary_10_1002_adma_202107327
wiley_primary_10_1002_adma_202107327_ADMA202107327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015 2017 2016 2018; 27 53 138 57
2020; 7
2016 2020 2021 2021; 28 42
2020; 6
2011; 477
2018 2020; 53 32
2021 2020; 8 6
2021; 10
2021 2018; 7 8
2016 2019 2021; 45 99 283
2019; 58
2020; 49
2019 2018 2019 2016; 29 555 7 10
2016 2018 2021; 3 14 2
2018 2021; 216 14
2020 2016 2018; 12 7 4
2020 2020; 26 11
2015 2018 2019; 519 4 35
2018 2021 2021 2019 2019 2021 2012; 554 33 33 31 116 8 24
2021 2018; 6 30
2015 2018 2019 2020; 380 559 31 16
2016; 8
e_1_2_8_22_3
e_1_2_8_22_4
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_13_4
e_1_2_8_11_1
e_1_2_8_23_2
e_1_2_8_8_4
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_12_6
e_1_2_8_16_2
e_1_2_8_12_7
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_12_4
e_1_2_8_14_2
e_1_2_8_12_5
e_1_2_8_14_3
e_1_2_8_16_1
Bira N. (e_1_2_8_15_1) 2020; 7
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – volume: 58
  start-page: 3967
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 127
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 12 7 4
  year: 2020 2016 2018
  publication-title: ACS Appl. Mater. Interfaces Nat. Commun. Sci. Adv.
– volume: 7
  start-page: 146
  year: 2020
  publication-title: Front. Rob. AI
– volume: 29 555 7 10
  start-page: 20 9703
  year: 2019 2018 2019 2016
  publication-title: Adv. Funct. Mater. J. Membr. Sci. J. Mater. Chem. A ACS Nano
– volume: 7 8
  year: 2021 2018
  publication-title: Sci. Adv. RSC Adv.
– volume: 477
  start-page: 443
  year: 2011
  publication-title: Nature
– volume: 554 33 33 31 116 8 24
  start-page: 81 2500 2654 4041
  year: 2018 2021 2021 2019 2019 2021 2012
  publication-title: Nature Adv. Mater. Adv. Mater. Adv. Mater. Proc. Natl. Acad. Sci USA Mater. Horiz. Adv. Mater.
– volume: 53 32
  start-page: 7004
  year: 2018 2020
  publication-title: J. Mater. Sci. Adv. Mater.
– volume: 49
  start-page: 7907
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27 53 138 57
  start-page: 6741 5557 126 8383
  year: 2015 2017 2016 2018
  publication-title: Adv. Mater. Chem. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– publication-title: Fundam. Res.
– volume: 216 14
  start-page: 32 4203
  year: 2018 2021
  publication-title: J. Environ. Manage. Energy Environ. Sci.
– volume: 26 11
  start-page: 172
  year: 2020 2020
  publication-title: Chem. ‐ Eur. J. Micromachines
– volume: 8 6
  year: 2021 2020
  publication-title: Natl. Sci. Rev. Sci. Adv.
– volume: 380 559 31 16
  start-page: 98 77 9614
  year: 2015 2018 2019 2020
  publication-title: J. Magn. Magn. Mater. Nature Adv. Mater. Soft Matter
– volume: 6
  start-page: 43
  year: 2020
  publication-title: Microsyst. Nanoeng.
– volume: 28 42
  start-page: 7049 3
  year: 2016 2020 2021 2021
  publication-title: Adv. Mater. Chem. Int. Adv. Mater. Pure Appl. Chem.
– volume: 3 14 2
  start-page: 1780 407
  year: 2016 2018 2021
  publication-title: Adv. Mater. Interfaces Soft Matter Acc. Mater. Res.
– volume: 519 4 35
  start-page: 70 9513
  year: 2015 2018 2019
  publication-title: Nature Sci. Adv. Langmuir
– volume: 6 30
  year: 2021 2018
  publication-title: Sci. Rob. Adv. Mater.
– volume: 45 99 283
  start-page: 460
  year: 2016 2019 2021
  publication-title: Chem. Soc. Rev. Prog. Polym. Sci. Chemosphere
– ident: e_1_2_8_7_3
  doi: 10.1016/j.chemosphere.2021.131207
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201502762
– ident: e_1_2_8_10_1
  doi: 10.1038/s41378-020-0159-x
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.201808501
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.0c15909
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.6b03218
– ident: e_1_2_8_12_5
  doi: 10.1073/pnas.1816731116
– ident: e_1_2_8_12_7
  doi: 10.1002/adma.201104994
– ident: e_1_2_8_19_2
  doi: 10.1039/C8RA01374H
– ident: e_1_2_8_2_2
  doi: 10.1039/C7SM02337E
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201814752
– ident: e_1_2_8_12_1
  doi: 10.1038/nature25443
– ident: e_1_2_8_3_2
  doi: 10.1126/sciadv.aao6724
– ident: e_1_2_8_16_2
  doi: 10.1002/adma.201906657
– ident: e_1_2_8_13_2
  doi: 10.1038/s41586-018-0250-8
– ident: e_1_2_8_11_1
  doi: 10.1016/j.fmre.2021.07.012
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201600797
– ident: e_1_2_8_13_3
  doi: 10.1002/adma.201903497
– ident: e_1_2_8_7_2
  doi: 10.1016/j.progpolymsci.2019.101164
– ident: e_1_2_8_2_3
  doi: 10.1021/accountsmr.1c00024
– ident: e_1_2_8_18_1
  doi: 10.1038/nature10447
– ident: e_1_2_8_9_1
  doi: 10.1039/D0CS00347F
– ident: e_1_2_8_7_1
  doi: 10.1039/C5CS00692A
– ident: e_1_2_8_21_2
  doi: 10.1002/adma.201704446
– ident: e_1_2_8_1_2
  doi: 10.1515/ci-2020-0402
– ident: e_1_2_8_1_4
  doi: 10.1515/pac-2021-0402
– ident: e_1_2_8_14_2
  doi: 10.1038/ncomms12263
– ident: e_1_2_8_20_2
  doi: 10.3390/mi11020172
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.202005664
– ident: e_1_2_8_19_1
  doi: 10.1126/sciadv.abe8706
– volume: 7
  start-page: 146
  year: 2020
  ident: e_1_2_8_15_1
  publication-title: Front. Rob. AI
– ident: e_1_2_8_23_2
  doi: 10.1039/D0EE03648J
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jenvman.2017.08.039
– ident: e_1_2_8_8_3
  doi: 10.1039/C9TA08283B
– ident: e_1_2_8_3_1
  doi: 10.1038/nature14253
– ident: e_1_2_8_14_3
  doi: 10.1126/sciadv.aau8767
– ident: e_1_2_8_16_1
  doi: 10.1007/s10853-018-2012-2
– ident: e_1_2_8_8_2
  doi: 10.1016/j.memsci.2018.03.028
– ident: e_1_2_8_4_2
  doi: 10.1126/sciadv.abb4700
– ident: e_1_2_8_2_1
  doi: 10.1002/admi.201600025
– ident: e_1_2_8_6_1
  doi: 10.1038/s41377-021-00568-9
– ident: e_1_2_8_20_1
  doi: 10.1002/chem.202001942
– ident: e_1_2_8_22_3
  doi: 10.1021/jacs.5b10800
– ident: e_1_2_8_22_2
  doi: 10.1039/C7CC01576C
– ident: e_1_2_8_12_3
  doi: 10.1002/adma.202006191
– ident: e_1_2_8_4_1
  doi: 10.1093/nsr/nwaa301
– ident: e_1_2_8_21_1
  doi: 10.1126/scirobotics.aay2627
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jmmm.2014.11.010
– ident: e_1_2_8_13_4
  doi: 10.1039/D0SM01082K
– ident: e_1_2_8_12_6
  doi: 10.1039/D1MH00641J
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.202100336
– ident: e_1_2_8_22_4
  doi: 10.1002/anie.201800594
– ident: e_1_2_8_12_4
  doi: 10.1002/adma.201900561
– ident: e_1_2_8_3_3
  doi: 10.1021/acs.langmuir.9b01055
– ident: e_1_2_8_8_4
  doi: 10.1021/acsnano.6b05682
SSID ssj0009606
Score 2.5582235
Snippet Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most...
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2107327
SubjectTerms Deformation
Dynamic stability
Formability
Gas transport
gas/liquid release
liquid gating technology
magnetoelastic membranes
Magnetorheological fluids
Membranes
meniscus‐shaped deformations
mixture content monitoring
Title Liquid Gating Meniscus‐Shaped Deformable Magnetoelastic Membranes with Self‐Driven Regulation of Gas/Liquid Release
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107327
https://www.ncbi.nlm.nih.gov/pubmed/34762328
https://www.proquest.com/docview/2621610829
https://www.proquest.com/docview/2596457085
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnOihLfQrhSIjVeopbGLHiX1csQWE2B6WInGL_BW6YpulZCOknvoT-I38EsZJNrCtqkrtMco4dpw3nmfH8wzwIUMQKB2rUDqLExRpZSiskWFmnMqKONMy8QnO48_p0VlyfM7PH2Xxt_oQ_YKb94xmvPYOrnQ1eBANVbbRDcIpS8aoTyf3G7Y8K5o86Ed5et6I7TEeyjQRS9XGiA5Wi69Gpd-o5ipzbULPwXNQy0a3O04u9-qF3jM_ftFz_J-3egHPOl5Khi2QNuCJKzfh6SO1wpdwczL9Xk8tOVR-qzQZu3Jambq6-3l7-lVdOUtGrmHAeubIWF2UbjF3yM3xgWj7DRuFoyrx677k1M0KLDa69kMtmbiL7gwxMi_w6dWgq2iCIRGD7Cs4O_j0Zf8o7M5tCA3LGAY97biwjJkkjqQVXEWKOUMjbZQU1Pid2gXliB00SG2mjbQqNsalwuBk0zH2GtbKeeneAkmZtrJAOKVGJJoLqZDPxKnkViA3jHgA4fK75aYTNfdna8zyVo6Z5r5D875DA_jY21-1ch5_tNxewiDv3LrKaYqVxz4dOYDd_jY6pP_Lgr04r9GGI9J4hlQ2gDctfPqqWIKxh1ERAG1A8Jc25MPReNhfvfuXQluwTn3CRrNotA1ri-vavUcatdA7javcAxENFis
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyExCnbxI4T-1hRlgLNHrq7ErfIrywVJV22jZA48RP4jfwSxnktBSEkOEYZx44z4_nGGX8D8CxDJVA6VqF0FgMUaWUorJFhZpzKyjjTMvEHnPODdHqcvHnH-2xCfxam5YcYNty8ZTTrtTdwvyE9OmcNVbYhDsKYJWM0uwiXfFnvJqqanzNIeYDe0O0xHso0ET1vY0RH2-23_dJvYHMbuzbOZ_866H7Ybc7Jh716o_fMl18YHf_rvW7AtQ6aknGrSzfhgqtuwdWfCAtvw-fZ4lO9sOSV8tnSJHfVYm3q9fev3w7fq1NnycQ1IFgvHcnVSeU2K4fwHB-Ish9xVLiwEr_1Sw7dssRmkzO_2pK5O-nKiJFViU9fj7qO5ugV0c_egeP9l0cvpmFXuiE0LGPo97TjwjJmkjiSVnAVKeYMjbRRUlDjk7VLylF9UCC1mTbSqtgYlwqD8aZj7C7sVKvK3QeSMm1liRqVGpFoLqRCSBOnkluB8DDiAYT9hytMx2vuy2ssi5aRmRZ-QothQgN4Psiftowef5Tc7fWg6Cx7XdAUO4_9ieQAng630Sb9jxacxVWNMhxVjWeIZgO41-rP0BVL0P0wKgKgjRb8ZQzFeJKPh6sH_9LoCVyeHuWzYvb64O1DuEL9-Y1mD2kXdjZntXuEqGqjHzd28wNmpBpG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISF44H4JDDASEk9ZEztO7MeKUAasE-qYtLfIt4xqXVrWRkg88RP4jfwSjpM0W0EICR6jHMeO8x2fz47PZ4AXGYJA6ViF0lmcoEgrQ2GNDDPjVFbGmZaJT3Ae76e7h8m7I350IYu_1YfoF9y8ZzTjtXfwhS0H56Khyja6QThlyRjNLsOVJI2Ex3U-OReQ8vy8UdtjPJRpItayjREdbJbfDEu_cc1N6trEntFNUOtWt1tOTnbqld4xX38RdPyf17oFNzpiSoYtkm7DJVfdgesX5Arvwpe96ed6askb5fdKk7GrpktTL398-37wSS2cJblrKLCeOTJWx5VbzR2Sc3wg2p5io3BYJX7hlxy4WYnF8jM_1pKJO-4OESPzEp--HHQVTTAmYpS9B4ej1x9f7YbdwQ2hYRnDqKcdF5Yxk8SRtIKrSDFnaKSNkoIav1W7pBzBgwapzbSRVsXGuFQYnG06xu7DVjWv3EMgKdNWloin1IhEcyEVEpo4ldwKJIcRDyBcf7fCdKrm_nCNWdHqMdPCd2jRd2gAL3v7Ravn8UfL7TUMis6vlwVNsfLY5yMH8Ly_jR7pf7NgL85rtOGINJ4hlw3gQQufviqWYPBhVARAGxD8pQ3FMB8P-6tH_1LoGVz9kI-Kvbf77x_DNeqTN5oFpG3YWp3V7glSqpV-2njNTx6iGP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Gating+Meniscus%E2%80%90Shaped+Deformable+Magnetoelastic+Membranes+with+Self%E2%80%90Driven+Regulation+of+Gas%2FLiquid+Release&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jing&rft.au=Xu%2C+Xue&rft.au=Lei%2C+Yi&rft.au=Zhang%2C+Mengchuang&rft.date=2022-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202107327&rft.externalDBID=10.1002%252Fadma.202107327&rft.externalDocID=ADMA202107327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon