Biomass‐Derived Carbon Materials for Electrochemical Energy Storage

The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as us...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 30; no. 23; pp. e202304157 - n/a
Main Authors Bai, Yu‐Lin, Zhang, Chen‐Chen, Rong, Feng, Guo, Zhao‐Xia, Wang, Kai‐Xue
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked. The design and preparation of biomass‐derived porous carbon materials in recent five years was summarized. These carbon materials were briefly catalogized into two types, plant‐derived and animal‐derived carbon materials. Heteroatoms doping was illustrated with an emphasis on single‐element doping and multi‐element doping, respectively. The advantages of these porous carbon materials applicated in electrochemical energy storage devices, such as LIBs, SIBs, PIBs, and SCs were reviewed. The remaining challenges and prospects in the field were outlined.
AbstractList The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked.The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked.
The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked.
The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked. The design and preparation of biomass‐derived porous carbon materials in recent five years was summarized. These carbon materials were briefly catalogized into two types, plant‐derived and animal‐derived carbon materials. Heteroatoms doping was illustrated with an emphasis on single‐element doping and multi‐element doping, respectively. The advantages of these porous carbon materials applicated in electrochemical energy storage devices, such as LIBs, SIBs, PIBs, and SCs were reviewed. The remaining challenges and prospects in the field were outlined.
Author Bai, Yu‐Lin
Wang, Kai‐Xue
Rong, Feng
Zhang, Chen‐Chen
Guo, Zhao‐Xia
Author_xml – sequence: 1
  givenname: Yu‐Lin
  surname: Bai
  fullname: Bai, Yu‐Lin
  organization: Taiyuan University of Technology
– sequence: 2
  givenname: Chen‐Chen
  surname: Zhang
  fullname: Zhang, Chen‐Chen
  organization: Taiyuan University of Technology
– sequence: 3
  givenname: Feng
  surname: Rong
  fullname: Rong, Feng
  organization: Taiyuan University of Technology
– sequence: 4
  givenname: Zhao‐Xia
  surname: Guo
  fullname: Guo, Zhao‐Xia
  organization: Taiyuan University of Technology
– sequence: 5
  givenname: Kai‐Xue
  orcidid: 0000-0002-2076-5487
  surname: Wang
  fullname: Wang, Kai‐Xue
  email: k.wang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38270279$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9KxDAQh4Mourt69SgFL1665k-TtEet1RVWPKjnMI1ZjbSNJl1lbz6Cz-iT2LLrCoJ4Ghi-b2b4zRBtNq4xCO0TPCYY02P9aOoxxZThhHC5gQaEUxIzKfgmGuAskbHgLNtBwxCeMMaZYGwb7bCUSkxlNkDFqXU1hPD5_nFmvH0191EOvnRNdAVt14AqRDPno6IyuvWuX2c1VFHRGP-wiG5a5-HB7KKtWUeavVUdobvz4jafxNPri8v8ZBprJpmMpUhEgks644xoIIkBAQywSDXoEihPSJliqjUvwWRaSJxykuIyk0LwUkrGRuhoOffZu5e5Ca2qbdCmqqAxbh4UzUin0ISTDj38hT65uW-661SXFRM90w88WFHzsjb36tnbGvxCfQfUAeMloL0LwZvZGiFY9R9QfSRq_YFOSH4J2rbQWte0Hmz1t5YttTdbmcU_S1Q-Ka5-3C87KJlp
CitedBy_id crossref_primary_10_1007_s11356_024_33437_0
crossref_primary_10_1007_s11581_024_06048_5
crossref_primary_10_1039_D4NJ03624G
crossref_primary_10_3389_fenrg_2024_1394318
crossref_primary_10_1080_10408347_2024_2401504
crossref_primary_10_1016_j_cej_2024_157861
crossref_primary_10_1039_D5GC00368G
crossref_primary_10_1016_j_ijbiomac_2024_134374
crossref_primary_10_1039_D3GC04332K
crossref_primary_10_1007_s42773_024_00399_y
crossref_primary_10_1002_tcr_202400144
crossref_primary_10_1039_D4SE01393J
crossref_primary_10_1021_acssusresmgt_4c00121
crossref_primary_10_1021_acs_energyfuels_4c03971
crossref_primary_10_1021_acssusresmgt_4c00359
Cites_doi 10.1016/j.mtnano.2023.100321
10.1016/j.jpowsour.2019.227572
10.1002/adma.201802310
10.1016/j.indcrop.2023.117338
10.1016/j.ensm.2021.03.030
10.1016/j.jallcom.2023.171922
10.1016/j.diamond.2023.110381
10.1002/smll.202107819
10.1002/adma.201605336
10.1039/C6RA15705J
10.1016/j.jcis.2023.02.024
10.1016/j.est.2023.106954
10.1039/C5EE03149D
10.1039/C8RA00016F
10.1039/c2jm34066f
10.1016/j.ccr.2021.214147
10.1016/j.diamond.2022.109593
10.1002/adfm.201905095
10.1021/acssuschemeng.1c01851
10.1016/S1872-5805(23)60726-7
10.1002/adma.202002976
10.1016/j.cej.2022.140540
10.1016/j.diamond.2023.109852
10.1007/s42773-022-00176-9
10.1021/acsami.7b12776
10.1039/C9TA08498C
10.1016/j.jcis.2021.08.005
10.1007/s11664-023-10512-9
10.1016/j.ensm.2022.09.031
10.1016/j.jallcom.2022.167820
10.1038/s41467-023-42794-2
10.1007/s40242-022-2030-0
10.1002/smll.201600412
10.1016/j.jssc.2018.08.041
10.1039/c3ta10650k
10.1016/j.apsusc.2023.158137
10.1016/j.jechem.2018.01.013
10.1021/acsomega.0c06171
10.1016/j.apsusc.2019.04.081
10.1021/acsami.6b07989
10.1021/acsnano.2c03955
10.1039/C8TA06040A
10.1557/s43581-022-00025-z
10.1016/j.cej.2021.129754
10.1039/D2TA05119B
10.1007/s11664-022-10197-6
10.1002/adfm.201707520
10.1007/s10854-020-03632-z
10.1002/adma.201802074
10.1021/acsomega.3c00816
10.1016/j.ceramint.2019.12.227
10.1016/j.nanoen.2018.03.016
10.1016/j.jpowsour.2022.232517
10.1021/acs.energyfuels.0c04042
10.1039/D1TA03501K
10.1039/D3TA03215A
10.1021/acsami.8b14304
10.1016/j.nantod.2022.101408
10.1002/cssc.202202393
10.1039/C9TA06964J
10.1016/j.diamond.2022.108931
10.1016/j.carbon.2018.08.036
10.1016/j.jallcom.2023.171347
10.1039/C9NR06245A
10.1016/j.vacuum.2023.112374
10.1021/acsami.8b21213
10.1002/ente.202300590
10.1002/aenm.201700530
10.1080/01932691.2021.1880930
10.1016/j.jpowsour.2016.01.026
10.1016/j.nanoen.2017.12.042
10.1016/j.carbon.2021.05.021
10.1002/smll.201804786
10.1039/D0RA05870J
10.1016/j.jelechem.2021.115668
10.1016/j.carbon.2020.06.063
10.1039/D3TA04486F
10.1016/j.est.2023.108214
10.1016/j.ssi.2021.115548
10.1016/j.electacta.2023.142269
10.1016/S1872-5805(23)60710-3
10.1016/j.diamond.2022.109507
10.1088/2053-1591/ab1bf9
10.3390/mi14051003
10.1002/adma.201704244
10.1016/j.jechem.2018.01.015
10.1021/cr5006217
10.1039/D1NJ02970C
10.1039/D1TA02181H
10.1016/j.matlet.2022.132526
10.1016/j.jtice.2021.02.021
10.1002/cssc.202200231
10.1007/s10934-023-01454-y
10.1016/j.renene.2021.08.008
10.1016/j.energy.2021.121102
10.3390/molecules28124633
10.1016/j.jallcom.2022.164707
10.1016/j.cclet.2019.10.009
10.1016/j.jcis.2020.11.084
10.1021/acssuschemeng.0c01949
10.1002/smll.202107252
10.3390/polym14204261
10.1016/j.est.2023.108878
10.1016/j.cej.2016.12.081
10.1016/j.carbon.2020.07.007
10.1002/adma.202108621
10.1007/s13399-022-03295-2
10.1021/acsomega.2c04369
10.1002/celc.202101151
10.3390/ma16062332
10.1016/j.powtec.2018.11.100
10.1002/anie.201605510
10.1021/acsanm.2c05420
10.1002/aenm.201702179
10.1016/j.jpowsour.2018.01.057
10.1021/acsaem.9b02077
10.1021/acsami.1c00115
10.1016/j.jallcom.2021.162129
10.1016/j.renene.2020.03.153
10.1039/C9GC01910C
10.1016/j.cclet.2022.04.063
10.1039/D0TA01281E
10.1016/j.jpowsour.2020.228500
10.1016/j.nantod.2018.12.004
10.1039/D1TA02741G
10.1039/D2NR05001C
10.1016/j.apt.2023.104221
10.1016/j.ssi.2020.115223
10.1021/cr900354u
10.1007/s10311-021-01221-y
10.1039/D2QI02483G
10.1016/j.est.2023.107627
10.1016/j.jallcom.2020.153692
10.1016/j.electacta.2015.11.108
10.1016/j.jallcom.2020.158078
10.1007/s10934-019-00720-2
10.1016/j.jsamd.2023.100586
10.1016/j.cej.2021.133683
10.1016/j.diamond.2022.109451
10.1016/j.materresbull.2021.111282
10.1002/cssc.201000087
10.3390/molecules25184050
10.1039/D0RA07029G
10.1039/C9NR02277E
10.1016/j.jelechem.2020.113922
10.1016/j.electacta.2022.140573
10.1007/s40242-021-1386-x
10.3390/ma16134577
10.1016/j.jechem.2021.04.009
10.1016/j.jpowsour.2021.230886
10.1016/j.matdes.2019.108287
10.1007/s40242-023-3196-9
10.1007/s42823-023-00483-6
10.1021/acs.chemmater.8b03463
10.1021/acs.jpcc.5b10222
10.1039/C6EE02364A
10.1021/acs.chemrev.9b00463
10.1016/j.renene.2021.05.006
10.1039/D2RA03205H
10.1016/j.matlet.2021.129459
10.1039/C6TA01821A
10.1016/j.ijhydene.2021.02.131
10.1002/aenm.201700283
10.1016/j.jaap.2021.105215
10.1002/smll.202203947
10.1002/anie.201801654
10.1016/j.diamond.2021.108728
10.1007/s12274-021-3581-y
10.1002/sus2.8
10.1016/j.diamond.2021.108626
10.1016/j.diamond.2022.109514
10.1016/j.ijhydene.2019.06.107
10.1021/acsaem.2c04102
10.1039/C7TA00863E
10.1016/j.cej.2022.137561
10.1016/j.jechem.2020.07.002
10.1016/j.jelechem.2022.116769
10.1016/j.jallcom.2017.05.062
10.1039/C5TA08620E
10.1038/s41598-020-71649-9
10.1016/j.jechem.2020.03.073
10.1016/j.jpowsour.2020.228415
10.1016/j.fuproc.2020.106677
10.1021/acs.energyfuels.2c00157
10.1007/s11581-023-04891-6
10.1016/j.carbpol.2020.117107
10.1002/smll.202203545
10.3390/nano13172431
10.1016/j.carbon.2021.03.022
10.1007/s12274-021-3328-9
10.1007/s41918-021-00120-8
10.1016/j.carbon.2018.10.034
10.1039/C9SE00072K
10.1002/smll.202105825
10.1002/adma.202204403
10.1016/j.biortech.2005.01.010
10.1016/j.diamond.2022.109407
10.1021/acs.jpcc.3c02850
10.1016/j.est.2023.106900
10.1039/D3TA01344H
10.1016/j.jpowsour.2022.231019
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202304157
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 38270279
10_1002_chem_202304157
CHEM202304157
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22105142
– fundername: Fundamental Research Program of Shanxi Province
  funderid: 20210302124332
– fundername: Fundamental Research Program of Shanxi Province
  grantid: 20210302124332
– fundername: National Natural Science Foundation of China
  grantid: 22105142
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
ACUHS
AEYWJ
AGHNM
AGYGG
CITATION
EBD
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3737-764640b2f531ca14ea6a3a068cacba2541b802cc5bae9c67085180b97665b7733
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 07:39:17 EDT 2025
Fri Jul 25 09:39:55 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Tue Jul 01 05:08:52 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Wed Jan 22 17:18:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords biomass
heteroatom doping
electrode material
energy storage
carbon
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-764640b2f531ca14ea6a3a068cacba2541b802cc5bae9c67085180b97665b7733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2076-5487
PMID 38270279
PQID 3043645133
PQPubID 986340
PageCount 25
ParticipantIDs proquest_miscellaneous_2918512451
proquest_journals_3043645133
pubmed_primary_38270279
crossref_primary_10_1002_chem_202304157
crossref_citationtrail_10_1002_chem_202304157
wiley_primary_10_1002_chem_202304157_CHEM202304157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 22, 2024
PublicationDateYYYYMMDD 2024-04-22
PublicationDate_xml – month: 04
  year: 2024
  text: April 22, 2024
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 73
2017; 716
2013; 1
2016; 307
2019; 11
2019; 15
2021; 448
2020; 448
2020; 168
2020; 10
2018; 45
2017; 313
2018; 47
2018; 6
2023; 62
2018; 8
2023; 67
2023; 450
2021; 157
2019; 21
2019; 24
2019; 26
2010; 110
2022; 34
2023; 215
2022; 36
2019; 29
2023; 455
2018; 30
2022; 608
2022; 606
2010; 3
2022; 449
2012; 22
2023; 71
2022; 38
2022; 322
2019; 7
2021; 46
2023; 52
2018; 28
2021; 43
2019; 3
2021; 45
2019; 6
2019; 30
2021; 420
2019; 35
2023; 204
2019; 344
2023; 968
2023; 965
2020; 32
2018; 27
2016; 12
2016; 4
2016; 6
2021; 55
2020; 31
2015; 115
2022; 4
2019; 44
2021; 139
2022; 7
2022; 9
2021; 899
2022; 12
2005; 96
2022; 909
2022; 14
2022; 15
2020; 25
2020; 832
2020; 155
2021; 251
2022; 10
2023; 558
2018; 10
2021; 62
2022; 16
2016; 9
2022; 18
2022; 892
2017; 5
2017; 7
2023; 30
2022; 130
2023; 33
2023; 34
2023; 39
2023; 6
2020; 120
2023; 38
2023; 8
2016; 187
2021; 120
2021; 361
2017; 9
2019; 484
2020; 8
2021; 35
2021; 38
2022; 121
2020; 3
2023; 22
2023; 28
2023; 131
2023; 29
2020; 51
2023; 135
2023; 139
2020; 46
2023; 934
2021; 231
2022; 526
2022; 923
2022; 129
2022; 520
2022; 124
2021; 9
2021; 8
2023; 10
2021; 6
2023; 13
2018; 380
2023; 14
2021; 4
2023; 11
2018; 140
2021; 585
2023; 15
2021; 863
2020; 186
2023; 16
2018; 268
2020; 346
2021; 181
2023; 127
2020; 469
2017; 29
2022; 43
2020; 861
2021; 1
2019; 141
2016; 120
2016; 55
2022; 433
2021; 14
2021; 13
2021; 15
2023
2021; 179
2022
2021; 178
2021; 213
2021; 18
2021; 19
2021; 175
2023; 638
2022; 53
2020; 474
2022; 424
2021; 290
2018; 57
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_2
e_1_2_10_158_2
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_2
e_1_2_10_173_2
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_147_2
Bai Y.-L. (e_1_2_10_142_2) 2019; 35
e_1_2_10_219_2
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_162_2
e_1_2_10_185_2
e_1_2_10_48_1
e_1_2_10_25_2
e_1_2_10_101_1
e_1_2_10_41_1
e_1_2_10_211_2
e_1_2_10_90_1
e_1_2_10_159_2
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_136_2
e_1_2_10_15_2
e_1_2_10_113_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_197_2
e_1_2_10_7_1
e_1_2_10_174_2
e_1_2_10_200_1
e_1_2_10_223_1
e_1_2_10_148_2
e_1_2_10_64_1
e_1_2_10_26_2
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_140_2
e_1_2_10_186_2
e_1_2_10_163_2
e_1_2_10_42_1
e_1_2_10_212_1
e_1_2_10_198_2
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_137_2
e_1_2_10_190_2
e_1_2_10_53_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_16_2
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_175_2
e_1_2_10_30_2
e_1_2_10_224_2
e_1_2_10_201_2
e_1_2_10_80_1
Song Y. (e_1_2_10_214_1) 2022; 608
e_1_2_10_149_2
e_1_2_10_126_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_27_2
e_1_2_10_103_1
e_1_2_10_187_1
e_1_2_10_141_2
e_1_2_10_164_2
e_1_2_10_20_2
e_1_2_10_43_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_199_2
e_1_2_10_92_1
e_1_2_10_17_2
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_2
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_2
e_1_2_10_202_2
e_1_2_10_225_2
e_1_2_10_165_2
e_1_2_10_188_2
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_2
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_177_2
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_2
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_2
e_1_2_10_203_2
e_1_2_10_226_2
e_1_2_10_120_2
e_1_2_10_143_2
e_1_2_10_166_2
e_1_2_10_189_2
e_1_2_10_82_1
e_1_2_10_181_2
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_215_1
e_1_2_10_155_2
e_1_2_10_178_2
e_1_2_10_71_1
e_1_2_10_19_2
e_1_2_10_117_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_170_2
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_132_2
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_2
e_1_2_10_227_2
e_1_2_10_144_2
e_1_2_10_167_2
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_182_2
e_1_2_10_68_1
e_1_2_10_121_2
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_216_2
e_1_2_10_110_1
e_1_2_10_156_2
e_1_2_10_179_2
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_133_2
e_1_2_10_194_2
e_1_2_10_35_2
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_228_1
e_1_2_10_205_2
e_1_2_10_220_2
e_1_2_10_145_2
e_1_2_10_168_1
e_1_2_10_217_2
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_160_1
e_1_2_10_183_2
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_157_2
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_36_2
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_2
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_221_2
e_1_2_10_146_1
e_1_2_10_169_2
e_1_2_10_218_1
e_1_2_10_62_1
Xia W. (e_1_2_10_124_1) 2023
e_1_2_10_85_1
e_1_2_10_161_2
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 168
  start-page: 419
  year: 2020
  end-page: 438
  publication-title: Carbon
– volume: 157
  year: 2021
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 526
  year: 2022
  publication-title: J. Power Sources
– volume: 62
  start-page: 497
  year: 2021
  end-page: 504
  publication-title: J. Energy Chem.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 168
  start-page: 701
  year: 2020
  end-page: 709
  publication-title: Carbon
– volume: 52
  start-page: 5680
  year: 2023
  end-page: 5689
  publication-title: J. Electron. Mater.
– volume: 57
  start-page: 8865
  year: 2018
  end-page: 8870
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 22250
  year: 2019
  end-page: 22262
  publication-title: Int. J. Hydrogen Energy
– year: 2022
  publication-title: Biomass Convers. Bio.
– volume: 638
  start-page: 695
  year: 2023
  end-page: 708
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 1585
  year: 2020
  end-page: 1592
  publication-title: ACS Appl. Energ. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 10811
  year: 2020
  end-page: 10818
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 141
  start-page: 748
  year: 2019
  end-page: 757
  publication-title: Carbon
– volume: 10
  start-page: 14631
  year: 2020
  publication-title: Sci. Rep.
– volume: 215
  year: 2023
  publication-title: Vacuum
– volume: 1
  start-page: 211
  year: 2021
  end-page: 240
  publication-title: SusMat
– volume: 16
  year: 2023
  publication-title: ChemSusChem
– volume: 96
  start-page: 1959
  year: 2005
  end-page: 1966
  publication-title: Bioresour. Technol.
– volume: 24
  start-page: 103
  year: 2019
  end-page: 119
  publication-title: Nano Today
– volume: 14
  start-page: 4261
  year: 2022
  publication-title: Polymer
– volume: 73
  year: 2023
  publication-title: J. Energy Storage
– volume: 186
  year: 2020
  publication-title: Mater. Des.
– volume: 30
  start-page: 8426
  year: 2018
  end-page: 8430
  publication-title: Chem. Mater.
– volume: 520
  year: 2022
  publication-title: J. Power Sources
– volume: 899
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 47
  start-page: 547
  year: 2018
  end-page: 555
  publication-title: Nano Energy
– volume: 861
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 35
  start-page: 2045
  year: 2019
  end-page: 2050
  publication-title: Chinese J. Inorg. Chem.
– volume: 31
  start-page: 217
  year: 2020
  end-page: 222
  publication-title: Chin. Chem. Lett.
– volume: 67
  year: 2023
  publication-title: J. Energy Storage
– volume: 346
  year: 2020
  publication-title: Solid State Ionics
– volume: 7
  start-page: 37564
  year: 2022
  end-page: 37571
  publication-title: ACS Omega
– volume: 187
  start-page: 508
  year: 2016
  end-page: 516
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1144
  year: 2016
  end-page: 1173
  publication-title: J. Mater. Chem. A
– volume: 450
  year: 2023
  publication-title: Electrochim. Acta
– volume: 124
  year: 2022
  publication-title: Diamond Relat. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 1872
  year: 2021
  end-page: 1879
  publication-title: J. Dispersion Sci. Technol.
– volume: 8
  start-page: 8469
  year: 2020
  end-page: 8475
  publication-title: J. Mater. Chem. A
– volume: 484
  start-page: 726
  year: 2019
  end-page: 731
  publication-title: Appl. Surf. Sci.
– volume: 131
  year: 2023
  publication-title: Diamond Relat. Mater.
– volume: 11
  start-page: 17860
  year: 2019
  end-page: 17868
  publication-title: Nanoscale
– volume: 380
  start-page: 12
  year: 2018
  end-page: 17
  publication-title: J. Power Sources
– volume: 34
  year: 2023
  publication-title: Adv. Powder Technol.
– volume: 6
  start-page: 3020
  year: 2023
  end-page: 3026
  publication-title: ACS Appl. Nano Mater.
– volume: 179
  start-page: 1826
  year: 2021
  end-page: 1835
  publication-title: Renewable Energy
– volume: 968
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 155
  start-page: 309
  year: 2020
  end-page: 316
  publication-title: Renewable Energy
– volume: 10
  start-page: 38524
  year: 2020
  end-page: 38531
  publication-title: RSC Adv.
– volume: 8
  start-page: 18782
  year: 2023
  end-page: 18798
  publication-title: ACS Omega
– volume: 213
  year: 2021
  publication-title: Fuel Process. Technol.
– volume: 21
  start-page: 5274
  year: 2019
  end-page: 5283
  publication-title: Green Chem.
– volume: 11
  start-page: 12626
  year: 2019
  end-page: 12636
  publication-title: Nanoscale
– volume: 11
  year: 2023
  publication-title: Energy Technol.
– volume: 38
  start-page: 1
  year: 2023
  end-page: 15
  publication-title: New. Carbon. Mater.
– volume: 9
  start-page: 8813
  year: 2021
  end-page: 8823
  publication-title: ACS Sustainable Chem. Eng.
– year: 2023
  publication-title: Carbon Lett.
– volume: 10
  start-page: 1187
  year: 2023
  end-page: 1196
  publication-title: Inorg. Chem. Front.
– volume: 231
  year: 2021
  publication-title: Energy
– volume: 39
  start-page: 1100
  year: 2023
  end-page: 1105
  publication-title: Chem. Res. Chin. Univ.
– volume: 25
  start-page: 4050
  year: 2020
  publication-title: Molecules
– volume: 28
  start-page: 4633
  year: 2023
  publication-title: Molecules
– volume: 268
  start-page: 149
  year: 2018
  end-page: 158
  publication-title: J. Solid State Chem.
– volume: 45
  start-page: 220
  year: 2018
  end-page: 228
  publication-title: Nano Energy
– volume: 8
  year: 2023
  publication-title: J. Sci. Adv. Mater. Devices
– volume: 448
  year: 2020
  publication-title: J. Power Sources
– volume: 11
  start-page: 20011
  year: 2023
  end-page: 20020
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 698
  year: 2010
  end-page: 701
  publication-title: ChemSusChem
– volume: 11
  start-page: 16626
  year: 2023
  end-page: 16635
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1003
  year: 2023
  publication-title: Micromachines
– volume: 361
  year: 2021
  publication-title: Solid State Ionics
– volume: 307
  start-page: 649
  year: 2016
  end-page: 656
  publication-title: J. Power Sources
– volume: 130
  year: 2022
  publication-title: Diamond Relat. Mater.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 42699
  year: 2017
  end-page: 42707
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 7615
  year: 2021
  end-page: 7625
  publication-title: ACS Omega
– volume: 11
  start-page: 12415
  year: 2019
  end-page: 12420
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1675
  year: 2023
  end-page: 1685
  publication-title: J. Porous Mater.
– volume: 14
  start-page: 6994
  year: 2023
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  start-page: 3061
  year: 2016
  end-page: 3070
  publication-title: Energy Environ. Sci.
– volume: 129
  year: 2022
  publication-title: Diamond Relat. Mater.
– volume: 344
  start-page: 89
  year: 2019
  end-page: 95
  publication-title: Powder Technol.
– volume: 10
  start-page: 17185
  year: 2022
  end-page: 17198
  publication-title: J. Mater. Chem. A
– volume: 290
  year: 2021
  publication-title: Mater. Lett.
– volume: 27
  start-page: 1390
  year: 2018
  end-page: 1396
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 18927
  year: 2021
  end-page: 18946
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 293
  year: 2020
  end-page: 302
  publication-title: J. Energy Chem.
– volume: 36
  start-page: 4026
  year: 2022
  end-page: 4033
  publication-title: Energy Fuels
– volume: 115
  start-page: 5159
  year: 2015
  end-page: 5223
  publication-title: Chem. Rev.
– volume: 863
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 638
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 716
  start-page: 210
  year: 2017
  end-page: 219
  publication-title: J. Alloys Compd.
– volume: 832
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 424
  year: 2022
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 102
  year: 2016
  end-page: 106
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 147
  year: 2021
  end-page: 154
  publication-title: Chem. Res. Chin. Univ.
– volume: 120
  start-page: 246
  year: 2021
  end-page: 256
  publication-title: J. Taiwan Inst. of Chem. Eng.
– volume: 6
  start-page: 17473
  year: 2018
  end-page: 17480
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 8497
  year: 2021
  end-page: 8506
  publication-title: ACS Appl. Mater. Interfaces
– volume: 608
  start-page: 963
  year: 2022
  end-page: 972
  publication-title: J. Alloys Compd.
– volume: 909
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 3745
  year: 2021
  end-page: 3754
  publication-title: ChemElectroChem
– volume: 10
  start-page: 30756
  year: 2020
  end-page: 30766
  publication-title: RSC Adv.
– volume: 22
  start-page: 23710
  year: 2012
  end-page: 23725
  publication-title: J. Mater. Chem.
– volume: 135
  year: 2023
  publication-title: Diamond Relat. Mater.
– volume: 19
  start-page: 3505
  year: 2021
  end-page: 3510
  publication-title: Environ. Chem. Lett.
– volume: 120
  start-page: 6358
  year: 2020
  end-page: 6466
  publication-title: Chem. Rev.
– volume: 110
  start-page: 3552
  year: 2010
  end-page: 3599
  publication-title: Chem. Rev.
– volume: 15
  start-page: 204
  year: 2023
  end-page: 214
  publication-title: Nanoscale
– volume: 175
  start-page: 760
  year: 2021
  end-page: 769
  publication-title: Renewable Energy
– volume: 12
  start-page: 3235
  year: 2016
  end-page: 3244
  publication-title: Small
– volume: 8
  start-page: 1702179
  year: 2018
  end-page: 1702219
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 2332
  year: 2023
  publication-title: Materials
– volume: 313
  start-page: 404
  year: 2017
  end-page: 414
  publication-title: Chem. Eng. J.
– volume: 62
  year: 2023
  publication-title: J. Energy Storage
– volume: 139
  year: 2021
  publication-title: Mater. Res. Bull.
– volume: 71
  year: 2023
  publication-title: J. Energy Storage
– volume: 204
  year: 2023
  publication-title: Ind. Crops Prod.
– volume: 9
  start-page: 11530
  year: 2021
  end-page: 11536
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 20305
  year: 2022
  end-page: 20318
  publication-title: RSC Adv.
– volume: 45
  start-page: 15514
  year: 2021
  end-page: 15524
  publication-title: New J. Chem.
– volume: 4
  start-page: 5973
  year: 2016
  end-page: 5983
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 11522
  year: 2020
  end-page: 11531
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  start-page: 7072
  year: 2018
  end-page: 7079
  publication-title: RSC Adv.
– volume: 7
  start-page: 21711
  year: 2019
  end-page: 21721
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 50
  year: 2022
  publication-title: Biochar
– volume: 10
  start-page: 38376
  year: 2018
  end-page: 38386
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  start-page: 528
  year: 2021
  end-page: 534
  publication-title: Energy Storage Mater.
– volume: 38
  start-page: 543
  year: 2023
  end-page: 552
  publication-title: New. Carbon. Mater.
– volume: 4
  start-page: 793
  year: 2021
  end-page: 823
  publication-title: Electrochem. Energy Rev.
– volume: 127
  start-page: 15719
  year: 2023
  end-page: 15729
  publication-title: J. Phys. Chem. C
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 53
  start-page: 482
  year: 2022
  end-page: 491
  publication-title: Energy Storage Mater.
– volume: 29
  start-page: 1029
  year: 2023
  end-page: 1038
  publication-title: Ionics
– volume: 33
  start-page: 1265
  year: 2023
  end-page: 1278
  publication-title: Carbon Lett.
– volume: 16
  start-page: 12511
  year: 2022
  end-page: 12519
  publication-title: ACS Nano
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 4404
  year: 2016
  end-page: 4419
  publication-title: ACS Appl. Mater. Interfaces
– volume: 934
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 5269
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 664
  year: 2018
  end-page: 672
  publication-title: Carbon
– volume: 30
  start-page: 121
  year: 2019
  end-page: 131
  publication-title: J. Energy Chem.
– volume: 52
  start-page: 1717
  year: 2023
  end-page: 1729
  publication-title: J. Electron. Mater.
– volume: 469
  year: 2020
  publication-title: J. Power Sources
– volume: 606
  start-page: 577
  year: 2022
  end-page: 587
  publication-title: J. Colloid Interface Sci.
– volume: 923
  year: 2022
  publication-title: J. Electroanal. Chem.
– volume: 892
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 22
  year: 2023
  publication-title: Mater. Today Nano
– volume: 120
  start-page: 2984
  year: 2016
  end-page: 2992
  publication-title: J. Phys. Chem. C
– volume: 455
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 43
  year: 2022
  publication-title: Nano Today
– volume: 46
  start-page: 17267
  year: 2021
  end-page: 17281
  publication-title: Int. J. Hydrogen Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  start-page: 4577
  year: 2023
  publication-title: Materials
– volume: 14
  start-page: 4014
  year: 2021
  end-page: 4024
  publication-title: Nano Res.
– volume: 55
  start-page: 34
  year: 2021
  end-page: 47
  publication-title: J. Energy Chem.
– volume: 3
  start-page: 1215
  year: 2019
  end-page: 1224
  publication-title: Sustain. Energy Fuels
– volume: 38
  start-page: 677
  year: 2022
  end-page: 687
  publication-title: Chem. Res. Chin. Univ.
– volume: 965
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 46
  start-page: 9614
  year: 2020
  end-page: 9621
  publication-title: Ceram. Int.
– volume: 474
  year: 2020
  publication-title: J. Power Sources
– volume: 121
  year: 2022
  publication-title: Diamond Relat. Mater.
– volume: 5
  start-page: 12653
  year: 2017
  end-page: 12672
  publication-title: J. Mater. Chem. A
– volume: 120
  year: 2021
  publication-title: Diamond Relat. Mater.
– volume: 9
  start-page: 313
  year: 2022
  end-page: 323
  publication-title: MRS Energy Sustainability
– volume: 139
  year: 2023
  publication-title: Diamond Relat. Mater.
– volume: 6
  start-page: 2680
  year: 2023
  end-page: 2686
  publication-title: ACS Appl. Energ. Mater.
– volume: 15
  start-page: 959
  year: 2021
  end-page: 964
  publication-title: Nano Res.
– volume: 55
  start-page: 14623
  year: 2016
  end-page: 14627
  publication-title: Angew. Chem. Int. Ed.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 24524
  year: 2019
  end-page: 24531
  publication-title: J. Mater. Chem. A
– volume: 449
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 1557
  year: 2021
  end-page: 1566
  publication-title: Energy Fuels
– volume: 322
  year: 2022
  publication-title: Mater. Lett.
– volume: 448
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 11254
  year: 2023
  end-page: 11263
  publication-title: J. Mater. Chem. A
– volume: 178
  start-page: 233
  year: 2021
  end-page: 242
  publication-title: Carbon
– volume: 18
  year: 2021
  publication-title: Small
– volume: 6
  start-page: 78909
  year: 2016
  end-page: 78917
  publication-title: RSC Adv.
– volume: 9
  start-page: 16565
  year: 2021
  end-page: 16574
  publication-title: J. Mater. Chem. A
– volume: 181
  start-page: 1
  year: 2021
  end-page: 8
  publication-title: Carbon
– volume: 13
  start-page: 2431
  year: 2023
  publication-title: Nanomaterials
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1325
  year: 2019
  end-page: 1333
  publication-title: J. Porous Mater.
– volume: 585
  start-page: 43
  year: 2021
  end-page: 50
  publication-title: J. Colloid Interface Sci.
– volume: 251
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 558
  year: 2023
  publication-title: J. Power Sources
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– ident: e_1_2_10_139_2
  doi: 10.1016/j.mtnano.2023.100321
– ident: e_1_2_10_66_1
  doi: 10.1016/j.jpowsour.2019.227572
– ident: e_1_2_10_180_2
  doi: 10.1002/adma.201802310
– ident: e_1_2_10_30_2
  doi: 10.1016/j.indcrop.2023.117338
– ident: e_1_2_10_220_2
  doi: 10.1016/j.ensm.2021.03.030
– ident: e_1_2_10_32_2
  doi: 10.1016/j.jallcom.2023.171922
– ident: e_1_2_10_79_1
  doi: 10.1016/j.diamond.2023.110381
– ident: e_1_2_10_181_2
  doi: 10.1002/smll.202107819
– ident: e_1_2_10_217_2
  doi: 10.1002/adma.201605336
– ident: e_1_2_10_35_2
  doi: 10.1039/C6RA15705J
– ident: e_1_2_10_95_1
  doi: 10.1016/j.jcis.2023.02.024
– ident: e_1_2_10_228_1
  doi: 10.1016/j.est.2023.106954
– ident: e_1_2_10_119_1
– ident: e_1_2_10_150_1
  doi: 10.1039/C5EE03149D
– ident: e_1_2_10_196_1
– ident: e_1_2_10_87_1
  doi: 10.1039/C8RA00016F
– ident: e_1_2_10_33_1
  doi: 10.1039/c2jm34066f
– ident: e_1_2_10_144_2
  doi: 10.1016/j.ccr.2021.214147
– ident: e_1_2_10_50_1
  doi: 10.1016/j.diamond.2022.109593
– ident: e_1_2_10_223_1
– ident: e_1_2_10_22_1
  doi: 10.1002/adfm.201905095
– ident: e_1_2_10_184_1
– ident: e_1_2_10_3_1
  doi: 10.1021/acssuschemeng.1c01851
– ident: e_1_2_10_68_1
  doi: 10.1016/S1872-5805(23)60726-7
– ident: e_1_2_10_222_1
  doi: 10.1002/adma.202002976
– ident: e_1_2_10_162_2
  doi: 10.1016/j.cej.2022.140540
– ident: e_1_2_10_218_1
– ident: e_1_2_10_7_1
  doi: 10.1016/j.diamond.2023.109852
– ident: e_1_2_10_59_1
  doi: 10.1007/s42773-022-00176-9
– ident: e_1_2_10_224_2
  doi: 10.1021/acsami.7b12776
– ident: e_1_2_10_201_2
  doi: 10.1039/C9TA08498C
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jcis.2021.08.005
– ident: e_1_2_10_49_1
  doi: 10.1007/s11664-023-10512-9
– ident: e_1_2_10_186_2
  doi: 10.1016/j.ensm.2022.09.031
– ident: e_1_2_10_54_1
  doi: 10.1016/j.jallcom.2022.167820
– ident: e_1_2_10_16_2
  doi: 10.1038/s41467-023-42794-2
– ident: e_1_2_10_133_2
  doi: 10.1007/s40242-022-2030-0
– ident: e_1_2_10_146_1
– ident: e_1_2_10_226_2
  doi: 10.1002/smll.201600412
– ident: e_1_2_10_114_1
  doi: 10.1016/j.jssc.2018.08.041
– ident: e_1_2_10_147_2
  doi: 10.1039/c3ta10650k
– ident: e_1_2_10_24_1
– ident: e_1_2_10_129_1
  doi: 10.1016/j.apsusc.2023.158137
– ident: e_1_2_10_134_1
– ident: e_1_2_10_221_2
  doi: 10.1016/j.jechem.2018.01.013
– ident: e_1_2_10_71_1
  doi: 10.1021/acsomega.0c06171
– ident: e_1_2_10_143_2
  doi: 10.1016/j.apsusc.2019.04.081
– ident: e_1_2_10_185_2
  doi: 10.1021/acsami.6b07989
– ident: e_1_2_10_200_1
– ident: e_1_2_10_179_2
  doi: 10.1021/acsnano.2c03955
– ident: e_1_2_10_202_2
  doi: 10.1039/C8TA06040A
– ident: e_1_2_10_12_1
  doi: 10.1557/s43581-022-00025-z
– ident: e_1_2_10_123_1
  doi: 10.1016/j.cej.2021.129754
– ident: e_1_2_10_158_2
  doi: 10.1039/D2TA05119B
– ident: e_1_2_10_46_1
  doi: 10.1007/s11664-022-10197-6
– ident: e_1_2_10_207_1
  doi: 10.1002/adfm.201707520
– ident: e_1_2_10_14_1
– ident: e_1_2_10_110_1
  doi: 10.1007/s10854-020-03632-z
– ident: e_1_2_10_177_2
  doi: 10.1002/adma.201802074
– ident: e_1_2_10_102_1
  doi: 10.1021/acsomega.3c00816
– ident: e_1_2_10_199_2
  doi: 10.1016/j.ceramint.2019.12.227
– ident: e_1_2_10_111_1
  doi: 10.1016/j.nanoen.2018.03.016
– ident: e_1_2_10_172_1
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jpowsour.2022.232517
– ident: e_1_2_10_108_1
  doi: 10.1021/acs.energyfuels.0c04042
– ident: e_1_2_10_190_2
  doi: 10.1039/D1TA03501K
– ident: e_1_2_10_9_1
  doi: 10.1039/D3TA03215A
– ident: e_1_2_10_116_1
  doi: 10.1021/acsami.8b14304
– ident: e_1_2_10_182_2
  doi: 10.1016/j.nantod.2022.101408
– ident: e_1_2_10_89_1
  doi: 10.1002/cssc.202202393
– ident: e_1_2_10_130_1
  doi: 10.1039/C9TA06964J
– ident: e_1_2_10_115_1
  doi: 10.1016/j.diamond.2022.108931
– ident: e_1_2_10_113_1
  doi: 10.1016/j.carbon.2018.08.036
– ident: e_1_2_10_56_1
  doi: 10.1016/j.jallcom.2023.171347
– ident: e_1_2_10_171_1
  doi: 10.1039/C9NR06245A
– ident: e_1_2_10_90_1
  doi: 10.1016/j.vacuum.2023.112374
– ident: e_1_2_10_18_1
– volume: 608
  start-page: 963
  year: 2022
  ident: e_1_2_10_214_1
  publication-title: J. Alloys Compd.
– ident: e_1_2_10_215_1
– ident: e_1_2_10_127_1
  doi: 10.1021/acsami.8b21213
– ident: e_1_2_10_125_1
  doi: 10.1002/ente.202300590
– ident: e_1_2_10_140_2
  doi: 10.1002/aenm.201700530
– ident: e_1_2_10_83_1
  doi: 10.1080/01932691.2021.1880930
– ident: e_1_2_10_120_2
  doi: 10.1016/j.jpowsour.2016.01.026
– ident: e_1_2_10_93_1
  doi: 10.1016/j.nanoen.2017.12.042
– ident: e_1_2_10_88_1
  doi: 10.1016/j.carbon.2021.05.021
– ident: e_1_2_10_194_2
  doi: 10.1002/smll.201804786
– ident: e_1_2_10_104_1
  doi: 10.1039/D0RA05870J
– ident: e_1_2_10_60_1
  doi: 10.1016/j.jelechem.2021.115668
– ident: e_1_2_10_84_1
  doi: 10.1016/j.carbon.2020.06.063
– ident: e_1_2_10_91_1
  doi: 10.1039/D3TA04486F
– ident: e_1_2_10_128_1
  doi: 10.1016/j.est.2023.108214
– ident: e_1_2_10_62_1
  doi: 10.1016/j.ssi.2021.115548
– ident: e_1_2_10_38_1
  doi: 10.1016/j.electacta.2023.142269
– ident: e_1_2_10_1_1
  doi: 10.1016/S1872-5805(23)60710-3
– ident: e_1_2_10_74_1
  doi: 10.1016/j.diamond.2022.109507
– ident: e_1_2_10_117_1
  doi: 10.1088/2053-1591/ab1bf9
– ident: e_1_2_10_154_1
– ident: e_1_2_10_75_1
  doi: 10.3390/mi14051003
– ident: e_1_2_10_141_2
  doi: 10.1002/adma.201704244
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jechem.2018.01.015
– ident: e_1_2_10_193_1
– ident: e_1_2_10_132_2
  doi: 10.1021/cr5006217
– ident: e_1_2_10_70_1
  doi: 10.1039/D1NJ02970C
– ident: e_1_2_10_167_2
  doi: 10.1039/D1TA02181H
– ident: e_1_2_10_55_1
  doi: 10.1016/j.matlet.2022.132526
– ident: e_1_2_10_69_1
  doi: 10.1016/j.jtice.2021.02.021
– ident: e_1_2_10_17_2
  doi: 10.1002/cssc.202200231
– ident: e_1_2_10_47_1
  doi: 10.1007/s10934-023-01454-y
– ident: e_1_2_10_229_1
  doi: 10.1016/j.renene.2021.08.008
– ident: e_1_2_10_67_1
  doi: 10.1016/j.energy.2021.121102
– ident: e_1_2_10_6_1
  doi: 10.3390/molecules28124633
– ident: e_1_2_10_153_1
  doi: 10.1016/j.jallcom.2022.164707
– ident: e_1_2_10_191_2
  doi: 10.1016/j.cclet.2019.10.009
– ident: e_1_2_10_210_2
  doi: 10.1016/j.jcis.2020.11.084
– ident: e_1_2_10_219_2
  doi: 10.1021/acssuschemeng.0c01949
– ident: e_1_2_10_183_2
  doi: 10.1002/smll.202107252
– ident: e_1_2_10_2_1
  doi: 10.3390/polym14204261
– ident: e_1_2_10_149_2
  doi: 10.1016/j.est.2023.108878
– ident: e_1_2_10_213_1
  doi: 10.1016/j.cej.2016.12.081
– ident: e_1_2_10_109_1
  doi: 10.1016/j.carbon.2020.07.007
– ident: e_1_2_10_173_2
  doi: 10.1002/adma.202108621
– ident: e_1_2_10_106_1
  doi: 10.1007/s13399-022-03295-2
– ident: e_1_2_10_48_1
  doi: 10.1021/acsomega.2c04369
– ident: e_1_2_10_107_1
  doi: 10.1002/celc.202101151
– ident: e_1_2_10_92_1
  doi: 10.3390/ma16062332
– ident: e_1_2_10_58_1
  doi: 10.1016/j.powtec.2018.11.100
– volume: 35
  start-page: 2045
  year: 2019
  ident: e_1_2_10_142_2
  publication-title: Chinese J. Inorg. Chem.
– ident: e_1_2_10_36_2
  doi: 10.1002/anie.201605510
– ident: e_1_2_10_81_1
  doi: 10.1021/acsanm.2c05420
– ident: e_1_2_10_137_2
  doi: 10.1002/aenm.201702179
– ident: e_1_2_10_152_1
  doi: 10.1016/j.jpowsour.2018.01.057
– ident: e_1_2_10_85_1
  doi: 10.1021/acsaem.9b02077
– ident: e_1_2_10_175_2
  doi: 10.1021/acsami.1c00115
– ident: e_1_2_10_105_1
  doi: 10.1016/j.jallcom.2021.162129
– ident: e_1_2_10_211_2
  doi: 10.1016/j.renene.2020.03.153
– ident: e_1_2_10_29_1
– ident: e_1_2_10_168_1
– ident: e_1_2_10_21_1
  doi: 10.1039/C9GC01910C
– ident: e_1_2_10_72_1
  doi: 10.1016/j.cclet.2022.04.063
– ident: e_1_2_10_164_2
  doi: 10.1039/D0TA01281E
– ident: e_1_2_10_227_2
  doi: 10.1016/j.jpowsour.2020.228500
– ident: e_1_2_10_135_2
  doi: 10.1016/j.nantod.2018.12.004
– ident: e_1_2_10_204_2
  doi: 10.1039/D1TA02741G
– ident: e_1_2_10_13_1
  doi: 10.1039/D2NR05001C
– ident: e_1_2_10_73_1
  doi: 10.1016/j.apt.2023.104221
– ident: e_1_2_10_8_1
  doi: 10.1016/j.ssi.2020.115223
– ident: e_1_2_10_27_2
  doi: 10.1021/cr900354u
– ident: e_1_2_10_39_1
  doi: 10.1007/s10311-021-01221-y
– ident: e_1_2_10_157_2
  doi: 10.1039/D2QI02483G
– ident: e_1_2_10_80_1
  doi: 10.1016/j.est.2023.107627
– ident: e_1_2_10_197_2
  doi: 10.1016/j.jallcom.2020.153692
– ident: e_1_2_10_121_2
  doi: 10.1016/j.electacta.2015.11.108
– ident: e_1_2_10_19_2
  doi: 10.1016/j.jallcom.2020.158078
– ident: e_1_2_10_208_1
  doi: 10.1007/s10934-019-00720-2
– ident: e_1_2_10_126_1
  doi: 10.1016/j.jsamd.2023.100586
– ident: e_1_2_10_131_1
– ident: e_1_2_10_198_2
  doi: 10.1016/j.cej.2021.133683
– ident: e_1_2_10_31_2
  doi: 10.1016/j.diamond.2022.109451
– ident: e_1_2_10_10_1
  doi: 10.1016/j.materresbull.2021.111282
– ident: e_1_2_10_26_2
  doi: 10.1002/cssc.201000087
– ident: e_1_2_10_42_1
  doi: 10.3390/molecules25184050
– ident: e_1_2_10_209_1
– ident: e_1_2_10_122_1
  doi: 10.1039/D0RA07029G
– ident: e_1_2_10_97_1
  doi: 10.1039/C9NR02277E
– ident: e_1_2_10_57_1
  doi: 10.1016/j.jelechem.2020.113922
– ident: e_1_2_10_4_1
  doi: 10.1016/j.electacta.2022.140573
– ident: e_1_2_10_203_2
  doi: 10.1007/s40242-021-1386-x
– ident: e_1_2_10_45_1
  doi: 10.3390/ma16134577
– ident: e_1_2_10_118_1
  doi: 10.1016/j.jechem.2021.04.009
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jpowsour.2021.230886
– ident: e_1_2_10_155_2
  doi: 10.1016/j.matdes.2019.108287
– ident: e_1_2_10_159_2
  doi: 10.1007/s40242-023-3196-9
– ident: e_1_2_10_63_1
  doi: 10.1007/s42823-023-00483-6
– ident: e_1_2_10_160_1
– ident: e_1_2_10_166_2
  doi: 10.1021/acs.chemmater.8b03463
– ident: e_1_2_10_145_2
  doi: 10.1021/acs.jpcc.5b10222
– ident: e_1_2_10_195_2
  doi: 10.1039/C6EE02364A
– ident: e_1_2_10_178_2
  doi: 10.1021/acs.chemrev.9b00463
– ident: e_1_2_10_43_1
  doi: 10.1016/j.renene.2021.05.006
– ident: e_1_2_10_5_1
  doi: 10.1039/D2RA03205H
– ident: e_1_2_10_64_1
  doi: 10.1016/j.matlet.2021.129459
– ident: e_1_2_10_148_2
  doi: 10.1039/C6TA01821A
– ident: e_1_2_10_188_2
  doi: 10.1016/j.ijhydene.2021.02.131
– ident: e_1_2_10_136_2
  doi: 10.1002/aenm.201700283
– ident: e_1_2_10_34_1
– ident: e_1_2_10_187_1
– ident: e_1_2_10_98_1
  doi: 10.1016/j.jaap.2021.105215
– ident: e_1_2_10_205_2
  doi: 10.1002/smll.202203947
– ident: e_1_2_10_165_2
  doi: 10.1002/anie.201801654
– ident: e_1_2_10_52_1
  doi: 10.1016/j.diamond.2021.108728
– ident: e_1_2_10_176_1
– ident: e_1_2_10_15_2
  doi: 10.1007/s12274-021-3581-y
– ident: e_1_2_10_28_1
  doi: 10.1002/sus2.8
– ident: e_1_2_10_78_1
  doi: 10.1016/j.diamond.2021.108626
– ident: e_1_2_10_82_1
  doi: 10.1016/j.diamond.2022.109514
– ident: e_1_2_10_151_1
  doi: 10.1016/j.ijhydene.2019.06.107
– ident: e_1_2_10_20_2
  doi: 10.1021/acsaem.2c04102
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jallcom.2022.164707
– ident: e_1_2_10_216_2
  doi: 10.1039/C7TA00863E
– ident: e_1_2_10_112_1
  doi: 10.1016/j.cej.2022.137561
– ident: e_1_2_10_170_2
  doi: 10.1016/j.jechem.2020.07.002
– ident: e_1_2_10_65_1
  doi: 10.1016/j.jelechem.2022.116769
– ident: e_1_2_10_37_1
  doi: 10.1016/j.jallcom.2017.05.062
– ident: e_1_2_10_225_2
  doi: 10.1039/C5TA08620E
– ident: e_1_2_10_51_1
  doi: 10.1038/s41598-020-71649-9
– ident: e_1_2_10_169_2
  doi: 10.1016/j.jechem.2020.03.073
– ident: e_1_2_10_174_2
  doi: 10.1016/j.jpowsour.2020.228415
– ident: e_1_2_10_103_1
  doi: 10.1016/j.fuproc.2020.106677
– ident: e_1_2_10_94_1
  doi: 10.1021/acs.energyfuels.2c00157
– year: 2023
  ident: e_1_2_10_124_1
  publication-title: Carbon Lett.
– ident: e_1_2_10_77_1
  doi: 10.1007/s11581-023-04891-6
– ident: e_1_2_10_138_1
– ident: e_1_2_10_100_1
  doi: 10.1016/j.carbpol.2020.117107
– ident: e_1_2_10_189_2
  doi: 10.1002/smll.202203545
– ident: e_1_2_10_44_1
  doi: 10.3390/nano13172431
– ident: e_1_2_10_192_1
  doi: 10.1016/j.carbon.2021.03.022
– ident: e_1_2_10_156_2
  doi: 10.1007/s12274-021-3328-9
– ident: e_1_2_10_161_2
  doi: 10.1007/s41918-021-00120-8
– ident: e_1_2_10_99_1
  doi: 10.1016/j.carbon.2018.10.034
– ident: e_1_2_10_86_1
  doi: 10.1039/C9SE00072K
– ident: e_1_2_10_163_2
  doi: 10.1002/smll.202105825
– ident: e_1_2_10_206_1
  doi: 10.1002/adma.202204403
– ident: e_1_2_10_25_2
  doi: 10.1016/j.biortech.2005.01.010
– ident: e_1_2_10_53_1
  doi: 10.1016/j.diamond.2022.109407
– ident: e_1_2_10_96_1
  doi: 10.1021/acs.jpcc.3c02850
– ident: e_1_2_10_101_1
  doi: 10.1016/j.est.2023.106900
– ident: e_1_2_10_212_1
  doi: 10.1039/D3TA01344H
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jpowsour.2022.231019
SSID ssj0009633
Score 2.54874
SecondaryResourceType review_article
Snippet The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202304157
SubjectTerms Batteries
Biomass
Carbon
Carbonaceous materials
Controllability
Doping
Electrochemistry
electrode material
Electrode materials
Electrodes
Energy storage
Environmental impact
heteroatom doping
Lithium
Lithium sulfur batteries
Pyrolysis
Storage batteries
Sulfur
Waste disposal
Wastes
Title Biomass‐Derived Carbon Materials for Electrochemical Energy Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202304157
https://www.ncbi.nlm.nih.gov/pubmed/38270279
https://www.proquest.com/docview/3043645133
https://www.proquest.com/docview/2918512451
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KXtJL03fcbIsLgZ60a0u2ZB-b7Yal0B6aBPZmNLIMIcEb9pFDTvkJ_Y39JdFYtjfbUgrNzcYS1mNG-kaa-QbgqKwwjwxWLEaTscTYmKEoMyYqlVcpGl6ahu3zu5ydJ1_n6fxBFL_nh-gP3EgzmvWaFFzjarwlDXV9okhyOtSMUwonJ4ctQkU_tvxRTrp8LvlEMeJg7VgbIz7erb67K_0BNXeRa7P1nOyD7hrtPU4uR5s1jsztb3yOj-nVc3jW4tLwsxekF_DE1i9hb9Klg3sF0-MLciVa_br7-cVJ7Y0tw4le4qIOv-m1F-PQAeBw6vPqmJaIIJw2wYXhqbPt3dL1Gs5PpmeTGWtzMDAjlFBMyUQmEfLK6arRcWK11EJHMjPaoHbWZYxZxI1JUdvcSEUILovQgRyZolJCvIFBvajtAYR0Y8stptzGVaJLZ0vFqeaVzDOJWuU6ANbNQWFagnLKk3FVeGplXlDTi35wAvjUl7_21Bx_LTnsprRoVXRVCCLfTyi9TQAf-89uUOnGRNd2sVkVPHdwxiGgNA7grReF_lcio1A-lQfAmwn9RxsKorjo3979T6VDeOqeG78hzocwWC839r2DRGv80Ij9PUntAgI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qyqJsgPJq-gAjgVi5TZzEThYsYGaqKX0soJW6M7bjVBUogzoZULviE_gVfoVP6JfUN05SDQghIXXBMi_Fj3vtY_vecwCeF6XOQ6NLGmmT0cTYiOq4yGhcirxMtWGFadg-D_j4KHl7nB4vwI8uF8bzQ_QbbugZzXiNDo4b0lvXrKGuUphKjruaUSrauMpde_7Vrdqmr3aGrotfMLY9OhyMaSssQE0sYkEFT3gSalY6AzQqSqziKlYhz4wyWrklU6SzkBmTamVzwwXCkizUbubmqRYC90DdqH8LZcSRrn_47pqxytmzV69PBEXW144nMmRb8-Wdnwd_A7fzWLmZ7Lbvws-umXyMy8fNWa03zcUvDJL_VTvegzst9Cavva8sw4Kt7sPSoFO8ewCjN6cYLTW9_PZ96Bzziy3IQJ3pSUX2Ve09lTiMT0ZeOsi0XAtk1ORPkve1c6cT-xCObqQWj2CxmlR2BQgeSjOrU2ajMlGFWy5GqWIlzzOulchVALTrdGlaDnaUAvkkPXs0k1h02XdGAC_79z979pE_vrne2ZBsR6GpjFFfIEEFnwCe9Y9do-KhkKrsZDaVLHeIzYG8NArgsbe9_ldxhtmKIg-ANRb0lzJIZPHor1b_5aOnsDQ-3N-TezsHu2tw291vwqQYW4fF-mxmNxwCrPWTxucIfLhp47wCysNd7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB1VRQI2lDdpCxgJxMpt4jh2smAB96GWQoWASt0Z23EQAuVWvblUsOIT-BR-hV_gS_DESaoLQkhIXbDMS_Fjxj62Z84BuF9WpoitqWhibE65dQk1aZnTtJJFlRnLStuyfe6LnQP-9DA7XIFvfS5M4IcYNtzQM9rxGh38qKy2T0lDfZ0wkxw3NZNMdmGVe-7TiV-0zR_tjn0PP2BsOnk92qGdrgC1qUwllYILHhtWefuzOuFOC53qWORWW6P9iikxecyszYx2hRUSUUkeGz9xi8xIiVugftA_x0VcoFjE-OUpYZU35yBezyVF0teeJjJm28vlXZ4Gf8O2y1C5neuma_C9b6UQ4vJ-a9GYLfv5FwLJ_6kZL8OlDniTx8FTrsCKq6_ChVGvd3cNJk_eYazU_MeXr2Pvlh9dSUb62Mxq8lw3wU-JR_hkEoSDbMe0QCZt9iR51Xhneuuuw8GZ1OIGrNaz2t0CgkfSzJmMuaTiuvSLxSTTrBJFLoyWhY6A9n2ubMfAjkIgH1TgjmYKi66Gzojg4fD-UeAe-eObm70JqW4MmqsU1QU46vdEcG947BsVj4R07WaLuWKFx2se4mVJBDeD6Q2_SnPMVZRFBKw1oL-UQSGHx3C1_i8f3YXzL8ZT9Wx3f28DLvrbbYwUY5uw2hwv3G0P_xpzp_U4Am_O2jZ_AihdXJs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Carbon+Materials+for+Electrochemical+Energy+Storage&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Yu%E2%80%90Lin+Bai&rft.au=Chen%E2%80%90Chen+Zhang&rft.au=Feng+Rong&rft.au=Zhao%E2%80%90Xia+Guo&rft.date=2024-04-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=23&rft_id=info:doi/10.1002%2Fchem.202304157&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon