Enzyme‐Inspired Single Selenium Site for Selective Oxygen Reduction
Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 8; pp. e202418897 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.02.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.
Inspired by the natural process of glutathione peroxidase in scavenging peroxides, we designed a single selenium site‐modified carbon moiety, which shows a nearly‐100 % 4‐electron selectivity and significantly increased consecutive 2+2 electron selectivity in oxygen reduction reaction. |
---|---|
AbstractList | Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H
O
yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H
O
reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H
O
yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H2O2 yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the H2O2 yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H 2 O 2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H 2 O 2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H 2 O 2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. Inspired by the natural process of glutathione peroxidase in scavenging peroxides, we designed a single selenium site‐modified carbon moiety, which shows a nearly‐100 % 4‐electron selectivity and significantly increased consecutive 2+2 electron selectivity in oxygen reduction reaction. Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site‐modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as‐designed Se−C demonstrates nearly 100 % 4‐electron selectivity, evidenced by 0.039 % of H2O2 yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X‐ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme‐like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme‐like H2O2 reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se−C as a secondary catalytic site reduced the H2O2 yields of the Co−N−C, Fe−N−C, and N−C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond. |
Author | Zhou, Zhi‐You Duan, Zhi‐Yao Fu, Gang Wang, Yu‐Cheng Huang, Huan Xu, Xia Sun, Shi‐Gang Yu, Wen‐Song Wang, Tao Zhang, Peng‐Yang |
Author_xml | – sequence: 1 givenname: Peng‐Yang surname: Zhang fullname: Zhang, Peng‐Yang organization: Xiamen University – sequence: 2 givenname: Xia surname: Xu fullname: Xu, Xia organization: Xiamen University – sequence: 3 givenname: Wen‐Song surname: Yu fullname: Yu, Wen‐Song organization: Xiamen University – sequence: 4 givenname: Zhi‐Yao surname: Duan fullname: Duan, Zhi‐Yao organization: Northwestern Polytechnical University – sequence: 5 givenname: Huan surname: Huang fullname: Huang, Huan organization: Chinese Academy of Sciences – sequence: 6 givenname: Tao surname: Wang fullname: Wang, Tao organization: Xiamen University – sequence: 7 givenname: Gang surname: Fu fullname: Fu, Gang organization: Xiamen University – sequence: 8 givenname: Zhi‐You surname: Zhou fullname: Zhou, Zhi‐You organization: Xiamen University – sequence: 9 givenname: Yu‐Cheng orcidid: 0000-0002-3356-3403 surname: Wang fullname: Wang, Yu‐Cheng email: wangyc@xmu.edu.cn organization: Xiamen University – sequence: 10 givenname: Shi‐Gang surname: Sun fullname: Sun, Shi‐Gang organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39829284$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoOMON62LqXgxk3HXNomWYqMOiAOeFmXtDkdIm06Jq06rnwEn9EnMeN4AUFcnQvff87h_FtoYFsLCO0RPCIY0yNlDYwopgkRQvI1tElSSmLGORuEPGEs5iIlQ7Tl_V3ghcDZBhoyKaikItlE47F9XjTw9vI6sX5uHOjo2thZDdE11GBN34S6g6hq3Uen7MwDRNOnxQxsdAW6D43W7qD1StUedj_jNro9Hd-cnMcX07PJyfFFXDLOeMwVL6TIynARrkQlqC4klkoXpeKJIjqtklRkTLJUahEyhUtaJAyD5oLoSrBtdLiaO3ftfQ--yxvjS6hrZaHtfc5IytNEpjIL6MEv9K7tnQ3XBSoL86hgS2r_k-qLBnQ-d6ZRbpF_PSgAoxVQutZ7B9U3QnC-dCBfOpB_OxAEyS9BaTq1fFLnlKn_lsmV7NHUsPhnSX58ORn_aN8BFCSaUg |
CitedBy_id | crossref_primary_10_1016_j_ensm_2025_104155 |
Cites_doi | 10.1007/s11426-019-9635-2 10.1016/j.matt.2023.12.001 10.1149/1.3548529 10.1126/science.aan2255 10.1021/acs.chemrev.2c00685 10.1039/b102907j 10.1016/S0140-6736(00)02490-9 10.1002/anie.201505056 10.1002/adfm.202103857 10.1016/0021-9614(74)90039-1 10.1038/s41563-020-0717-5 10.1038/s41929-017-0008-y 10.1002/anie.202017288 10.1149/2.1071412jes 10.1002/anie.200803181 10.1038/s41929-020-00546-1 10.1016/j.electacta.2010.02.056 10.1021/jp500781v 10.1038/s41560-022-01062-1 10.1007/s11144-009-5531-7 10.1021/jacs.9b05576 10.1038/nmat1840 10.1021/acsaem.9b00364 10.1016/j.coelec.2020.02.007 10.1016/S1872-2067(21)63993-1 10.1126/science.aad0832 10.1002/chem.200801258 10.1038/2011212a0 10.1126/science.1170051 10.1126/science.1200832 10.1021/ar100059g 10.1073/pnas.73.7.2206 10.1021/acs.jpclett.2c02684 |
ContentType | Journal Article |
Copyright | 2025 Wiley-VCH GmbH 2025 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley-VCH GmbH – notice: 2025 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202418897 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39829284 10_1002_anie_202418897 ANIE202418897 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 22179116; 22288102; 22021001 – fundername: Fundamental Research Funds for the Central Universities funderid: 20720220017 – fundername: National Key Research and Development Program of China funderid: 2023YFA1509000 – fundername: Natural Science Foundation of China grantid: 22288102 – fundername: National Key Research and Development Program of China grantid: 2023YFA1509000 – fundername: Fundamental Research Funds for the Central Universities grantid: 20720220017 – fundername: Natural Science Foundation of China grantid: 22021001 – fundername: Natural Science Foundation of China grantid: 22179116 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YIN YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3737-7a7b986c8510f8f82db909adbca74a1d5f458639359d8586a0c2b430ed781df83 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:25:25 EDT 2025 Wed Aug 06 16:32:54 EDT 2025 Wed Feb 19 01:28:34 EST 2025 Thu Apr 24 22:54:48 EDT 2025 Thu Aug 07 06:19:13 EDT 2025 Tue Feb 18 09:32:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Enzyme-mimetic catalysis Reactive oxygen species Single-atom catalysts Selectivity Oxygen reduction reaction |
Language | English |
License | 2025 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-7a7b986c8510f8f82db909adbca74a1d5f458639359d8586a0c2b430ed781df83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3356-3403 |
PMID | 39829284 |
PQID | 3167812836 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3157549596 proquest_journals_3167812836 pubmed_primary_39829284 crossref_primary_10_1002_anie_202418897 crossref_citationtrail_10_1002_anie_202418897 wiley_primary_10_1002_anie_202418897_ANIE202418897 |
PublicationCentury | 2000 |
PublicationDate | February 17, 2025 2025-02-17 2025-Feb-17 20250217 |
PublicationDateYYYYMMDD | 2025-02-17 |
PublicationDate_xml | – month: 02 year: 2025 text: February 17, 2025 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2010; 55 2011; 158 2015; 5 2000; 356 2002; 31 2020; 63 2019; 2 2023; 123 2015; 54 2008; 14 1974 2022; 43 2019; 141 2017; 357 2011; 332 2020; 19 2010; 43 1976; 73 2009; 96 2021; 31 2020; 3 2022 2022; 61 2024; 7 2022; 7 2008; 47 2007; 6 2014; 161 2020; 21 2021; 60 2016; 351 2009; 324 1964; 201 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 Hu H. (e_1_2_7_24_1) 2022; 61 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Tang G. W. (e_1_2_7_26_1) 2015; 5 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – volume: 6 start-page: 241 year: 2007 end-page: 247 publication-title: Nat. Mater. – volume: 54 start-page: 10074 year: 2015 end-page: 10076 publication-title: Angew. Chem. Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 652 year: 2022 end-page: 663 publication-title: Nat. Energy – volume: 3 start-page: 1044 year: 2020 end-page: 1054 publication-title: Nat. Catal. – volume: 357 start-page: 479 year: 2017 end-page: 484 publication-title: Science – start-page: 8914 year: 2022 end-page: 8920 publication-title: J. Phys. Chem. Lett. – volume: 21 start-page: 192 year: 2020 end-page: 200 publication-title: Curr. Opin. Electrochem. – volume: 2 start-page: 3624 year: 2019 end-page: 3632 publication-title: ACS Appl. Energ. Mater. – volume: 351 start-page: 361 year: 2016 end-page: 365 publication-title: Science – volume: 63 start-page: 198 year: 2020 end-page: 202 publication-title: Sci. China Chem. – volume: 324 start-page: 71 year: 2009 end-page: 4 publication-title: Science – volume: 356 start-page: 233 year: 2000 end-page: 241 publication-title: Lancet – volume: 118 start-page: 8999 year: 2014 end-page: 9008 publication-title: J. Phys. Chem. C – volume: 7 start-page: 655 year: 2024 end-page: 667 publication-title: Matter – volume: 5 year: 2015 publication-title: AIP Adv. – volume: 31 start-page: 108 year: 2002 end-page: 115 publication-title: Chem. Soc. Rev. – volume: 60 start-page: 9516 year: 2021 end-page: 9526 publication-title: Angew. Chem. Int. Ed. – volume: 96 start-page: 191 year: 2009 end-page: 208 publication-title: React. Kinet. Catal. Lett. – volume: 158 start-page: B434 year: 2011 end-page: B439 publication-title: J. Electrochem. Soc. – volume: 332 start-page: 443 year: 2011 end-page: 447 publication-title: Science – start-page: 525 year: 1974 end-page: 535 publication-title: J. Chem. Thermodyn. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 12372 year: 2019 end-page: 12381 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 1408 year: 2010 end-page: 1419 publication-title: Acc. Chem. Res. – volume: 73 start-page: 2206 year: 1976 end-page: 10 publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: 1918 year: 2022 end-page: 1926 publication-title: Chin. J. Catal. – volume: 201 start-page: 1212 year: 1964 end-page: 1213 publication-title: Nature – volume: 123 start-page: 9265 year: 2023 end-page: 9326 publication-title: Chem. Rev. – volume: 47 start-page: 9212 year: 2008 end-page: 9228 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 1215 year: 2020 end-page: 1223 publication-title: Nat. Mater. – volume: 161 start-page: F1323 year: 2014 end-page: F1329 publication-title: J. Electrochem. Soc. – volume: 55 start-page: 7975 year: 2010 end-page: 7981 publication-title: Electrochim. Acta – volume: 14 start-page: 10603 year: 2008 end-page: 10614 publication-title: Chem. Eur. J. – ident: e_1_2_7_35_1 doi: 10.1007/s11426-019-9635-2 – ident: e_1_2_7_28_1 doi: 10.1016/j.matt.2023.12.001 – ident: e_1_2_7_19_1 doi: 10.1149/1.3548529 – volume: 61 year: 2022 ident: e_1_2_7_24_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_3_1 doi: 10.1126/science.aan2255 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.2c00685 – volume: 5 year: 2015 ident: e_1_2_7_26_1 publication-title: AIP Adv. – ident: e_1_2_7_33_1 doi: 10.1039/b102907j – ident: e_1_2_7_20_1 doi: 10.1016/S0140-6736(00)02490-9 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201505056 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202103857 – ident: e_1_2_7_27_1 doi: 10.1016/0021-9614(74)90039-1 – ident: e_1_2_7_13_1 doi: 10.1038/s41563-020-0717-5 – ident: e_1_2_7_29_1 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_7_34_1 doi: 10.1002/anie.202017288 – ident: e_1_2_7_17_1 doi: 10.1149/2.1071412jes – ident: e_1_2_7_8_1 doi: 10.1002/anie.200803181 – ident: e_1_2_7_11_1 doi: 10.1038/s41929-020-00546-1 – ident: e_1_2_7_18_1 doi: 10.1016/j.electacta.2010.02.056 – ident: e_1_2_7_32_1 doi: 10.1021/jp500781v – ident: e_1_2_7_6_1 doi: 10.1038/s41560-022-01062-1 – ident: e_1_2_7_7_1 doi: 10.1007/s11144-009-5531-7 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.9b05576 – ident: e_1_2_7_14_1 doi: 10.1038/nmat1840 – ident: e_1_2_7_25_1 doi: 10.1021/acsaem.9b00364 – ident: e_1_2_7_16_1 doi: 10.1016/j.coelec.2020.02.007 – ident: e_1_2_7_15_1 doi: 10.1016/S1872-2067(21)63993-1 – ident: e_1_2_7_31_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_23_1 doi: 10.1002/chem.200801258 – ident: e_1_2_7_2_1 doi: 10.1038/2011212a0 – ident: e_1_2_7_4_1 doi: 10.1126/science.1170051 – ident: e_1_2_7_5_1 doi: 10.1126/science.1200832 – ident: e_1_2_7_21_1 doi: 10.1021/ar100059g – ident: e_1_2_7_1_1 doi: 10.1073/pnas.73.7.2206 – ident: e_1_2_7_30_1 doi: 10.1021/acs.jpclett.2c02684 |
SSID | ssj0028806 |
Score | 2.5273466 |
Snippet | Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202418897 |
SubjectTerms | Absorption spectroscopy Biomimetic materials Biomimetics Catalysts Chemical reduction Enzyme-mimetic catalysis Enzymes Hydrogen peroxide Intermediates Oxygen reduction reaction Oxygen reduction reactions Peroxides Reactive oxygen species Selectivity Selenium Single-atom catalysts |
Title | Enzyme‐Inspired Single Selenium Site for Selective Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202418897 https://www.ncbi.nlm.nih.gov/pubmed/39829284 https://www.proquest.com/docview/3167812836 https://www.proquest.com/docview/3157549596 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H-uLCoKnaJtkm-QosqKCCj7AW8mrILpVdBfUkz_B3-gvcabdVlcRQW9NO6FpZpL50mS-IWTDMxaEcZImzgcqWFDUeJFQlzoVXMJlrjAa-eg43b8Qh5fty09R_BU_RPPDDUdGOV_jADf2YfuDNBQjsGF9Bx5IKY3h5HhgC1HRacMfxcA4q_Aizilmoa9ZG2O2PVx92Ct9g5rDyLV0PXuTxNSNrk6cXG_1e3bLPX_hc_zPV02RiQEujXYqQ5omI6GYIWO7dTq4WdLpFM9P3fD28npQ4O588NEZuL2bEJ2h57rqd6HcCxGA4PJOOY9GJ49PYKHRKRLEognMkYu9zvnuPh3kYKCOSy6pNNJqBYqDsZurXDFvdayNt85IYRLfzkVbpWV8r1dwZWLHrOBx8BKQcK74PBktbouwSKI0NTq1th1zYaFSor3LvfCx0gomHZ-0CK11kLkBQTnmybjJKmpllmHnZE3ntMhmI39XUXP8KLlSqzQbDNGHDCkAAN0onrbIevMYOhV3TEwRbvsoA2gWlpAaZBYqU2hexbViGpx7i7BSob-0Ids5Pug0paW_VFom4wyzD2M6GrlCRnv3_bAKkKhn10qzfwctEwKe |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EAvbSkt3RZokJB6MiS2N7aPCC3abWGR-JF6i_wXCQEB0V2pcOoj9Bn7JJ1JNkFLhSq1tzgZK4494_lsZ74B2AycR2m9YpkPkUkeNbNBZsznXkefCVVqikY-GOfDU_n5a7_9m5BiYRp-iG7DjSyjnq_JwGlDevueNZRCsHGBhy5Ia6OewjNK612vqo46BimO6tkEGAnBKA99y9uY8u35-vN-6Q-wOY9da-ez9xJc2-zmn5PzrenEbfm7B4yO__Vdr-DFDJomO40uLcGTWL2Gxd02I9wyDAbV3e1l_PXj56iiA_oYkmP0fBcxOSbndTa9xPIkJoiD6zv1VJocfr9FJU2OiCOWtOANnO4NTnaHbJaGgXmhhGLKKmc0jh2ab6lLzYMzqbHBeaukzUK_lH2d1yG-QeOVTT13UqQxKATDpRZvYaG6quI7SPLcmty5fiqkw0qZCb4MMqTaaJx3QtYD1g5C4Wcc5ZQq46Jo2JV5QZ1TdJ3Tg0-d_HXDzvGo5Go7psXMSr8VxAKAAEeLvAcb3WPsVDo0sVW8mpIMAlpcRRqUWWl0oXuVMJob9O894PWI_qUNxc54NOhK7_-l0kdYHJ4c7Bf7o_GXD_CcUzJiyk6jVmFhcjONa4iQJm69toHfWoMGuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLW15l-4AgIXFym9je2D5W7a66PBbUUqm3yK9IqG1awa7U9tSfwG_kl3Qm2YQuCCHBLY-x4nhmPJ_jzDcArwPnUVqvWOZDZJJHzWyQGfO519FnQpWaspE_jPO9Q_n2qH90K4u_4YfoPriRZ9TzNTn4eSi3fpKGUgY2ru8wAmlt1F24J_NUk13v7ncEUhyts8kvEoJRGfqWtjHlW_Pt58PSb1hzHrrWsWe4BLbtdfPLyfHmdOI2_dUvhI7_81rLsDgDpsl2Y0mP4E6sHsODnbYe3BMYDKqry9P44_r7qKLt-RiSA4x7JzE5oND1ZXqK55OYIAqur9QTafLx4hJNNNknhliygadwOBx83tljsyIMzAslFFNWOaNRc-i8pS41D86kxgbnrZI2C_1S9nVeJ_gGjUc29dxJkcagEAqXWjyDheqsis8hyXNrcuf6qZAOG2Um-DLIgFrTOOuErAes1UHhZwzlVCjjpGi4lXlBg1N0g9ODN538ecPN8UfJ9ValxcxHvxXEAYDwRou8B6-62ziotGViq3g2JRmEs7iGNCiz0phC9yhhNDcY3XvAa4X-pQ_F9ng06M5W_6XRS7j_aXdYvB-N363BQ06ViKk0jVqHhcnXadxAeDRxL2oPuAFVZAVx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzyme-Inspired+Single+Selenium+Site+for+Selective+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Peng-Yang&rft.au=Xu%2C+Xia&rft.au=Yu%2C+Wen-Song&rft.au=Duan%2C+Zhi-Yao&rft.date=2025-02-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=64&rft.issue=8&rft.spage=e202418897&rft_id=info:doi/10.1002%2Fanie.202418897&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |