Enzyme‐Inspired Single Selenium Site for Selective Oxygen Reduction

Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 8; pp. e202418897 - n/a
Main Authors Zhang, Peng‐Yang, Xu, Xia, Yu, Wen‐Song, Duan, Zhi‐Yao, Huang, Huan, Wang, Tao, Fu, Gang, Zhou, Zhi‐You, Wang, Yu‐Cheng, Sun, Shi‐Gang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.02.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Inspired by the natural process of glutathione peroxidase in scavenging peroxides, we designed a single selenium site‐modified carbon moiety, which shows a nearly‐100 % 4‐electron selectivity and significantly increased consecutive 2+2 electron selectivity in oxygen reduction reaction.
AbstractList Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H O yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H O reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H O yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H2O2 yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H2O2 yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H 2 O 2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H 2 O 2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H 2 O 2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Inspired by the natural process of glutathione peroxidase in scavenging peroxides, we designed a single selenium site‐modified carbon moiety, which shows a nearly‐100 % 4‐electron selectivity and significantly increased consecutive 2+2 electron selectivity in oxygen reduction reaction.
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.
Author Zhou, Zhi‐You
Duan, Zhi‐Yao
Fu, Gang
Wang, Yu‐Cheng
Huang, Huan
Xu, Xia
Sun, Shi‐Gang
Yu, Wen‐Song
Wang, Tao
Zhang, Peng‐Yang
Author_xml – sequence: 1
  givenname: Peng‐Yang
  surname: Zhang
  fullname: Zhang, Peng‐Yang
  organization: Xiamen University
– sequence: 2
  givenname: Xia
  surname: Xu
  fullname: Xu, Xia
  organization: Xiamen University
– sequence: 3
  givenname: Wen‐Song
  surname: Yu
  fullname: Yu, Wen‐Song
  organization: Xiamen University
– sequence: 4
  givenname: Zhi‐Yao
  surname: Duan
  fullname: Duan, Zhi‐Yao
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: Huan
  surname: Huang
  fullname: Huang, Huan
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Xiamen University
– sequence: 7
  givenname: Gang
  surname: Fu
  fullname: Fu, Gang
  organization: Xiamen University
– sequence: 8
  givenname: Zhi‐You
  surname: Zhou
  fullname: Zhou, Zhi‐You
  organization: Xiamen University
– sequence: 9
  givenname: Yu‐Cheng
  orcidid: 0000-0002-3356-3403
  surname: Wang
  fullname: Wang, Yu‐Cheng
  email: wangyc@xmu.edu.cn
  organization: Xiamen University
– sequence: 10
  givenname: Shi‐Gang
  surname: Sun
  fullname: Sun, Shi‐Gang
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39829284$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoOMON62LqXgxk3HXNomWYqMOiAOeFmXtDkdIm06Jq06rnwEn9EnMeN4AUFcnQvff87h_FtoYFsLCO0RPCIY0yNlDYwopgkRQvI1tElSSmLGORuEPGEs5iIlQ7Tl_V3ghcDZBhoyKaikItlE47F9XjTw9vI6sX5uHOjo2thZDdE11GBN34S6g6hq3Uen7MwDRNOnxQxsdAW6D43W7qD1StUedj_jNro9Hd-cnMcX07PJyfFFXDLOeMwVL6TIynARrkQlqC4klkoXpeKJIjqtklRkTLJUahEyhUtaJAyD5oLoSrBtdLiaO3ftfQ--yxvjS6hrZaHtfc5IytNEpjIL6MEv9K7tnQ3XBSoL86hgS2r_k-qLBnQ-d6ZRbpF_PSgAoxVQutZ7B9U3QnC-dCBfOpB_OxAEyS9BaTq1fFLnlKn_lsmV7NHUsPhnSX58ORn_aN8BFCSaUg
CitedBy_id crossref_primary_10_1016_j_ensm_2025_104155
Cites_doi 10.1007/s11426-019-9635-2
10.1016/j.matt.2023.12.001
10.1149/1.3548529
10.1126/science.aan2255
10.1021/acs.chemrev.2c00685
10.1039/b102907j
10.1016/S0140-6736(00)02490-9
10.1002/anie.201505056
10.1002/adfm.202103857
10.1016/0021-9614(74)90039-1
10.1038/s41563-020-0717-5
10.1038/s41929-017-0008-y
10.1002/anie.202017288
10.1149/2.1071412jes
10.1002/anie.200803181
10.1038/s41929-020-00546-1
10.1016/j.electacta.2010.02.056
10.1021/jp500781v
10.1038/s41560-022-01062-1
10.1007/s11144-009-5531-7
10.1021/jacs.9b05576
10.1038/nmat1840
10.1021/acsaem.9b00364
10.1016/j.coelec.2020.02.007
10.1016/S1872-2067(21)63993-1
10.1126/science.aad0832
10.1002/chem.200801258
10.1038/2011212a0
10.1126/science.1170051
10.1126/science.1200832
10.1021/ar100059g
10.1073/pnas.73.7.2206
10.1021/acs.jpclett.2c02684
ContentType Journal Article
Copyright 2025 Wiley-VCH GmbH
2025 Wiley-VCH GmbH.
Copyright_xml – notice: 2025 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202418897
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39829284
10_1002_anie_202418897
ANIE202418897
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 22179116; 22288102; 22021001
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 20720220017
– fundername: National Key Research and Development Program of China
  funderid: 2023YFA1509000
– fundername: Natural Science Foundation of China
  grantid: 22288102
– fundername: National Key Research and Development Program of China
  grantid: 2023YFA1509000
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 20720220017
– fundername: Natural Science Foundation of China
  grantid: 22021001
– fundername: Natural Science Foundation of China
  grantid: 22179116
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YIN
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3737-7a7b986c8510f8f82db909adbca74a1d5f458639359d8586a0c2b430ed781df83
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:25:25 EDT 2025
Wed Aug 06 16:32:54 EDT 2025
Wed Feb 19 01:28:34 EST 2025
Thu Apr 24 22:54:48 EDT 2025
Thu Aug 07 06:19:13 EDT 2025
Tue Feb 18 09:32:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Enzyme-mimetic catalysis
Reactive oxygen species
Single-atom catalysts
Selectivity
Oxygen reduction reaction
Language English
License 2025 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-7a7b986c8510f8f82db909adbca74a1d5f458639359d8586a0c2b430ed781df83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3356-3403
PMID 39829284
PQID 3167812836
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3157549596
proquest_journals_3167812836
pubmed_primary_39829284
crossref_primary_10_1002_anie_202418897
crossref_citationtrail_10_1002_anie_202418897
wiley_primary_10_1002_anie_202418897_ANIE202418897
PublicationCentury 2000
PublicationDate February 17, 2025
2025-02-17
2025-Feb-17
20250217
PublicationDateYYYYMMDD 2025-02-17
PublicationDate_xml – month: 02
  year: 2025
  text: February 17, 2025
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2010; 55
2011; 158
2015; 5
2000; 356
2002; 31
2020; 63
2019; 2
2023; 123
2015; 54
2008; 14
1974
2022; 43
2019; 141
2017; 357
2011; 332
2020; 19
2010; 43
1976; 73
2009; 96
2021; 31
2020; 3
2022
2022; 61
2024; 7
2022; 7
2008; 47
2007; 6
2014; 161
2020; 21
2021; 60
2016; 351
2009; 324
1964; 201
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Hu H. (e_1_2_7_24_1) 2022; 61
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Tang G. W. (e_1_2_7_26_1) 2015; 5
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – volume: 6
  start-page: 241
  year: 2007
  end-page: 247
  publication-title: Nat. Mater.
– volume: 54
  start-page: 10074
  year: 2015
  end-page: 10076
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 652
  year: 2022
  end-page: 663
  publication-title: Nat. Energy
– volume: 3
  start-page: 1044
  year: 2020
  end-page: 1054
  publication-title: Nat. Catal.
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  publication-title: Science
– start-page: 8914
  year: 2022
  end-page: 8920
  publication-title: J. Phys. Chem. Lett.
– volume: 21
  start-page: 192
  year: 2020
  end-page: 200
  publication-title: Curr. Opin. Electrochem.
– volume: 2
  start-page: 3624
  year: 2019
  end-page: 3632
  publication-title: ACS Appl. Energ. Mater.
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  publication-title: Science
– volume: 63
  start-page: 198
  year: 2020
  end-page: 202
  publication-title: Sci. China Chem.
– volume: 324
  start-page: 71
  year: 2009
  end-page: 4
  publication-title: Science
– volume: 356
  start-page: 233
  year: 2000
  end-page: 241
  publication-title: Lancet
– volume: 118
  start-page: 8999
  year: 2014
  end-page: 9008
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 655
  year: 2024
  end-page: 667
  publication-title: Matter
– volume: 5
  year: 2015
  publication-title: AIP Adv.
– volume: 31
  start-page: 108
  year: 2002
  end-page: 115
  publication-title: Chem. Soc. Rev.
– volume: 60
  start-page: 9516
  year: 2021
  end-page: 9526
  publication-title: Angew. Chem. Int. Ed.
– volume: 96
  start-page: 191
  year: 2009
  end-page: 208
  publication-title: React. Kinet. Catal. Lett.
– volume: 158
  start-page: B434
  year: 2011
  end-page: B439
  publication-title: J. Electrochem. Soc.
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  publication-title: Science
– start-page: 525
  year: 1974
  end-page: 535
  publication-title: J. Chem. Thermodyn.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 1408
  year: 2010
  end-page: 1419
  publication-title: Acc. Chem. Res.
– volume: 73
  start-page: 2206
  year: 1976
  end-page: 10
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 1918
  year: 2022
  end-page: 1926
  publication-title: Chin. J. Catal.
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  publication-title: Nature
– volume: 123
  start-page: 9265
  year: 2023
  end-page: 9326
  publication-title: Chem. Rev.
– volume: 47
  start-page: 9212
  year: 2008
  end-page: 9228
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 1215
  year: 2020
  end-page: 1223
  publication-title: Nat. Mater.
– volume: 161
  start-page: F1323
  year: 2014
  end-page: F1329
  publication-title: J. Electrochem. Soc.
– volume: 55
  start-page: 7975
  year: 2010
  end-page: 7981
  publication-title: Electrochim. Acta
– volume: 14
  start-page: 10603
  year: 2008
  end-page: 10614
  publication-title: Chem. Eur. J.
– ident: e_1_2_7_35_1
  doi: 10.1007/s11426-019-9635-2
– ident: e_1_2_7_28_1
  doi: 10.1016/j.matt.2023.12.001
– ident: e_1_2_7_19_1
  doi: 10.1149/1.3548529
– volume: 61
  year: 2022
  ident: e_1_2_7_24_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.2c00685
– volume: 5
  year: 2015
  ident: e_1_2_7_26_1
  publication-title: AIP Adv.
– ident: e_1_2_7_33_1
  doi: 10.1039/b102907j
– ident: e_1_2_7_20_1
  doi: 10.1016/S0140-6736(00)02490-9
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201505056
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202103857
– ident: e_1_2_7_27_1
  doi: 10.1016/0021-9614(74)90039-1
– ident: e_1_2_7_13_1
  doi: 10.1038/s41563-020-0717-5
– ident: e_1_2_7_29_1
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202017288
– ident: e_1_2_7_17_1
  doi: 10.1149/2.1071412jes
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.200803181
– ident: e_1_2_7_11_1
  doi: 10.1038/s41929-020-00546-1
– ident: e_1_2_7_18_1
  doi: 10.1016/j.electacta.2010.02.056
– ident: e_1_2_7_32_1
  doi: 10.1021/jp500781v
– ident: e_1_2_7_6_1
  doi: 10.1038/s41560-022-01062-1
– ident: e_1_2_7_7_1
  doi: 10.1007/s11144-009-5531-7
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.9b05576
– ident: e_1_2_7_14_1
  doi: 10.1038/nmat1840
– ident: e_1_2_7_25_1
  doi: 10.1021/acsaem.9b00364
– ident: e_1_2_7_16_1
  doi: 10.1016/j.coelec.2020.02.007
– ident: e_1_2_7_15_1
  doi: 10.1016/S1872-2067(21)63993-1
– ident: e_1_2_7_31_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_23_1
  doi: 10.1002/chem.200801258
– ident: e_1_2_7_2_1
  doi: 10.1038/2011212a0
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1170051
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1200832
– ident: e_1_2_7_21_1
  doi: 10.1021/ar100059g
– ident: e_1_2_7_1_1
  doi: 10.1073/pnas.73.7.2206
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.jpclett.2c02684
SSID ssj0028806
Score 2.5273466
Snippet Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202418897
SubjectTerms Absorption spectroscopy
Biomimetic materials
Biomimetics
Catalysts
Chemical reduction
Enzyme-mimetic catalysis
Enzymes
Hydrogen peroxide
Intermediates
Oxygen reduction reaction
Oxygen reduction reactions
Peroxides
Reactive oxygen species
Selectivity
Selenium
Single-atom catalysts
Title Enzyme‐Inspired Single Selenium Site for Selective Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202418897
https://www.ncbi.nlm.nih.gov/pubmed/39829284
https://www.proquest.com/docview/3167812836
https://www.proquest.com/docview/3157549596
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCoKnaJtkm-QosqKCCj7AW8mrILpVdBfUkz_B3-gvcabdVlcRQW9NO6FpZpL50mS-IWTDMxaEcZImzgcqWFDUeJFQlzoVXMJlrjAa-eg43b8Qh5fty09R_BU_RPPDDUdGOV_jADf2YfuDNBQjsGF9Bx5IKY3h5HhgC1HRacMfxcA4q_Aizilmoa9ZG2O2PVx92Ct9g5rDyLV0PXuTxNSNrk6cXG_1e3bLPX_hc_zPV02RiQEujXYqQ5omI6GYIWO7dTq4WdLpFM9P3fD28npQ4O588NEZuL2bEJ2h57rqd6HcCxGA4PJOOY9GJ49PYKHRKRLEognMkYu9zvnuPh3kYKCOSy6pNNJqBYqDsZurXDFvdayNt85IYRLfzkVbpWV8r1dwZWLHrOBx8BKQcK74PBktbouwSKI0NTq1th1zYaFSor3LvfCx0gomHZ-0CK11kLkBQTnmybjJKmpllmHnZE3ntMhmI39XUXP8KLlSqzQbDNGHDCkAAN0onrbIevMYOhV3TEwRbvsoA2gWlpAaZBYqU2hexbViGpx7i7BSob-0Ids5Pug0paW_VFom4wyzD2M6GrlCRnv3_bAKkKhn10qzfwctEwKe
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EAvbSkt3RZokJB6MiS2N7aPCC3abWGR-JF6i_wXCQEB0V2pcOoj9Bn7JJ1JNkFLhSq1tzgZK4494_lsZ74B2AycR2m9YpkPkUkeNbNBZsznXkefCVVqikY-GOfDU_n5a7_9m5BiYRp-iG7DjSyjnq_JwGlDevueNZRCsHGBhy5Ia6OewjNK612vqo46BimO6tkEGAnBKA99y9uY8u35-vN-6Q-wOY9da-ez9xJc2-zmn5PzrenEbfm7B4yO__Vdr-DFDJomO40uLcGTWL2Gxd02I9wyDAbV3e1l_PXj56iiA_oYkmP0fBcxOSbndTa9xPIkJoiD6zv1VJocfr9FJU2OiCOWtOANnO4NTnaHbJaGgXmhhGLKKmc0jh2ab6lLzYMzqbHBeaukzUK_lH2d1yG-QeOVTT13UqQxKATDpRZvYaG6quI7SPLcmty5fiqkw0qZCb4MMqTaaJx3QtYD1g5C4Wcc5ZQq46Jo2JV5QZ1TdJ3Tg0-d_HXDzvGo5Go7psXMSr8VxAKAAEeLvAcb3WPsVDo0sVW8mpIMAlpcRRqUWWl0oXuVMJob9O894PWI_qUNxc54NOhK7_-l0kdYHJ4c7Bf7o_GXD_CcUzJiyk6jVmFhcjONa4iQJm69toHfWoMGuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLW15l-4AgIXFym9je2D5W7a66PBbUUqm3yK9IqG1awa7U9tSfwG_kl3Qm2YQuCCHBLY-x4nhmPJ_jzDcArwPnUVqvWOZDZJJHzWyQGfO519FnQpWaspE_jPO9Q_n2qH90K4u_4YfoPriRZ9TzNTn4eSi3fpKGUgY2ru8wAmlt1F24J_NUk13v7ncEUhyts8kvEoJRGfqWtjHlW_Pt58PSb1hzHrrWsWe4BLbtdfPLyfHmdOI2_dUvhI7_81rLsDgDpsl2Y0mP4E6sHsODnbYe3BMYDKqry9P44_r7qKLt-RiSA4x7JzE5oND1ZXqK55OYIAqur9QTafLx4hJNNNknhliygadwOBx83tljsyIMzAslFFNWOaNRc-i8pS41D86kxgbnrZI2C_1S9nVeJ_gGjUc29dxJkcagEAqXWjyDheqsis8hyXNrcuf6qZAOG2Um-DLIgFrTOOuErAes1UHhZwzlVCjjpGi4lXlBg1N0g9ODN538ecPN8UfJ9ValxcxHvxXEAYDwRou8B6-62ziotGViq3g2JRmEs7iGNCiz0phC9yhhNDcY3XvAa4X-pQ_F9ng06M5W_6XRS7j_aXdYvB-N363BQ06ViKk0jVqHhcnXadxAeDRxL2oPuAFVZAVx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme-Inspired+Single+Selenium+Site+for+Selective+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Peng-Yang&rft.au=Xu%2C+Xia&rft.au=Yu%2C+Wen-Song&rft.au=Duan%2C+Zhi-Yao&rft.date=2025-02-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=64&rft.issue=8&rft.spage=e202418897&rft_id=info:doi/10.1002%2Fanie.202418897&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon