Stable Quasi‐Solid‐State Aluminum Batteries

Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 8; pp. e2104557 - n/a
Main Authors Huang, Zheng, Song, Wei‐Li, Liu, Yingjun, Wang, Wei, Wang, Mingyong, Ge, Jianbang, Jiao, Handong, Jiao, Shuqiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Stable quasi‐solid‐state aluminum batteries are constructed using quasi‐solid‐state electrolyte with high air stability, still operating well when exposed to air and if burning in fire, revealing a long‐term air stability and high safety. The results offer a novel approach for designing highly stable and safe aluminum batteries, providing a feasible strategy to boost applications in grid‐scale energy storage.
AbstractList Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g (with positive electrode material loading ≈9 mg cm , much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Stable quasi‐solid‐state aluminum batteries are constructed using quasi‐solid‐state electrolyte with high air stability, still operating well when exposed to air and if burning in fire, revealing a long‐term air stability and high safety. The results offer a novel approach for designing highly stable and safe aluminum batteries, providing a feasible strategy to boost applications in grid‐scale energy storage.
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g-1 (with positive electrode material loading ≈9 mg cm-2 , much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g-1 (with positive electrode material loading ≈9 mg cm-2 , much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g −1 (with positive electrode material loading ≈9 mg cm −2 , much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.
Author Jiao, Handong
Ge, Jianbang
Wang, Wei
Wang, Mingyong
Liu, Yingjun
Jiao, Shuqiang
Song, Wei‐Li
Huang, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  surname: Huang
  fullname: Huang, Zheng
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Wei‐Li
  orcidid: 0000-0002-4328-8919
  surname: Song
  fullname: Song, Wei‐Li
  email: weilis@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Yingjun
  surname: Liu
  fullname: Liu, Yingjun
  organization: University of Cambridge
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Mingyong
  surname: Wang
  fullname: Wang, Mingyong
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Jianbang
  surname: Ge
  fullname: Ge, Jianbang
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Handong
  surname: Jiao
  fullname: Jiao, Handong
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Shuqiang
  orcidid: 0000-0001-9600-752X
  surname: Jiao
  fullname: Jiao, Shuqiang
  email: sjiao@ustb.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34877722$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKw0AUhgep2ItuXUrBjZu0Z26ZzLLWK1REquthmpzClFxqJkG68xF8Rp_E1LYKBXF1Nt_3c_i6pJUXORJySmFAAdjQJpkdMGAUhJTqgHSoZDQQoGWLdEBzGehQRG3S9X4BADqE8Ii0uYiUUox1yHBa2VmK_afaevf5_jEtUpesb2Ur7I_SOnN5nfUvbVVh6dAfk8O5TT2ebG-PvNxcP4_vgsnj7f14NAlirrgKlFB2hkLrUCeMx4BccrDJTNk5F4m0kjIagoQI0YJGpeYMEkkjltDYKiV4j1xsdpdl8Vqjr0zmfIxpanMsam9YCBFlQnyj53vooqjLvPmuoTgDxSPgDXW2pepZholZli6z5crsUjSA2ABxWXhf4tzErongirwqrUsNBbMubtbFzU_xRhvsabvlPwW9Ed5ciqt_aDO6ehj9ul8ruJH_
CitedBy_id crossref_primary_10_1002_smll_202201362
crossref_primary_10_1002_sus2_263
crossref_primary_10_1002_ange_202202696
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1007_s10008_023_05426_9
crossref_primary_10_1002_adma_202416755
crossref_primary_10_1002_adma_202300888
crossref_primary_10_1002_anie_202405750
crossref_primary_10_1016_j_jpowsour_2023_233110
crossref_primary_10_1021_acsanm_4c04495
crossref_primary_10_1016_j_est_2024_112112
crossref_primary_10_1002_ange_202405750
crossref_primary_10_1002_adfm_202411395
crossref_primary_10_1007_s12613_023_2810_7
crossref_primary_10_1016_j_pmatsci_2024_101322
crossref_primary_10_1002_anie_202403424
crossref_primary_10_1016_j_apmt_2023_102003
crossref_primary_10_1016_j_jechem_2023_07_026
crossref_primary_10_1021_acscentsci_4c01615
crossref_primary_10_1038_s41467_023_41361_z
crossref_primary_10_1002_cssc_202400423
crossref_primary_10_1016_j_cej_2023_144253
crossref_primary_10_1002_cssc_202202297
crossref_primary_10_1039_D2TA04210J
crossref_primary_10_1021_acscentsci_5c00224
crossref_primary_10_1016_j_ensm_2024_103545
crossref_primary_10_3389_fchem_2023_1190102
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_3390_gels10060389
crossref_primary_10_1002_anie_202202696
crossref_primary_10_1002_ange_202403424
crossref_primary_10_1021_acsnano_4c12712
crossref_primary_10_1039_D4NJ00147H
crossref_primary_10_1002_smll_202203251
crossref_primary_10_1002_aenm_202302464
Cites_doi 10.1021/acs.chemrev.9b00268
10.1039/c1cc15779e
10.1002/aenm.201700561
10.1002/adma.201805930
10.1002/anie.202008481
10.1126/science.1212741
10.1016/j.nanoen.2018.03.020
10.1016/j.nanoen.2014.12.028
10.1039/C9TA06815E
10.1021/ja8057953
10.1016/j.jpowsour.2021.229839
10.1038/s41560-018-0291-0
10.1039/C5TA06187C
10.1016/j.jpowsour.2019.04.040
10.1016/j.electacta.2019.134805
10.1007/s10008-017-3658-4
10.1021/acsami.1c05476
10.1002/adfm.201807676
10.1016/j.carbon.2007.10.023
10.1016/j.micromeso.2019.109886
10.1038/ncomms14283
10.1002/anie.201406011
10.1039/C5CC06643C
10.1002/adma.202001212
10.1038/s41467-021-21488-7
10.1016/j.nanoen.2018.11.038
10.1021/acsami.8b12610
10.1002/adma.201803181
10.1002/anie.201916301
10.1002/anie.201802248
10.1002/cssc.201700716
10.1021/acs.inorgchem.6b03169
10.1021/acs.chemmater.5b02986
10.1016/j.electacta.2015.09.097
10.1002/adma.201706310
10.1039/D0QI01302A
10.1002/adfm.202010611
10.1002/aenm.201401408
10.1002/ange.202103403
10.1038/451652a
10.1039/C5CC00542F
10.1021/acsnano.6b06446
10.1016/j.cej.2019.123452
10.1002/9783527621194
10.1038/s41467-020-15811-x
10.1039/C5SC01398D
10.1039/C8TA01418C
10.1002/anie.201814031
10.1002/adfm.201806799
10.1016/j.ensm.2019.07.033
10.1038/nature14340
10.1002/adma.200304415
10.1039/D0EE00153H
10.1039/C7QM00416H
10.1002/adma.201601357
10.1002/adfm.201909565
10.1002/anie.201802595
10.1021/acsami.6b12469
10.1039/C9TA00762H
10.1038/s41467-019-13943-3
10.1002/adma.201704436
10.1039/C9EE00862D
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104557
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34877722
10_1002_adma_202104557
ADMA202104557
Genre article
Journal Article
GrantInformation_xml – fundername: Technology Innovation Program of Beijing Institute of Technology
  funderid: 2019CX01021
– fundername: National Natural Science Foundation of China
  funderid: 51725401; 51874019; 52074036
– fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐TP‐17‐002C2
– fundername: Fundamental Research Funds for the Central Universities
  grantid: FRF-TP-17-002C2
– fundername: National Natural Science Foundation of China
  grantid: 51874019
– fundername: Technology Innovation Program of Beijing Institute of Technology
  grantid: 2019CX01021
– fundername: National Natural Science Foundation of China
  grantid: 52074036
– fundername: National Natural Science Foundation of China
  grantid: 51725401
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3737-747abe49969d23c0e3530adb7af34d5a512160508eea09e77f20d5182d1ca7743
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:17:32 EDT 2025
Mon Jul 14 07:47:41 EDT 2025
Wed Feb 19 02:26:57 EST 2025
Tue Jul 01 02:33:11 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Jan 22 16:26:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords highly stable and safe batteries
aluminum batteries
quasi-solid-state electrolytes
metal-organic frameworks
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-747abe49969d23c0e3530adb7af34d5a512160508eea09e77f20d5182d1ca7743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9600-752X
0000-0002-4328-8919
PMID 34877722
PQID 2632073803
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2608124474
proquest_journals_2632073803
pubmed_primary_34877722
crossref_citationtrail_10_1002_adma_202104557
crossref_primary_10_1002_adma_202104557
wiley_primary_10_1002_adma_202104557_ADMA202104557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008 2011; 451 334
2019; 7
2008 2017; 130 56
2017; 8
2015; 6
2015; 3
2020; 294
2020 2020; 11 11
2020; 120
2011 2017 2019 2017 2019 2020 2020 2021 2019 2018 2020 2019 2020; 47 11 7 7 29 59 385 8 12 4 24 323 32
2017; 10
2017 2021 2021; 21 13 497
2008 2016 2020; 52 30
2019; 29
2008; 46
2015 2019; 184 426
2018; 30
2015 2015 2018; 520 51 57
2014 2015; 53 27
2016 2018 2019; 28 30 58
2018 2018 2017 2018 2021 2020 2021 2018 2021 2015 2019 2018 2003 2019 2015; 6 57 7 10 12 59 31 48 60 5 56 30 15 31 12
2017; 9
2018 2020; 2 13
e_1_2_8_20_9
e_1_2_8_21_11
e_1_2_8_21_12
e_1_2_8_21_13
e_1_2_8_21_14
e_1_2_8_20_5
e_1_2_8_20_6
e_1_2_8_20_7
e_1_2_8_20_8
e_1_2_8_21_10
e_1_2_8_21_15
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_20_3
e_1_2_8_22_1
e_1_2_8_20_4
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_21_8
e_1_2_8_21_9
e_1_2_8_21_4
e_1_2_8_23_2
e_1_2_8_21_5
e_1_2_8_21_6
e_1_2_8_21_7
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
Zhang Z. (e_1_2_8_21_3) 2017; 7
e_1_2_8_18_1
e_1_2_8_20_13
e_1_2_8_14_1
e_1_2_8_20_12
e_1_2_8_20_11
e_1_2_8_16_1
e_1_2_8_20_10
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 21 13 497
  start-page: 3237
  year: 2017 2021 2021
  publication-title: J. Solid State Electrochem. ACS Appl. Mater. Interfaces J. Power Sources
– volume: 10
  start-page: 2842
  year: 2017
  publication-title: ChemSusChem
– volume: 120
  start-page: 6820
  year: 2020
  publication-title: Chem. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6 57 7 10 12 59 31 48 60 5 56 30 15 31 12
  start-page: 8413 5449 1256 6585 35 92 627 750
  year: 2018 2018 2017 2018 2021 2020 2021 2018 2021 2015 2019 2018 2003 2019 2015
  publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. Adv. Energy Mater. ACS Appl. Mater. Interfaces Nat. Commun. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nano Energy Angew. Chem., Int. Ed. Adv. Energy Mater. Nano Energy Adv. Mater. Adv. Mater. Adv. Mater. Nano Energy
– volume: 294
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4306
  year: 2015
  publication-title: Chem. Sci.
– volume: 451 334
  start-page: 652 928
  year: 2008 2011
  publication-title: Nature Science
– volume: 130 56
  start-page: 2337
  year: 2008 2017
  publication-title: J. Am. Chem. Soc. Inorg. Chem.
– volume: 46
  start-page: 30
  year: 2008
  publication-title: Carbon
– volume: 47 11 7 7 29 59 385 8 12 4 24 323 32
  start-page: 469 8368 1030 1918 51 379
  year: 2011 2017 2019 2017 2019 2020 2020 2021 2019 2018 2020 2019 2020
  publication-title: Chem. Commun. ACS Nano J. Mater. Chem. A Adv. Energy Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Chem. Eng. J. Inorg. Chem. Front. Energy Environ. Sci. Nat. Energy Energy Storage Mater. Electrochim. Acta Adv. Mater.
– volume: 9
  start-page: 5699
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 520 51 57
  start-page: 324
  year: 2015 2015 2018
  publication-title: Nature Chem. Commun. Angew. Chem., Int. Ed.
– volume: 184 426
  start-page: 483 216
  year: 2015 2019
  publication-title: Electrochim. Acta J. Power Sources
– volume: 28 30 58
  start-page: 7564
  year: 2016 2018 2019
  publication-title: Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed.
– volume: 2 13
  start-page: 219 2386
  year: 2018 2020
  publication-title: Mater. Chem. Front. Energy Environ. Sci.
– volume: 11 11
  start-page: 2079 777
  year: 2020 2020
  publication-title: Nat. Commun. Nat. Commun.
– volume: 53 27
  start-page: 7355
  year: 2014 2015
  publication-title: Angew. Chem., Int. Ed. Chem. Mater.
– volume: 52 30
  start-page: 292
  year: 2008 2016 2020
  publication-title: Chem. Commun. Adv. Funct. Mater.
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.9b00268
– ident: e_1_2_8_20_1
  doi: 10.1039/c1cc15779e
– ident: e_1_2_8_20_4
  doi: 10.1002/aenm.201700561
– ident: e_1_2_8_21_14
  doi: 10.1002/adma.201805930
– ident: e_1_2_8_20_6
  doi: 10.1002/anie.202008481
– ident: e_1_2_8_1_2
  doi: 10.1126/science.1212741
– ident: e_1_2_8_21_8
  doi: 10.1016/j.nanoen.2018.03.020
– ident: e_1_2_8_21_15
  doi: 10.1016/j.nanoen.2014.12.028
– ident: e_1_2_8_6_1
  doi: 10.1039/C9TA06815E
– ident: e_1_2_8_11_1
  doi: 10.1021/ja8057953
– ident: e_1_2_8_7_3
  doi: 10.1016/j.jpowsour.2021.229839
– ident: e_1_2_8_20_10
  doi: 10.1038/s41560-018-0291-0
– ident: e_1_2_8_17_1
  doi: 10.1039/C5TA06187C
– ident: e_1_2_8_19_2
  doi: 10.1016/j.jpowsour.2019.04.040
– ident: e_1_2_8_20_12
  doi: 10.1016/j.electacta.2019.134805
– ident: e_1_2_8_7_1
  doi: 10.1007/s10008-017-3658-4
– ident: e_1_2_8_7_2
  doi: 10.1021/acsami.1c05476
– ident: e_1_2_8_20_5
  doi: 10.1002/adfm.201807676
– ident: e_1_2_8_12_1
  doi: 10.1016/j.carbon.2007.10.023
– ident: e_1_2_8_15_1
  doi: 10.1016/j.micromeso.2019.109886
– ident: e_1_2_8_18_1
  doi: 10.1038/ncomms14283
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.201406011
– ident: e_1_2_8_4_2
  doi: 10.1039/C5CC06643C
– ident: e_1_2_8_20_13
  doi: 10.1002/adma.202001212
– ident: e_1_2_8_21_5
  doi: 10.1038/s41467-021-21488-7
– ident: e_1_2_8_21_11
  doi: 10.1016/j.nanoen.2018.11.038
– ident: e_1_2_8_21_4
  doi: 10.1021/acsami.8b12610
– ident: e_1_2_8_21_12
  doi: 10.1002/adma.201803181
– ident: e_1_2_8_21_6
  doi: 10.1002/anie.201916301
– ident: e_1_2_8_21_2
  doi: 10.1002/anie.201802248
– ident: e_1_2_8_9_1
  doi: 10.1002/cssc.201700716
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.inorgchem.6b03169
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.chemmater.5b02986
– ident: e_1_2_8_19_1
  doi: 10.1016/j.electacta.2015.09.097
– ident: e_1_2_8_2_2
  doi: 10.1002/adma.201706310
– ident: e_1_2_8_20_8
  doi: 10.1039/D0QI01302A
– ident: e_1_2_8_21_7
  doi: 10.1002/adfm.202010611
– ident: e_1_2_8_21_10
  doi: 10.1002/aenm.201401408
– ident: e_1_2_8_21_9
  doi: 10.1002/ange.202103403
– ident: e_1_2_8_1_1
  doi: 10.1038/451652a
– ident: e_1_2_8_3_2
  doi: 10.1039/C5CC00542F
– ident: e_1_2_8_20_2
  doi: 10.1021/acsnano.6b06446
– ident: e_1_2_8_20_7
  doi: 10.1016/j.cej.2019.123452
– ident: e_1_2_8_4_1
  doi: 10.1002/9783527621194
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-020-15811-x
– ident: e_1_2_8_14_1
  doi: 10.1039/C5SC01398D
– ident: e_1_2_8_21_1
  doi: 10.1039/C8TA01418C
– ident: e_1_2_8_2_3
  doi: 10.1002/anie.201814031
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201806799
– volume: 7
  year: 2017
  ident: e_1_2_8_21_3
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_20_11
  doi: 10.1016/j.ensm.2019.07.033
– ident: e_1_2_8_3_1
  doi: 10.1038/nature14340
– ident: e_1_2_8_21_13
  doi: 10.1002/adma.200304415
– ident: e_1_2_8_8_2
  doi: 10.1039/D0EE00153H
– ident: e_1_2_8_8_1
  doi: 10.1039/C7QM00416H
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201601357
– ident: e_1_2_8_4_3
  doi: 10.1002/adfm.201909565
– ident: e_1_2_8_3_3
  doi: 10.1002/anie.201802595
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.6b12469
– ident: e_1_2_8_20_3
  doi: 10.1039/C9TA00762H
– ident: e_1_2_8_23_2
  doi: 10.1038/s41467-019-13943-3
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201704436
– ident: e_1_2_8_20_9
  doi: 10.1039/C9EE00862D
SSID ssj0009606
Score 2.5642831
Snippet Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic...
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104557
SubjectTerms Aluminum
aluminum batteries
Electrode materials
Electrodes
Electrolytes
Energy storage
highly stable and safe batteries
Interface stability
Ionic liquids
Materials science
Metal-organic frameworks
Moisture
quasi‐solid‐state electrolytes
Rechargeable batteries
Storage batteries
Title Stable Quasi‐Solid‐State Aluminum Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104557
https://www.ncbi.nlm.nih.gov/pubmed/34877722
https://www.proquest.com/docview/2632073803
https://www.proquest.com/docview/2608124474
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP4pM-eL_UGxUEn-KyXJr1cahDBAVv4FtJmhSGsxO3vvjkR_Az-knMabfOKSLoUylN2jTJOf2fNPkF4CBmiiJlnTgdR0Q0WUpaJhVERlYg_o2ZDMchLy6jsztxfi_vP63ir_gQ9YAbWkbpr9HAtRk0JtBQbUtukA9ZhJS4nBwnbKEqup7wo1Cel7A9LkkcidaY2khZYzr79Ffpm9ScVq7lp6ezCHpc6GrGycNRMTRH6csXnuN_3moJFka6NGxXHWkZZly-AvOfaIWr0PDC1PRceFXoQff99e2m3-taPKJeDdvey3Xz4jGsiJ0-AF-Du87p7fEZGe23QFKuuCI-stDG-RAoii3jKXVccqqtUTrjwkrttUHTRz-05ZymsVMqY9RKH6DYZqq9jOTrMJv3c7cJoXU6y4wPpbxfF1ZIzZS_M8olqahNXQBkXN9JOoKR454YvaTCKLMEKyKpKyKAwzr9U4Xh-DHlzrj5kpE5DhKE0ntf1qI8gP36sjck_Duic9cvMA0txY4SAWxUzV4_igvEJjIWACsb75cyJO2Ti3Z9tvWXTNswx3ChRTk_fAdmh8-F2_XyZ2j2yi7-AYg9-iU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP2Hhge9i4bYSVEaRJe_Lq-hInjxVl6qCdBGwSb5EdO1JFSRFrXnjaR9hn3CfBJ7dSEELanqIoduLYPif_49g_AxwlTFGkrBOnk4iIActIbDJBZGQF4t-YyXEccnoejS_F-y-ynU2Ia2FqPkQ34IaWUflrNHAckO6vqKHaVuAgH7MIKdUGPMRtvRGfP_q0IkihQK9we1ySJBJxy22krL-ef_279JfYXNeu1cfndBdMW-x6zsnXk3JpTrKffxAd7_Vej2GnkabhsO5LT-CBK57C9m_AwmfQ99rUzF34sdRXs9vrm8-L-cziESVrOPSOblaU38Ia2ulj8Odwefru4u2YNFsukIwrrogPLrRxPgqKEst4Rh2XnGprlM65sFJ7eTDwARCNndM0cUrljFrpYxQ7yLRXknwPNotF4V5AaJ3Oc-OjKe_ahRVSM-XvjIpJKmozFwBpKzzNGh45bosxT2uSMkuxItKuIgI47tJ_r0kc_0zZa9svbSzyKkUuvXdnMeUBvOkue1vCHyS6cIsS09BK7ygRwH7d7t2juEByImMBsKr1_lOGdDiaDruzl3fJ9BoejS-mk3Rydv7hALYYrruopov3YHP5o3SvvBpamsOqv_8CN5H-QQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JT-MwFMefWCQ0HNiXsAxBQuJk6nqJm2NFqWBYxAyDxC1yYkeqKGkFzYUTH4HPyCfBL2kDZYSQhlMUxU4c2-_l_xz7Z4C9kCmKlHVidRgQUWcJacSJIDIwAvFvLE5xHPL8Iji-Fr9u5M27VfwlH6IacEPLKPw1GnjfpLU3aKg2BTfIhSxCSjUJ0yKgIW7e0PrzBpBCfV7Q9rgkYSAaI2wjZbXx_OOfpX-05rh0Lb497XnQo1KXU05uD_JBfJA8fgA6fue1FmBuKEz9ZtmTFmHCZksw-w5XuAw1p0zjrvV_5_qh8_L0fNXrdgweUbD6TefmOll-55fITheBr8B1--jv4TEZbrhAEq64Ii600LF1MVAQGsYTarnkVJtY6ZQLI7UTB3UX_tCGtZqGVqmUUSNdhGLqiXY6kq_CVNbL7Dr4xuo0jV0s5Ry7MEJqptydUS9JRU1iPSCj-o6SIY0cN8XoRiVHmUVYEVFVER7sV-n7JYfj05Rbo-aLhvb4ECGV3jmzBuUe7FaXnSXh7xGd2V6OaWihdpTwYK1s9upRXCA3kTEPWNF4X5QharbOm9XZxv9k2oGZy1Y7Oju5ON2EHwwXXRRzxbdganCf220nhQbxz6K3vwI1y_zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Quasi%E2%80%90Solid%E2%80%90State+Aluminum+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Zheng&rft.au=Wei%E2%80%90Li+Song&rft.au=Liu%2C+Yingjun&rft.au=Wang%2C+Wei&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.202104557&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon