Biomass‐Derived Carbon Materials for Electrochemical Energy Storage
The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as us...
Saved in:
Published in | Chemistry : a European journal Vol. 30; no. 23; pp. e202304157 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked.
The design and preparation of biomass‐derived porous carbon materials in recent five years was summarized. These carbon materials were briefly catalogized into two types, plant‐derived and animal‐derived carbon materials. Heteroatoms doping was illustrated with an emphasis on single‐element doping and multi‐element doping, respectively. The advantages of these porous carbon materials applicated in electrochemical energy storage devices, such as LIBs, SIBs, PIBs, and SCs were reviewed. The remaining challenges and prospects in the field were outlined. |
---|---|
AbstractList | The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked.The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked. The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked. The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high‐specific surface area, variable porous framework, and controllable heteroatom‐doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal‐derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium‐sulfur batteries. The challenges and prospects for the controllable synthesis and large‐scale application of biomass‐derived carbonaceous materials have also been outlooked. The design and preparation of biomass‐derived porous carbon materials in recent five years was summarized. These carbon materials were briefly catalogized into two types, plant‐derived and animal‐derived carbon materials. Heteroatoms doping was illustrated with an emphasis on single‐element doping and multi‐element doping, respectively. The advantages of these porous carbon materials applicated in electrochemical energy storage devices, such as LIBs, SIBs, PIBs, and SCs were reviewed. The remaining challenges and prospects in the field were outlined. |
Author | Bai, Yu‐Lin Wang, Kai‐Xue Rong, Feng Zhang, Chen‐Chen Guo, Zhao‐Xia |
Author_xml | – sequence: 1 givenname: Yu‐Lin surname: Bai fullname: Bai, Yu‐Lin organization: Taiyuan University of Technology – sequence: 2 givenname: Chen‐Chen surname: Zhang fullname: Zhang, Chen‐Chen organization: Taiyuan University of Technology – sequence: 3 givenname: Feng surname: Rong fullname: Rong, Feng organization: Taiyuan University of Technology – sequence: 4 givenname: Zhao‐Xia surname: Guo fullname: Guo, Zhao‐Xia organization: Taiyuan University of Technology – sequence: 5 givenname: Kai‐Xue orcidid: 0000-0002-2076-5487 surname: Wang fullname: Wang, Kai‐Xue email: k.wang@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38270279$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9KxDAQh4Mourt69SgFL1665k-TtEet1RVWPKjnMI1ZjbSNJl1lbz6Cz-iT2LLrCoJ4Ghi-b2b4zRBtNq4xCO0TPCYY02P9aOoxxZThhHC5gQaEUxIzKfgmGuAskbHgLNtBwxCeMMaZYGwb7bCUSkxlNkDFqXU1hPD5_nFmvH0191EOvnRNdAVt14AqRDPno6IyuvWuX2c1VFHRGP-wiG5a5-HB7KKtWUeavVUdobvz4jafxNPri8v8ZBprJpmMpUhEgks644xoIIkBAQywSDXoEihPSJliqjUvwWRaSJxykuIyk0LwUkrGRuhoOffZu5e5Ca2qbdCmqqAxbh4UzUin0ISTDj38hT65uW-661SXFRM90w88WFHzsjb36tnbGvxCfQfUAeMloL0LwZvZGiFY9R9QfSRq_YFOSH4J2rbQWte0Hmz1t5YttTdbmcU_S1Q-Ka5-3C87KJlp |
CitedBy_id | crossref_primary_10_1007_s11356_024_33437_0 crossref_primary_10_1007_s11581_024_06048_5 crossref_primary_10_1039_D4NJ03624G crossref_primary_10_3389_fenrg_2024_1394318 crossref_primary_10_1080_10408347_2024_2401504 crossref_primary_10_1016_j_cej_2024_157861 crossref_primary_10_1039_D5GC00368G crossref_primary_10_1016_j_ijbiomac_2024_134374 crossref_primary_10_1039_D3GC04332K crossref_primary_10_1007_s42773_024_00399_y crossref_primary_10_1002_tcr_202400144 crossref_primary_10_1039_D4SE01393J crossref_primary_10_1021_acssusresmgt_4c00121 crossref_primary_10_1021_acs_energyfuels_4c03971 crossref_primary_10_1021_acssusresmgt_4c00359 |
Cites_doi | 10.1016/j.mtnano.2023.100321 10.1016/j.jpowsour.2019.227572 10.1002/adma.201802310 10.1016/j.indcrop.2023.117338 10.1016/j.ensm.2021.03.030 10.1016/j.jallcom.2023.171922 10.1016/j.diamond.2023.110381 10.1002/smll.202107819 10.1002/adma.201605336 10.1039/C6RA15705J 10.1016/j.jcis.2023.02.024 10.1016/j.est.2023.106954 10.1039/C5EE03149D 10.1039/C8RA00016F 10.1039/c2jm34066f 10.1016/j.ccr.2021.214147 10.1016/j.diamond.2022.109593 10.1002/adfm.201905095 10.1021/acssuschemeng.1c01851 10.1016/S1872-5805(23)60726-7 10.1002/adma.202002976 10.1016/j.cej.2022.140540 10.1016/j.diamond.2023.109852 10.1007/s42773-022-00176-9 10.1021/acsami.7b12776 10.1039/C9TA08498C 10.1016/j.jcis.2021.08.005 10.1007/s11664-023-10512-9 10.1016/j.ensm.2022.09.031 10.1016/j.jallcom.2022.167820 10.1038/s41467-023-42794-2 10.1007/s40242-022-2030-0 10.1002/smll.201600412 10.1016/j.jssc.2018.08.041 10.1039/c3ta10650k 10.1016/j.apsusc.2023.158137 10.1016/j.jechem.2018.01.013 10.1021/acsomega.0c06171 10.1016/j.apsusc.2019.04.081 10.1021/acsami.6b07989 10.1021/acsnano.2c03955 10.1039/C8TA06040A 10.1557/s43581-022-00025-z 10.1016/j.cej.2021.129754 10.1039/D2TA05119B 10.1007/s11664-022-10197-6 10.1002/adfm.201707520 10.1007/s10854-020-03632-z 10.1002/adma.201802074 10.1021/acsomega.3c00816 10.1016/j.ceramint.2019.12.227 10.1016/j.nanoen.2018.03.016 10.1016/j.jpowsour.2022.232517 10.1021/acs.energyfuels.0c04042 10.1039/D1TA03501K 10.1039/D3TA03215A 10.1021/acsami.8b14304 10.1016/j.nantod.2022.101408 10.1002/cssc.202202393 10.1039/C9TA06964J 10.1016/j.diamond.2022.108931 10.1016/j.carbon.2018.08.036 10.1016/j.jallcom.2023.171347 10.1039/C9NR06245A 10.1016/j.vacuum.2023.112374 10.1021/acsami.8b21213 10.1002/ente.202300590 10.1002/aenm.201700530 10.1080/01932691.2021.1880930 10.1016/j.jpowsour.2016.01.026 10.1016/j.nanoen.2017.12.042 10.1016/j.carbon.2021.05.021 10.1002/smll.201804786 10.1039/D0RA05870J 10.1016/j.jelechem.2021.115668 10.1016/j.carbon.2020.06.063 10.1039/D3TA04486F 10.1016/j.est.2023.108214 10.1016/j.ssi.2021.115548 10.1016/j.electacta.2023.142269 10.1016/S1872-5805(23)60710-3 10.1016/j.diamond.2022.109507 10.1088/2053-1591/ab1bf9 10.3390/mi14051003 10.1002/adma.201704244 10.1016/j.jechem.2018.01.015 10.1021/cr5006217 10.1039/D1NJ02970C 10.1039/D1TA02181H 10.1016/j.matlet.2022.132526 10.1016/j.jtice.2021.02.021 10.1002/cssc.202200231 10.1007/s10934-023-01454-y 10.1016/j.renene.2021.08.008 10.1016/j.energy.2021.121102 10.3390/molecules28124633 10.1016/j.jallcom.2022.164707 10.1016/j.cclet.2019.10.009 10.1016/j.jcis.2020.11.084 10.1021/acssuschemeng.0c01949 10.1002/smll.202107252 10.3390/polym14204261 10.1016/j.est.2023.108878 10.1016/j.cej.2016.12.081 10.1016/j.carbon.2020.07.007 10.1002/adma.202108621 10.1007/s13399-022-03295-2 10.1021/acsomega.2c04369 10.1002/celc.202101151 10.3390/ma16062332 10.1016/j.powtec.2018.11.100 10.1002/anie.201605510 10.1021/acsanm.2c05420 10.1002/aenm.201702179 10.1016/j.jpowsour.2018.01.057 10.1021/acsaem.9b02077 10.1021/acsami.1c00115 10.1016/j.jallcom.2021.162129 10.1016/j.renene.2020.03.153 10.1039/C9GC01910C 10.1016/j.cclet.2022.04.063 10.1039/D0TA01281E 10.1016/j.jpowsour.2020.228500 10.1016/j.nantod.2018.12.004 10.1039/D1TA02741G 10.1039/D2NR05001C 10.1016/j.apt.2023.104221 10.1016/j.ssi.2020.115223 10.1021/cr900354u 10.1007/s10311-021-01221-y 10.1039/D2QI02483G 10.1016/j.est.2023.107627 10.1016/j.jallcom.2020.153692 10.1016/j.electacta.2015.11.108 10.1016/j.jallcom.2020.158078 10.1007/s10934-019-00720-2 10.1016/j.jsamd.2023.100586 10.1016/j.cej.2021.133683 10.1016/j.diamond.2022.109451 10.1016/j.materresbull.2021.111282 10.1002/cssc.201000087 10.3390/molecules25184050 10.1039/D0RA07029G 10.1039/C9NR02277E 10.1016/j.jelechem.2020.113922 10.1016/j.electacta.2022.140573 10.1007/s40242-021-1386-x 10.3390/ma16134577 10.1016/j.jechem.2021.04.009 10.1016/j.jpowsour.2021.230886 10.1016/j.matdes.2019.108287 10.1007/s40242-023-3196-9 10.1007/s42823-023-00483-6 10.1021/acs.chemmater.8b03463 10.1021/acs.jpcc.5b10222 10.1039/C6EE02364A 10.1021/acs.chemrev.9b00463 10.1016/j.renene.2021.05.006 10.1039/D2RA03205H 10.1016/j.matlet.2021.129459 10.1039/C6TA01821A 10.1016/j.ijhydene.2021.02.131 10.1002/aenm.201700283 10.1016/j.jaap.2021.105215 10.1002/smll.202203947 10.1002/anie.201801654 10.1016/j.diamond.2021.108728 10.1007/s12274-021-3581-y 10.1002/sus2.8 10.1016/j.diamond.2021.108626 10.1016/j.diamond.2022.109514 10.1016/j.ijhydene.2019.06.107 10.1021/acsaem.2c04102 10.1039/C7TA00863E 10.1016/j.cej.2022.137561 10.1016/j.jechem.2020.07.002 10.1016/j.jelechem.2022.116769 10.1016/j.jallcom.2017.05.062 10.1039/C5TA08620E 10.1038/s41598-020-71649-9 10.1016/j.jechem.2020.03.073 10.1016/j.jpowsour.2020.228415 10.1016/j.fuproc.2020.106677 10.1021/acs.energyfuels.2c00157 10.1007/s11581-023-04891-6 10.1016/j.carbpol.2020.117107 10.1002/smll.202203545 10.3390/nano13172431 10.1016/j.carbon.2021.03.022 10.1007/s12274-021-3328-9 10.1007/s41918-021-00120-8 10.1016/j.carbon.2018.10.034 10.1039/C9SE00072K 10.1002/smll.202105825 10.1002/adma.202204403 10.1016/j.biortech.2005.01.010 10.1016/j.diamond.2022.109407 10.1021/acs.jpcc.3c02850 10.1016/j.est.2023.106900 10.1039/D3TA01344H 10.1016/j.jpowsour.2022.231019 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202304157 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 38270279 10_1002_chem_202304157 CHEM202304157 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22105142 – fundername: Fundamental Research Program of Shanxi Province funderid: 20210302124332 – fundername: Fundamental Research Program of Shanxi Province grantid: 20210302124332 – fundername: National Natural Science Foundation of China grantid: 22105142 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX ACUHS AEYWJ AGHNM AGYGG CITATION EBD NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3737-764640b2f531ca14ea6a3a068cacba2541b802cc5bae9c67085180b97665b7733 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 07:39:17 EDT 2025 Fri Jul 25 09:39:55 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Tue Jul 01 05:08:52 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Wed Jan 22 17:18:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | biomass heteroatom doping electrode material energy storage carbon |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-764640b2f531ca14ea6a3a068cacba2541b802cc5bae9c67085180b97665b7733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2076-5487 |
PMID | 38270279 |
PQID | 3043645133 |
PQPubID | 986340 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2918512451 proquest_journals_3043645133 pubmed_primary_38270279 crossref_primary_10_1002_chem_202304157 crossref_citationtrail_10_1002_chem_202304157 wiley_primary_10_1002_chem_202304157_CHEM202304157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 22, 2024 |
PublicationDateYYYYMMDD | 2024-04-22 |
PublicationDate_xml | – month: 04 year: 2024 text: April 22, 2024 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 73 2017; 716 2013; 1 2016; 307 2019; 11 2019; 15 2021; 448 2020; 448 2020; 168 2020; 10 2018; 45 2017; 313 2018; 47 2018; 6 2023; 62 2018; 8 2023; 67 2023; 450 2021; 157 2019; 21 2019; 24 2019; 26 2010; 110 2022; 34 2023; 215 2022; 36 2019; 29 2023; 455 2018; 30 2022; 608 2022; 606 2010; 3 2022; 449 2012; 22 2023; 71 2022; 38 2022; 322 2019; 7 2021; 46 2023; 52 2018; 28 2021; 43 2019; 3 2021; 45 2019; 6 2019; 30 2021; 420 2019; 35 2023; 204 2019; 344 2023; 968 2023; 965 2020; 32 2018; 27 2016; 12 2016; 4 2016; 6 2021; 55 2020; 31 2015; 115 2022; 4 2019; 44 2021; 139 2022; 7 2022; 9 2021; 899 2022; 12 2005; 96 2022; 909 2022; 14 2022; 15 2020; 25 2020; 832 2020; 155 2021; 251 2022; 10 2023; 558 2018; 10 2021; 62 2022; 16 2016; 9 2022; 18 2022; 892 2017; 5 2017; 7 2023; 30 2022; 130 2023; 33 2023; 34 2023; 39 2023; 6 2020; 120 2023; 38 2023; 8 2016; 187 2021; 120 2021; 361 2017; 9 2019; 484 2020; 8 2021; 35 2021; 38 2022; 121 2020; 3 2023; 22 2023; 28 2023; 131 2023; 29 2020; 51 2023; 135 2023; 139 2020; 46 2023; 934 2021; 231 2022; 526 2022; 923 2022; 129 2022; 520 2022; 124 2021; 9 2021; 8 2023; 10 2021; 6 2023; 13 2018; 380 2023; 14 2021; 4 2023; 11 2018; 140 2021; 585 2023; 15 2021; 863 2020; 186 2023; 16 2018; 268 2020; 346 2021; 181 2023; 127 2020; 469 2017; 29 2022; 43 2020; 861 2021; 1 2019; 141 2016; 120 2016; 55 2022; 433 2021; 14 2021; 13 2021; 15 2023 2021; 179 2022 2021; 178 2021; 213 2021; 18 2021; 19 2021; 175 2023; 638 2022; 53 2020; 474 2022; 424 2021; 290 2018; 57 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_2 e_1_2_10_158_2 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_2 e_1_2_10_173_2 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_147_2 Bai Y.-L. (e_1_2_10_142_2) 2019; 35 e_1_2_10_219_2 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_162_2 e_1_2_10_185_2 e_1_2_10_48_1 e_1_2_10_25_2 e_1_2_10_101_1 e_1_2_10_41_1 e_1_2_10_211_2 e_1_2_10_90_1 e_1_2_10_159_2 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_136_2 e_1_2_10_15_2 e_1_2_10_113_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_197_2 e_1_2_10_7_1 e_1_2_10_174_2 e_1_2_10_200_1 e_1_2_10_223_1 e_1_2_10_148_2 e_1_2_10_64_1 e_1_2_10_26_2 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_140_2 e_1_2_10_186_2 e_1_2_10_163_2 e_1_2_10_42_1 e_1_2_10_212_1 e_1_2_10_198_2 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_137_2 e_1_2_10_190_2 e_1_2_10_53_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_16_2 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_175_2 e_1_2_10_30_2 e_1_2_10_224_2 e_1_2_10_201_2 e_1_2_10_80_1 Song Y. (e_1_2_10_214_1) 2022; 608 e_1_2_10_149_2 e_1_2_10_126_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_27_2 e_1_2_10_103_1 e_1_2_10_187_1 e_1_2_10_141_2 e_1_2_10_164_2 e_1_2_10_20_2 e_1_2_10_43_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_199_2 e_1_2_10_92_1 e_1_2_10_17_2 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_2 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_2 e_1_2_10_202_2 e_1_2_10_225_2 e_1_2_10_165_2 e_1_2_10_188_2 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_2 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_177_2 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_2 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_2 e_1_2_10_203_2 e_1_2_10_226_2 e_1_2_10_120_2 e_1_2_10_143_2 e_1_2_10_166_2 e_1_2_10_189_2 e_1_2_10_82_1 e_1_2_10_181_2 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_215_1 e_1_2_10_155_2 e_1_2_10_178_2 e_1_2_10_71_1 e_1_2_10_19_2 e_1_2_10_117_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_170_2 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_132_2 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_2 e_1_2_10_227_2 e_1_2_10_144_2 e_1_2_10_167_2 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_182_2 e_1_2_10_68_1 e_1_2_10_121_2 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_216_2 e_1_2_10_110_1 e_1_2_10_156_2 e_1_2_10_179_2 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_133_2 e_1_2_10_194_2 e_1_2_10_35_2 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_228_1 e_1_2_10_205_2 e_1_2_10_220_2 e_1_2_10_145_2 e_1_2_10_168_1 e_1_2_10_217_2 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_160_1 e_1_2_10_183_2 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_157_2 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_36_2 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_2 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_221_2 e_1_2_10_146_1 e_1_2_10_169_2 e_1_2_10_218_1 e_1_2_10_62_1 Xia W. (e_1_2_10_124_1) 2023 e_1_2_10_85_1 e_1_2_10_161_2 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 168 start-page: 419 year: 2020 end-page: 438 publication-title: Carbon – volume: 157 year: 2021 publication-title: J. Anal. Appl. Pyrolysis – volume: 526 year: 2022 publication-title: J. Power Sources – volume: 62 start-page: 497 year: 2021 end-page: 504 publication-title: J. Energy Chem. – volume: 18 year: 2022 publication-title: Small – volume: 168 start-page: 701 year: 2020 end-page: 709 publication-title: Carbon – volume: 52 start-page: 5680 year: 2023 end-page: 5689 publication-title: J. Electron. Mater. – volume: 57 start-page: 8865 year: 2018 end-page: 8870 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 22250 year: 2019 end-page: 22262 publication-title: Int. J. Hydrogen Energy – year: 2022 publication-title: Biomass Convers. Bio. – volume: 638 start-page: 695 year: 2023 end-page: 708 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 1585 year: 2020 end-page: 1592 publication-title: ACS Appl. Energ. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 10811 year: 2020 end-page: 10818 publication-title: J. Mater. Sci. Mater. Electron. – volume: 141 start-page: 748 year: 2019 end-page: 757 publication-title: Carbon – volume: 10 start-page: 14631 year: 2020 publication-title: Sci. Rep. – volume: 215 year: 2023 publication-title: Vacuum – volume: 1 start-page: 211 year: 2021 end-page: 240 publication-title: SusMat – volume: 16 year: 2023 publication-title: ChemSusChem – volume: 96 start-page: 1959 year: 2005 end-page: 1966 publication-title: Bioresour. Technol. – volume: 24 start-page: 103 year: 2019 end-page: 119 publication-title: Nano Today – volume: 14 start-page: 4261 year: 2022 publication-title: Polymer – volume: 73 year: 2023 publication-title: J. Energy Storage – volume: 186 year: 2020 publication-title: Mater. Des. – volume: 30 start-page: 8426 year: 2018 end-page: 8430 publication-title: Chem. Mater. – volume: 520 year: 2022 publication-title: J. Power Sources – volume: 899 year: 2021 publication-title: J. Electroanal. Chem. – volume: 47 start-page: 547 year: 2018 end-page: 555 publication-title: Nano Energy – volume: 861 year: 2020 publication-title: J. Electroanal. Chem. – volume: 35 start-page: 2045 year: 2019 end-page: 2050 publication-title: Chinese J. Inorg. Chem. – volume: 31 start-page: 217 year: 2020 end-page: 222 publication-title: Chin. Chem. Lett. – volume: 67 year: 2023 publication-title: J. Energy Storage – volume: 346 year: 2020 publication-title: Solid State Ionics – volume: 7 start-page: 37564 year: 2022 end-page: 37571 publication-title: ACS Omega – volume: 187 start-page: 508 year: 2016 end-page: 516 publication-title: Electrochim. Acta – volume: 4 start-page: 1144 year: 2016 end-page: 1173 publication-title: J. Mater. Chem. A – volume: 450 year: 2023 publication-title: Electrochim. Acta – volume: 124 year: 2022 publication-title: Diamond Relat. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 43 start-page: 1872 year: 2021 end-page: 1879 publication-title: J. Dispersion Sci. Technol. – volume: 8 start-page: 8469 year: 2020 end-page: 8475 publication-title: J. Mater. Chem. A – volume: 484 start-page: 726 year: 2019 end-page: 731 publication-title: Appl. Surf. Sci. – volume: 131 year: 2023 publication-title: Diamond Relat. Mater. – volume: 11 start-page: 17860 year: 2019 end-page: 17868 publication-title: Nanoscale – volume: 380 start-page: 12 year: 2018 end-page: 17 publication-title: J. Power Sources – volume: 34 year: 2023 publication-title: Adv. Powder Technol. – volume: 6 start-page: 3020 year: 2023 end-page: 3026 publication-title: ACS Appl. Nano Mater. – volume: 179 start-page: 1826 year: 2021 end-page: 1835 publication-title: Renewable Energy – volume: 968 year: 2023 publication-title: J. Alloys Compd. – volume: 155 start-page: 309 year: 2020 end-page: 316 publication-title: Renewable Energy – volume: 10 start-page: 38524 year: 2020 end-page: 38531 publication-title: RSC Adv. – volume: 8 start-page: 18782 year: 2023 end-page: 18798 publication-title: ACS Omega – volume: 213 year: 2021 publication-title: Fuel Process. Technol. – volume: 21 start-page: 5274 year: 2019 end-page: 5283 publication-title: Green Chem. – volume: 11 start-page: 12626 year: 2019 end-page: 12636 publication-title: Nanoscale – volume: 11 year: 2023 publication-title: Energy Technol. – volume: 38 start-page: 1 year: 2023 end-page: 15 publication-title: New. Carbon. Mater. – volume: 9 start-page: 8813 year: 2021 end-page: 8823 publication-title: ACS Sustainable Chem. Eng. – year: 2023 publication-title: Carbon Lett. – volume: 10 start-page: 1187 year: 2023 end-page: 1196 publication-title: Inorg. Chem. Front. – volume: 231 year: 2021 publication-title: Energy – volume: 39 start-page: 1100 year: 2023 end-page: 1105 publication-title: Chem. Res. Chin. Univ. – volume: 25 start-page: 4050 year: 2020 publication-title: Molecules – volume: 28 start-page: 4633 year: 2023 publication-title: Molecules – volume: 268 start-page: 149 year: 2018 end-page: 158 publication-title: J. Solid State Chem. – volume: 45 start-page: 220 year: 2018 end-page: 228 publication-title: Nano Energy – volume: 8 year: 2023 publication-title: J. Sci. Adv. Mater. Devices – volume: 448 year: 2020 publication-title: J. Power Sources – volume: 11 start-page: 20011 year: 2023 end-page: 20020 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 698 year: 2010 end-page: 701 publication-title: ChemSusChem – volume: 11 start-page: 16626 year: 2023 end-page: 16635 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1003 year: 2023 publication-title: Micromachines – volume: 361 year: 2021 publication-title: Solid State Ionics – volume: 307 start-page: 649 year: 2016 end-page: 656 publication-title: J. Power Sources – volume: 130 year: 2022 publication-title: Diamond Relat. Mater. – volume: 6 year: 2019 publication-title: Mater. Res. Express – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 42699 year: 2017 end-page: 42707 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 7615 year: 2021 end-page: 7625 publication-title: ACS Omega – volume: 11 start-page: 12415 year: 2019 end-page: 12420 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1675 year: 2023 end-page: 1685 publication-title: J. Porous Mater. – volume: 14 start-page: 6994 year: 2023 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 9 start-page: 3061 year: 2016 end-page: 3070 publication-title: Energy Environ. Sci. – volume: 129 year: 2022 publication-title: Diamond Relat. Mater. – volume: 344 start-page: 89 year: 2019 end-page: 95 publication-title: Powder Technol. – volume: 10 start-page: 17185 year: 2022 end-page: 17198 publication-title: J. Mater. Chem. A – volume: 290 year: 2021 publication-title: Mater. Lett. – volume: 27 start-page: 1390 year: 2018 end-page: 1396 publication-title: J. Energy Chem. – volume: 9 start-page: 18927 year: 2021 end-page: 18946 publication-title: J. Mater. Chem. A – volume: 51 start-page: 293 year: 2020 end-page: 302 publication-title: J. Energy Chem. – volume: 36 start-page: 4026 year: 2022 end-page: 4033 publication-title: Energy Fuels – volume: 115 start-page: 5159 year: 2015 end-page: 5223 publication-title: Chem. Rev. – volume: 863 year: 2021 publication-title: J. Alloys Compd. – volume: 638 year: 2023 publication-title: Appl. Surf. Sci. – volume: 716 start-page: 210 year: 2017 end-page: 219 publication-title: J. Alloys Compd. – volume: 832 year: 2020 publication-title: J. Alloys Compd. – volume: 424 year: 2022 publication-title: Electrochim. Acta – volume: 9 start-page: 102 year: 2016 end-page: 106 publication-title: Energy Environ. Sci. – volume: 38 start-page: 147 year: 2021 end-page: 154 publication-title: Chem. Res. Chin. Univ. – volume: 120 start-page: 246 year: 2021 end-page: 256 publication-title: J. Taiwan Inst. of Chem. Eng. – volume: 6 start-page: 17473 year: 2018 end-page: 17480 publication-title: J. Mater. Chem. A – volume: 13 start-page: 8497 year: 2021 end-page: 8506 publication-title: ACS Appl. Mater. Interfaces – volume: 608 start-page: 963 year: 2022 end-page: 972 publication-title: J. Alloys Compd. – volume: 909 year: 2022 publication-title: J. Alloys Compd. – volume: 8 start-page: 3745 year: 2021 end-page: 3754 publication-title: ChemElectroChem – volume: 10 start-page: 30756 year: 2020 end-page: 30766 publication-title: RSC Adv. – volume: 22 start-page: 23710 year: 2012 end-page: 23725 publication-title: J. Mater. Chem. – volume: 135 year: 2023 publication-title: Diamond Relat. Mater. – volume: 19 start-page: 3505 year: 2021 end-page: 3510 publication-title: Environ. Chem. Lett. – volume: 120 start-page: 6358 year: 2020 end-page: 6466 publication-title: Chem. Rev. – volume: 110 start-page: 3552 year: 2010 end-page: 3599 publication-title: Chem. Rev. – volume: 15 start-page: 204 year: 2023 end-page: 214 publication-title: Nanoscale – volume: 175 start-page: 760 year: 2021 end-page: 769 publication-title: Renewable Energy – volume: 12 start-page: 3235 year: 2016 end-page: 3244 publication-title: Small – volume: 8 start-page: 1702179 year: 2018 end-page: 1702219 publication-title: Adv. Energy Mater. – volume: 16 start-page: 2332 year: 2023 publication-title: Materials – volume: 313 start-page: 404 year: 2017 end-page: 414 publication-title: Chem. Eng. J. – volume: 62 year: 2023 publication-title: J. Energy Storage – volume: 139 year: 2021 publication-title: Mater. Res. Bull. – volume: 71 year: 2023 publication-title: J. Energy Storage – volume: 204 year: 2023 publication-title: Ind. Crops Prod. – volume: 9 start-page: 11530 year: 2021 end-page: 11536 publication-title: J. Mater. Chem. A – volume: 12 start-page: 20305 year: 2022 end-page: 20318 publication-title: RSC Adv. – volume: 45 start-page: 15514 year: 2021 end-page: 15524 publication-title: New J. Chem. – volume: 4 start-page: 5973 year: 2016 end-page: 5983 publication-title: J. Mater. Chem. A – volume: 8 start-page: 11522 year: 2020 end-page: 11531 publication-title: ACS Sustainable Chem. Eng. – volume: 8 start-page: 7072 year: 2018 end-page: 7079 publication-title: RSC Adv. – volume: 7 start-page: 21711 year: 2019 end-page: 21721 publication-title: J. Mater. Chem. A – volume: 4 start-page: 50 year: 2022 publication-title: Biochar – volume: 10 start-page: 38376 year: 2018 end-page: 38386 publication-title: ACS Appl. Mater. Interfaces – volume: 38 start-page: 528 year: 2021 end-page: 534 publication-title: Energy Storage Mater. – volume: 38 start-page: 543 year: 2023 end-page: 552 publication-title: New. Carbon. Mater. – volume: 4 start-page: 793 year: 2021 end-page: 823 publication-title: Electrochem. Energy Rev. – volume: 127 start-page: 15719 year: 2023 end-page: 15729 publication-title: J. Phys. Chem. C – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 53 start-page: 482 year: 2022 end-page: 491 publication-title: Energy Storage Mater. – volume: 29 start-page: 1029 year: 2023 end-page: 1038 publication-title: Ionics – volume: 33 start-page: 1265 year: 2023 end-page: 1278 publication-title: Carbon Lett. – volume: 16 start-page: 12511 year: 2022 end-page: 12519 publication-title: ACS Nano – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 9 start-page: 4404 year: 2016 end-page: 4419 publication-title: ACS Appl. Mater. Interfaces – volume: 934 year: 2023 publication-title: J. Alloys Compd. – volume: 1 start-page: 5269 year: 2013 publication-title: J. Mater. Chem. A – volume: 140 start-page: 664 year: 2018 end-page: 672 publication-title: Carbon – volume: 30 start-page: 121 year: 2019 end-page: 131 publication-title: J. Energy Chem. – volume: 52 start-page: 1717 year: 2023 end-page: 1729 publication-title: J. Electron. Mater. – volume: 469 year: 2020 publication-title: J. Power Sources – volume: 606 start-page: 577 year: 2022 end-page: 587 publication-title: J. Colloid Interface Sci. – volume: 923 year: 2022 publication-title: J. Electroanal. Chem. – volume: 892 year: 2022 publication-title: J. Alloys Compd. – volume: 22 year: 2023 publication-title: Mater. Today Nano – volume: 120 start-page: 2984 year: 2016 end-page: 2992 publication-title: J. Phys. Chem. C – volume: 455 year: 2023 publication-title: Chem. Eng. J. – volume: 43 year: 2022 publication-title: Nano Today – volume: 46 start-page: 17267 year: 2021 end-page: 17281 publication-title: Int. J. Hydrogen Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 16 start-page: 4577 year: 2023 publication-title: Materials – volume: 14 start-page: 4014 year: 2021 end-page: 4024 publication-title: Nano Res. – volume: 55 start-page: 34 year: 2021 end-page: 47 publication-title: J. Energy Chem. – volume: 3 start-page: 1215 year: 2019 end-page: 1224 publication-title: Sustain. Energy Fuels – volume: 38 start-page: 677 year: 2022 end-page: 687 publication-title: Chem. Res. Chin. Univ. – volume: 965 year: 2023 publication-title: J. Alloys Compd. – volume: 46 start-page: 9614 year: 2020 end-page: 9621 publication-title: Ceram. Int. – volume: 474 year: 2020 publication-title: J. Power Sources – volume: 121 year: 2022 publication-title: Diamond Relat. Mater. – volume: 5 start-page: 12653 year: 2017 end-page: 12672 publication-title: J. Mater. Chem. A – volume: 120 year: 2021 publication-title: Diamond Relat. Mater. – volume: 9 start-page: 313 year: 2022 end-page: 323 publication-title: MRS Energy Sustainability – volume: 139 year: 2023 publication-title: Diamond Relat. Mater. – volume: 6 start-page: 2680 year: 2023 end-page: 2686 publication-title: ACS Appl. Energ. Mater. – volume: 15 start-page: 959 year: 2021 end-page: 964 publication-title: Nano Res. – volume: 55 start-page: 14623 year: 2016 end-page: 14627 publication-title: Angew. Chem. Int. Ed. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 7 start-page: 24524 year: 2019 end-page: 24531 publication-title: J. Mater. Chem. A – volume: 449 year: 2022 publication-title: Chem. Eng. J. – volume: 35 start-page: 1557 year: 2021 end-page: 1566 publication-title: Energy Fuels – volume: 322 year: 2022 publication-title: Mater. Lett. – volume: 448 year: 2021 publication-title: Coord. Chem. Rev. – volume: 11 start-page: 11254 year: 2023 end-page: 11263 publication-title: J. Mater. Chem. A – volume: 178 start-page: 233 year: 2021 end-page: 242 publication-title: Carbon – volume: 18 year: 2021 publication-title: Small – volume: 6 start-page: 78909 year: 2016 end-page: 78917 publication-title: RSC Adv. – volume: 9 start-page: 16565 year: 2021 end-page: 16574 publication-title: J. Mater. Chem. A – volume: 181 start-page: 1 year: 2021 end-page: 8 publication-title: Carbon – volume: 13 start-page: 2431 year: 2023 publication-title: Nanomaterials – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 26 start-page: 1325 year: 2019 end-page: 1333 publication-title: J. Porous Mater. – volume: 585 start-page: 43 year: 2021 end-page: 50 publication-title: J. Colloid Interface Sci. – volume: 251 year: 2021 publication-title: Carbohydr. Polym. – volume: 558 year: 2023 publication-title: J. Power Sources – volume: 15 year: 2022 publication-title: ChemSusChem – ident: e_1_2_10_139_2 doi: 10.1016/j.mtnano.2023.100321 – ident: e_1_2_10_66_1 doi: 10.1016/j.jpowsour.2019.227572 – ident: e_1_2_10_180_2 doi: 10.1002/adma.201802310 – ident: e_1_2_10_30_2 doi: 10.1016/j.indcrop.2023.117338 – ident: e_1_2_10_220_2 doi: 10.1016/j.ensm.2021.03.030 – ident: e_1_2_10_32_2 doi: 10.1016/j.jallcom.2023.171922 – ident: e_1_2_10_79_1 doi: 10.1016/j.diamond.2023.110381 – ident: e_1_2_10_181_2 doi: 10.1002/smll.202107819 – ident: e_1_2_10_217_2 doi: 10.1002/adma.201605336 – ident: e_1_2_10_35_2 doi: 10.1039/C6RA15705J – ident: e_1_2_10_95_1 doi: 10.1016/j.jcis.2023.02.024 – ident: e_1_2_10_228_1 doi: 10.1016/j.est.2023.106954 – ident: e_1_2_10_119_1 – ident: e_1_2_10_150_1 doi: 10.1039/C5EE03149D – ident: e_1_2_10_196_1 – ident: e_1_2_10_87_1 doi: 10.1039/C8RA00016F – ident: e_1_2_10_33_1 doi: 10.1039/c2jm34066f – ident: e_1_2_10_144_2 doi: 10.1016/j.ccr.2021.214147 – ident: e_1_2_10_50_1 doi: 10.1016/j.diamond.2022.109593 – ident: e_1_2_10_223_1 – ident: e_1_2_10_22_1 doi: 10.1002/adfm.201905095 – ident: e_1_2_10_184_1 – ident: e_1_2_10_3_1 doi: 10.1021/acssuschemeng.1c01851 – ident: e_1_2_10_68_1 doi: 10.1016/S1872-5805(23)60726-7 – ident: e_1_2_10_222_1 doi: 10.1002/adma.202002976 – ident: e_1_2_10_162_2 doi: 10.1016/j.cej.2022.140540 – ident: e_1_2_10_218_1 – ident: e_1_2_10_7_1 doi: 10.1016/j.diamond.2023.109852 – ident: e_1_2_10_59_1 doi: 10.1007/s42773-022-00176-9 – ident: e_1_2_10_224_2 doi: 10.1021/acsami.7b12776 – ident: e_1_2_10_201_2 doi: 10.1039/C9TA08498C – ident: e_1_2_10_40_1 doi: 10.1016/j.jcis.2021.08.005 – ident: e_1_2_10_49_1 doi: 10.1007/s11664-023-10512-9 – ident: e_1_2_10_186_2 doi: 10.1016/j.ensm.2022.09.031 – ident: e_1_2_10_54_1 doi: 10.1016/j.jallcom.2022.167820 – ident: e_1_2_10_16_2 doi: 10.1038/s41467-023-42794-2 – ident: e_1_2_10_133_2 doi: 10.1007/s40242-022-2030-0 – ident: e_1_2_10_146_1 – ident: e_1_2_10_226_2 doi: 10.1002/smll.201600412 – ident: e_1_2_10_114_1 doi: 10.1016/j.jssc.2018.08.041 – ident: e_1_2_10_147_2 doi: 10.1039/c3ta10650k – ident: e_1_2_10_24_1 – ident: e_1_2_10_129_1 doi: 10.1016/j.apsusc.2023.158137 – ident: e_1_2_10_134_1 – ident: e_1_2_10_221_2 doi: 10.1016/j.jechem.2018.01.013 – ident: e_1_2_10_71_1 doi: 10.1021/acsomega.0c06171 – ident: e_1_2_10_143_2 doi: 10.1016/j.apsusc.2019.04.081 – ident: e_1_2_10_185_2 doi: 10.1021/acsami.6b07989 – ident: e_1_2_10_200_1 – ident: e_1_2_10_179_2 doi: 10.1021/acsnano.2c03955 – ident: e_1_2_10_202_2 doi: 10.1039/C8TA06040A – ident: e_1_2_10_12_1 doi: 10.1557/s43581-022-00025-z – ident: e_1_2_10_123_1 doi: 10.1016/j.cej.2021.129754 – ident: e_1_2_10_158_2 doi: 10.1039/D2TA05119B – ident: e_1_2_10_46_1 doi: 10.1007/s11664-022-10197-6 – ident: e_1_2_10_207_1 doi: 10.1002/adfm.201707520 – ident: e_1_2_10_14_1 – ident: e_1_2_10_110_1 doi: 10.1007/s10854-020-03632-z – ident: e_1_2_10_177_2 doi: 10.1002/adma.201802074 – ident: e_1_2_10_102_1 doi: 10.1021/acsomega.3c00816 – ident: e_1_2_10_199_2 doi: 10.1016/j.ceramint.2019.12.227 – ident: e_1_2_10_111_1 doi: 10.1016/j.nanoen.2018.03.016 – ident: e_1_2_10_172_1 – ident: e_1_2_10_76_1 doi: 10.1016/j.jpowsour.2022.232517 – ident: e_1_2_10_108_1 doi: 10.1021/acs.energyfuels.0c04042 – ident: e_1_2_10_190_2 doi: 10.1039/D1TA03501K – ident: e_1_2_10_9_1 doi: 10.1039/D3TA03215A – ident: e_1_2_10_116_1 doi: 10.1021/acsami.8b14304 – ident: e_1_2_10_182_2 doi: 10.1016/j.nantod.2022.101408 – ident: e_1_2_10_89_1 doi: 10.1002/cssc.202202393 – ident: e_1_2_10_130_1 doi: 10.1039/C9TA06964J – ident: e_1_2_10_115_1 doi: 10.1016/j.diamond.2022.108931 – ident: e_1_2_10_113_1 doi: 10.1016/j.carbon.2018.08.036 – ident: e_1_2_10_56_1 doi: 10.1016/j.jallcom.2023.171347 – ident: e_1_2_10_171_1 doi: 10.1039/C9NR06245A – ident: e_1_2_10_90_1 doi: 10.1016/j.vacuum.2023.112374 – ident: e_1_2_10_18_1 – volume: 608 start-page: 963 year: 2022 ident: e_1_2_10_214_1 publication-title: J. Alloys Compd. – ident: e_1_2_10_215_1 – ident: e_1_2_10_127_1 doi: 10.1021/acsami.8b21213 – ident: e_1_2_10_125_1 doi: 10.1002/ente.202300590 – ident: e_1_2_10_140_2 doi: 10.1002/aenm.201700530 – ident: e_1_2_10_83_1 doi: 10.1080/01932691.2021.1880930 – ident: e_1_2_10_120_2 doi: 10.1016/j.jpowsour.2016.01.026 – ident: e_1_2_10_93_1 doi: 10.1016/j.nanoen.2017.12.042 – ident: e_1_2_10_88_1 doi: 10.1016/j.carbon.2021.05.021 – ident: e_1_2_10_194_2 doi: 10.1002/smll.201804786 – ident: e_1_2_10_104_1 doi: 10.1039/D0RA05870J – ident: e_1_2_10_60_1 doi: 10.1016/j.jelechem.2021.115668 – ident: e_1_2_10_84_1 doi: 10.1016/j.carbon.2020.06.063 – ident: e_1_2_10_91_1 doi: 10.1039/D3TA04486F – ident: e_1_2_10_128_1 doi: 10.1016/j.est.2023.108214 – ident: e_1_2_10_62_1 doi: 10.1016/j.ssi.2021.115548 – ident: e_1_2_10_38_1 doi: 10.1016/j.electacta.2023.142269 – ident: e_1_2_10_1_1 doi: 10.1016/S1872-5805(23)60710-3 – ident: e_1_2_10_74_1 doi: 10.1016/j.diamond.2022.109507 – ident: e_1_2_10_117_1 doi: 10.1088/2053-1591/ab1bf9 – ident: e_1_2_10_154_1 – ident: e_1_2_10_75_1 doi: 10.3390/mi14051003 – ident: e_1_2_10_141_2 doi: 10.1002/adma.201704244 – ident: e_1_2_10_11_1 doi: 10.1016/j.jechem.2018.01.015 – ident: e_1_2_10_193_1 – ident: e_1_2_10_132_2 doi: 10.1021/cr5006217 – ident: e_1_2_10_70_1 doi: 10.1039/D1NJ02970C – ident: e_1_2_10_167_2 doi: 10.1039/D1TA02181H – ident: e_1_2_10_55_1 doi: 10.1016/j.matlet.2022.132526 – ident: e_1_2_10_69_1 doi: 10.1016/j.jtice.2021.02.021 – ident: e_1_2_10_17_2 doi: 10.1002/cssc.202200231 – ident: e_1_2_10_47_1 doi: 10.1007/s10934-023-01454-y – ident: e_1_2_10_229_1 doi: 10.1016/j.renene.2021.08.008 – ident: e_1_2_10_67_1 doi: 10.1016/j.energy.2021.121102 – ident: e_1_2_10_6_1 doi: 10.3390/molecules28124633 – ident: e_1_2_10_153_1 doi: 10.1016/j.jallcom.2022.164707 – ident: e_1_2_10_191_2 doi: 10.1016/j.cclet.2019.10.009 – ident: e_1_2_10_210_2 doi: 10.1016/j.jcis.2020.11.084 – ident: e_1_2_10_219_2 doi: 10.1021/acssuschemeng.0c01949 – ident: e_1_2_10_183_2 doi: 10.1002/smll.202107252 – ident: e_1_2_10_2_1 doi: 10.3390/polym14204261 – ident: e_1_2_10_149_2 doi: 10.1016/j.est.2023.108878 – ident: e_1_2_10_213_1 doi: 10.1016/j.cej.2016.12.081 – ident: e_1_2_10_109_1 doi: 10.1016/j.carbon.2020.07.007 – ident: e_1_2_10_173_2 doi: 10.1002/adma.202108621 – ident: e_1_2_10_106_1 doi: 10.1007/s13399-022-03295-2 – ident: e_1_2_10_48_1 doi: 10.1021/acsomega.2c04369 – ident: e_1_2_10_107_1 doi: 10.1002/celc.202101151 – ident: e_1_2_10_92_1 doi: 10.3390/ma16062332 – ident: e_1_2_10_58_1 doi: 10.1016/j.powtec.2018.11.100 – volume: 35 start-page: 2045 year: 2019 ident: e_1_2_10_142_2 publication-title: Chinese J. Inorg. Chem. – ident: e_1_2_10_36_2 doi: 10.1002/anie.201605510 – ident: e_1_2_10_81_1 doi: 10.1021/acsanm.2c05420 – ident: e_1_2_10_137_2 doi: 10.1002/aenm.201702179 – ident: e_1_2_10_152_1 doi: 10.1016/j.jpowsour.2018.01.057 – ident: e_1_2_10_85_1 doi: 10.1021/acsaem.9b02077 – ident: e_1_2_10_175_2 doi: 10.1021/acsami.1c00115 – ident: e_1_2_10_105_1 doi: 10.1016/j.jallcom.2021.162129 – ident: e_1_2_10_211_2 doi: 10.1016/j.renene.2020.03.153 – ident: e_1_2_10_29_1 – ident: e_1_2_10_168_1 – ident: e_1_2_10_21_1 doi: 10.1039/C9GC01910C – ident: e_1_2_10_72_1 doi: 10.1016/j.cclet.2022.04.063 – ident: e_1_2_10_164_2 doi: 10.1039/D0TA01281E – ident: e_1_2_10_227_2 doi: 10.1016/j.jpowsour.2020.228500 – ident: e_1_2_10_135_2 doi: 10.1016/j.nantod.2018.12.004 – ident: e_1_2_10_204_2 doi: 10.1039/D1TA02741G – ident: e_1_2_10_13_1 doi: 10.1039/D2NR05001C – ident: e_1_2_10_73_1 doi: 10.1016/j.apt.2023.104221 – ident: e_1_2_10_8_1 doi: 10.1016/j.ssi.2020.115223 – ident: e_1_2_10_27_2 doi: 10.1021/cr900354u – ident: e_1_2_10_39_1 doi: 10.1007/s10311-021-01221-y – ident: e_1_2_10_157_2 doi: 10.1039/D2QI02483G – ident: e_1_2_10_80_1 doi: 10.1016/j.est.2023.107627 – ident: e_1_2_10_197_2 doi: 10.1016/j.jallcom.2020.153692 – ident: e_1_2_10_121_2 doi: 10.1016/j.electacta.2015.11.108 – ident: e_1_2_10_19_2 doi: 10.1016/j.jallcom.2020.158078 – ident: e_1_2_10_208_1 doi: 10.1007/s10934-019-00720-2 – ident: e_1_2_10_126_1 doi: 10.1016/j.jsamd.2023.100586 – ident: e_1_2_10_131_1 – ident: e_1_2_10_198_2 doi: 10.1016/j.cej.2021.133683 – ident: e_1_2_10_31_2 doi: 10.1016/j.diamond.2022.109451 – ident: e_1_2_10_10_1 doi: 10.1016/j.materresbull.2021.111282 – ident: e_1_2_10_26_2 doi: 10.1002/cssc.201000087 – ident: e_1_2_10_42_1 doi: 10.3390/molecules25184050 – ident: e_1_2_10_209_1 – ident: e_1_2_10_122_1 doi: 10.1039/D0RA07029G – ident: e_1_2_10_97_1 doi: 10.1039/C9NR02277E – ident: e_1_2_10_57_1 doi: 10.1016/j.jelechem.2020.113922 – ident: e_1_2_10_4_1 doi: 10.1016/j.electacta.2022.140573 – ident: e_1_2_10_203_2 doi: 10.1007/s40242-021-1386-x – ident: e_1_2_10_45_1 doi: 10.3390/ma16134577 – ident: e_1_2_10_118_1 doi: 10.1016/j.jechem.2021.04.009 – ident: e_1_2_10_23_1 doi: 10.1016/j.jpowsour.2021.230886 – ident: e_1_2_10_155_2 doi: 10.1016/j.matdes.2019.108287 – ident: e_1_2_10_159_2 doi: 10.1007/s40242-023-3196-9 – ident: e_1_2_10_63_1 doi: 10.1007/s42823-023-00483-6 – ident: e_1_2_10_160_1 – ident: e_1_2_10_166_2 doi: 10.1021/acs.chemmater.8b03463 – ident: e_1_2_10_145_2 doi: 10.1021/acs.jpcc.5b10222 – ident: e_1_2_10_195_2 doi: 10.1039/C6EE02364A – ident: e_1_2_10_178_2 doi: 10.1021/acs.chemrev.9b00463 – ident: e_1_2_10_43_1 doi: 10.1016/j.renene.2021.05.006 – ident: e_1_2_10_5_1 doi: 10.1039/D2RA03205H – ident: e_1_2_10_64_1 doi: 10.1016/j.matlet.2021.129459 – ident: e_1_2_10_148_2 doi: 10.1039/C6TA01821A – ident: e_1_2_10_188_2 doi: 10.1016/j.ijhydene.2021.02.131 – ident: e_1_2_10_136_2 doi: 10.1002/aenm.201700283 – ident: e_1_2_10_34_1 – ident: e_1_2_10_187_1 – ident: e_1_2_10_98_1 doi: 10.1016/j.jaap.2021.105215 – ident: e_1_2_10_205_2 doi: 10.1002/smll.202203947 – ident: e_1_2_10_165_2 doi: 10.1002/anie.201801654 – ident: e_1_2_10_52_1 doi: 10.1016/j.diamond.2021.108728 – ident: e_1_2_10_176_1 – ident: e_1_2_10_15_2 doi: 10.1007/s12274-021-3581-y – ident: e_1_2_10_28_1 doi: 10.1002/sus2.8 – ident: e_1_2_10_78_1 doi: 10.1016/j.diamond.2021.108626 – ident: e_1_2_10_82_1 doi: 10.1016/j.diamond.2022.109514 – ident: e_1_2_10_151_1 doi: 10.1016/j.ijhydene.2019.06.107 – ident: e_1_2_10_20_2 doi: 10.1021/acsaem.2c04102 – ident: e_1_2_10_41_1 doi: 10.1016/j.jallcom.2022.164707 – ident: e_1_2_10_216_2 doi: 10.1039/C7TA00863E – ident: e_1_2_10_112_1 doi: 10.1016/j.cej.2022.137561 – ident: e_1_2_10_170_2 doi: 10.1016/j.jechem.2020.07.002 – ident: e_1_2_10_65_1 doi: 10.1016/j.jelechem.2022.116769 – ident: e_1_2_10_37_1 doi: 10.1016/j.jallcom.2017.05.062 – ident: e_1_2_10_225_2 doi: 10.1039/C5TA08620E – ident: e_1_2_10_51_1 doi: 10.1038/s41598-020-71649-9 – ident: e_1_2_10_169_2 doi: 10.1016/j.jechem.2020.03.073 – ident: e_1_2_10_174_2 doi: 10.1016/j.jpowsour.2020.228415 – ident: e_1_2_10_103_1 doi: 10.1016/j.fuproc.2020.106677 – ident: e_1_2_10_94_1 doi: 10.1021/acs.energyfuels.2c00157 – year: 2023 ident: e_1_2_10_124_1 publication-title: Carbon Lett. – ident: e_1_2_10_77_1 doi: 10.1007/s11581-023-04891-6 – ident: e_1_2_10_138_1 – ident: e_1_2_10_100_1 doi: 10.1016/j.carbpol.2020.117107 – ident: e_1_2_10_189_2 doi: 10.1002/smll.202203545 – ident: e_1_2_10_44_1 doi: 10.3390/nano13172431 – ident: e_1_2_10_192_1 doi: 10.1016/j.carbon.2021.03.022 – ident: e_1_2_10_156_2 doi: 10.1007/s12274-021-3328-9 – ident: e_1_2_10_161_2 doi: 10.1007/s41918-021-00120-8 – ident: e_1_2_10_99_1 doi: 10.1016/j.carbon.2018.10.034 – ident: e_1_2_10_86_1 doi: 10.1039/C9SE00072K – ident: e_1_2_10_163_2 doi: 10.1002/smll.202105825 – ident: e_1_2_10_206_1 doi: 10.1002/adma.202204403 – ident: e_1_2_10_25_2 doi: 10.1016/j.biortech.2005.01.010 – ident: e_1_2_10_53_1 doi: 10.1016/j.diamond.2022.109407 – ident: e_1_2_10_96_1 doi: 10.1021/acs.jpcc.3c02850 – ident: e_1_2_10_101_1 doi: 10.1016/j.est.2023.106900 – ident: e_1_2_10_212_1 doi: 10.1039/D3TA01344H – ident: e_1_2_10_61_1 doi: 10.1016/j.jpowsour.2022.231019 |
SSID | ssj0009633 |
Score | 2.54874 |
SecondaryResourceType | review_article |
Snippet | The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202304157 |
SubjectTerms | Batteries Biomass Carbon Carbonaceous materials Controllability Doping Electrochemistry electrode material Electrode materials Electrodes Energy storage Environmental impact heteroatom doping Lithium Lithium sulfur batteries Pyrolysis Storage batteries Sulfur Waste disposal Wastes |
Title | Biomass‐Derived Carbon Materials for Electrochemical Energy Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202304157 https://www.ncbi.nlm.nih.gov/pubmed/38270279 https://www.proquest.com/docview/3043645133 https://www.proquest.com/docview/2918512451 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KXtJL03fcbIsLgZ60a0u2ZB-b7Yal0B6aBPZmNLIMIcEb9pFDTvkJ_Y39JdFYtjfbUgrNzcYS1mNG-kaa-QbgqKwwjwxWLEaTscTYmKEoMyYqlVcpGl6ahu3zu5ydJ1_n6fxBFL_nh-gP3EgzmvWaFFzjarwlDXV9okhyOtSMUwonJ4ctQkU_tvxRTrp8LvlEMeJg7VgbIz7erb67K_0BNXeRa7P1nOyD7hrtPU4uR5s1jsztb3yOj-nVc3jW4tLwsxekF_DE1i9hb9Klg3sF0-MLciVa_br7-cVJ7Y0tw4le4qIOv-m1F-PQAeBw6vPqmJaIIJw2wYXhqbPt3dL1Gs5PpmeTGWtzMDAjlFBMyUQmEfLK6arRcWK11EJHMjPaoHbWZYxZxI1JUdvcSEUILovQgRyZolJCvIFBvajtAYR0Y8stptzGVaJLZ0vFqeaVzDOJWuU6ANbNQWFagnLKk3FVeGplXlDTi35wAvjUl7_21Bx_LTnsprRoVXRVCCLfTyi9TQAf-89uUOnGRNd2sVkVPHdwxiGgNA7grReF_lcio1A-lQfAmwn9RxsKorjo3979T6VDeOqeG78hzocwWC839r2DRGv80Ij9PUntAgI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qyqJsgPJq-gAjgVi5TZzEThYsYGaqKX0soJW6M7bjVBUogzoZULviE_gVfoVP6JfUN05SDQghIXXBMi_Fj3vtY_vecwCeF6XOQ6NLGmmT0cTYiOq4yGhcirxMtWGFadg-D_j4KHl7nB4vwI8uF8bzQ_QbbugZzXiNDo4b0lvXrKGuUphKjruaUSrauMpde_7Vrdqmr3aGrotfMLY9OhyMaSssQE0sYkEFT3gSalY6AzQqSqziKlYhz4wyWrklU6SzkBmTamVzwwXCkizUbubmqRYC90DdqH8LZcSRrn_47pqxytmzV69PBEXW144nMmRb8-Wdnwd_A7fzWLmZ7Lbvws-umXyMy8fNWa03zcUvDJL_VTvegzst9Cavva8sw4Kt7sPSoFO8ewCjN6cYLTW9_PZ96Bzziy3IQJ3pSUX2Ve09lTiMT0ZeOsi0XAtk1ORPkve1c6cT-xCObqQWj2CxmlR2BQgeSjOrU2ajMlGFWy5GqWIlzzOulchVALTrdGlaDnaUAvkkPXs0k1h02XdGAC_79z979pE_vrne2ZBsR6GpjFFfIEEFnwCe9Y9do-KhkKrsZDaVLHeIzYG8NArgsbe9_ldxhtmKIg-ANRb0lzJIZPHor1b_5aOnsDQ-3N-TezsHu2tw291vwqQYW4fF-mxmNxwCrPWTxucIfLhp47wCysNd7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB1VRQI2lDdpCxgJxMpt4jh2smAB96GWQoWASt0Z23EQAuVWvblUsOIT-BR-hV_gS_DESaoLQkhIXbDMS_Fjxj62Z84BuF9WpoitqWhibE65dQk1aZnTtJJFlRnLStuyfe6LnQP-9DA7XIFvfS5M4IcYNtzQM9rxGh38qKy2T0lDfZ0wkxw3NZNMdmGVe-7TiV-0zR_tjn0PP2BsOnk92qGdrgC1qUwllYILHhtWefuzOuFOC53qWORWW6P9iikxecyszYx2hRUSUUkeGz9xi8xIiVugftA_x0VcoFjE-OUpYZU35yBezyVF0teeJjJm28vlXZ4Gf8O2y1C5neuma_C9b6UQ4vJ-a9GYLfv5FwLJ_6kZL8OlDniTx8FTrsCKq6_ChVGvd3cNJk_eYazU_MeXr2Pvlh9dSUb62Mxq8lw3wU-JR_hkEoSDbMe0QCZt9iR51Xhneuuuw8GZ1OIGrNaz2t0CgkfSzJmMuaTiuvSLxSTTrBJFLoyWhY6A9n2ubMfAjkIgH1TgjmYKi66Gzojg4fD-UeAe-eObm70JqW4MmqsU1QU46vdEcG947BsVj4R07WaLuWKFx2se4mVJBDeD6Q2_SnPMVZRFBKw1oL-UQSGHx3C1_i8f3YXzL8ZT9Wx3f28DLvrbbYwUY5uw2hwv3G0P_xpzp_U4Am_O2jZ_AihdXJs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Carbon+Materials+for+Electrochemical+Energy+Storage&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Yu%E2%80%90Lin+Bai&rft.au=Chen%E2%80%90Chen+Zhang&rft.au=Feng+Rong&rft.au=Zhao%E2%80%90Xia+Guo&rft.date=2024-04-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=23&rft_id=info:doi/10.1002%2Fchem.202304157&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |