Micropore‐Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications

It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytoco...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 25; pp. e2106357 - n/a
Main Authors Yi, Sili, Liu, Qiong, Luo, Zeyu, He, Jacqueline Jialu, Ma, Hui‐Lin, Li, Wanlu, Wang, Di, Zhou, Cuiping, Garciamendez, Carlos Ezio, Hou, Linxi, Zhang, Jin, Zhang, Yu Shrike
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. A micropore‐forming gelatin methacryloyl (GelMA) aqueous two‐phase bioink toolbox 2.0 is reported with a systematic investigation into a variety of GelMA types and porogen types. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability than the initial version, but also the improved suitability for various bioprinting modalities featuring favorable cellular responses.
AbstractList It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.
It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.
It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. A micropore‐forming gelatin methacryloyl (GelMA) aqueous two‐phase bioink toolbox 2.0 is reported with a systematic investigation into a variety of GelMA types and porogen types. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability than the initial version, but also the improved suitability for various bioprinting modalities featuring favorable cellular responses.
It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.
Author Yi, Sili
Luo, Zeyu
Zhou, Cuiping
Zhang, Jin
He, Jacqueline Jialu
Garciamendez, Carlos Ezio
Liu, Qiong
Wang, Di
Hou, Linxi
Ma, Hui‐Lin
Li, Wanlu
Zhang, Yu Shrike
Author_xml – sequence: 1
  givenname: Sili
  surname: Yi
  fullname: Yi, Sili
  organization: Fuzhou University
– sequence: 2
  givenname: Qiong
  surname: Liu
  fullname: Liu, Qiong
  organization: Harvard Medical School
– sequence: 3
  givenname: Zeyu
  surname: Luo
  fullname: Luo, Zeyu
  organization: Harvard Medical School
– sequence: 4
  givenname: Jacqueline Jialu
  surname: He
  fullname: He, Jacqueline Jialu
  organization: Harvard Medical School
– sequence: 5
  givenname: Hui‐Lin
  surname: Ma
  fullname: Ma, Hui‐Lin
  organization: Harvard Medical School
– sequence: 6
  givenname: Wanlu
  surname: Li
  fullname: Li, Wanlu
  organization: Harvard Medical School
– sequence: 7
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: Harvard Medical School
– sequence: 8
  givenname: Cuiping
  surname: Zhou
  fullname: Zhou, Cuiping
  organization: Harvard Medical School
– sequence: 9
  givenname: Carlos Ezio
  surname: Garciamendez
  fullname: Garciamendez, Carlos Ezio
  organization: Harvard Medical School
– sequence: 10
  givenname: Linxi
  surname: Hou
  fullname: Hou, Linxi
  organization: Fuzhou University
– sequence: 11
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Fuzhou University
– sequence: 12
  givenname: Yu Shrike
  orcidid: 0000-0002-0045-0808
  surname: Zhang
  fullname: Zhang, Yu Shrike
  email: yszhang@research.bwh.harvard.edu
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35607752$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUha2Kive2y8pSN7CYwY_YTrqbQqFIM2LR6TpyHIeaOnZqJ4Ls2HfDb-SX1NOBQUKqWF3r6jv3-p6zB7acdxqADxhNMULkJLbWTgkiGHHKxDuwizmmE56TYmvzxmgH7MV4gxDFJBPbYIcyjoRgZBf8WRgVfOeDfrx_OPehNe4aXmgre-PgQvc_pQqj9aOFR6m7mB3DL8Yb9wsuvbeVv4Nkij7DMx3NtZOV1XA5pGqs6UcoXQ1ntez650bjA6RnqwldMK5frZp1nTUqbfMuHoD3jbRRHz7VffDj_Ovy9NtkfnVxeTqbTxQVVExouoJlSuCGIN1kmNVaMZVTVuSi4TKrEGNFTQoheV7phhGGkw4jqYjGnCi6D47Wc7vgfw869mVrotLWSqf9EEvCeV4kp3ie0E-v0Bs_BJd-lyhRMMxEhhL18YkaqlbXZbqulWEsn21OwHQNJK9jDLrZIBiVqxzLVY7lJsckyF4JlOn_udQHaez_ZcVadmusHt9YUn5fzOcv2r_h3bJ0
CitedBy_id crossref_primary_10_1002_adhm_202401944
crossref_primary_10_3390_polym14194227
crossref_primary_10_3390_bioengineering12030251
crossref_primary_10_34133_research_0141
crossref_primary_10_1002_admt_202401138
crossref_primary_10_1038_s41536_023_00307_1
crossref_primary_10_1016_j_xcrp_2024_102311
crossref_primary_10_1021_acsabm_4c01220
crossref_primary_10_1016_j_bioactmat_2023_06_006
crossref_primary_10_1016_j_biopha_2023_114665
crossref_primary_10_1021_acs_biomac_3c01021
crossref_primary_10_1016_j_bioactmat_2025_02_011
crossref_primary_10_1016_j_hybadv_2023_100115
crossref_primary_10_1002_adfm_202415799
crossref_primary_10_1016_j_jare_2024_01_002
crossref_primary_10_1038_s43586_023_00231_0
crossref_primary_10_1002_adfm_202303368
crossref_primary_10_3390_bioengineering10121358
crossref_primary_10_1016_j_actbio_2024_04_038
crossref_primary_10_1021_acsbiomaterials_2c01127
crossref_primary_10_1021_acs_analchem_2c05087
crossref_primary_10_1089_ten_tea_2023_0149
crossref_primary_10_3390_ijms252312567
crossref_primary_10_1002_adhm_202203243
crossref_primary_10_1002_adfm_202400431
crossref_primary_10_1002_adfm_202210521
crossref_primary_10_1016_j_bioactmat_2023_12_025
crossref_primary_10_1002_adfm_202211897
crossref_primary_10_1002_mabi_202300096
crossref_primary_10_1016_j_mtchem_2024_102111
crossref_primary_10_3389_fbioe_2024_1452477
crossref_primary_10_1021_acs_biomac_3c01271
crossref_primary_10_1002_admt_202201102
crossref_primary_10_1021_acsami_3c14983
crossref_primary_10_1002_adhm_202300395
crossref_primary_10_1002_smtd_202400918
crossref_primary_10_1016_j_bioactmat_2024_09_033
crossref_primary_10_1007_s42242_024_00281_7
crossref_primary_10_1002_advs_202306152
crossref_primary_10_1002_smll_202208089
crossref_primary_10_1177_11795972241288099
crossref_primary_10_1002_admt_202400060
crossref_primary_10_1002_adma_202210378
crossref_primary_10_1016_j_addma_2024_104443
crossref_primary_10_1016_j_jddst_2022_103697
crossref_primary_10_1002_adma_202416260
crossref_primary_10_1089_ten_tea_2023_0239
Cites_doi 10.1021/acs.chemrev.0c00077
10.1385/MB:19:3:269
10.1089/ten.1999.5.35
10.1002/advs.201902953
10.1002/advs.202002002
10.1016/j.fluid.2019.112441
10.1126/scitranslmed.3004890
10.1016/j.actbio.2005.12.007
10.1021/acs.jced.6b00591
10.1002/adhm.201300303
10.1016/j.foodhyd.2019.02.031
10.1002/adma.201800242
10.1016/j.actbio.2010.07.028
10.1016/j.biomaterials.2006.11.024
10.1038/s41578-018-0006-y
10.1002/adhm.201500005
10.1002/adhm.201701036
10.1002/macp.201600422
10.1002/adma.202107038
10.1039/C9CS00466A
10.1021/acsbiomaterials.6b00149
10.1002/adfm.202003740
10.1016/j.cocis.2016.09.010
10.1021/acsami.7b16059
10.1016/j.mtbio.2021.100162
10.1007/s42242-018-0028-8
10.1021/acs.chemrev.9b00810
10.1002/anie.201900530
10.1038/nmat2515
10.1039/C9MH00375D
10.1038/nmat2458
10.1038/srep28714
10.1088/1748-6041/6/4/045002
10.1021/bm1015305
10.1002/smll.201802107
10.1016/j.biomaterials.2009.09.063
10.1002/adma.200501612
10.1002/adma.201906423
10.1016/j.matt.2020.10.022
10.1126/science.aaf3627
10.1002/adma.202102153
10.1002/smll.201805510
10.1002/adhm.201200106
10.1002/adma.201805460
10.1002/adhm.202000156
10.1002/adhm.201901544
10.1038/s41467-020-14997-4
10.1016/j.biomaterials.2013.11.009
10.1002/adhm.201601451
10.1016/j.biomaterials.2017.04.050
10.1016/0032-3861(86)90274-0
10.1021/acs.chemrev.9b00812
10.1038/nprot.2016.123
10.1038/s41551-019-0471-7
10.1016/j.mtbio.2020.100074
10.1371/journal.pone.0163902
10.1021/bm100199m
10.1016/j.biomaterials.2012.01.048
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202106357
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35607752
10_1002_smll_202106357
SMLL202106357
Genre article
Journal Article
GrantInformation_xml – fundername: Brigham Research Institute
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
A00
AEUQT
AFPWT
NPM
P4E
RWI
WYJ
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3737-331254c71f20ef415dec5c835987f6a4b0559d297a68bef525137310ac2e162c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 23:24:38 EDT 2025
Fri Jul 25 12:02:05 EDT 2025
Wed Feb 19 02:23:57 EST 2025
Tue Jul 01 02:54:13 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Sun Jul 06 04:45:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords dextran
additive manufacturing
biofabrication
poly(ethylene oxide)
poly(vinyl alcohol)
regenerative medicine
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3737-331254c71f20ef415dec5c835987f6a4b0559d297a68bef525137310ac2e162c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0045-0808
PMID 35607752
PQID 2679515740
PQPubID 1046358
PageCount 14
ParticipantIDs proquest_miscellaneous_2668912468
proquest_journals_2679515740
pubmed_primary_35607752
crossref_primary_10_1002_smll_202106357
crossref_citationtrail_10_1002_smll_202106357
wiley_primary_10_1002_smll_202106357_SMLL202106357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2010; 11
2019; 93
2013; 2
2020; 120
2019; 15
2019; 58
2011; 12
2020; 11
2017; 356
2007; 28
2018; 7
2020; 8
2020; 7
2018; 3
2014; 3
2021; 34
2021; 33
2018; 1
2020; 9
2001; 19
2020; 49
2018; 30
2017; 218
2010; 31
2019; 4
2021; 4
2019; 6
2006; 18
2006; 2
2020; 32
2020; 508
2011; 6
2012; 33
1999; 5
2011; 7
2017; 139
2016; 11
2016; 5
2016; 6
2016; 2
2021; 12
2020; 30
1986; 27
2009; 8
2014; 35
2016; 61
2012; 4
2018; 10
2016; 25
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 356
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 725
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 8
  start-page: 451
  year: 2009
  publication-title: Nat. Mater.
– volume: 93
  start-page: 351
  year: 2019
  publication-title: Food Hydrocolloids
– volume: 6
  start-page: 1625
  year: 2019
  publication-title: Mater. Horiz.
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 4
  start-page: 370
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 2
  start-page: 313
  year: 2006
  publication-title: Acta Biomater.
– volume: 11
  start-page: 1948
  year: 2010
  publication-title: Biomacromolecules
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 7
  start-page: 31
  year: 2011
  publication-title: Acta Biomater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 61
  start-page: 4229
  year: 2016
  publication-title: J. Chem. Eng. Data
– volume: 10
  start-page: 6849
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2012
  publication-title: Sci. Transl. Med.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1775
  year: 2016
  publication-title: Nat. Protoc.
– volume: 35
  start-page: 1845
  year: 2014
  publication-title: Biomaterials
– volume: 5
  start-page: 35
  year: 1999
  publication-title: Tissue Eng.
– volume: 508
  year: 2020
  publication-title: Fluid Phase Equilib.
– volume: 4
  start-page: 217
  year: 2021
  publication-title: Matter
– volume: 28
  start-page: 1664
  year: 2007
  publication-title: Biomaterials
– volume: 139
  start-page: 163
  year: 2017
  publication-title: Biomaterials
– volume: 11
  start-page: 1267
  year: 2020
  publication-title: Nat. Commun.
– volume: 218
  year: 2017
  publication-title: Macromol. Chem. Phys.
– volume: 2
  start-page: 1752
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 25
  start-page: 109
  year: 2016
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 12
  year: 2021
  publication-title: Mater. Today Bio
– volume: 8
  start-page: 736
  year: 2009
  publication-title: Nat. Mater.
– volume: 49
  start-page: 114
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 33
  start-page: 3824
  year: 2012
  publication-title: Biomaterials
– volume: 8
  year: 2020
  publication-title: Mater. Today Bio
– volume: 31
  start-page: 461
  year: 2010
  publication-title: Biomaterials
– volume: 6
  year: 2011
  publication-title: Biomed. Mater.
– volume: 1
  start-page: 215
  year: 2018
  publication-title: Bio‐Des. Manuf.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 18
  start-page: 1345
  year: 2006
  publication-title: Adv. Mater.
– volume: 5
  start-page: 108
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 145
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 58
  start-page: 7620
  year: 2019
  publication-title: Angew. Chem., Int. Ed. Engl
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 19
  start-page: 269
  year: 2001
  publication-title: Mol. Biotechnol.
– volume: 12
  start-page: 851
  year: 2011
  publication-title: Biomacromolecules
– volume: 27
  start-page: 1768
  year: 1986
  publication-title: Polymer
– volume: 3
  start-page: 21
  year: 2018
  publication-title: Nat. Rev. Mater.
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.chemrev.0c00077
– ident: e_1_2_8_18_1
  doi: 10.1385/MB:19:3:269
– ident: e_1_2_8_12_1
  doi: 10.1089/ten.1999.5.35
– ident: e_1_2_8_15_1
  doi: 10.1002/advs.201902953
– ident: e_1_2_8_24_1
  doi: 10.1002/advs.202002002
– ident: e_1_2_8_23_1
  doi: 10.1016/j.fluid.2019.112441
– ident: e_1_2_8_1_1
  doi: 10.1126/scitranslmed.3004890
– ident: e_1_2_8_11_1
  doi: 10.1016/j.actbio.2005.12.007
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.jced.6b00591
– ident: e_1_2_8_5_1
  doi: 10.1002/adhm.201300303
– ident: e_1_2_8_22_1
  doi: 10.1016/j.foodhyd.2019.02.031
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201800242
– ident: e_1_2_8_7_1
  doi: 10.1016/j.actbio.2010.07.028
– ident: e_1_2_8_10_1
  doi: 10.1016/j.biomaterials.2006.11.024
– ident: e_1_2_8_13_1
  doi: 10.1038/s41578-018-0006-y
– ident: e_1_2_8_45_1
  doi: 10.1002/adhm.201500005
– ident: e_1_2_8_25_1
  doi: 10.1002/adhm.201701036
– ident: e_1_2_8_26_1
  doi: 10.1002/macp.201600422
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202107038
– ident: e_1_2_8_19_1
  doi: 10.1039/C9CS00466A
– ident: e_1_2_8_37_1
  doi: 10.1021/acsbiomaterials.6b00149
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202003740
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cocis.2016.09.010
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.7b16059
– ident: e_1_2_8_39_1
  doi: 10.1016/j.mtbio.2021.100162
– ident: e_1_2_8_42_1
  doi: 10.1002/adhm.201701036
– ident: e_1_2_8_47_1
  doi: 10.1007/s42242-018-0028-8
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.chemrev.9b00810
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201900530
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat2515
– ident: e_1_2_8_53_1
  doi: 10.1039/C9MH00375D
– ident: e_1_2_8_4_1
  doi: 10.1038/nmat2458
– ident: e_1_2_8_52_1
  doi: 10.1038/srep28714
– ident: e_1_2_8_50_1
  doi: 10.1088/1748-6041/6/4/045002
– ident: e_1_2_8_9_1
  doi: 10.1021/bm1015305
– ident: e_1_2_8_21_1
  doi: 10.1002/smll.201802107
– ident: e_1_2_8_48_1
  doi: 10.1016/j.biomaterials.2009.09.063
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.200501612
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201906423
– ident: e_1_2_8_32_1
  doi: 10.1016/j.matt.2020.10.022
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aaf3627
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.202102153
– ident: e_1_2_8_51_1
  doi: 10.1002/smll.201805510
– ident: e_1_2_8_8_1
  doi: 10.1002/adhm.201200106
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201805460
– ident: e_1_2_8_59_1
  doi: 10.1002/adhm.202000156
– ident: e_1_2_8_54_1
  doi: 10.1002/adhm.201901544
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-020-14997-4
– ident: e_1_2_8_46_1
  doi: 10.1016/j.biomaterials.2013.11.009
– ident: e_1_2_8_33_1
  doi: 10.1002/adhm.201601451
– ident: e_1_2_8_30_1
  doi: 10.1016/j.biomaterials.2017.04.050
– ident: e_1_2_8_40_1
  doi: 10.1016/0032-3861(86)90274-0
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.chemrev.9b00812
– ident: e_1_2_8_2_1
  doi: 10.1038/nprot.2016.123
– ident: e_1_2_8_14_1
  doi: 10.1038/s41551-019-0471-7
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mtbio.2020.100074
– ident: e_1_2_8_38_1
  doi: 10.1371/journal.pone.0163902
– ident: e_1_2_8_49_1
  doi: 10.1021/bm100199m
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biomaterials.2012.01.048
SSID ssj0031247
Score 2.5847292
Snippet It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular...
It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106357
SubjectTerms 3-D printers
additive manufacturing
biofabrication
dextran
Dextrans
Ethylene oxide
Extrusion
Gelatin
Nanotechnology
poly(ethylene oxide)
poly(vinyl alcohol)
Polyethylene oxide
Polyvinyl alcohol
regenerative medicine
Three dimensional printing
Tissue engineering
Title Micropore‐Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106357
https://www.ncbi.nlm.nih.gov/pubmed/35607752
https://www.proquest.com/docview/2679515740
https://www.proquest.com/docview/2668912468
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPbUHHi2PQKlcCQk4ZJt1nDjhtlC2FWo4wFbqLbIdBxBLUnWzEu2p9174jfwSZpxNugtCSHCM40kcZ8bzjT3-DPC0SI1WWha-KGXpC5VGfhLbxC-VSQt09ypwZNXZu_joRLw9jU6XdvG3_BD9hBtZhhuvycCVnu3fkIbOvk5p6QBDFqJUw0GYErYIFb3v-aNCdF7udBX0WT4Rb3WsjQHfXxVf9Uq_Qc1V5Opcz_g2qK7RbcbJl8G80QNz-Quf4_981R24tcClbNQq0l1Ys9UWbC6xFW7DdUbJe4jX7Y-r7-Oakmg-skOXTFexzDaflDnH8P9iyp5jaTZ6wV59rjHUZZO6nur6G-OD4CU7cCkjtGGLTeZVyxJ-wVRVsFGhzpquALE0Cw_oCTTzSLnZbLS01n4PTsZvJq-P_MVZDr4JZYjjGP6LSBg5LHlgS0QNhTWRSYg_UJaxEjrA0KbgqVRxom0ZIexCuWGgDLfDmJvwPqxXdWUfAlPENqE5R0ktAl1oRKAiKoll0Vo1FB743b_MzYLonM7bmOYtRTPPqZPzvpM9eNbXP2spPv5Yc6dTjXxh6rOcxxJRaiRF4MFefxuNlFZeVGXrOdWJkxSVMU48eNCqVP-qEDGnlBH3gDvF-Esb8g_Z8XF_9ehfhB7DBqdNHG4uaQfWm_O5fYLQqtG7znx-ApHGG3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyEBBzSTR0nTrgVllKg2QN0JW6R7TiACMlqN5UoJ-5c-I38EmacJmxBCAmOcTyJY89kPtvjbwDuFanRSsvCF6UsfaHSyE9im_ilMmmB7l4Fjqw624tn--LFm6iPJqSzMB0_xLDgRpbh_tdk4LQgvfOTNfToY0V7BzhnIU61k3CK0nq7WdWrgUEqRPfl8qug1_KJeqvnbQz4zqb8pl_6DWxuYlfnfKbnQffN7mJOPoyWrR6Zz78wOv7Xd12Ac2toyiadLl2EE7a-BGePERZehq8Zxe8hZLffv3ybNhRH85Y9c_F0Ncts-06Zw1XVrCr2AEuzyUP2-H2Ds122aJpKN58YHwWP2K6LGqEzW2yxrDui8BVTdcEmhTpo-wKE0yzcpSfQ4iOFZ7PJse32K7A_fbp4MvPX6Rx8E8oQf2U4GJEwclzywJYIHAprIpMQhaAsYyV0gLObgqdSxYm2ZYTIC-XGgTLcjmNuwquwVTe1vQ5MEeGE5hwltQh0oRGEiqgkokVr1Vh44PeDmZs11zml3KjyjqWZ59TJ-dDJHtwf6h90LB9_rLnd60a-tvajnMcSgWokReDB3eE22iltvqjaNkuqEycpamOceHCt06nhVSHCTikj7gF3mvGXNuSvs_l8uLrxL0J34PRskc3z-fO9lzfhDKczHW5paRu22sOlvYVIq9W3nS39AD8CH4s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIiE48H4EFjASEnBIN3WcOOFWKGWBZoWgK-0t8iuAKEm1m0osJ-5c-I38EmaSJrQghATHOJ7EsWcy39jjzwD3bGq00tL6opCFL1Qa-UnsEr9QJrXo7lXQkFVne_HuvnhxEB2s7eJv-SH6CTeyjOZ_TQa-sMXOT9LQo49zWjrAkIUo1U7CKREHCen1-HVPIBWi92qOV0Gn5RPzVkfbGPCdTflNt_Qb1tyEro3vmZwH1bW6TTn5MFjWemA-_0Lo-D-fdQHOrYApG7WadBFOuPISnF2jK7wMXzPK3kPA7r5_-TapKIvmLXvWZNOVLHP1O2UOMf4_nrMHWJqNHrLH7yuMddmsqua6-sT4IHjExk3OCO3YYrNl2dKEHzNVWjayalF3BQimWTimJ9DUIyVns9HaYvsV2J88nT3Z9VeHOfgmlCH-yHAsImHksOCBKxA2WGcikxCBoCxiJXSAsY3lqVRxol0RIe5CuWGgDHfDmJvwKmyVVemuA1NEN6E5R0ktAm01QlARFUSz6JwaCg_8bixzs2I6pwM35nnL0cxz6uS872QP7vf1Fy3Hxx9rbneqka9s_SjnsUSYGkkReHC3v41WSksvqnTVkurESYrKGCceXGtVqn9ViKBTyoh7wBvF-Esb8jfZdNpf3fgXoTtw-tV4kk-f7728CWc4beho5pW2Yas-XLpbCLNqfbuxpB_exx5D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micropore%E2%80%90Forming+Gelatin+Methacryloyl+%28GelMA%29+Bioink+Toolbox+2.0%3A+Designable+Tunability+and+Adaptability+for+3D+Bioprinting+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sili+Yi&rft.au=Liu%2C+Qiong&rft.au=Luo%2C+Zeyu&rft.au=He%2C+Jacqueline+Jialu&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=25&rft_id=info:doi/10.1002%2Fsmll.202106357&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon