Stable Quasi‐Solid‐State Aluminum Batteries
Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 8; pp. e2104557 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.
Stable quasi‐solid‐state aluminum batteries are constructed using quasi‐solid‐state electrolyte with high air stability, still operating well when exposed to air and if burning in fire, revealing a long‐term air stability and high safety. The results offer a novel approach for designing highly stable and safe aluminum batteries, providing a feasible strategy to boost applications in grid‐scale energy storage. |
---|---|
AbstractList | Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g
(with positive electrode material loading ≈9 mg cm
, much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Stable quasi‐solid‐state aluminum batteries are constructed using quasi‐solid‐state electrolyte with high air stability, still operating well when exposed to air and if burning in fire, revealing a long‐term air stability and high safety. The results offer a novel approach for designing highly stable and safe aluminum batteries, providing a feasible strategy to boost applications in grid‐scale energy storage. Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g-1 (with positive electrode material loading ≈9 mg cm-2 , much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage.Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi-solid-state electrolyte is developed via encapsulating a small amount of an IL into a metal-organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive-electrode-electrolyte and negative-electrode-electrolyte interfaces, the as-assembled quasi-solid-state Al-graphite batteries deliver specific capacity of ≈75 mA h g-1 (with positive electrode material loading ≈9 mg cm-2 , much higher than that in the conventional liquid systems). The batteries present a long-term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g −1 (with positive electrode material loading ≈9 mg cm −2 , much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic liquid (IL) electrolytes, their high moisture sensitivity and poor stability would lead to critical issues in liquid RABs, including undesirable gas production, irreversible activity loss, and an unstable electrode interface, undermining the operation stability. To address such issues, herein, a stable quasi‐solid‐state electrolyte is developed via encapsulating a small amount of an IL into a metal–organic framework, which not only protects the IL from moisture, but creates sufficient ionic transport network between the active materials and the electrolyte. Owing to the generated stable states at both positive‐electrode–electrolyte and negative‐electrode–electrolyte interfaces, the as‐assembled quasi‐solid‐state Al–graphite batteries deliver specific capacity of ≈75 mA h g−1 (with positive electrode material loading ≈9 mg cm−2, much higher than that in the conventional liquid systems). The batteries present a long‐term cycling stability beyond 2000 cycles, with great stability even upon exposure to air within 2 h and under flame combustion tests. Such technology opens a new platform of designing highly safe rechargeable Al batteries for stable energy storage. |
Author | Jiao, Handong Ge, Jianbang Wang, Wei Wang, Mingyong Liu, Yingjun Jiao, Shuqiang Song, Wei‐Li Huang, Zheng |
Author_xml | – sequence: 1 givenname: Zheng surname: Huang fullname: Huang, Zheng organization: University of Science and Technology Beijing – sequence: 2 givenname: Wei‐Li orcidid: 0000-0002-4328-8919 surname: Song fullname: Song, Wei‐Li email: weilis@bit.edu.cn organization: Beijing Institute of Technology – sequence: 3 givenname: Yingjun surname: Liu fullname: Liu, Yingjun organization: University of Cambridge – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei organization: University of Science and Technology Beijing – sequence: 5 givenname: Mingyong surname: Wang fullname: Wang, Mingyong organization: University of Science and Technology Beijing – sequence: 6 givenname: Jianbang surname: Ge fullname: Ge, Jianbang organization: University of Science and Technology Beijing – sequence: 7 givenname: Handong surname: Jiao fullname: Jiao, Handong organization: Beijing Institute of Technology – sequence: 8 givenname: Shuqiang orcidid: 0000-0001-9600-752X surname: Jiao fullname: Jiao, Shuqiang email: sjiao@ustb.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34877722$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKw0AUhgep2ItuXUrBjZu0Z26ZzLLWK1REquthmpzClFxqJkG68xF8Rp_E1LYKBXF1Nt_3c_i6pJUXORJySmFAAdjQJpkdMGAUhJTqgHSoZDQQoGWLdEBzGehQRG3S9X4BADqE8Ii0uYiUUox1yHBa2VmK_afaevf5_jEtUpesb2Ur7I_SOnN5nfUvbVVh6dAfk8O5TT2ebG-PvNxcP4_vgsnj7f14NAlirrgKlFB2hkLrUCeMx4BccrDJTNk5F4m0kjIagoQI0YJGpeYMEkkjltDYKiV4j1xsdpdl8Vqjr0zmfIxpanMsam9YCBFlQnyj53vooqjLvPmuoTgDxSPgDXW2pepZholZli6z5crsUjSA2ABxWXhf4tzErongirwqrUsNBbMubtbFzU_xRhvsabvlPwW9Ed5ciqt_aDO6ehj9ul8ruJH_ |
CitedBy_id | crossref_primary_10_1002_smll_202201362 crossref_primary_10_1002_sus2_263 crossref_primary_10_1002_ange_202202696 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1007_s10008_023_05426_9 crossref_primary_10_1002_adma_202416755 crossref_primary_10_1002_adma_202300888 crossref_primary_10_1002_anie_202405750 crossref_primary_10_1016_j_jpowsour_2023_233110 crossref_primary_10_1021_acsanm_4c04495 crossref_primary_10_1016_j_est_2024_112112 crossref_primary_10_1002_ange_202405750 crossref_primary_10_1002_adfm_202411395 crossref_primary_10_1007_s12613_023_2810_7 crossref_primary_10_1016_j_pmatsci_2024_101322 crossref_primary_10_1002_anie_202403424 crossref_primary_10_1016_j_apmt_2023_102003 crossref_primary_10_1016_j_jechem_2023_07_026 crossref_primary_10_1021_acscentsci_4c01615 crossref_primary_10_1038_s41467_023_41361_z crossref_primary_10_1002_cssc_202400423 crossref_primary_10_1016_j_cej_2023_144253 crossref_primary_10_1002_cssc_202202297 crossref_primary_10_1039_D2TA04210J crossref_primary_10_1021_acscentsci_5c00224 crossref_primary_10_1016_j_ensm_2024_103545 crossref_primary_10_3389_fchem_2023_1190102 crossref_primary_10_1039_D2EE02998G crossref_primary_10_3390_gels10060389 crossref_primary_10_1002_anie_202202696 crossref_primary_10_1002_ange_202403424 crossref_primary_10_1021_acsnano_4c12712 crossref_primary_10_1039_D4NJ00147H crossref_primary_10_1002_smll_202203251 crossref_primary_10_1002_aenm_202302464 |
Cites_doi | 10.1021/acs.chemrev.9b00268 10.1039/c1cc15779e 10.1002/aenm.201700561 10.1002/adma.201805930 10.1002/anie.202008481 10.1126/science.1212741 10.1016/j.nanoen.2018.03.020 10.1016/j.nanoen.2014.12.028 10.1039/C9TA06815E 10.1021/ja8057953 10.1016/j.jpowsour.2021.229839 10.1038/s41560-018-0291-0 10.1039/C5TA06187C 10.1016/j.jpowsour.2019.04.040 10.1016/j.electacta.2019.134805 10.1007/s10008-017-3658-4 10.1021/acsami.1c05476 10.1002/adfm.201807676 10.1016/j.carbon.2007.10.023 10.1016/j.micromeso.2019.109886 10.1038/ncomms14283 10.1002/anie.201406011 10.1039/C5CC06643C 10.1002/adma.202001212 10.1038/s41467-021-21488-7 10.1016/j.nanoen.2018.11.038 10.1021/acsami.8b12610 10.1002/adma.201803181 10.1002/anie.201916301 10.1002/anie.201802248 10.1002/cssc.201700716 10.1021/acs.inorgchem.6b03169 10.1021/acs.chemmater.5b02986 10.1016/j.electacta.2015.09.097 10.1002/adma.201706310 10.1039/D0QI01302A 10.1002/adfm.202010611 10.1002/aenm.201401408 10.1002/ange.202103403 10.1038/451652a 10.1039/C5CC00542F 10.1021/acsnano.6b06446 10.1016/j.cej.2019.123452 10.1002/9783527621194 10.1038/s41467-020-15811-x 10.1039/C5SC01398D 10.1039/C8TA01418C 10.1002/anie.201814031 10.1002/adfm.201806799 10.1016/j.ensm.2019.07.033 10.1038/nature14340 10.1002/adma.200304415 10.1039/D0EE00153H 10.1039/C7QM00416H 10.1002/adma.201601357 10.1002/adfm.201909565 10.1002/anie.201802595 10.1021/acsami.6b12469 10.1039/C9TA00762H 10.1038/s41467-019-13943-3 10.1002/adma.201704436 10.1039/C9EE00862D |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202104557 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34877722 10_1002_adma_202104557 ADMA202104557 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Technology Innovation Program of Beijing Institute of Technology funderid: 2019CX01021 – fundername: National Natural Science Foundation of China funderid: 51725401; 51874019; 52074036 – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐TP‐17‐002C2 – fundername: Fundamental Research Funds for the Central Universities grantid: FRF-TP-17-002C2 – fundername: National Natural Science Foundation of China grantid: 51874019 – fundername: Technology Innovation Program of Beijing Institute of Technology grantid: 2019CX01021 – fundername: National Natural Science Foundation of China grantid: 52074036 – fundername: National Natural Science Foundation of China grantid: 51725401 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3737-747abe49969d23c0e3530adb7af34d5a512160508eea09e77f20d5182d1ca7743 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:17:32 EDT 2025 Mon Jul 14 07:47:41 EDT 2025 Wed Feb 19 02:26:57 EST 2025 Tue Jul 01 02:33:11 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Jan 22 16:26:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | highly stable and safe batteries aluminum batteries quasi-solid-state electrolytes metal-organic frameworks |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-747abe49969d23c0e3530adb7af34d5a512160508eea09e77f20d5182d1ca7743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9600-752X 0000-0002-4328-8919 |
PMID | 34877722 |
PQID | 2632073803 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2608124474 proquest_journals_2632073803 pubmed_primary_34877722 crossref_citationtrail_10_1002_adma_202104557 crossref_primary_10_1002_adma_202104557 wiley_primary_10_1002_adma_202104557_ADMA202104557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2008 2011; 451 334 2019; 7 2008 2017; 130 56 2017; 8 2015; 6 2015; 3 2020; 294 2020 2020; 11 11 2020; 120 2011 2017 2019 2017 2019 2020 2020 2021 2019 2018 2020 2019 2020; 47 11 7 7 29 59 385 8 12 4 24 323 32 2017; 10 2017 2021 2021; 21 13 497 2008 2016 2020; 52 30 2019; 29 2008; 46 2015 2019; 184 426 2018; 30 2015 2015 2018; 520 51 57 2014 2015; 53 27 2016 2018 2019; 28 30 58 2018 2018 2017 2018 2021 2020 2021 2018 2021 2015 2019 2018 2003 2019 2015; 6 57 7 10 12 59 31 48 60 5 56 30 15 31 12 2017; 9 2018 2020; 2 13 e_1_2_8_20_9 e_1_2_8_21_11 e_1_2_8_21_12 e_1_2_8_21_13 e_1_2_8_21_14 e_1_2_8_20_5 e_1_2_8_20_6 e_1_2_8_20_7 e_1_2_8_20_8 e_1_2_8_21_10 e_1_2_8_21_15 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_22_1 e_1_2_8_20_4 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_21_8 e_1_2_8_21_9 e_1_2_8_21_4 e_1_2_8_23_2 e_1_2_8_21_5 e_1_2_8_21_6 e_1_2_8_21_7 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 Zhang Z. (e_1_2_8_21_3) 2017; 7 e_1_2_8_18_1 e_1_2_8_20_13 e_1_2_8_14_1 e_1_2_8_20_12 e_1_2_8_20_11 e_1_2_8_16_1 e_1_2_8_20_10 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 21 13 497 start-page: 3237 year: 2017 2021 2021 publication-title: J. Solid State Electrochem. ACS Appl. Mater. Interfaces J. Power Sources – volume: 10 start-page: 2842 year: 2017 publication-title: ChemSusChem – volume: 120 start-page: 6820 year: 2020 publication-title: Chem. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 57 7 10 12 59 31 48 60 5 56 30 15 31 12 start-page: 8413 5449 1256 6585 35 92 627 750 year: 2018 2018 2017 2018 2021 2020 2021 2018 2021 2015 2019 2018 2003 2019 2015 publication-title: J. Mater. Chem. A Angew. Chem., Int. Ed. Adv. Energy Mater. ACS Appl. Mater. Interfaces Nat. Commun. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nano Energy Angew. Chem., Int. Ed. Adv. Energy Mater. Nano Energy Adv. Mater. Adv. Mater. Adv. Mater. Nano Energy – volume: 294 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 4306 year: 2015 publication-title: Chem. Sci. – volume: 451 334 start-page: 652 928 year: 2008 2011 publication-title: Nature Science – volume: 130 56 start-page: 2337 year: 2008 2017 publication-title: J. Am. Chem. Soc. Inorg. Chem. – volume: 46 start-page: 30 year: 2008 publication-title: Carbon – volume: 47 11 7 7 29 59 385 8 12 4 24 323 32 start-page: 469 8368 1030 1918 51 379 year: 2011 2017 2019 2017 2019 2020 2020 2021 2019 2018 2020 2019 2020 publication-title: Chem. Commun. ACS Nano J. Mater. Chem. A Adv. Energy Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Chem. Eng. J. Inorg. Chem. Front. Energy Environ. Sci. Nat. Energy Energy Storage Mater. Electrochim. Acta Adv. Mater. – volume: 9 start-page: 5699 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 520 51 57 start-page: 324 year: 2015 2015 2018 publication-title: Nature Chem. Commun. Angew. Chem., Int. Ed. – volume: 184 426 start-page: 483 216 year: 2015 2019 publication-title: Electrochim. Acta J. Power Sources – volume: 28 30 58 start-page: 7564 year: 2016 2018 2019 publication-title: Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. – volume: 2 13 start-page: 219 2386 year: 2018 2020 publication-title: Mater. Chem. Front. Energy Environ. Sci. – volume: 11 11 start-page: 2079 777 year: 2020 2020 publication-title: Nat. Commun. Nat. Commun. – volume: 53 27 start-page: 7355 year: 2014 2015 publication-title: Angew. Chem., Int. Ed. Chem. Mater. – volume: 52 30 start-page: 292 year: 2008 2016 2020 publication-title: Chem. Commun. Adv. Funct. Mater. – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.9b00268 – ident: e_1_2_8_20_1 doi: 10.1039/c1cc15779e – ident: e_1_2_8_20_4 doi: 10.1002/aenm.201700561 – ident: e_1_2_8_21_14 doi: 10.1002/adma.201805930 – ident: e_1_2_8_20_6 doi: 10.1002/anie.202008481 – ident: e_1_2_8_1_2 doi: 10.1126/science.1212741 – ident: e_1_2_8_21_8 doi: 10.1016/j.nanoen.2018.03.020 – ident: e_1_2_8_21_15 doi: 10.1016/j.nanoen.2014.12.028 – ident: e_1_2_8_6_1 doi: 10.1039/C9TA06815E – ident: e_1_2_8_11_1 doi: 10.1021/ja8057953 – ident: e_1_2_8_7_3 doi: 10.1016/j.jpowsour.2021.229839 – ident: e_1_2_8_20_10 doi: 10.1038/s41560-018-0291-0 – ident: e_1_2_8_17_1 doi: 10.1039/C5TA06187C – ident: e_1_2_8_19_2 doi: 10.1016/j.jpowsour.2019.04.040 – ident: e_1_2_8_20_12 doi: 10.1016/j.electacta.2019.134805 – ident: e_1_2_8_7_1 doi: 10.1007/s10008-017-3658-4 – ident: e_1_2_8_7_2 doi: 10.1021/acsami.1c05476 – ident: e_1_2_8_20_5 doi: 10.1002/adfm.201807676 – ident: e_1_2_8_12_1 doi: 10.1016/j.carbon.2007.10.023 – ident: e_1_2_8_15_1 doi: 10.1016/j.micromeso.2019.109886 – ident: e_1_2_8_18_1 doi: 10.1038/ncomms14283 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201406011 – ident: e_1_2_8_4_2 doi: 10.1039/C5CC06643C – ident: e_1_2_8_20_13 doi: 10.1002/adma.202001212 – ident: e_1_2_8_21_5 doi: 10.1038/s41467-021-21488-7 – ident: e_1_2_8_21_11 doi: 10.1016/j.nanoen.2018.11.038 – ident: e_1_2_8_21_4 doi: 10.1021/acsami.8b12610 – ident: e_1_2_8_21_12 doi: 10.1002/adma.201803181 – ident: e_1_2_8_21_6 doi: 10.1002/anie.201916301 – ident: e_1_2_8_21_2 doi: 10.1002/anie.201802248 – ident: e_1_2_8_9_1 doi: 10.1002/cssc.201700716 – ident: e_1_2_8_11_2 doi: 10.1021/acs.inorgchem.6b03169 – ident: e_1_2_8_10_2 doi: 10.1021/acs.chemmater.5b02986 – ident: e_1_2_8_19_1 doi: 10.1016/j.electacta.2015.09.097 – ident: e_1_2_8_2_2 doi: 10.1002/adma.201706310 – ident: e_1_2_8_20_8 doi: 10.1039/D0QI01302A – ident: e_1_2_8_21_7 doi: 10.1002/adfm.202010611 – ident: e_1_2_8_21_10 doi: 10.1002/aenm.201401408 – ident: e_1_2_8_21_9 doi: 10.1002/ange.202103403 – ident: e_1_2_8_1_1 doi: 10.1038/451652a – ident: e_1_2_8_3_2 doi: 10.1039/C5CC00542F – ident: e_1_2_8_20_2 doi: 10.1021/acsnano.6b06446 – ident: e_1_2_8_20_7 doi: 10.1016/j.cej.2019.123452 – ident: e_1_2_8_4_1 doi: 10.1002/9783527621194 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-020-15811-x – ident: e_1_2_8_14_1 doi: 10.1039/C5SC01398D – ident: e_1_2_8_21_1 doi: 10.1039/C8TA01418C – ident: e_1_2_8_2_3 doi: 10.1002/anie.201814031 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.201806799 – volume: 7 year: 2017 ident: e_1_2_8_21_3 publication-title: Adv. Energy Mater. – ident: e_1_2_8_20_11 doi: 10.1016/j.ensm.2019.07.033 – ident: e_1_2_8_3_1 doi: 10.1038/nature14340 – ident: e_1_2_8_21_13 doi: 10.1002/adma.200304415 – ident: e_1_2_8_8_2 doi: 10.1039/D0EE00153H – ident: e_1_2_8_8_1 doi: 10.1039/C7QM00416H – ident: e_1_2_8_2_1 doi: 10.1002/adma.201601357 – ident: e_1_2_8_4_3 doi: 10.1002/adfm.201909565 – ident: e_1_2_8_3_3 doi: 10.1002/anie.201802595 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.6b12469 – ident: e_1_2_8_20_3 doi: 10.1039/C9TA00762H – ident: e_1_2_8_23_2 doi: 10.1038/s41467-019-13943-3 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201704436 – ident: e_1_2_8_20_9 doi: 10.1039/C9EE00862D |
SSID | ssj0009606 |
Score | 2.5642831 |
Snippet | Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next‐generation energy storage. With the presence of ionic... Nonaqueous rechargeable aluminum batteries (RABs) of low cost and high safety are promising for next-generation energy storage. With the presence of ionic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2104557 |
SubjectTerms | Aluminum aluminum batteries Electrode materials Electrodes Electrolytes Energy storage highly stable and safe batteries Interface stability Ionic liquids Materials science Metal-organic frameworks Moisture quasi‐solid‐state electrolytes Rechargeable batteries Storage batteries |
Title | Stable Quasi‐Solid‐State Aluminum Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104557 https://www.ncbi.nlm.nih.gov/pubmed/34877722 https://www.proquest.com/docview/2632073803 https://www.proquest.com/docview/2608124474 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcP4pM-eL_UGxUEn-KyXJr1cahDBAVv4FtJmhSGsxO3vvjkR_Az-knMabfOKSLoUylN2jTJOf2fNPkF4CBmiiJlnTgdR0Q0WUpaJhVERlYg_o2ZDMchLy6jsztxfi_vP63ir_gQ9YAbWkbpr9HAtRk0JtBQbUtukA9ZhJS4nBwnbKEqup7wo1Cel7A9LkkcidaY2khZYzr79Ffpm9ScVq7lp6ezCHpc6GrGycNRMTRH6csXnuN_3moJFka6NGxXHWkZZly-AvOfaIWr0PDC1PRceFXoQff99e2m3-taPKJeDdvey3Xz4jGsiJ0-AF-Du87p7fEZGe23QFKuuCI-stDG-RAoii3jKXVccqqtUTrjwkrttUHTRz-05ZymsVMqY9RKH6DYZqq9jOTrMJv3c7cJoXU6y4wPpbxfF1ZIzZS_M8olqahNXQBkXN9JOoKR454YvaTCKLMEKyKpKyKAwzr9U4Xh-DHlzrj5kpE5DhKE0ntf1qI8gP36sjck_Duic9cvMA0txY4SAWxUzV4_igvEJjIWACsb75cyJO2Ti3Z9tvWXTNswx3ChRTk_fAdmh8-F2_XyZ2j2yi7-AYg9-iU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMeP2Hhge9i4bYSVEaRJe_Lq-hInjxVl6qCdBGwSb5EdO1JFSRFrXnjaR9hn3CfBJ7dSEELanqIoduLYPif_49g_AxwlTFGkrBOnk4iIActIbDJBZGQF4t-YyXEccnoejS_F-y-ynU2Ia2FqPkQ34IaWUflrNHAckO6vqKHaVuAgH7MIKdUGPMRtvRGfP_q0IkihQK9we1ySJBJxy22krL-ef_279JfYXNeu1cfndBdMW-x6zsnXk3JpTrKffxAd7_Vej2GnkabhsO5LT-CBK57C9m_AwmfQ99rUzF34sdRXs9vrm8-L-cziESVrOPSOblaU38Ia2ulj8Odwefru4u2YNFsukIwrrogPLrRxPgqKEst4Rh2XnGprlM65sFJ7eTDwARCNndM0cUrljFrpYxQ7yLRXknwPNotF4V5AaJ3Oc-OjKe_ahRVSM-XvjIpJKmozFwBpKzzNGh45bosxT2uSMkuxItKuIgI47tJ_r0kc_0zZa9svbSzyKkUuvXdnMeUBvOkue1vCHyS6cIsS09BK7ygRwH7d7t2juEByImMBsKr1_lOGdDiaDruzl3fJ9BoejS-mk3Rydv7hALYYrruopov3YHP5o3SvvBpamsOqv_8CN5H-QQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JT-MwFMefWCQ0HNiXsAxBQuJk6nqJm2NFqWBYxAyDxC1yYkeqKGkFzYUTH4HPyCfBL2kDZYSQhlMUxU4c2-_l_xz7Z4C9kCmKlHVidRgQUWcJacSJIDIwAvFvLE5xHPL8Iji-Fr9u5M27VfwlH6IacEPLKPw1GnjfpLU3aKg2BTfIhSxCSjUJ0yKgIW7e0PrzBpBCfV7Q9rgkYSAaI2wjZbXx_OOfpX-05rh0Lb497XnQo1KXU05uD_JBfJA8fgA6fue1FmBuKEz9ZtmTFmHCZksw-w5XuAw1p0zjrvV_5_qh8_L0fNXrdgweUbD6TefmOll-55fITheBr8B1--jv4TEZbrhAEq64Ii600LF1MVAQGsYTarnkVJtY6ZQLI7UTB3UX_tCGtZqGVqmUUSNdhGLqiXY6kq_CVNbL7Dr4xuo0jV0s5Ry7MEJqptydUS9JRU1iPSCj-o6SIY0cN8XoRiVHmUVYEVFVER7sV-n7JYfj05Rbo-aLhvb4ECGV3jmzBuUe7FaXnSXh7xGd2V6OaWihdpTwYK1s9upRXCA3kTEPWNF4X5QharbOm9XZxv9k2oGZy1Y7Oju5ON2EHwwXXRRzxbdganCf220nhQbxz6K3vwI1y_zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Quasi%E2%80%90Solid%E2%80%90State+Aluminum+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Zheng&rft.au=Wei%E2%80%90Li+Song&rft.au=Liu%2C+Yingjun&rft.au=Wang%2C+Wei&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.202104557&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |