Research Progress in Structure Evolution and Durability Modulation of Ir‐ and Ru‐Based OER Catalysts under Acidic Conditions

Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 50; pp. e2406657 - n/a
Main Authors Zi, Yunhai, Zhang, Chengxu, Zhao, Jianqiang, Cheng, Ying, Yuan, Jianliang, Hu, Jue
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application. This paper analyzes the catalyst dissolution process from both thermodynamic and kinetic perspectives. A comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. The catalyst structure evolution is made a summary and four strategies are proposed to improve its stability.
AbstractList Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.
Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application.
Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application. This paper analyzes the catalyst dissolution process from both thermodynamic and kinetic perspectives. A comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. The catalyst structure evolution is made a summary and four strategies are proposed to improve its stability.
Author Yuan, Jianliang
Zhao, Jianqiang
Hu, Jue
Zi, Yunhai
Cheng, Ying
Zhang, Chengxu
Author_xml – sequence: 1
  givenname: Yunhai
  surname: Zi
  fullname: Zi, Yunhai
  organization: Kunming University of Science and Technology
– sequence: 2
  givenname: Chengxu
  surname: Zhang
  fullname: Zhang, Chengxu
  organization: Kunming University of Science and Technology
– sequence: 3
  givenname: Jianqiang
  surname: Zhao
  fullname: Zhao, Jianqiang
  organization: Kunming University of Science and Technology
– sequence: 4
  givenname: Ying
  surname: Cheng
  fullname: Cheng, Ying
  organization: Kunming University of Science and Technology
– sequence: 5
  givenname: Jianliang
  surname: Yuan
  fullname: Yuan, Jianliang
  organization: LuXi KuoBo Precious Metals Co. Ltd
– sequence: 6
  givenname: Jue
  orcidid: 0000-0002-0821-3874
  surname: Hu
  fullname: Hu, Jue
  email: hujue@kust.edu.cn
  organization: Southwest United Graduate School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39370563$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWGT4GOPPTPLkgaolKoohbXl2B5w5djFF1B2fQSekSdhkrRFqoRY-Uj-vqOj_z9GByEGi9BLIFMghL7Na--nlNCGCMHbJ-gIBLCJ6Gh_8DADOUTHOV8TwoA27TN0yHrWEi7YEbpd2mxV0t_wpxS_JpszdgFflVR1qcni-Y_oa3ExYBUMPqtJrZx3ZYMvoqle7X7igM_T79tfO2RZx-mdytbgy_kSz1RRfpNLxjUYm_CpdsZpPIvBuK2cn6Ong_LZvrh7T9CX9_PPs4-TxeWH89npYqJZy9oJM7SjQnO6IoNWveoEB027Vg-D4LwzTAAQ0VMy0GagVqw4EDBUGC5AdaDZCXqz33uT4vdqc5Frl7X1XgUba5YMgLVNB30zoq8fodexpjBeN1ING9MmDR-pV3dUXa2tkTfJrVXayPtsR6DZAzrFnJMdpHZll1hJynkJRG4rlNsK5UOFozZ9pN1v_qfQ74WfztvNf2h5dbFY_HX_AIffr9c
CitedBy_id crossref_primary_10_1016_j_checat_2025_101324
Cites_doi 10.1002/anie.201900796
10.1002/aenm.201903120
10.1002/adma.202305939
10.1016/j.apsusc.2023.158508
10.1016/j.cej.2022.135851
10.1021/acscatal.8b00612
10.1038/s41467-020-18686-0
10.1002/cnma.202000526
10.1002/adma.202006328
10.1002/anie.202216645
10.1039/D3CE00695F
10.1016/j.apcatb.2022.122313
10.1038/s41929-020-0457-6
10.1007/s10008-012-1918-x
10.1007/s12274-022-5240-3
10.1002/aenm.201902666
10.1038/s41467-023-36833-1
10.1039/C8EE02657B
10.1016/j.joule.2023.02.012
10.1002/adma.202004243
10.1002/adma.202404213
10.1002/anie.202217565
10.1016/j.apcatb.2023.123584
10.1007/s12274-024-6696-0
10.1002/aenm.202300177
10.1016/j.nanoen.2022.107960
10.1038/s41467-024-46815-6
10.1016/j.cej.2024.152202
10.1016/j.jechem.2023.06.001
10.1039/D3QI01609A
10.1039/C5SC00518C
10.1039/C9TA00598F
10.1021/ar00121a004
10.1038/s41524-020-00430-3
10.1021/jacs.1c03473
10.1021/acscatal.3c03257
10.1021/acsanm.3c03670
10.1016/j.polymer.2020.123080
10.1016/j.joule.2021.05.018
10.1002/aesr.202000067
10.1016/j.ijhydene.2020.09.268
10.1016/j.joule.2021.10.002
10.1016/j.elecom.2009.08.004
10.1016/j.apenergy.2023.122442
10.1021/acs.jpca.2c06252
10.1021/acs.nanolett.4c01623
10.1002/smll.202002426
10.1103/RevModPhys.72.621
10.1038/282281a0
10.1038/s41467-020-19212-y
10.1002/adfm.202009779
10.1021/ja205300a
10.1021/jacs.1c01525
10.1021/acscatal.1c03599
10.1002/aenm.202300152
10.1021/jacs.4c04096
10.1021/acscatal.9b04922
10.1038/s41467-024-46176-0
10.1002/anie.201808825
10.1021/jz501061n
10.1002/advs.202207695
10.1038/natrevmats.2017.59
10.1016/j.checat.2023.100869
10.1038/s41467-022-35426-8
10.1038/s41467-019-12886-z
10.1002/anie.202007672
10.1021/jacs.1c00384
10.1016/j.isci.2019.100756
10.1021/acs.chemrev.6b00398
10.1021/acscatal.2c04439
10.1016/j.chempr.2023.03.005
10.1002/anie.201709652
10.1021/acscatal.6b02343
10.1016/0013-4686(77)85082-2
10.1002/cplu.202300514
10.1039/D1EE02112E
10.1021/acs.jpca.4c04643
10.1016/j.coelec.2017.10.001
10.1002/adma.202305659
10.1002/adma.201703798
10.1021/jacs.7b06808
10.1039/C9CS00607A
10.1002/adma.201801351
10.1002/anie.202402018
10.1016/j.enchem.2023.100104
10.1039/C6CS00328A
10.1021/acscatal.2c03968
10.1039/D4TA01998A
10.1126/science.1212858
10.1021/acsami.3c13619
10.1021/jp047349j
10.1038/s41467-023-41036-9
10.1016/j.chempr.2021.03.015
10.1016/j.jelechem.2016.04.033
10.1002/adma.202300945
10.1021/acscatal.3c01511
10.1016/j.nanoen.2023.109149
10.1016/j.electacta.2010.11.062
10.1126/science.aad4998
10.1016/j.ijhydene.2013.01.151
10.1016/j.ijhydene.2024.02.228
10.1002/adfm.202410193
10.1021/acs.chemrev.0c00576
10.1002/adma.202211884
10.1038/s41467-024-46801-y
10.1038/s41467-022-31468-0
10.1016/j.ijhydene.2024.02.371
10.1039/D2EE00158F
10.1016/j.jelechem.2016.05.015
10.1016/j.ijhydene.2017.10.045
10.1126/sciadv.adi8025
10.1002/adma.202208904
10.1038/s41467-022-34169-w
10.3390/catal13101346
10.1039/D3TA04597H
10.1038/s41467-021-26025-0
10.1002/adma.202208539
10.1039/C9EE01872G
10.1002/adfm.202009613
10.1016/j.jechem.2023.09.010
10.1016/j.chempr.2023.10.009
10.1039/C4EE03869J
10.1021/acscatal.2c05353
10.1016/j.ijhydene.2020.07.202
10.1016/j.matlet.2024.136485
10.1039/D3TA03252C
10.1093/oso/9780195393354.001.0001
10.1021/acs.nanolett.3c01831
10.1021/acs.jpclett.0c00335
10.1038/s41467-023-44483-6
10.1016/j.jelechem.2006.11.008
10.1002/smll.202304889
10.1002/smll.202002212
10.1039/C4SC02685C
10.1038/nchem.2695
10.1039/D1EE02636D
10.1002/smtd.202301490
10.1038/srep12167
10.1016/j.ijhydene.2024.05.315
10.1039/D3QM00010A
10.1038/s41467-023-36380-9
10.1002/adfm.202305243
10.1021/jacs.3c05556
10.1002/adma.202310918
10.1016/j.apcatb.2023.123559
10.1002/adma.201803551
10.1038/s41467-023-35913-6
10.1002/adma.201700404
10.1038/s41467-017-01734-7
10.1021/acsenergylett.9b01758
10.1016/j.ijhydene.2023.11.063
10.1002/adma.201906905
10.1016/j.coelec.2020.02.024
10.1021/acsaem.2c03300
10.1016/j.apcata.2024.119780
10.1002/adma.202312369
10.1038/s41929-019-0246-2
10.1002/aenm.201601275
10.1002/smll.202208202
10.1016/j.enchem.2022.100072
10.1002/adfm.202200131
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202406657
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39370563
10_1002_smll_202406657
SMLL202406657
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Yunnan Province
  funderid: 202401AV070011
– fundername: National Natural Science Foundation of China
  funderid: 52364041
– fundername: National Natural Science Foundation of China
  grantid: 52364041
– fundername: Natural Science Foundation of Yunnan Province
  grantid: 202401AV070011
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-3d2826c52b0fca9a8651c287cff6558d361106920f24f2e6b5101d26d561a81c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:46:35 EDT 2025
Fri Jul 25 12:05:24 EDT 2025
Thu Apr 03 07:03:50 EDT 2025
Tue Jul 01 00:42:01 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Sun Jul 06 04:45:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords acid oxygen evolution reaction
design strategies
reaction mechanism
catalysts
durability
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-3d2826c52b0fca9a8651c287cff6558d361106920f24f2e6b5101d26d561a81c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0821-3874
PMID 39370563
PQID 3143202045
PQPubID 1046358
PageCount 35
ParticipantIDs proquest_miscellaneous_3113748194
proquest_journals_3143202045
pubmed_primary_39370563
crossref_citationtrail_10_1002_smll_202406657
crossref_primary_10_1002_smll_202406657
wiley_primary_10_1002_smll_202406657_SMLL202406657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2019 2022 2017; 31 10 4 29
2024; n/a
2002; 19
2019; 10
2022 2021; 13 7
2019; 12
2020; 16
2000 2024; 72 36
2018 2019; 57 58
2024; 343
2020; 11
2024; 36
2019 2023 2023; 2 33 62
2020 2011; 3 133
2020 2024; 16 681
2017 2021; 29 46
2015 2016; 6 7
2009; 11
2018; 8
2024; 357
2024 2022 2024 2020; 15 13 88 32
2024 2024 2023; 8 24 23
2007 2004; 607 108
2022; 35
2018; 30
2024; 4
2022; 32
2019; 7
2019; 4
2017 2011 2023 2017; 46 3 16 2
2023 2018; 13 7
2023; 325
2024; 12
2021; 143
2024; 15
2024; 17
2017; 139
2016; 6
2021 2020; 5 120
2022; 5
2023 2023 2022 2021; 9 11 440 12
2022; 13
2022; 15
2017 2013; 42 38
2020; 23
2020; 21
2022; 104
2024; 491
2017; 8
2023; 35
2023; 6
2023; 7
2023; 145
2023; 9
2015 2011; 7 56
2020; 59
2024; 146
2021 2020 2020; 33 2 10
2024 2023 2022; 15 10 12
2017; 355
1977 1979; 22 282
2017; 9
2020; 6
2020 2020; 45 211
2014; 5
2021 2024; 33 128
2021; 31
2023; 25
2013; 17
2018 2020; 11 11
2024; 71
2024; 61
2020; 49
2024; 63
2016; 116
2022; 126
2023; 10
2011; 334
2021; 7
2023; 13
2015; 6
2021; 5
2023; 14
2015; 5
2023; 11
2023; 15
2010
2023; 641
2023; 19
2024; 60
2021 2021 2019; 143 143 10
2024; 55
2015; 8
2021; 13
2023 2023; 5 35
2023; 85
2023; 89
2021; 11
2016; 773
2023 2023 2024 2024; 62 7 120 365
2016; 774
2018; 57
e_1_2_8_26_3
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_15_3
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_15_2
Exner K. S. (e_1_2_8_97_1) 2021; 13
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_120_2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_76_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_110_2
e_1_2_8_2_3
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_14_4
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_79_2
e_1_2_8_14_3
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_119_3
e_1_2_8_24_2
e_1_2_8_119_4
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_111_3
e_1_2_8_111_2
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_78_2
e_1_2_8_70_1
e_1_2_8_122_1
Doyle A. D. (e_1_2_8_41_1) 2015; 7
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
Exner K. S. (e_1_2_8_40_1) 2022; 5
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_4_3
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_39_1
e_1_2_8_16_4
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_35_3
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
Man I. C. (e_1_2_8_119_2) 2011; 3
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 15 13 88 32
  start-page: 1767 7754 94
  year: 2024 2022 2024 2020
  publication-title: Nat. Commun. Nat. Commun. J. Energy Chem. Adv. Mater.
– volume: 17
  start-page: 339
  year: 2013
  publication-title: J. Solid State Electrochem.
– volume: 8
  start-page: 1449
  year: 2017
  publication-title: Nat. Commun.
– volume: 57
  start-page: 2488
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 24
  year: 2002
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 2501
  year: 2024
  publication-title: Nat. Commun.
– volume: 57 58
  start-page: 7631
  year: 2018 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 62 7 120 365
  start-page: 1025
  year: 2023 2023 2024 2024
  publication-title: Angew. Chem., Int. Ed. Mater. Chem. Front. Nano Energy Mater. Lett.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1865
  year: 2009
  publication-title: Electrochem. Commun.
– volume: 33 128
  start-page: 1936
  year: 2021 2024
  publication-title: Adv. Mater. J. Phys. Chem.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3784
  year: 2022
  publication-title: Nat. Commun.
– volume: 143 143 10
  start-page: 6482 1152
  year: 2021 2021 2019
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal.
– volume: 15
  start-page: 95
  year: 2024
  publication-title: Nat. Commun.
– volume: 29 46
  start-page: 609
  year: 2017 2021
  publication-title: Adv. Mater. Int. J. Hydrogen Energy
– volume: 325
  year: 2023
  publication-title: Appl. Catal., B
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 126
  start-page: 922
  year: 2022
  publication-title: J. Phys. Chem.
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 5420
  year: 2023
  publication-title: CrystEngComm
– volume: 55
  start-page: 839
  year: 2024
  publication-title: Int. J. Hydrogen Energy
– volume: 355
  year: 2017
  publication-title: Science
– volume: n/a
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 72 36
  start-page: 621
  year: 2000 2024
  publication-title: Rev. Mod. Phys. Adv. Mater.
– volume: 9
  start-page: 457
  year: 2017
  publication-title: Nat. Chem.
– volume: 15
  start-page: 1119
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 6892
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 143
  start-page: 5201
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 2 33 62
  start-page: 304
  year: 2019 2023 2023
  publication-title: Nat. Catal. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 7
  start-page: 117
  year: 2021
  publication-title: ChemNanoMat
– volume: 15
  start-page: 2519
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 3 133
  start-page: 516
  year: 2020 2011
  publication-title: Nat. Catal. J. Am. Chem. Soc.
– volume: 13 7
  start-page: 6414 2101
  year: 2022 2021
  publication-title: Nat. Commun. Chem
– volume: 773
  start-page: 69
  year: 2016
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 8098
  year: 2016
  publication-title: ACS Catal.
– volume: 8
  start-page: 4628
  year: 2018
  publication-title: ACS Catal.
– volume: 42 38
  start-page: 4901
  year: 2017 2013
  publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy
– volume: 11
  start-page: 5368
  year: 2020
  publication-title: Nat. Commun.
– volume: 7 56
  start-page: 738 2009
  year: 2015 2011
  publication-title: ChemPlusChem Electrochim. Acta
– volume: 4
  start-page: 2719
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 902
  year: 2022
  publication-title: ACS Catal.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  start-page: 1071
  year: 2024
  publication-title: Int. J. Hydrogen Energy
– volume: 85
  start-page: 220
  year: 2023
  publication-title: J. Energy Chem.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– year: 2010
– volume: 14
  start-page: 354
  year: 2023
  publication-title: Nat. Commun.
– volume: 7
  start-page: 558
  year: 2023
  publication-title: Joule
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 33 2 10
  year: 2021 2020 2020
  publication-title: Adv. Mater. Adv. Energy Sustainability Res. Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 104
  year: 2022
  publication-title: Nano Energy
– volume: 8 24 23
  start-page: 6148 6637
  year: 2024 2024 2023
  publication-title: Small Methods Nano Lett. Nano Lett.
– volume: 10
  start-page: 4849
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  year: 2023
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 3221
  year: 2021
  publication-title: Joule
– volume: 11
  start-page: 2695
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 2474
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 145
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 190
  year: 2015
  publication-title: Chem. Sci.
– volume: 6
  start-page: 160
  year: 2020
  publication-title: NPJ Comput. Mater.
– volume: 5 35
  year: 2023 2023
  publication-title: EnergyChem Adv. Mater.
– volume: 15 10 12
  start-page: 2928
  year: 2024 2023 2022
  publication-title: Nat. Commun. Adv. Sci. ACS Catal.
– volume: 12
  start-page: 3548
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 491
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 71
  start-page: 804
  year: 2024
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  year: 2024
  publication-title: Chem. Catal.
– volume: 13
  year: 2023
  publication-title: ACS Catal.
– volume: 774
  start-page: 102
  year: 2016
  publication-title: J. Electroanal. Chem.
– volume: 45 211
  year: 2020 2020
  publication-title: Int. J. Hydrogen Energy Polymer
– volume: 357
  year: 2024
  publication-title: Appl. Energy
– volume: 9 11 440 12
  start-page: 3025 5676
  year: 2023 2023 2022 2021
  publication-title: Chem J. Mater. Chem. Chem. Eng. J. Nat. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 343
  year: 2024
  publication-title: Appl. Catal., B
– volume: 22 282
  start-page: 329 281
  year: 1977 1979
  publication-title: Electrochim. Acta Nature
– volume: 14
  start-page: 843
  year: 2023
  publication-title: Nat. Commun.
– volume: 6 7
  start-page: 3321
  year: 2015 2016
  publication-title: Chem. Sci. Adv. Energy Mater.
– volume: 60
  start-page: 825
  year: 2024
  publication-title: Int. J. Hydrogen Energy
– volume: 14
  start-page: 1248
  year: 2023
  publication-title: Nat. Commun.
– volume: 12
  year: 2024
  publication-title: J. Mater. Chem.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 19
  year: 2023
  publication-title: Small
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 5365
  year: 2023
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1882
  year: 2023
  publication-title: Chem
– volume: 35
  year: 2022
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4066
  year: 2021
  publication-title: ChemPlusChem
– volume: 11 11
  start-page: 3452 4921
  year: 2018 2020
  publication-title: Energy Environ. Sci. Nat. Commun.
– volume: 17
  start-page: 6931
  year: 2024
  publication-title: Nano Res.
– volume: 5 120
  start-page: 2164
  year: 2021 2020
  publication-title: Joule Chem. Rev.
– volume: 6
  start-page: 1439
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 21
  start-page: 225
  year: 2020
  publication-title: Curr. Opin. Electrochem.
– volume: 31 10 4 29
  year: 2020 2019 2022 2017
  publication-title: Adv. Funct. Mater. Adv. Energy Mater. EnergyChem Adv. Mater.
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 607 108
  start-page: 83
  year: 2007 2004
  publication-title: J. Electroanal. Chem. J. Phys. Chem. B
– volume: 7
  start-page: 6411
  year: 2019
  publication-title: J. Mater. Chem.
– volume: 5
  year: 2022
  publication-title: J. Phys. Condens. Matter
– volume: 46 3 16 2
  start-page: 337 4767
  year: 2017 2011 2023 2017
  publication-title: Chem. Soc. Rev. ChemPlusChem Nano Res. Nat. Rev. Mater.
– volume: 8
  start-page: 1404
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 8670
  year: 2023
  publication-title: ACS Catal.
– volume: 641
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 109
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 13 7
  start-page: 1346 22
  year: 2023 2018
  publication-title: Catalysts Curr. Opin. Electrochem.
– volume: 89
  year: 2023
  publication-title: ChemPlusChem
– volume: 13
  start-page: 4120
  year: 2023
  publication-title: ACS Catal.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 16 681
  year: 2020 2024
  publication-title: Small Appl. Catal., A
– ident: e_1_2_8_18_2
  doi: 10.1002/anie.201900796
– ident: e_1_2_8_26_3
  doi: 10.1002/aenm.201903120
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.202305939
– ident: e_1_2_8_92_1
  doi: 10.1016/j.apsusc.2023.158508
– ident: e_1_2_8_16_3
  doi: 10.1016/j.cej.2022.135851
– ident: e_1_2_8_33_1
  doi: 10.1021/acscatal.8b00612
– ident: e_1_2_8_79_2
  doi: 10.1038/s41467-020-18686-0
– ident: e_1_2_8_114_1
  doi: 10.1002/cnma.202000526
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202006328
– ident: e_1_2_8_35_3
  doi: 10.1002/anie.202216645
– ident: e_1_2_8_70_1
  doi: 10.1039/D3CE00695F
– ident: e_1_2_8_29_1
  doi: 10.1016/j.apcatb.2022.122313
– ident: e_1_2_8_121_1
  doi: 10.1038/s41929-020-0457-6
– ident: e_1_2_8_31_1
  doi: 10.1007/s10008-012-1918-x
– ident: e_1_2_8_119_3
  doi: 10.1007/s12274-022-5240-3
– ident: e_1_2_8_4_2
  doi: 10.1002/aenm.201902666
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-023-36833-1
– ident: e_1_2_8_79_1
  doi: 10.1039/C8EE02657B
– ident: e_1_2_8_52_1
  doi: 10.1016/j.joule.2023.02.012
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202004243
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.202404213
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.202217565
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apcatb.2023.123584
– ident: e_1_2_8_124_1
  doi: 10.1007/s12274-024-6696-0
– ident: e_1_2_8_118_1
  doi: 10.1002/aenm.202300177
– ident: e_1_2_8_61_1
  doi: 10.1016/j.nanoen.2022.107960
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-024-46815-6
– ident: e_1_2_8_83_1
  doi: 10.1016/j.cej.2024.152202
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jechem.2023.06.001
– ident: e_1_2_8_68_1
  doi: 10.1039/D3QI01609A
– ident: e_1_2_8_9_1
  doi: 10.1039/C5SC00518C
– ident: e_1_2_8_113_1
  doi: 10.1039/C9TA00598F
– ident: e_1_2_8_106_1
  doi: 10.1021/ar00121a004
– ident: e_1_2_8_95_1
  doi: 10.1038/s41524-020-00430-3
– ident: e_1_2_8_111_1
  doi: 10.1021/jacs.1c03473
– ident: e_1_2_8_84_1
  doi: 10.1021/acscatal.3c03257
– ident: e_1_2_8_10_1
  doi: 10.1021/acsanm.3c03670
– ident: e_1_2_8_78_2
  doi: 10.1016/j.polymer.2020.123080
– ident: e_1_2_8_110_1
  doi: 10.1016/j.joule.2021.05.018
– ident: e_1_2_8_26_2
  doi: 10.1002/aesr.202000067
– ident: e_1_2_8_76_2
  doi: 10.1016/j.ijhydene.2020.09.268
– ident: e_1_2_8_54_1
  doi: 10.1016/j.joule.2021.10.002
– ident: e_1_2_8_32_1
  doi: 10.1016/j.elecom.2009.08.004
– ident: e_1_2_8_82_1
  doi: 10.1016/j.apenergy.2023.122442
– ident: e_1_2_8_101_1
  doi: 10.1021/acs.jpca.2c06252
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.nanolett.4c01623
– ident: e_1_2_8_6_1
  doi: 10.1002/smll.202002426
– ident: e_1_2_8_93_1
  doi: 10.1103/RevModPhys.72.621
– ident: e_1_2_8_12_2
  doi: 10.1038/282281a0
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-020-19212-y
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202009779
– ident: e_1_2_8_121_2
  doi: 10.1021/ja205300a
– ident: e_1_2_8_103_1
  doi: 10.1021/jacs.1c01525
– ident: e_1_2_8_86_1
  doi: 10.1021/acscatal.1c03599
– ident: e_1_2_8_123_1
  doi: 10.1002/aenm.202300152
– ident: e_1_2_8_67_1
  doi: 10.1021/jacs.4c04096
– ident: e_1_2_8_111_3
  doi: 10.1021/acscatal.9b04922
– ident: e_1_2_8_1_1
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-024-46176-0
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201808825
– ident: e_1_2_8_19_1
  doi: 10.1021/jz501061n
– ident: e_1_2_8_17_2
  doi: 10.1002/advs.202207695
– ident: e_1_2_8_119_4
  doi: 10.1038/natrevmats.2017.59
– ident: e_1_2_8_44_1
  doi: 10.1016/j.checat.2023.100869
– ident: e_1_2_8_14_2
  doi: 10.1038/s41467-022-35426-8
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-019-12886-z
– ident: e_1_2_8_48_1
  doi: 10.1002/anie.202007672
– ident: e_1_2_8_111_2
  doi: 10.1021/jacs.1c00384
– ident: e_1_2_8_115_1
  doi: 10.1016/j.isci.2019.100756
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.6b00398
– ident: e_1_2_8_122_1
  doi: 10.1021/acscatal.2c04439
– ident: e_1_2_8_88_1
  doi: 10.1016/j.chempr.2023.03.005
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201709652
– ident: e_1_2_8_108_1
  doi: 10.1021/acscatal.6b02343
– ident: e_1_2_8_12_1
  doi: 10.1016/0013-4686(77)85082-2
– ident: e_1_2_8_23_1
  doi: 10.1002/cplu.202300514
– ident: e_1_2_8_80_1
  doi: 10.1039/D1EE02112E
– ident: e_1_2_8_7_2
  doi: 10.1021/acs.jpca.4c04643
– ident: e_1_2_8_24_2
  doi: 10.1016/j.coelec.2017.10.001
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202305659
– ident: e_1_2_8_4_4
  doi: 10.1002/adma.201703798
– ident: e_1_2_8_105_1
  doi: 10.1021/jacs.7b06808
– ident: e_1_2_8_27_1
  doi: 10.1039/C9CS00607A
– volume: 7
  start-page: 738
  year: 2015
  ident: e_1_2_8_41_1
  publication-title: ChemPlusChem
– ident: e_1_2_8_112_1
  doi: 10.1002/adma.201801351
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.202402018
– ident: e_1_2_8_13_1
  doi: 10.1016/j.enchem.2023.100104
– ident: e_1_2_8_119_1
  doi: 10.1039/C6CS00328A
– ident: e_1_2_8_17_3
  doi: 10.1021/acscatal.2c03968
– ident: e_1_2_8_87_1
  doi: 10.1039/D4TA01998A
– ident: e_1_2_8_104_1
  doi: 10.1126/science.1212858
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.3c13619
– ident: e_1_2_8_25_2
  doi: 10.1021/jp047349j
– ident: e_1_2_8_66_1
  doi: 10.1038/s41467-023-41036-9
– ident: e_1_2_8_120_2
  doi: 10.1016/j.chempr.2021.03.015
– ident: e_1_2_8_98_1
  doi: 10.1016/j.jelechem.2016.04.033
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.202300945
– ident: e_1_2_8_21_1
  doi: 10.1021/acscatal.3c01511
– ident: e_1_2_8_2_3
  doi: 10.1016/j.nanoen.2023.109149
– ident: e_1_2_8_41_2
  doi: 10.1016/j.electacta.2010.11.062
– ident: e_1_2_8_47_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ijhydene.2024.02.228
– ident: e_1_2_8_74_1
  doi: 10.1002/adfm.202410193
– ident: e_1_2_8_110_2
  doi: 10.1021/acs.chemrev.0c00576
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202211884
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-024-46801-y
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-022-31468-0
– ident: e_1_2_8_71_1
  doi: 10.1016/j.ijhydene.2024.02.371
– volume: 5
  year: 2022
  ident: e_1_2_8_40_1
  publication-title: J. Phys. Condens. Matter
– ident: e_1_2_8_39_1
  doi: 10.1039/D2EE00158F
– ident: e_1_2_8_99_1
  doi: 10.1016/j.jelechem.2016.05.015
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijhydene.2017.10.045
– ident: e_1_2_8_75_1
  doi: 10.1126/sciadv.adi8025
– ident: e_1_2_8_102_1
  doi: 10.1002/adma.202208904
– ident: e_1_2_8_120_1
  doi: 10.1038/s41467-022-34169-w
– ident: e_1_2_8_24_1
  doi: 10.3390/catal13101346
– ident: e_1_2_8_16_2
  doi: 10.1039/D3TA04597H
– ident: e_1_2_8_16_4
  doi: 10.1038/s41467-021-26025-0
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.202208539
– volume: 3
  year: 2011
  ident: e_1_2_8_119_2
  publication-title: ChemPlusChem
– ident: e_1_2_8_91_1
  doi: 10.1039/C9EE01872G
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202009613
– ident: e_1_2_8_14_3
  doi: 10.1016/j.jechem.2023.09.010
– ident: e_1_2_8_16_1
  doi: 10.1016/j.chempr.2023.10.009
– ident: e_1_2_8_42_1
  doi: 10.1039/C4EE03869J
– ident: e_1_2_8_58_1
  doi: 10.1021/acscatal.2c05353
– ident: e_1_2_8_78_1
  doi: 10.1016/j.ijhydene.2020.07.202
– ident: e_1_2_8_2_4
  doi: 10.1016/j.matlet.2024.136485
– ident: e_1_2_8_65_1
  doi: 10.1039/D3TA03252C
– ident: e_1_2_8_94_1
  doi: 10.1093/oso/9780195393354.001.0001
– ident: e_1_2_8_15_3
  doi: 10.1021/acs.nanolett.3c01831
– ident: e_1_2_8_100_1
  doi: 10.1021/acs.jpclett.0c00335
– ident: e_1_2_8_46_1
  doi: 10.1038/s41467-023-44483-6
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_8_89_1
  doi: 10.1002/smll.202304889
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.202002212
– ident: e_1_2_8_43_1
  doi: 10.1039/C4SC02685C
– ident: e_1_2_8_45_1
  doi: 10.1038/nchem.2695
– ident: e_1_2_8_109_1
  doi: 10.1039/D1EE02636D
– ident: e_1_2_8_15_1
  doi: 10.1002/smtd.202301490
– ident: e_1_2_8_96_1
  doi: 10.1038/srep12167
– ident: e_1_2_8_77_1
  doi: 10.1016/j.ijhydene.2024.05.315
– volume: 13
  start-page: 4066
  year: 2021
  ident: e_1_2_8_97_1
  publication-title: ChemPlusChem
– ident: e_1_2_8_2_2
  doi: 10.1039/D3QM00010A
– ident: e_1_2_8_117_1
  doi: 10.1038/s41467-023-36380-9
– ident: e_1_2_8_35_2
  doi: 10.1002/adfm.202305243
– ident: e_1_2_8_38_1
  doi: 10.1021/jacs.3c05556
– ident: e_1_2_8_93_2
  doi: 10.1002/adma.202310918
– ident: e_1_2_8_116_1
  doi: 10.1016/j.apcatb.2023.123559
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201803551
– ident: e_1_2_8_63_1
  doi: 10.1038/s41467-023-35913-6
– ident: e_1_2_8_76_1
  doi: 10.1002/adma.201700404
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-017-01734-7
– ident: e_1_2_8_28_1
  doi: 10.1021/acsenergylett.9b01758
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ijhydene.2023.11.063
– ident: e_1_2_8_14_4
  doi: 10.1002/adma.201906905
– ident: e_1_2_8_85_1
  doi: 10.1016/j.coelec.2020.02.024
– ident: e_1_2_8_107_1
  doi: 10.1021/acsaem.2c03300
– ident: e_1_2_8_6_2
  doi: 10.1016/j.apcata.2024.119780
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.202312369
– ident: e_1_2_8_35_1
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_8_9_2
  doi: 10.1002/aenm.201601275
– ident: e_1_2_8_53_1
  doi: 10.1002/smll.202208202
– ident: e_1_2_8_4_3
  doi: 10.1016/j.enchem.2022.100072
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.202200131
SSID ssj0031247
Score 2.514814
SecondaryResourceType review_article
Snippet Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2406657
SubjectTerms acid oxygen evolution reaction
Acidic oxides
Catalysts
Catalytic activity
Catalytic converters
Chemical synthesis
Clean energy
design strategies
Durability
Electrocatalysts
Electrolysis
Green hydrogen
Hydrogen production
Hydrogen-based energy
Metal oxides
Noble metals
Oxygen evolution reactions
reaction mechanism
Ruthenium
Title Research Progress in Structure Evolution and Durability Modulation of Ir‐ and Ru‐Based OER Catalysts under Acidic Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406657
https://www.ncbi.nlm.nih.gov/pubmed/39370563
https://www.proquest.com/docview/3143202045
https://www.proquest.com/docview/3113748194
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuXQB32lBeRKlXoKJLbjTY50WQQI2mopErfIsR1pBSRos6lET_yE_sb-Embygm1VVWpvjjJWHHsen-3xZ4D3QZyNhAsTX4eowdJkmhaaYp-4yAQ6ZZxEN9kWn9TBmTw6j84fnOJv-SGGBTeyjMZfk4HrrNq5Jw2tri5p64AikoroODklbBEqmg78UQKDV3O7CsYsn4i3etbGgO8sV1-OSr9BzWXk2oSe_Seg-0a3GScX2_Ui2zbff-Fz_J-_egqPO1zKdltFegYrrliHtQdshc_hts_SY18oqQtdJJsV7LQhoK3njk2-dWrMdGHZXj1vKcBv2Elpu0vCWJmzw_nP2x-NyLTG0kcMo5Z9nkzZmFaSbqpFxehg25ztmpmdGTYuaVedrOMFnO1Pvo4P_O4CB9-IkUDnZXFCp0zEsyA3OtGxikKDUzST5yqKYisUgg-V8CDnMudOZeQgLFcWQZ2OQyNewmpRFu41sJF2EgcQJWIpZWZ1wBOey0CMYpc4rTzw-wFMTcduTpdsXKYtLzNPqWfToWc9-DDIX7e8Hn-U3Oj1Ie3su0oFwkxO54ojD94Nr9EyabtFF66sSSYkbp8wkR68avVo-BTRECL0FB7wRhv-0ob09OT4eHh68y-V3sIjKreZOBuwisrhNhFPLbKtxmbuAJxBF8w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcIAc2BdDgEYCcXJid3s9cAgzE82QmYAmiZSb0263pVGCjcZj0HDKJ_Ar_AqfwJdQ5Q0GhJCQcuDmpbyo-9XS3dWvAJ5ZQewLbYemtBHBjoolTTQFJnGRCTTKOIiusi32veGR8_rYPV6DL-1emJofoptwI82o7DUpOE1Ib_9gDS3endHaAbkkz_WbvMo9vfyIo7bi5aiPXfyc893BYW9oNoUFTCV8gUqV4EDDUy6PrVTJUAaeayscOqg09Vw3SISHTtELuZVyJ-Xaiwm4CfcSDDZkYCuB770El6mMONH196cdY5VAd1nVc0EvaRLVV8sTafHt1f9d9YO_BbersXLl7Havw9e2meocl9OtchFvqU-_MEj-V-14A641oTfbqXXlJqzp7BZs_ETIeBvO20RE9pby1tALsFnGDiqO3XKu2eBDo6lMZgnrl_Oa5XzJJnnS1EFjecpG82_nnyuRaYlHrzBSSNibwZT1aLJsWSwKRnv35mxHzZKZYr2cEgfIANyBowtpgruwnuWZvg_Ml9pBxKBE4DhOnEiLhzx1LOEHOtTSM8BsEROphsCd6oicRTX1NI-oJ6OuJw140cm_r6lL_ii52QIwakxYEQmMpDltnXYNeNrdRuNDK0oy03lJMjbRF9mhY8C9Grjdp4hpEaNrYQCv4PeXf4gOJuNxd_bgXx56AleGh5NxNB7t7z2Eq3S9TjzahHUEin6E4eMiflwpLIOTi0b2d_l1crE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FICE4sC-GAI0E4uTEbrfb9oFDmEUZMgnRhEi5Gbu7LY0IdjSeAQ2nfAKfwq_wC3wJVd5gQAgJKQduXsqLul91VXVXvwJ46oRp4Bk3shMXESxUmtBEU2gTF5mHgzIG0VW2xb7cORKvjv3jNfjS7oWp-SG6CTfSjGq8JgU_1dnWD9LQ8v0JLR2QRZJ-0KRV7prlRwzayhejPvbwM86Hgze9HbupK2ArL_BQpzTGGVL5PHUylURJKH1XYeSgskz6fqg9iTZRRtzJuMi4kSnhVnOp0ddIQld5-N4LcFFIJ6JiEf1JR1jlobWsyrmgkbSJ6auliXT41ur_rprB33zbVVe5snXDa_C1baU6xeXd5mKebqpPvxBI_k_NeB2uNo4326415QasmfwmXPmJjvEWnLVpiOyAstbQBrBpzg4rht3FzLDBh0ZPWZJr1l_Mao7zJdsrdFMFjRUZG82-nX2uRCYLPHqJfoJmrwcT1qOpsmU5Lxnt3JuxbTXVU8V6BaUNkPrfhqNzaYI7sJ4XubkHLEiMQMCgRCiESHXi8IhnwvGC0EQmkRbYLWBi1dC3UxWRk7gmnuYx9WTc9aQFzzv505q45I-SGy3-4mYAK2MP_WhOG6d9C550t3HoofWkJDfFgmRcIi9yI2HB3Rq33aeIZxF9a88CXqHvL_8QH-6Nx93Z_X956DFcOugP4_Fof_cBXKbLddbRBqwjTsxD9B3n6aNKXRm8PW9gfwcLEHFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+in+Structure+Evolution+and+Durability+Modulation+of+Ir%E2%80%90+and+Ru%E2%80%90Based+OER+Catalysts+under+Acidic+Conditions&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zi%2C+Yunhai&rft.au=Zhang%2C+Chengxu&rft.au=Zhao%2C+Jianqiang&rft.au=Cheng%2C+Ying&rft.date=2024-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=50&rft_id=info:doi/10.1002%2Fsmll.202406657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202406657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon