Liquid Gating Meniscus‐Shaped Deformable Magnetoelastic Membranes with Self‐Driven Regulation of Gas/Liquid Release
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and vari...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 3; pp. e2107327 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond.
A liquid gating magnetoelastic membrane with meniscus‐shaped deformations actuated by magnetic stimuli is reported to actively regulate gas/liquid release. It introduces a universal and new self‐driven strategy for smart liquid gating membranes, combining fast and contactless operation and nonfouling behavior for energy‐saving multiphase fluid transport and separation, and visible gas/liquid mixture content monitoring. |
---|---|
AbstractList | Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond. Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand‐new properties for real‐world applications, and various environment‐driven systems have been created. Here, a self‐driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus‐shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic‐responsive self‐driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy‐saving multiphase separation, remote fluid release, and beyond. A liquid gating magnetoelastic membrane with meniscus‐shaped deformations actuated by magnetic stimuli is reported to actively regulate gas/liquid release. It introduces a universal and new self‐driven strategy for smart liquid gating membranes, combining fast and contactless operation and nonfouling behavior for energy‐saving multiphase fluid transport and separation, and visible gas/liquid mixture content monitoring. Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond. |
Author | Xu, Xue Hou, Xu Zhang, Mengchuang Liu, Jing Wang, Huimeng Zhang, Jian Lei, Yi Cao, Min Sheng, Zhizhi |
Author_xml | – sequence: 1 givenname: Jing surname: Liu fullname: Liu, Jing organization: Xiamen University – sequence: 2 givenname: Xue surname: Xu fullname: Xu, Xue organization: Xiamen University – sequence: 3 givenname: Yi surname: Lei fullname: Lei, Yi organization: Xiamen University – sequence: 4 givenname: Mengchuang surname: Zhang fullname: Zhang, Mengchuang organization: Xiamen University – sequence: 5 givenname: Zhizhi surname: Sheng fullname: Sheng, Zhizhi organization: Chinese Academy of Sciences – sequence: 6 givenname: Huimeng surname: Wang fullname: Wang, Huimeng organization: Xiamen University – sequence: 7 givenname: Min surname: Cao fullname: Cao, Min organization: Xiamen University – sequence: 8 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Xiamen University – sequence: 9 givenname: Xu orcidid: 0000-0002-9615-9547 surname: Hou fullname: Hou, Xu email: houx@xmu.edu.cn organization: Tan Kah Kee Innovation Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34762328$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFLUsUiQ2bTP0TO_Fy1IGCNCOkFtaW49xMXTn21E4Ydccj8Ix9krrMFKRKiJU353z3-n4n6MgHDwi9JXhOMKZnuhv0nGJKcM1o_QLNCKekrLDkR2iGJeOlFFVzjE5SusEYS4HFK3TMqlpQRpsZ2q3s7WS74kKP1m-KNXibzJTuf_66utZb6Iol9CEOunVQrPXGwxjA6TRak9mhjdpDKnZ2vC6uwPVZW0b7A3xxCZvJ5czgi9Dn9HR2GHQJDnSC1-hlr12CN4f3FH3_9PHb-edy9fXiy_liVRpWs7psWuBNx5ipCJZdwzXWDAzFrdGyoUYYQ3vKwZgMiK5ujew0MQZEY7CsgLFT9GGfu43hdoI0qiF_EJzLi4cpKcrzfXiNG57R98_QmzBFn7dTVFAiCG6ozNS7AzW1A3RqG-2g4516OmkGqj1gYkgpQq-MHX9fYozaOkWwemxOPTan_jSXtfkz7Sn5n4LcCzvr4O4_tFos14u_7gMszq4j |
CitedBy_id | crossref_primary_10_1039_D4IM00037D crossref_primary_10_1002_ange_202403919 crossref_primary_10_1016_j_mattod_2023_05_005 crossref_primary_10_1039_D3IM00122A crossref_primary_10_1021_acs_langmuir_4c01085 crossref_primary_10_1002_adfm_202401970 crossref_primary_10_1021_acs_jpclett_4c01928 crossref_primary_10_1039_D4MH00913D crossref_primary_10_3390_membranes12070642 crossref_primary_10_1002_dro2_110 crossref_primary_10_1002_ange_202201109 crossref_primary_10_1007_s12274_022_4866_5 crossref_primary_10_1039_D2NA00421F crossref_primary_10_1007_s11426_023_1960_y crossref_primary_10_1039_D2SM01547A crossref_primary_10_1093_nsr_nwae423 crossref_primary_10_1021_acs_macromol_1c02647 crossref_primary_10_1039_D2MH01182D crossref_primary_10_1002_smll_202303012 crossref_primary_10_1016_j_cej_2023_142193 crossref_primary_10_1021_acsnano_2c03785 crossref_primary_10_1002_anie_202201109 crossref_primary_10_1016_j_cej_2023_143998 crossref_primary_10_1002_smll_202404952 crossref_primary_10_1038_s44221_024_00290_x crossref_primary_10_1002_admt_202300102 crossref_primary_10_1016_j_cjche_2022_06_006 crossref_primary_10_1002_adfm_202311997 crossref_primary_10_3390_biomimetics7020047 crossref_primary_10_1021_acs_langmuir_2c02944 crossref_primary_10_1063_5_0105641 crossref_primary_10_1021_acsami_3c04508 crossref_primary_10_1002_anie_202403919 crossref_primary_10_1002_adma_202108788 crossref_primary_10_1002_adma_202402527 |
Cites_doi | 10.1016/j.chemosphere.2021.131207 10.1002/adma.201502762 10.1038/s41378-020-0159-x 10.1002/adfm.201808501 10.1021/acsami.0c15909 10.1021/acsami.6b03218 10.1073/pnas.1816731116 10.1002/adma.201104994 10.1039/C8RA01374H 10.1039/C7SM02337E 10.1002/anie.201814752 10.1038/nature25443 10.1126/sciadv.aao6724 10.1002/adma.201906657 10.1038/s41586-018-0250-8 10.1016/j.fmre.2021.07.012 10.1002/adma.201600797 10.1002/adma.201903497 10.1016/j.progpolymsci.2019.101164 10.1021/accountsmr.1c00024 10.1038/nature10447 10.1039/D0CS00347F 10.1039/C5CS00692A 10.1002/adma.201704446 10.1515/ci-2020-0402 10.1515/pac-2021-0402 10.1038/ncomms12263 10.3390/mi11020172 10.1002/adma.202005664 10.1126/sciadv.abe8706 10.1039/D0EE03648J 10.1016/j.jenvman.2017.08.039 10.1039/C9TA08283B 10.1038/nature14253 10.1126/sciadv.aau8767 10.1007/s10853-018-2012-2 10.1016/j.memsci.2018.03.028 10.1126/sciadv.abb4700 10.1002/admi.201600025 10.1038/s41377-021-00568-9 10.1002/chem.202001942 10.1021/jacs.5b10800 10.1039/C7CC01576C 10.1002/adma.202006191 10.1093/nsr/nwaa301 10.1126/scirobotics.aay2627 10.1016/j.jmmm.2014.11.010 10.1039/D0SM01082K 10.1039/D1MH00641J 10.1002/adma.202100336 10.1002/anie.201800594 10.1002/adma.201900561 10.1021/acs.langmuir.9b01055 10.1021/acsnano.6b05682 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202107327 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34762328 10_1002_adma_202107327 ADMA202107327 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China funderid: 20720190037 – fundername: 111 Project funderid: B16029 – fundername: National Natural Science Foundation of China funderid: 52025132; 21975209; 21621091; 21808191 – fundername: National Science Foundation of Jiangsu Province funderid: BK2021109 – fundername: National Key R&D Program of China funderid: 2018YFA0209500 – fundername: National Natural Science Foundation of China grantid: 52025132 – fundername: National Natural Science Foundation of China grantid: 21808191 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 20720190037 – fundername: National Natural Science Foundation of China grantid: 21975209 – fundername: 111 Project grantid: B16029 – fundername: National Natural Science Foundation of China grantid: 21621091 – fundername: National Key R&D Program of China grantid: 2018YFA0209500 – fundername: National Science Foundation of Jiangsu Province grantid: BK2021109 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3737-8be58d33c4109d85a0a3ec20bca982c6cc2f25eccc416d7bc9da1cce68c094e33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 07:58:21 EDT 2025 Fri Jul 25 08:38:18 EDT 2025 Mon Jul 21 05:29:11 EDT 2025 Tue Jul 01 02:33:10 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:26:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | liquid gating technology magnetoelastic membranes gas/liquid release meniscus-shaped deformations mixture content monitoring |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-8be58d33c4109d85a0a3ec20bca982c6cc2f25eccc416d7bc9da1cce68c094e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9615-9547 |
PMID | 34762328 |
PQID | 2621610829 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2596457085 proquest_journals_2621610829 pubmed_primary_34762328 crossref_citationtrail_10_1002_adma_202107327 crossref_primary_10_1002_adma_202107327 wiley_primary_10_1002_adma_202107327_ADMA202107327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015 2017 2016 2018; 27 53 138 57 2020; 7 2016 2020 2021 2021; 28 42 2020; 6 2011; 477 2018 2020; 53 32 2021 2020; 8 6 2021; 10 2021 2018; 7 8 2016 2019 2021; 45 99 283 2019; 58 2020; 49 2019 2018 2019 2016; 29 555 7 10 2016 2018 2021; 3 14 2 2018 2021; 216 14 2020 2016 2018; 12 7 4 2020 2020; 26 11 2015 2018 2019; 519 4 35 2018 2021 2021 2019 2019 2021 2012; 554 33 33 31 116 8 24 2021 2018; 6 30 2015 2018 2019 2020; 380 559 31 16 2016; 8 e_1_2_8_22_3 e_1_2_8_22_4 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_13_4 e_1_2_8_11_1 e_1_2_8_23_2 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_12_6 e_1_2_8_16_2 e_1_2_8_12_7 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_12_4 e_1_2_8_14_2 e_1_2_8_12_5 e_1_2_8_14_3 e_1_2_8_16_1 Bira N. (e_1_2_8_15_1) 2020; 7 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – volume: 58 start-page: 3967 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 127 year: 2021 publication-title: Light: Sci. Appl. – volume: 12 7 4 year: 2020 2016 2018 publication-title: ACS Appl. Mater. Interfaces Nat. Commun. Sci. Adv. – volume: 7 start-page: 146 year: 2020 publication-title: Front. Rob. AI – volume: 29 555 7 10 start-page: 20 9703 year: 2019 2018 2019 2016 publication-title: Adv. Funct. Mater. J. Membr. Sci. J. Mater. Chem. A ACS Nano – volume: 7 8 year: 2021 2018 publication-title: Sci. Adv. RSC Adv. – volume: 477 start-page: 443 year: 2011 publication-title: Nature – volume: 554 33 33 31 116 8 24 start-page: 81 2500 2654 4041 year: 2018 2021 2021 2019 2019 2021 2012 publication-title: Nature Adv. Mater. Adv. Mater. Adv. Mater. Proc. Natl. Acad. Sci USA Mater. Horiz. Adv. Mater. – volume: 53 32 start-page: 7004 year: 2018 2020 publication-title: J. Mater. Sci. Adv. Mater. – volume: 49 start-page: 7907 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 53 138 57 start-page: 6741 5557 126 8383 year: 2015 2017 2016 2018 publication-title: Adv. Mater. Chem. Commun. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – publication-title: Fundam. Res. – volume: 216 14 start-page: 32 4203 year: 2018 2021 publication-title: J. Environ. Manage. Energy Environ. Sci. – volume: 26 11 start-page: 172 year: 2020 2020 publication-title: Chem. ‐ Eur. J. Micromachines – volume: 8 6 year: 2021 2020 publication-title: Natl. Sci. Rev. Sci. Adv. – volume: 380 559 31 16 start-page: 98 77 9614 year: 2015 2018 2019 2020 publication-title: J. Magn. Magn. Mater. Nature Adv. Mater. Soft Matter – volume: 6 start-page: 43 year: 2020 publication-title: Microsyst. Nanoeng. – volume: 28 42 start-page: 7049 3 year: 2016 2020 2021 2021 publication-title: Adv. Mater. Chem. Int. Adv. Mater. Pure Appl. Chem. – volume: 3 14 2 start-page: 1780 407 year: 2016 2018 2021 publication-title: Adv. Mater. Interfaces Soft Matter Acc. Mater. Res. – volume: 519 4 35 start-page: 70 9513 year: 2015 2018 2019 publication-title: Nature Sci. Adv. Langmuir – volume: 6 30 year: 2021 2018 publication-title: Sci. Rob. Adv. Mater. – volume: 45 99 283 start-page: 460 year: 2016 2019 2021 publication-title: Chem. Soc. Rev. Prog. Polym. Sci. Chemosphere – ident: e_1_2_8_7_3 doi: 10.1016/j.chemosphere.2021.131207 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201502762 – ident: e_1_2_8_10_1 doi: 10.1038/s41378-020-0159-x – ident: e_1_2_8_8_1 doi: 10.1002/adfm.201808501 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.0c15909 – ident: e_1_2_8_17_1 doi: 10.1021/acsami.6b03218 – ident: e_1_2_8_12_5 doi: 10.1073/pnas.1816731116 – ident: e_1_2_8_12_7 doi: 10.1002/adma.201104994 – ident: e_1_2_8_19_2 doi: 10.1039/C8RA01374H – ident: e_1_2_8_2_2 doi: 10.1039/C7SM02337E – ident: e_1_2_8_5_1 doi: 10.1002/anie.201814752 – ident: e_1_2_8_12_1 doi: 10.1038/nature25443 – ident: e_1_2_8_3_2 doi: 10.1126/sciadv.aao6724 – ident: e_1_2_8_16_2 doi: 10.1002/adma.201906657 – ident: e_1_2_8_13_2 doi: 10.1038/s41586-018-0250-8 – ident: e_1_2_8_11_1 doi: 10.1016/j.fmre.2021.07.012 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201600797 – ident: e_1_2_8_13_3 doi: 10.1002/adma.201903497 – ident: e_1_2_8_7_2 doi: 10.1016/j.progpolymsci.2019.101164 – ident: e_1_2_8_2_3 doi: 10.1021/accountsmr.1c00024 – ident: e_1_2_8_18_1 doi: 10.1038/nature10447 – ident: e_1_2_8_9_1 doi: 10.1039/D0CS00347F – ident: e_1_2_8_7_1 doi: 10.1039/C5CS00692A – ident: e_1_2_8_21_2 doi: 10.1002/adma.201704446 – ident: e_1_2_8_1_2 doi: 10.1515/ci-2020-0402 – ident: e_1_2_8_1_4 doi: 10.1515/pac-2021-0402 – ident: e_1_2_8_14_2 doi: 10.1038/ncomms12263 – ident: e_1_2_8_20_2 doi: 10.3390/mi11020172 – ident: e_1_2_8_1_3 doi: 10.1002/adma.202005664 – ident: e_1_2_8_19_1 doi: 10.1126/sciadv.abe8706 – volume: 7 start-page: 146 year: 2020 ident: e_1_2_8_15_1 publication-title: Front. Rob. AI – ident: e_1_2_8_23_2 doi: 10.1039/D0EE03648J – ident: e_1_2_8_23_1 doi: 10.1016/j.jenvman.2017.08.039 – ident: e_1_2_8_8_3 doi: 10.1039/C9TA08283B – ident: e_1_2_8_3_1 doi: 10.1038/nature14253 – ident: e_1_2_8_14_3 doi: 10.1126/sciadv.aau8767 – ident: e_1_2_8_16_1 doi: 10.1007/s10853-018-2012-2 – ident: e_1_2_8_8_2 doi: 10.1016/j.memsci.2018.03.028 – ident: e_1_2_8_4_2 doi: 10.1126/sciadv.abb4700 – ident: e_1_2_8_2_1 doi: 10.1002/admi.201600025 – ident: e_1_2_8_6_1 doi: 10.1038/s41377-021-00568-9 – ident: e_1_2_8_20_1 doi: 10.1002/chem.202001942 – ident: e_1_2_8_22_3 doi: 10.1021/jacs.5b10800 – ident: e_1_2_8_22_2 doi: 10.1039/C7CC01576C – ident: e_1_2_8_12_3 doi: 10.1002/adma.202006191 – ident: e_1_2_8_4_1 doi: 10.1093/nsr/nwaa301 – ident: e_1_2_8_21_1 doi: 10.1126/scirobotics.aay2627 – ident: e_1_2_8_13_1 doi: 10.1016/j.jmmm.2014.11.010 – ident: e_1_2_8_13_4 doi: 10.1039/D0SM01082K – ident: e_1_2_8_12_6 doi: 10.1039/D1MH00641J – ident: e_1_2_8_12_2 doi: 10.1002/adma.202100336 – ident: e_1_2_8_22_4 doi: 10.1002/anie.201800594 – ident: e_1_2_8_12_4 doi: 10.1002/adma.201900561 – ident: e_1_2_8_3_3 doi: 10.1021/acs.langmuir.9b01055 – ident: e_1_2_8_8_4 doi: 10.1021/acsnano.6b05682 |
SSID | ssj0009606 |
Score | 2.5582235 |
Snippet | Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus‐responsiveness. Most... Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2107327 |
SubjectTerms | Deformation Dynamic stability Formability Gas transport gas/liquid release liquid gating technology magnetoelastic membranes Magnetorheological fluids Membranes meniscus‐shaped deformations mixture content monitoring |
Title | Liquid Gating Meniscus‐Shaped Deformable Magnetoelastic Membranes with Self‐Driven Regulation of Gas/Liquid Release |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202107327 https://www.ncbi.nlm.nih.gov/pubmed/34762328 https://www.proquest.com/docview/2621610829 https://www.proquest.com/docview/2596457085 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VnOihLfQrhSIjVeopbGLHiX1csQWE2B6WInGL_BW6YpulZCOknvoT-I38EsZJNrCtqkrtMco4dpw3nmfH8wzwIUMQKB2rUDqLExRpZSiskWFmnMqKONMy8QnO48_p0VlyfM7PH2Xxt_oQ_YKb94xmvPYOrnQ1eBANVbbRDcIpS8aoTyf3G7Y8K5o86Ed5et6I7TEeyjQRS9XGiA5Wi69Gpd-o5ipzbULPwXNQy0a3O04u9-qF3jM_ftFz_J-3egHPOl5Khi2QNuCJKzfh6SO1wpdwczL9Xk8tOVR-qzQZu3Jambq6-3l7-lVdOUtGrmHAeubIWF2UbjF3yM3xgWj7DRuFoyrx677k1M0KLDa69kMtmbiL7gwxMi_w6dWgq2iCIRGD7Cs4O_j0Zf8o7M5tCA3LGAY97biwjJkkjqQVXEWKOUMjbZQU1Pid2gXliB00SG2mjbQqNsalwuBk0zH2GtbKeeneAkmZtrJAOKVGJJoLqZDPxKnkViA3jHgA4fK75aYTNfdna8zyVo6Z5r5D875DA_jY21-1ch5_tNxewiDv3LrKaYqVxz4dOYDd_jY6pP_Lgr04r9GGI9J4hlQ2gDctfPqqWIKxh1ERAG1A8Jc25MPReNhfvfuXQluwTn3CRrNotA1ri-vavUcatdA7javcAxENFis |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyExCnbxI4T-1hRlgLNHrq7ErfIrywVJV22jZA48RP4jfwSxnktBSEkOEYZx44z4_nGGX8D8CxDJVA6VqF0FgMUaWUorJFhZpzKyjjTMvEHnPODdHqcvHnH-2xCfxam5YcYNty8ZTTrtTdwvyE9OmcNVbYhDsKYJWM0uwiXfFnvJqqanzNIeYDe0O0xHso0ET1vY0RH2-23_dJvYHMbuzbOZ_866H7Ybc7Jh716o_fMl18YHf_rvW7AtQ6aknGrSzfhgqtuwdWfCAtvw-fZ4lO9sOSV8tnSJHfVYm3q9fev3w7fq1NnycQ1IFgvHcnVSeU2K4fwHB-Ish9xVLiwEr_1Sw7dssRmkzO_2pK5O-nKiJFViU9fj7qO5ugV0c_egeP9l0cvpmFXuiE0LGPo97TjwjJmkjiSVnAVKeYMjbRRUlDjk7VLylF9UCC1mTbSqtgYlwqD8aZj7C7sVKvK3QeSMm1liRqVGpFoLqRCSBOnkluB8DDiAYT9hytMx2vuy2ssi5aRmRZ-QothQgN4Psiftowef5Tc7fWg6Cx7XdAUO4_9ieQAng630Sb9jxacxVWNMhxVjWeIZgO41-rP0BVL0P0wKgKgjRb8ZQzFeJKPh6sH_9LoCVyeHuWzYvb64O1DuEL9-Y1mD2kXdjZntXuEqGqjHzd28wNmpBpG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CISF44H4JDDASEk9ZEztO7MeKUAasE-qYtLfIt4xqXVrWRkg88RP4jfwSjpM0W0EICR6jHMeO8x2fz47PZ4AXGYJA6ViF0lmcoEgrQ2GNDDPjVFbGmZaJT3Ae76e7h8m7I350IYu_1YfoF9y8ZzTjtXfwhS0H56Khyja6QThlyRjNLsOVJI2Ex3U-OReQ8vy8UdtjPJRpItayjREdbJbfDEu_cc1N6trEntFNUOtWt1tOTnbqld4xX38RdPyf17oFNzpiSoYtkm7DJVfdgesX5Arvwpe96ed6askb5fdKk7GrpktTL398-37wSS2cJblrKLCeOTJWx5VbzR2Sc3wg2p5io3BYJX7hlxy4WYnF8jM_1pKJO-4OESPzEp--HHQVTTAmYpS9B4ej1x9f7YbdwQ2hYRnDqKcdF5Yxk8SRtIKrSDFnaKSNkoIav1W7pBzBgwapzbSRVsXGuFQYnG06xu7DVjWv3EMgKdNWloin1IhEcyEVEpo4ldwKJIcRDyBcf7fCdKrm_nCNWdHqMdPCd2jRd2gAL3v7Ravn8UfL7TUMis6vlwVNsfLY5yMH8Ly_jR7pf7NgL85rtOGINJ4hlw3gQQufviqWYPBhVARAGxD8pQ3FMB8P-6tH_1LoGVz9kI-Kvbf77x_DNeqTN5oFpG3YWp3V7glSqpV-2njNTx6iGP4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+Gating+Meniscus%E2%80%90Shaped+Deformable+Magnetoelastic+Membranes+with+Self%E2%80%90Driven+Regulation+of+Gas%2FLiquid+Release&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Jing&rft.au=Xu%2C+Xue&rft.au=Lei%2C+Yi&rft.au=Zhang%2C+Mengchuang&rft.date=2022-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202107327&rft.externalDBID=10.1002%252Fadma.202107327&rft.externalDocID=ADMA202107327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |