Research Progress in Structure Evolution and Durability Modulation of Ir‐ and Ru‐Based OER Catalysts under Acidic Conditions
Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 50; pp. e2406657 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application.
This paper analyzes the catalyst dissolution process from both thermodynamic and kinetic perspectives. A comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. The catalyst structure evolution is made a summary and four strategies are proposed to improve its stability. |
---|---|
AbstractList | Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application.Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large-scale commercial development. Under the high current density and harsh acid-base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high-valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, "electron buffer (ECB) strategy", combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir-based catalysts and boost their future application. Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application. Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution reaction catalysts, as the key to water electrolysis hydrogen production technology, have been subject to durability constraints, preventing large‐scale commercial development. Under the high current density and harsh acid‐base electrolyte conditions of the water electrolysis reaction, the active metals in the catalysts are easily converted into high‐valent soluble species to dissolve, leading to poor structural durability of the catalysts. There is an urgent need to overcome the durability challenges under acidic conditions and develop electrocatalysts with both high catalytic activity and high durability. In this review, the latest research results are analyzed in depth from both thermodynamic and kinetic perspectives. First, a comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. Second, the evolution of the structure of catalysts possessing high durability is discussed. Finally, four new strategies for the preparation of stable catalysts, “electron buffer (ECB) strategy”, combination strength control, strain control, and surface coating, are summarized. The challenges and prospects are also elaborated for the future synthesis of more effective Ru/Ir‐based catalysts and boost their future application. This paper analyzes the catalyst dissolution process from both thermodynamic and kinetic perspectives. A comprehensive summary of the structural deactivation state process of noble metal oxide catalysts is presented. The catalyst structure evolution is made a summary and four strategies are proposed to improve its stability. |
Author | Yuan, Jianliang Zhao, Jianqiang Hu, Jue Zi, Yunhai Cheng, Ying Zhang, Chengxu |
Author_xml | – sequence: 1 givenname: Yunhai surname: Zi fullname: Zi, Yunhai organization: Kunming University of Science and Technology – sequence: 2 givenname: Chengxu surname: Zhang fullname: Zhang, Chengxu organization: Kunming University of Science and Technology – sequence: 3 givenname: Jianqiang surname: Zhao fullname: Zhao, Jianqiang organization: Kunming University of Science and Technology – sequence: 4 givenname: Ying surname: Cheng fullname: Cheng, Ying organization: Kunming University of Science and Technology – sequence: 5 givenname: Jianliang surname: Yuan fullname: Yuan, Jianliang organization: LuXi KuoBo Precious Metals Co. Ltd – sequence: 6 givenname: Jue orcidid: 0000-0002-0821-3874 surname: Hu fullname: Hu, Jue email: hujue@kust.edu.cn organization: Southwest United Graduate School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39370563$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWGT4GOPPTPLkgaolKoohbXl2B5w5djFF1B2fQSekSdhkrRFqoRY-Uj-vqOj_z9GByEGi9BLIFMghL7Na--nlNCGCMHbJ-gIBLCJ6Gh_8DADOUTHOV8TwoA27TN0yHrWEi7YEbpd2mxV0t_wpxS_JpszdgFflVR1qcni-Y_oa3ExYBUMPqtJrZx3ZYMvoqle7X7igM_T79tfO2RZx-mdytbgy_kSz1RRfpNLxjUYm_CpdsZpPIvBuK2cn6Ong_LZvrh7T9CX9_PPs4-TxeWH89npYqJZy9oJM7SjQnO6IoNWveoEB027Vg-D4LwzTAAQ0VMy0GagVqw4EDBUGC5AdaDZCXqz33uT4vdqc5Frl7X1XgUba5YMgLVNB30zoq8fodexpjBeN1ING9MmDR-pV3dUXa2tkTfJrVXayPtsR6DZAzrFnJMdpHZll1hJynkJRG4rlNsK5UOFozZ9pN1v_qfQ74WfztvNf2h5dbFY_HX_AIffr9c |
CitedBy_id | crossref_primary_10_1016_j_checat_2025_101324 |
Cites_doi | 10.1002/anie.201900796 10.1002/aenm.201903120 10.1002/adma.202305939 10.1016/j.apsusc.2023.158508 10.1016/j.cej.2022.135851 10.1021/acscatal.8b00612 10.1038/s41467-020-18686-0 10.1002/cnma.202000526 10.1002/adma.202006328 10.1002/anie.202216645 10.1039/D3CE00695F 10.1016/j.apcatb.2022.122313 10.1038/s41929-020-0457-6 10.1007/s10008-012-1918-x 10.1007/s12274-022-5240-3 10.1002/aenm.201902666 10.1038/s41467-023-36833-1 10.1039/C8EE02657B 10.1016/j.joule.2023.02.012 10.1002/adma.202004243 10.1002/adma.202404213 10.1002/anie.202217565 10.1016/j.apcatb.2023.123584 10.1007/s12274-024-6696-0 10.1002/aenm.202300177 10.1016/j.nanoen.2022.107960 10.1038/s41467-024-46815-6 10.1016/j.cej.2024.152202 10.1016/j.jechem.2023.06.001 10.1039/D3QI01609A 10.1039/C5SC00518C 10.1039/C9TA00598F 10.1021/ar00121a004 10.1038/s41524-020-00430-3 10.1021/jacs.1c03473 10.1021/acscatal.3c03257 10.1021/acsanm.3c03670 10.1016/j.polymer.2020.123080 10.1016/j.joule.2021.05.018 10.1002/aesr.202000067 10.1016/j.ijhydene.2020.09.268 10.1016/j.joule.2021.10.002 10.1016/j.elecom.2009.08.004 10.1016/j.apenergy.2023.122442 10.1021/acs.jpca.2c06252 10.1021/acs.nanolett.4c01623 10.1002/smll.202002426 10.1103/RevModPhys.72.621 10.1038/282281a0 10.1038/s41467-020-19212-y 10.1002/adfm.202009779 10.1021/ja205300a 10.1021/jacs.1c01525 10.1021/acscatal.1c03599 10.1002/aenm.202300152 10.1021/jacs.4c04096 10.1021/acscatal.9b04922 10.1038/s41467-024-46176-0 10.1002/anie.201808825 10.1021/jz501061n 10.1002/advs.202207695 10.1038/natrevmats.2017.59 10.1016/j.checat.2023.100869 10.1038/s41467-022-35426-8 10.1038/s41467-019-12886-z 10.1002/anie.202007672 10.1021/jacs.1c00384 10.1016/j.isci.2019.100756 10.1021/acs.chemrev.6b00398 10.1021/acscatal.2c04439 10.1016/j.chempr.2023.03.005 10.1002/anie.201709652 10.1021/acscatal.6b02343 10.1016/0013-4686(77)85082-2 10.1002/cplu.202300514 10.1039/D1EE02112E 10.1021/acs.jpca.4c04643 10.1016/j.coelec.2017.10.001 10.1002/adma.202305659 10.1002/adma.201703798 10.1021/jacs.7b06808 10.1039/C9CS00607A 10.1002/adma.201801351 10.1002/anie.202402018 10.1016/j.enchem.2023.100104 10.1039/C6CS00328A 10.1021/acscatal.2c03968 10.1039/D4TA01998A 10.1126/science.1212858 10.1021/acsami.3c13619 10.1021/jp047349j 10.1038/s41467-023-41036-9 10.1016/j.chempr.2021.03.015 10.1016/j.jelechem.2016.04.033 10.1002/adma.202300945 10.1021/acscatal.3c01511 10.1016/j.nanoen.2023.109149 10.1016/j.electacta.2010.11.062 10.1126/science.aad4998 10.1016/j.ijhydene.2013.01.151 10.1016/j.ijhydene.2024.02.228 10.1002/adfm.202410193 10.1021/acs.chemrev.0c00576 10.1002/adma.202211884 10.1038/s41467-024-46801-y 10.1038/s41467-022-31468-0 10.1016/j.ijhydene.2024.02.371 10.1039/D2EE00158F 10.1016/j.jelechem.2016.05.015 10.1016/j.ijhydene.2017.10.045 10.1126/sciadv.adi8025 10.1002/adma.202208904 10.1038/s41467-022-34169-w 10.3390/catal13101346 10.1039/D3TA04597H 10.1038/s41467-021-26025-0 10.1002/adma.202208539 10.1039/C9EE01872G 10.1002/adfm.202009613 10.1016/j.jechem.2023.09.010 10.1016/j.chempr.2023.10.009 10.1039/C4EE03869J 10.1021/acscatal.2c05353 10.1016/j.ijhydene.2020.07.202 10.1016/j.matlet.2024.136485 10.1039/D3TA03252C 10.1093/oso/9780195393354.001.0001 10.1021/acs.nanolett.3c01831 10.1021/acs.jpclett.0c00335 10.1038/s41467-023-44483-6 10.1016/j.jelechem.2006.11.008 10.1002/smll.202304889 10.1002/smll.202002212 10.1039/C4SC02685C 10.1038/nchem.2695 10.1039/D1EE02636D 10.1002/smtd.202301490 10.1038/srep12167 10.1016/j.ijhydene.2024.05.315 10.1039/D3QM00010A 10.1038/s41467-023-36380-9 10.1002/adfm.202305243 10.1021/jacs.3c05556 10.1002/adma.202310918 10.1016/j.apcatb.2023.123559 10.1002/adma.201803551 10.1038/s41467-023-35913-6 10.1002/adma.201700404 10.1038/s41467-017-01734-7 10.1021/acsenergylett.9b01758 10.1016/j.ijhydene.2023.11.063 10.1002/adma.201906905 10.1016/j.coelec.2020.02.024 10.1021/acsaem.2c03300 10.1016/j.apcata.2024.119780 10.1002/adma.202312369 10.1038/s41929-019-0246-2 10.1002/aenm.201601275 10.1002/smll.202208202 10.1016/j.enchem.2022.100072 10.1002/adfm.202200131 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202406657 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39370563 10_1002_smll_202406657 SMLL202406657 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Natural Science Foundation of Yunnan Province funderid: 202401AV070011 – fundername: National Natural Science Foundation of China funderid: 52364041 – fundername: National Natural Science Foundation of China grantid: 52364041 – fundername: Natural Science Foundation of Yunnan Province grantid: 202401AV070011 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3737-3d2826c52b0fca9a8651c287cff6558d361106920f24f2e6b5101d26d561a81c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:46:35 EDT 2025 Fri Jul 25 12:05:24 EDT 2025 Thu Apr 03 07:03:50 EDT 2025 Tue Jul 01 00:42:01 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Sun Jul 06 04:45:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | acid oxygen evolution reaction design strategies reaction mechanism catalysts durability |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-3d2826c52b0fca9a8651c287cff6558d361106920f24f2e6b5101d26d561a81c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0821-3874 |
PMID | 39370563 |
PQID | 3143202045 |
PQPubID | 1046358 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_3113748194 proquest_journals_3143202045 pubmed_primary_39370563 crossref_citationtrail_10_1002_smll_202406657 crossref_primary_10_1002_smll_202406657 wiley_primary_10_1002_smll_202406657_SMLL202406657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2019 2022 2017; 31 10 4 29 2024; n/a 2002; 19 2019; 10 2022 2021; 13 7 2019; 12 2020; 16 2000 2024; 72 36 2018 2019; 57 58 2024; 343 2020; 11 2024; 36 2019 2023 2023; 2 33 62 2020 2011; 3 133 2020 2024; 16 681 2017 2021; 29 46 2015 2016; 6 7 2009; 11 2018; 8 2024; 357 2024 2022 2024 2020; 15 13 88 32 2024 2024 2023; 8 24 23 2007 2004; 607 108 2022; 35 2018; 30 2024; 4 2022; 32 2019; 7 2019; 4 2017 2011 2023 2017; 46 3 16 2 2023 2018; 13 7 2023; 325 2024; 12 2021; 143 2024; 15 2024; 17 2017; 139 2016; 6 2021 2020; 5 120 2022; 5 2023 2023 2022 2021; 9 11 440 12 2022; 13 2022; 15 2017 2013; 42 38 2020; 23 2020; 21 2022; 104 2024; 491 2017; 8 2023; 35 2023; 6 2023; 7 2023; 145 2023; 9 2015 2011; 7 56 2020; 59 2024; 146 2021 2020 2020; 33 2 10 2024 2023 2022; 15 10 12 2017; 355 1977 1979; 22 282 2017; 9 2020; 6 2020 2020; 45 211 2014; 5 2021 2024; 33 128 2021; 31 2023; 25 2013; 17 2018 2020; 11 11 2024; 71 2024; 61 2020; 49 2024; 63 2016; 116 2022; 126 2023; 10 2011; 334 2021; 7 2023; 13 2015; 6 2021; 5 2023; 14 2015; 5 2023; 11 2023; 15 2010 2023; 641 2023; 19 2024; 60 2021 2021 2019; 143 143 10 2024; 55 2015; 8 2021; 13 2023 2023; 5 35 2023; 85 2023; 89 2021; 11 2016; 773 2023 2023 2024 2024; 62 7 120 365 2016; 774 2018; 57 e_1_2_8_26_3 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_15_3 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 Exner K. S. (e_1_2_8_97_1) 2021; 13 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_76_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_110_2 e_1_2_8_2_3 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_14_4 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_79_2 e_1_2_8_14_3 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_119_3 e_1_2_8_24_2 e_1_2_8_119_4 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_111_3 e_1_2_8_111_2 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_78_2 e_1_2_8_70_1 e_1_2_8_122_1 Doyle A. D. (e_1_2_8_41_1) 2015; 7 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 Exner K. S. (e_1_2_8_40_1) 2022; 5 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_4_3 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_39_1 e_1_2_8_16_4 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_35_3 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 Man I. C. (e_1_2_8_119_2) 2011; 3 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 15 13 88 32 start-page: 1767 7754 94 year: 2024 2022 2024 2020 publication-title: Nat. Commun. Nat. Commun. J. Energy Chem. Adv. Mater. – volume: 17 start-page: 339 year: 2013 publication-title: J. Solid State Electrochem. – volume: 8 start-page: 1449 year: 2017 publication-title: Nat. Commun. – volume: 57 start-page: 2488 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 24 year: 2002 publication-title: Acc. Chem. Res. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 2501 year: 2024 publication-title: Nat. Commun. – volume: 57 58 start-page: 7631 year: 2018 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 62 7 120 365 start-page: 1025 year: 2023 2023 2024 2024 publication-title: Angew. Chem., Int. Ed. Mater. Chem. Front. Nano Energy Mater. Lett. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 11 start-page: 1865 year: 2009 publication-title: Electrochem. Commun. – volume: 33 128 start-page: 1936 year: 2021 2024 publication-title: Adv. Mater. J. Phys. Chem. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3784 year: 2022 publication-title: Nat. Commun. – volume: 143 143 10 start-page: 6482 1152 year: 2021 2021 2019 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal. – volume: 15 start-page: 95 year: 2024 publication-title: Nat. Commun. – volume: 29 46 start-page: 609 year: 2017 2021 publication-title: Adv. Mater. Int. J. Hydrogen Energy – volume: 325 year: 2023 publication-title: Appl. Catal., B – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 126 start-page: 922 year: 2022 publication-title: J. Phys. Chem. – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 5420 year: 2023 publication-title: CrystEngComm – volume: 55 start-page: 839 year: 2024 publication-title: Int. J. Hydrogen Energy – volume: 355 year: 2017 publication-title: Science – volume: n/a year: 2024 publication-title: Adv. Funct. Mater. – volume: 72 36 start-page: 621 year: 2000 2024 publication-title: Rev. Mod. Phys. Adv. Mater. – volume: 9 start-page: 457 year: 2017 publication-title: Nat. Chem. – volume: 15 start-page: 1119 year: 2022 publication-title: Energy Environ. Sci. – volume: 10 start-page: 6892 year: 2023 publication-title: Inorg. Chem. Front. – volume: 143 start-page: 5201 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 2 33 62 start-page: 304 year: 2019 2023 2023 publication-title: Nat. Catal. Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 7 start-page: 117 year: 2021 publication-title: ChemNanoMat – volume: 15 start-page: 2519 year: 2022 publication-title: Energy Environ. Sci. – volume: 3 133 start-page: 516 year: 2020 2011 publication-title: Nat. Catal. J. Am. Chem. Soc. – volume: 13 7 start-page: 6414 2101 year: 2022 2021 publication-title: Nat. Commun. Chem – volume: 773 start-page: 69 year: 2016 publication-title: J. Electroanal. Chem. – volume: 6 start-page: 8098 year: 2016 publication-title: ACS Catal. – volume: 8 start-page: 4628 year: 2018 publication-title: ACS Catal. – volume: 42 38 start-page: 4901 year: 2017 2013 publication-title: Int. J. Hydrogen Energy Int. J. Hydrogen Energy – volume: 11 start-page: 5368 year: 2020 publication-title: Nat. Commun. – volume: 7 56 start-page: 738 2009 year: 2015 2011 publication-title: ChemPlusChem Electrochim. Acta – volume: 4 start-page: 2719 year: 2019 publication-title: ACS Energy Lett. – volume: 13 start-page: 902 year: 2022 publication-title: ACS Catal. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 start-page: 1071 year: 2024 publication-title: Int. J. Hydrogen Energy – volume: 85 start-page: 220 year: 2023 publication-title: J. Energy Chem. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – year: 2010 – volume: 14 start-page: 354 year: 2023 publication-title: Nat. Commun. – volume: 7 start-page: 558 year: 2023 publication-title: Joule – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 33 2 10 year: 2021 2020 2020 publication-title: Adv. Mater. Adv. Energy Sustainability Res. Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 104 year: 2022 publication-title: Nano Energy – volume: 8 24 23 start-page: 6148 6637 year: 2024 2024 2023 publication-title: Small Methods Nano Lett. Nano Lett. – volume: 10 start-page: 4849 year: 2019 publication-title: Nat. Commun. – volume: 11 year: 2023 publication-title: J. Mater. Chem. – volume: 5 start-page: 3221 year: 2021 publication-title: Joule – volume: 11 start-page: 2695 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 2474 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 145 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 190 year: 2015 publication-title: Chem. Sci. – volume: 6 start-page: 160 year: 2020 publication-title: NPJ Comput. Mater. – volume: 5 35 year: 2023 2023 publication-title: EnergyChem Adv. Mater. – volume: 15 10 12 start-page: 2928 year: 2024 2023 2022 publication-title: Nat. Commun. Adv. Sci. ACS Catal. – volume: 12 start-page: 3548 year: 2019 publication-title: Energy Environ. Sci. – volume: 491 year: 2024 publication-title: Chem. Eng. J. – volume: 71 start-page: 804 year: 2024 publication-title: Int. J. Hydrogen Energy – volume: 4 year: 2024 publication-title: Chem. Catal. – volume: 13 year: 2023 publication-title: ACS Catal. – volume: 774 start-page: 102 year: 2016 publication-title: J. Electroanal. Chem. – volume: 45 211 year: 2020 2020 publication-title: Int. J. Hydrogen Energy Polymer – volume: 357 year: 2024 publication-title: Appl. Energy – volume: 9 11 440 12 start-page: 3025 5676 year: 2023 2023 2022 2021 publication-title: Chem J. Mater. Chem. Chem. Eng. J. Nat. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 343 year: 2024 publication-title: Appl. Catal., B – volume: 22 282 start-page: 329 281 year: 1977 1979 publication-title: Electrochim. Acta Nature – volume: 14 start-page: 843 year: 2023 publication-title: Nat. Commun. – volume: 6 7 start-page: 3321 year: 2015 2016 publication-title: Chem. Sci. Adv. Energy Mater. – volume: 60 start-page: 825 year: 2024 publication-title: Int. J. Hydrogen Energy – volume: 14 start-page: 1248 year: 2023 publication-title: Nat. Commun. – volume: 12 year: 2024 publication-title: J. Mater. Chem. – volume: 23 year: 2020 publication-title: iScience – volume: 19 year: 2023 publication-title: Small – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 5365 year: 2023 publication-title: Nat. Commun. – volume: 9 start-page: 1882 year: 2023 publication-title: Chem – volume: 35 year: 2022 publication-title: Adv. Mater. – volume: 13 start-page: 4066 year: 2021 publication-title: ChemPlusChem – volume: 11 11 start-page: 3452 4921 year: 2018 2020 publication-title: Energy Environ. Sci. Nat. Commun. – volume: 17 start-page: 6931 year: 2024 publication-title: Nano Res. – volume: 5 120 start-page: 2164 year: 2021 2020 publication-title: Joule Chem. Rev. – volume: 6 start-page: 1439 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 21 start-page: 225 year: 2020 publication-title: Curr. Opin. Electrochem. – volume: 31 10 4 29 year: 2020 2019 2022 2017 publication-title: Adv. Funct. Mater. Adv. Energy Mater. EnergyChem Adv. Mater. – volume: 146 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 607 108 start-page: 83 year: 2007 2004 publication-title: J. Electroanal. Chem. J. Phys. Chem. B – volume: 7 start-page: 6411 year: 2019 publication-title: J. Mater. Chem. – volume: 5 year: 2022 publication-title: J. Phys. Condens. Matter – volume: 46 3 16 2 start-page: 337 4767 year: 2017 2011 2023 2017 publication-title: Chem. Soc. Rev. ChemPlusChem Nano Res. Nat. Rev. Mater. – volume: 8 start-page: 1404 year: 2015 publication-title: Energy Environ. Sci. – volume: 13 start-page: 8670 year: 2023 publication-title: ACS Catal. – volume: 641 year: 2023 publication-title: Appl. Surf. Sci. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 109 year: 2022 publication-title: Energy Environ. Sci. – volume: 13 7 start-page: 1346 22 year: 2023 2018 publication-title: Catalysts Curr. Opin. Electrochem. – volume: 89 year: 2023 publication-title: ChemPlusChem – volume: 13 start-page: 4120 year: 2023 publication-title: ACS Catal. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 16 681 year: 2020 2024 publication-title: Small Appl. Catal., A – ident: e_1_2_8_18_2 doi: 10.1002/anie.201900796 – ident: e_1_2_8_26_3 doi: 10.1002/aenm.201903120 – ident: e_1_2_8_62_1 doi: 10.1002/adma.202305939 – ident: e_1_2_8_92_1 doi: 10.1016/j.apsusc.2023.158508 – ident: e_1_2_8_16_3 doi: 10.1016/j.cej.2022.135851 – ident: e_1_2_8_33_1 doi: 10.1021/acscatal.8b00612 – ident: e_1_2_8_79_2 doi: 10.1038/s41467-020-18686-0 – ident: e_1_2_8_114_1 doi: 10.1002/cnma.202000526 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202006328 – ident: e_1_2_8_35_3 doi: 10.1002/anie.202216645 – ident: e_1_2_8_70_1 doi: 10.1039/D3CE00695F – ident: e_1_2_8_29_1 doi: 10.1016/j.apcatb.2022.122313 – ident: e_1_2_8_121_1 doi: 10.1038/s41929-020-0457-6 – ident: e_1_2_8_31_1 doi: 10.1007/s10008-012-1918-x – ident: e_1_2_8_119_3 doi: 10.1007/s12274-022-5240-3 – ident: e_1_2_8_4_2 doi: 10.1002/aenm.201902666 – ident: e_1_2_8_56_1 doi: 10.1038/s41467-023-36833-1 – ident: e_1_2_8_79_1 doi: 10.1039/C8EE02657B – ident: e_1_2_8_52_1 doi: 10.1016/j.joule.2023.02.012 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202004243 – ident: e_1_2_8_73_1 doi: 10.1002/adma.202404213 – ident: e_1_2_8_2_1 doi: 10.1002/anie.202217565 – ident: e_1_2_8_20_1 doi: 10.1016/j.apcatb.2023.123584 – ident: e_1_2_8_124_1 doi: 10.1007/s12274-024-6696-0 – ident: e_1_2_8_118_1 doi: 10.1002/aenm.202300177 – ident: e_1_2_8_61_1 doi: 10.1016/j.nanoen.2022.107960 – ident: e_1_2_8_50_1 doi: 10.1038/s41467-024-46815-6 – ident: e_1_2_8_83_1 doi: 10.1016/j.cej.2024.152202 – ident: e_1_2_8_22_1 doi: 10.1016/j.jechem.2023.06.001 – ident: e_1_2_8_68_1 doi: 10.1039/D3QI01609A – ident: e_1_2_8_9_1 doi: 10.1039/C5SC00518C – ident: e_1_2_8_113_1 doi: 10.1039/C9TA00598F – ident: e_1_2_8_106_1 doi: 10.1021/ar00121a004 – ident: e_1_2_8_95_1 doi: 10.1038/s41524-020-00430-3 – ident: e_1_2_8_111_1 doi: 10.1021/jacs.1c03473 – ident: e_1_2_8_84_1 doi: 10.1021/acscatal.3c03257 – ident: e_1_2_8_10_1 doi: 10.1021/acsanm.3c03670 – ident: e_1_2_8_78_2 doi: 10.1016/j.polymer.2020.123080 – ident: e_1_2_8_110_1 doi: 10.1016/j.joule.2021.05.018 – ident: e_1_2_8_26_2 doi: 10.1002/aesr.202000067 – ident: e_1_2_8_76_2 doi: 10.1016/j.ijhydene.2020.09.268 – ident: e_1_2_8_54_1 doi: 10.1016/j.joule.2021.10.002 – ident: e_1_2_8_32_1 doi: 10.1016/j.elecom.2009.08.004 – ident: e_1_2_8_82_1 doi: 10.1016/j.apenergy.2023.122442 – ident: e_1_2_8_101_1 doi: 10.1021/acs.jpca.2c06252 – ident: e_1_2_8_15_2 doi: 10.1021/acs.nanolett.4c01623 – ident: e_1_2_8_6_1 doi: 10.1002/smll.202002426 – ident: e_1_2_8_93_1 doi: 10.1103/RevModPhys.72.621 – ident: e_1_2_8_12_2 doi: 10.1038/282281a0 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-020-19212-y – ident: e_1_2_8_30_1 doi: 10.1002/adfm.202009779 – ident: e_1_2_8_121_2 doi: 10.1021/ja205300a – ident: e_1_2_8_103_1 doi: 10.1021/jacs.1c01525 – ident: e_1_2_8_86_1 doi: 10.1021/acscatal.1c03599 – ident: e_1_2_8_123_1 doi: 10.1002/aenm.202300152 – ident: e_1_2_8_67_1 doi: 10.1021/jacs.4c04096 – ident: e_1_2_8_111_3 doi: 10.1021/acscatal.9b04922 – ident: e_1_2_8_1_1 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-024-46176-0 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201808825 – ident: e_1_2_8_19_1 doi: 10.1021/jz501061n – ident: e_1_2_8_17_2 doi: 10.1002/advs.202207695 – ident: e_1_2_8_119_4 doi: 10.1038/natrevmats.2017.59 – ident: e_1_2_8_44_1 doi: 10.1016/j.checat.2023.100869 – ident: e_1_2_8_14_2 doi: 10.1038/s41467-022-35426-8 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-019-12886-z – ident: e_1_2_8_48_1 doi: 10.1002/anie.202007672 – ident: e_1_2_8_111_2 doi: 10.1021/jacs.1c00384 – ident: e_1_2_8_115_1 doi: 10.1016/j.isci.2019.100756 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.6b00398 – ident: e_1_2_8_122_1 doi: 10.1021/acscatal.2c04439 – ident: e_1_2_8_88_1 doi: 10.1016/j.chempr.2023.03.005 – ident: e_1_2_8_90_1 doi: 10.1002/anie.201709652 – ident: e_1_2_8_108_1 doi: 10.1021/acscatal.6b02343 – ident: e_1_2_8_12_1 doi: 10.1016/0013-4686(77)85082-2 – ident: e_1_2_8_23_1 doi: 10.1002/cplu.202300514 – ident: e_1_2_8_80_1 doi: 10.1039/D1EE02112E – ident: e_1_2_8_7_2 doi: 10.1021/acs.jpca.4c04643 – ident: e_1_2_8_24_2 doi: 10.1016/j.coelec.2017.10.001 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202305659 – ident: e_1_2_8_4_4 doi: 10.1002/adma.201703798 – ident: e_1_2_8_105_1 doi: 10.1021/jacs.7b06808 – ident: e_1_2_8_27_1 doi: 10.1039/C9CS00607A – volume: 7 start-page: 738 year: 2015 ident: e_1_2_8_41_1 publication-title: ChemPlusChem – ident: e_1_2_8_112_1 doi: 10.1002/adma.201801351 – ident: e_1_2_8_64_1 doi: 10.1002/anie.202402018 – ident: e_1_2_8_13_1 doi: 10.1016/j.enchem.2023.100104 – ident: e_1_2_8_119_1 doi: 10.1039/C6CS00328A – ident: e_1_2_8_17_3 doi: 10.1021/acscatal.2c03968 – ident: e_1_2_8_87_1 doi: 10.1039/D4TA01998A – ident: e_1_2_8_104_1 doi: 10.1126/science.1212858 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.3c13619 – ident: e_1_2_8_25_2 doi: 10.1021/jp047349j – ident: e_1_2_8_66_1 doi: 10.1038/s41467-023-41036-9 – ident: e_1_2_8_120_2 doi: 10.1016/j.chempr.2021.03.015 – ident: e_1_2_8_98_1 doi: 10.1016/j.jelechem.2016.04.033 – ident: e_1_2_8_13_2 doi: 10.1002/adma.202300945 – ident: e_1_2_8_21_1 doi: 10.1021/acscatal.3c01511 – ident: e_1_2_8_2_3 doi: 10.1016/j.nanoen.2023.109149 – ident: e_1_2_8_41_2 doi: 10.1016/j.electacta.2010.11.062 – ident: e_1_2_8_47_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_8_2 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_8_72_1 doi: 10.1016/j.ijhydene.2024.02.228 – ident: e_1_2_8_74_1 doi: 10.1002/adfm.202410193 – ident: e_1_2_8_110_2 doi: 10.1021/acs.chemrev.0c00576 – ident: e_1_2_8_36_1 doi: 10.1002/adma.202211884 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-024-46801-y – ident: e_1_2_8_51_1 doi: 10.1038/s41467-022-31468-0 – ident: e_1_2_8_71_1 doi: 10.1016/j.ijhydene.2024.02.371 – volume: 5 year: 2022 ident: e_1_2_8_40_1 publication-title: J. Phys. Condens. Matter – ident: e_1_2_8_39_1 doi: 10.1039/D2EE00158F – ident: e_1_2_8_99_1 doi: 10.1016/j.jelechem.2016.05.015 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijhydene.2017.10.045 – ident: e_1_2_8_75_1 doi: 10.1126/sciadv.adi8025 – ident: e_1_2_8_102_1 doi: 10.1002/adma.202208904 – ident: e_1_2_8_120_1 doi: 10.1038/s41467-022-34169-w – ident: e_1_2_8_24_1 doi: 10.3390/catal13101346 – ident: e_1_2_8_16_2 doi: 10.1039/D3TA04597H – ident: e_1_2_8_16_4 doi: 10.1038/s41467-021-26025-0 – ident: e_1_2_8_55_1 doi: 10.1002/adma.202208539 – volume: 3 year: 2011 ident: e_1_2_8_119_2 publication-title: ChemPlusChem – ident: e_1_2_8_91_1 doi: 10.1039/C9EE01872G – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202009613 – ident: e_1_2_8_14_3 doi: 10.1016/j.jechem.2023.09.010 – ident: e_1_2_8_16_1 doi: 10.1016/j.chempr.2023.10.009 – ident: e_1_2_8_42_1 doi: 10.1039/C4EE03869J – ident: e_1_2_8_58_1 doi: 10.1021/acscatal.2c05353 – ident: e_1_2_8_78_1 doi: 10.1016/j.ijhydene.2020.07.202 – ident: e_1_2_8_2_4 doi: 10.1016/j.matlet.2024.136485 – ident: e_1_2_8_65_1 doi: 10.1039/D3TA03252C – ident: e_1_2_8_94_1 doi: 10.1093/oso/9780195393354.001.0001 – ident: e_1_2_8_15_3 doi: 10.1021/acs.nanolett.3c01831 – ident: e_1_2_8_100_1 doi: 10.1021/acs.jpclett.0c00335 – ident: e_1_2_8_46_1 doi: 10.1038/s41467-023-44483-6 – ident: e_1_2_8_25_1 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_8_89_1 doi: 10.1002/smll.202304889 – ident: e_1_2_8_3_1 doi: 10.1002/smll.202002212 – ident: e_1_2_8_43_1 doi: 10.1039/C4SC02685C – ident: e_1_2_8_45_1 doi: 10.1038/nchem.2695 – ident: e_1_2_8_109_1 doi: 10.1039/D1EE02636D – ident: e_1_2_8_15_1 doi: 10.1002/smtd.202301490 – ident: e_1_2_8_96_1 doi: 10.1038/srep12167 – ident: e_1_2_8_77_1 doi: 10.1016/j.ijhydene.2024.05.315 – volume: 13 start-page: 4066 year: 2021 ident: e_1_2_8_97_1 publication-title: ChemPlusChem – ident: e_1_2_8_2_2 doi: 10.1039/D3QM00010A – ident: e_1_2_8_117_1 doi: 10.1038/s41467-023-36380-9 – ident: e_1_2_8_35_2 doi: 10.1002/adfm.202305243 – ident: e_1_2_8_38_1 doi: 10.1021/jacs.3c05556 – ident: e_1_2_8_93_2 doi: 10.1002/adma.202310918 – ident: e_1_2_8_116_1 doi: 10.1016/j.apcatb.2023.123559 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201803551 – ident: e_1_2_8_63_1 doi: 10.1038/s41467-023-35913-6 – ident: e_1_2_8_76_1 doi: 10.1002/adma.201700404 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-017-01734-7 – ident: e_1_2_8_28_1 doi: 10.1021/acsenergylett.9b01758 – ident: e_1_2_8_81_1 doi: 10.1016/j.ijhydene.2023.11.063 – ident: e_1_2_8_14_4 doi: 10.1002/adma.201906905 – ident: e_1_2_8_85_1 doi: 10.1016/j.coelec.2020.02.024 – ident: e_1_2_8_107_1 doi: 10.1021/acsaem.2c03300 – ident: e_1_2_8_6_2 doi: 10.1016/j.apcata.2024.119780 – ident: e_1_2_8_60_1 doi: 10.1002/adma.202312369 – ident: e_1_2_8_35_1 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_8_9_2 doi: 10.1002/aenm.201601275 – ident: e_1_2_8_53_1 doi: 10.1002/smll.202208202 – ident: e_1_2_8_4_3 doi: 10.1016/j.enchem.2022.100072 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.202200131 |
SSID | ssj0031247 |
Score | 2.514814 |
SecondaryResourceType | review_article |
Snippet | Green hydrogen energy, as one of the most promising energy carriers, plays a crucial role in addressing energy and environmental issues. Oxygen evolution... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2406657 |
SubjectTerms | acid oxygen evolution reaction Acidic oxides Catalysts Catalytic activity Catalytic converters Chemical synthesis Clean energy design strategies Durability Electrocatalysts Electrolysis Green hydrogen Hydrogen production Hydrogen-based energy Metal oxides Noble metals Oxygen evolution reactions reaction mechanism Ruthenium |
Title | Research Progress in Structure Evolution and Durability Modulation of Ir‐ and Ru‐Based OER Catalysts under Acidic Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202406657 https://www.ncbi.nlm.nih.gov/pubmed/39370563 https://www.proquest.com/docview/3143202045 https://www.proquest.com/docview/3113748194 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTuXQB32lBeRKlXoKJLbjTY50WQQI2mopErfIsR1pBSRos6lET_yE_sb-Embygm1VVWpvjjJWHHsen-3xZ4D3QZyNhAsTX4eowdJkmhaaYp-4yAQ6ZZxEN9kWn9TBmTw6j84fnOJv-SGGBTeyjMZfk4HrrNq5Jw2tri5p64AikoroODklbBEqmg78UQKDV3O7CsYsn4i3etbGgO8sV1-OSr9BzWXk2oSe_Seg-0a3GScX2_Ui2zbff-Fz_J-_egqPO1zKdltFegYrrliHtQdshc_hts_SY18oqQtdJJsV7LQhoK3njk2-dWrMdGHZXj1vKcBv2Elpu0vCWJmzw_nP2x-NyLTG0kcMo5Z9nkzZmFaSbqpFxehg25ztmpmdGTYuaVedrOMFnO1Pvo4P_O4CB9-IkUDnZXFCp0zEsyA3OtGxikKDUzST5yqKYisUgg-V8CDnMudOZeQgLFcWQZ2OQyNewmpRFu41sJF2EgcQJWIpZWZ1wBOey0CMYpc4rTzw-wFMTcduTpdsXKYtLzNPqWfToWc9-DDIX7e8Hn-U3Oj1Ie3su0oFwkxO54ojD94Nr9EyabtFF66sSSYkbp8wkR68avVo-BTRECL0FB7wRhv-0ob09OT4eHh68y-V3sIjKreZOBuwisrhNhFPLbKtxmbuAJxBF8w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcIAc2BdDgEYCcXJid3s9cAgzE82QmYAmiZSb0263pVGCjcZj0HDKJ_Ar_AqfwJdQ5Q0GhJCQcuDmpbyo-9XS3dWvAJ5ZQewLbYemtBHBjoolTTQFJnGRCTTKOIiusi32veGR8_rYPV6DL-1emJofoptwI82o7DUpOE1Ib_9gDS3endHaAbkkz_WbvMo9vfyIo7bi5aiPXfyc893BYW9oNoUFTCV8gUqV4EDDUy6PrVTJUAaeayscOqg09Vw3SISHTtELuZVyJ-Xaiwm4CfcSDDZkYCuB770El6mMONH196cdY5VAd1nVc0EvaRLVV8sTafHt1f9d9YO_BbersXLl7Havw9e2meocl9OtchFvqU-_MEj-V-14A641oTfbqXXlJqzp7BZs_ETIeBvO20RE9pby1tALsFnGDiqO3XKu2eBDo6lMZgnrl_Oa5XzJJnnS1EFjecpG82_nnyuRaYlHrzBSSNibwZT1aLJsWSwKRnv35mxHzZKZYr2cEgfIANyBowtpgruwnuWZvg_Ml9pBxKBE4DhOnEiLhzx1LOEHOtTSM8BsEROphsCd6oicRTX1NI-oJ6OuJw140cm_r6lL_ii52QIwakxYEQmMpDltnXYNeNrdRuNDK0oy03lJMjbRF9mhY8C9Grjdp4hpEaNrYQCv4PeXf4gOJuNxd_bgXx56AleGh5NxNB7t7z2Eq3S9TjzahHUEin6E4eMiflwpLIOTi0b2d_l1crE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FICE4sC-GAI0E4uTEbrfb9oFDmEUZMgnRhEi5Gbu7LY0IdjSeAQ2nfAKfwq_wC3wJVd5gQAgJKQduXsqLul91VXVXvwJ46oRp4Bk3shMXESxUmtBEU2gTF5mHgzIG0VW2xb7cORKvjv3jNfjS7oWp-SG6CTfSjGq8JgU_1dnWD9LQ8v0JLR2QRZJ-0KRV7prlRwzayhejPvbwM86Hgze9HbupK2ArL_BQpzTGGVL5PHUylURJKH1XYeSgskz6fqg9iTZRRtzJuMi4kSnhVnOp0ddIQld5-N4LcFFIJ6JiEf1JR1jlobWsyrmgkbSJ6auliXT41ur_rprB33zbVVe5snXDa_C1baU6xeXd5mKebqpPvxBI_k_NeB2uNo4326415QasmfwmXPmJjvEWnLVpiOyAstbQBrBpzg4rht3FzLDBh0ZPWZJr1l_Mao7zJdsrdFMFjRUZG82-nX2uRCYLPHqJfoJmrwcT1qOpsmU5Lxnt3JuxbTXVU8V6BaUNkPrfhqNzaYI7sJ4XubkHLEiMQMCgRCiESHXi8IhnwvGC0EQmkRbYLWBi1dC3UxWRk7gmnuYx9WTc9aQFzzv505q45I-SGy3-4mYAK2MP_WhOG6d9C550t3HoofWkJDfFgmRcIi9yI2HB3Rq33aeIZxF9a88CXqHvL_8QH-6Nx93Z_X956DFcOugP4_Fof_cBXKbLddbRBqwjTsxD9B3n6aNKXRm8PW9gfwcLEHFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+in+Structure+Evolution+and+Durability+Modulation+of+Ir%E2%80%90+and+Ru%E2%80%90Based+OER+Catalysts+under+Acidic+Conditions&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zi%2C+Yunhai&rft.au=Zhang%2C+Chengxu&rft.au=Zhao%2C+Jianqiang&rft.au=Cheng%2C+Ying&rft.date=2024-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=50&rft_id=info:doi/10.1002%2Fsmll.202406657&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202406657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |