Micropore‐Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications
It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytoco...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 25; pp. e2106357 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.
A micropore‐forming gelatin methacryloyl (GelMA) aqueous two‐phase bioink toolbox 2.0 is reported with a systematic investigation into a variety of GelMA types and porogen types. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability than the initial version, but also the improved suitability for various bioprinting modalities featuring favorable cellular responses. |
---|---|
AbstractList | It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. A micropore‐forming gelatin methacryloyl (GelMA) aqueous two‐phase bioink toolbox 2.0 is reported with a systematic investigation into a variety of GelMA types and porogen types. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability than the initial version, but also the improved suitability for various bioprinting modalities featuring favorable cellular responses. It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore-forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two-phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore-forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl-modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA-based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. |
Author | Yi, Sili Luo, Zeyu Zhou, Cuiping Zhang, Jin He, Jacqueline Jialu Garciamendez, Carlos Ezio Liu, Qiong Wang, Di Hou, Linxi Ma, Hui‐Lin Li, Wanlu Zhang, Yu Shrike |
Author_xml | – sequence: 1 givenname: Sili surname: Yi fullname: Yi, Sili organization: Fuzhou University – sequence: 2 givenname: Qiong surname: Liu fullname: Liu, Qiong organization: Harvard Medical School – sequence: 3 givenname: Zeyu surname: Luo fullname: Luo, Zeyu organization: Harvard Medical School – sequence: 4 givenname: Jacqueline Jialu surname: He fullname: He, Jacqueline Jialu organization: Harvard Medical School – sequence: 5 givenname: Hui‐Lin surname: Ma fullname: Ma, Hui‐Lin organization: Harvard Medical School – sequence: 6 givenname: Wanlu surname: Li fullname: Li, Wanlu organization: Harvard Medical School – sequence: 7 givenname: Di surname: Wang fullname: Wang, Di organization: Harvard Medical School – sequence: 8 givenname: Cuiping surname: Zhou fullname: Zhou, Cuiping organization: Harvard Medical School – sequence: 9 givenname: Carlos Ezio surname: Garciamendez fullname: Garciamendez, Carlos Ezio organization: Harvard Medical School – sequence: 10 givenname: Linxi surname: Hou fullname: Hou, Linxi organization: Fuzhou University – sequence: 11 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Fuzhou University – sequence: 12 givenname: Yu Shrike orcidid: 0000-0002-0045-0808 surname: Zhang fullname: Zhang, Yu Shrike email: yszhang@research.bwh.harvard.edu organization: Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35607752$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3DAUha2Kive2y8pSN7CYwY_YTrqbQqFIM2LR6TpyHIeaOnZqJ4Ls2HfDb-SX1NOBQUKqWF3r6jv3-p6zB7acdxqADxhNMULkJLbWTgkiGHHKxDuwizmmE56TYmvzxmgH7MV4gxDFJBPbYIcyjoRgZBf8WRgVfOeDfrx_OPehNe4aXmgre-PgQvc_pQqj9aOFR6m7mB3DL8Yb9wsuvbeVv4Nkij7DMx3NtZOV1XA5pGqs6UcoXQ1ntez650bjA6RnqwldMK5frZp1nTUqbfMuHoD3jbRRHz7VffDj_Ovy9NtkfnVxeTqbTxQVVExouoJlSuCGIN1kmNVaMZVTVuSi4TKrEGNFTQoheV7phhGGkw4jqYjGnCi6D47Wc7vgfw869mVrotLWSqf9EEvCeV4kp3ie0E-v0Bs_BJd-lyhRMMxEhhL18YkaqlbXZbqulWEsn21OwHQNJK9jDLrZIBiVqxzLVY7lJsckyF4JlOn_udQHaez_ZcVadmusHt9YUn5fzOcv2r_h3bJ0 |
CitedBy_id | crossref_primary_10_1002_adhm_202401944 crossref_primary_10_3390_polym14194227 crossref_primary_10_3390_bioengineering12030251 crossref_primary_10_34133_research_0141 crossref_primary_10_1002_admt_202401138 crossref_primary_10_1038_s41536_023_00307_1 crossref_primary_10_1016_j_xcrp_2024_102311 crossref_primary_10_1021_acsabm_4c01220 crossref_primary_10_1016_j_bioactmat_2023_06_006 crossref_primary_10_1016_j_biopha_2023_114665 crossref_primary_10_1021_acs_biomac_3c01021 crossref_primary_10_1016_j_bioactmat_2025_02_011 crossref_primary_10_1016_j_hybadv_2023_100115 crossref_primary_10_1002_adfm_202415799 crossref_primary_10_1016_j_jare_2024_01_002 crossref_primary_10_1038_s43586_023_00231_0 crossref_primary_10_1002_adfm_202303368 crossref_primary_10_3390_bioengineering10121358 crossref_primary_10_1016_j_actbio_2024_04_038 crossref_primary_10_1021_acsbiomaterials_2c01127 crossref_primary_10_1021_acs_analchem_2c05087 crossref_primary_10_1089_ten_tea_2023_0149 crossref_primary_10_3390_ijms252312567 crossref_primary_10_1002_adhm_202203243 crossref_primary_10_1002_adfm_202400431 crossref_primary_10_1002_adfm_202210521 crossref_primary_10_1016_j_bioactmat_2023_12_025 crossref_primary_10_1002_adfm_202211897 crossref_primary_10_1002_mabi_202300096 crossref_primary_10_1016_j_mtchem_2024_102111 crossref_primary_10_3389_fbioe_2024_1452477 crossref_primary_10_1021_acs_biomac_3c01271 crossref_primary_10_1002_admt_202201102 crossref_primary_10_1021_acsami_3c14983 crossref_primary_10_1002_adhm_202300395 crossref_primary_10_1002_smtd_202400918 crossref_primary_10_1016_j_bioactmat_2024_09_033 crossref_primary_10_1007_s42242_024_00281_7 crossref_primary_10_1002_advs_202306152 crossref_primary_10_1002_smll_202208089 crossref_primary_10_1177_11795972241288099 crossref_primary_10_1002_admt_202400060 crossref_primary_10_1002_adma_202210378 crossref_primary_10_1016_j_addma_2024_104443 crossref_primary_10_1016_j_jddst_2022_103697 crossref_primary_10_1002_adma_202416260 crossref_primary_10_1089_ten_tea_2023_0239 |
Cites_doi | 10.1021/acs.chemrev.0c00077 10.1385/MB:19:3:269 10.1089/ten.1999.5.35 10.1002/advs.201902953 10.1002/advs.202002002 10.1016/j.fluid.2019.112441 10.1126/scitranslmed.3004890 10.1016/j.actbio.2005.12.007 10.1021/acs.jced.6b00591 10.1002/adhm.201300303 10.1016/j.foodhyd.2019.02.031 10.1002/adma.201800242 10.1016/j.actbio.2010.07.028 10.1016/j.biomaterials.2006.11.024 10.1038/s41578-018-0006-y 10.1002/adhm.201500005 10.1002/adhm.201701036 10.1002/macp.201600422 10.1002/adma.202107038 10.1039/C9CS00466A 10.1021/acsbiomaterials.6b00149 10.1002/adfm.202003740 10.1016/j.cocis.2016.09.010 10.1021/acsami.7b16059 10.1016/j.mtbio.2021.100162 10.1007/s42242-018-0028-8 10.1021/acs.chemrev.9b00810 10.1002/anie.201900530 10.1038/nmat2515 10.1039/C9MH00375D 10.1038/nmat2458 10.1038/srep28714 10.1088/1748-6041/6/4/045002 10.1021/bm1015305 10.1002/smll.201802107 10.1016/j.biomaterials.2009.09.063 10.1002/adma.200501612 10.1002/adma.201906423 10.1016/j.matt.2020.10.022 10.1126/science.aaf3627 10.1002/adma.202102153 10.1002/smll.201805510 10.1002/adhm.201200106 10.1002/adma.201805460 10.1002/adhm.202000156 10.1002/adhm.201901544 10.1038/s41467-020-14997-4 10.1016/j.biomaterials.2013.11.009 10.1002/adhm.201601451 10.1016/j.biomaterials.2017.04.050 10.1016/0032-3861(86)90274-0 10.1021/acs.chemrev.9b00812 10.1038/nprot.2016.123 10.1038/s41551-019-0471-7 10.1016/j.mtbio.2020.100074 10.1371/journal.pone.0163902 10.1021/bm100199m 10.1016/j.biomaterials.2012.01.048 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202106357 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35607752 10_1002_smll_202106357 SMLL202106357 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Brigham Research Institute |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF A00 AEUQT AFPWT NPM P4E RWI WYJ 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3737-331254c71f20ef415dec5c835987f6a4b0559d297a68bef525137310ac2e162c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 23:24:38 EDT 2025 Fri Jul 25 12:02:05 EDT 2025 Wed Feb 19 02:23:57 EST 2025 Tue Jul 01 02:54:13 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Sun Jul 06 04:45:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | dextran additive manufacturing biofabrication poly(ethylene oxide) poly(vinyl alcohol) regenerative medicine |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3737-331254c71f20ef415dec5c835987f6a4b0559d297a68bef525137310ac2e162c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0045-0808 |
PMID | 35607752 |
PQID | 2679515740 |
PQPubID | 1046358 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2668912468 proquest_journals_2679515740 pubmed_primary_35607752 crossref_primary_10_1002_smll_202106357 crossref_citationtrail_10_1002_smll_202106357 wiley_primary_10_1002_smll_202106357_SMLL202106357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2010; 11 2019; 93 2013; 2 2020; 120 2019; 15 2019; 58 2011; 12 2020; 11 2017; 356 2007; 28 2018; 7 2020; 8 2020; 7 2018; 3 2014; 3 2021; 34 2021; 33 2018; 1 2020; 9 2001; 19 2020; 49 2018; 30 2017; 218 2010; 31 2019; 4 2021; 4 2019; 6 2006; 18 2006; 2 2020; 32 2020; 508 2011; 6 2012; 33 1999; 5 2011; 7 2017; 139 2016; 11 2016; 5 2016; 6 2016; 2 2021; 12 2020; 30 1986; 27 2009; 8 2014; 35 2016; 61 2012; 4 2018; 10 2016; 25 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 356 year: 2017 publication-title: Science – volume: 3 start-page: 725 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 8 start-page: 451 year: 2009 publication-title: Nat. Mater. – volume: 93 start-page: 351 year: 2019 publication-title: Food Hydrocolloids – volume: 6 start-page: 1625 year: 2019 publication-title: Mater. Horiz. – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 14 year: 2018 publication-title: Small – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 4 start-page: 370 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 2 start-page: 313 year: 2006 publication-title: Acta Biomater. – volume: 11 start-page: 1948 year: 2010 publication-title: Biomacromolecules – volume: 11 year: 2016 publication-title: PLoS One – volume: 7 start-page: 31 year: 2011 publication-title: Acta Biomater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 61 start-page: 4229 year: 2016 publication-title: J. Chem. Eng. Data – volume: 10 start-page: 6849 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2012 publication-title: Sci. Transl. Med. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 1775 year: 2016 publication-title: Nat. Protoc. – volume: 35 start-page: 1845 year: 2014 publication-title: Biomaterials – volume: 5 start-page: 35 year: 1999 publication-title: Tissue Eng. – volume: 508 year: 2020 publication-title: Fluid Phase Equilib. – volume: 4 start-page: 217 year: 2021 publication-title: Matter – volume: 28 start-page: 1664 year: 2007 publication-title: Biomaterials – volume: 139 start-page: 163 year: 2017 publication-title: Biomaterials – volume: 11 start-page: 1267 year: 2020 publication-title: Nat. Commun. – volume: 218 year: 2017 publication-title: Macromol. Chem. Phys. – volume: 2 start-page: 1752 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 25 start-page: 109 year: 2016 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 12 year: 2021 publication-title: Mater. Today Bio – volume: 8 start-page: 736 year: 2009 publication-title: Nat. Mater. – volume: 49 start-page: 114 year: 2020 publication-title: Chem. Soc. Rev. – volume: 33 start-page: 3824 year: 2012 publication-title: Biomaterials – volume: 8 year: 2020 publication-title: Mater. Today Bio – volume: 31 start-page: 461 year: 2010 publication-title: Biomaterials – volume: 6 year: 2011 publication-title: Biomed. Mater. – volume: 1 start-page: 215 year: 2018 publication-title: Bio‐Des. Manuf. – volume: 15 year: 2019 publication-title: Small – volume: 18 start-page: 1345 year: 2006 publication-title: Adv. Mater. – volume: 5 start-page: 108 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 145 year: 2013 publication-title: Adv. Healthcare Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 58 start-page: 7620 year: 2019 publication-title: Angew. Chem., Int. Ed. Engl – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 19 start-page: 269 year: 2001 publication-title: Mol. Biotechnol. – volume: 12 start-page: 851 year: 2011 publication-title: Biomacromolecules – volume: 27 start-page: 1768 year: 1986 publication-title: Polymer – volume: 3 start-page: 21 year: 2018 publication-title: Nat. Rev. Mater. – ident: e_1_2_8_58_1 doi: 10.1021/acs.chemrev.0c00077 – ident: e_1_2_8_18_1 doi: 10.1385/MB:19:3:269 – ident: e_1_2_8_12_1 doi: 10.1089/ten.1999.5.35 – ident: e_1_2_8_15_1 doi: 10.1002/advs.201902953 – ident: e_1_2_8_24_1 doi: 10.1002/advs.202002002 – ident: e_1_2_8_23_1 doi: 10.1016/j.fluid.2019.112441 – ident: e_1_2_8_1_1 doi: 10.1126/scitranslmed.3004890 – ident: e_1_2_8_11_1 doi: 10.1016/j.actbio.2005.12.007 – ident: e_1_2_8_41_1 doi: 10.1021/acs.jced.6b00591 – ident: e_1_2_8_5_1 doi: 10.1002/adhm.201300303 – ident: e_1_2_8_22_1 doi: 10.1016/j.foodhyd.2019.02.031 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201800242 – ident: e_1_2_8_7_1 doi: 10.1016/j.actbio.2010.07.028 – ident: e_1_2_8_10_1 doi: 10.1016/j.biomaterials.2006.11.024 – ident: e_1_2_8_13_1 doi: 10.1038/s41578-018-0006-y – ident: e_1_2_8_45_1 doi: 10.1002/adhm.201500005 – ident: e_1_2_8_25_1 doi: 10.1002/adhm.201701036 – ident: e_1_2_8_26_1 doi: 10.1002/macp.201600422 – ident: e_1_2_8_36_1 doi: 10.1002/adma.202107038 – ident: e_1_2_8_19_1 doi: 10.1039/C9CS00466A – ident: e_1_2_8_37_1 doi: 10.1021/acsbiomaterials.6b00149 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202003740 – ident: e_1_2_8_43_1 doi: 10.1016/j.cocis.2016.09.010 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.7b16059 – ident: e_1_2_8_39_1 doi: 10.1016/j.mtbio.2021.100162 – ident: e_1_2_8_42_1 doi: 10.1002/adhm.201701036 – ident: e_1_2_8_47_1 doi: 10.1007/s42242-018-0028-8 – ident: e_1_2_8_56_1 doi: 10.1021/acs.chemrev.9b00810 – ident: e_1_2_8_17_1 doi: 10.1002/anie.201900530 – ident: e_1_2_8_20_1 doi: 10.1038/nmat2515 – ident: e_1_2_8_53_1 doi: 10.1039/C9MH00375D – ident: e_1_2_8_4_1 doi: 10.1038/nmat2458 – ident: e_1_2_8_52_1 doi: 10.1038/srep28714 – ident: e_1_2_8_50_1 doi: 10.1088/1748-6041/6/4/045002 – ident: e_1_2_8_9_1 doi: 10.1021/bm1015305 – ident: e_1_2_8_21_1 doi: 10.1002/smll.201802107 – ident: e_1_2_8_48_1 doi: 10.1016/j.biomaterials.2009.09.063 – ident: e_1_2_8_44_1 doi: 10.1002/adma.200501612 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201906423 – ident: e_1_2_8_32_1 doi: 10.1016/j.matt.2020.10.022 – ident: e_1_2_8_3_1 doi: 10.1126/science.aaf3627 – ident: e_1_2_8_35_1 doi: 10.1002/adma.202102153 – ident: e_1_2_8_51_1 doi: 10.1002/smll.201805510 – ident: e_1_2_8_8_1 doi: 10.1002/adhm.201200106 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201805460 – ident: e_1_2_8_59_1 doi: 10.1002/adhm.202000156 – ident: e_1_2_8_54_1 doi: 10.1002/adhm.201901544 – ident: e_1_2_8_31_1 doi: 10.1038/s41467-020-14997-4 – ident: e_1_2_8_46_1 doi: 10.1016/j.biomaterials.2013.11.009 – ident: e_1_2_8_33_1 doi: 10.1002/adhm.201601451 – ident: e_1_2_8_30_1 doi: 10.1016/j.biomaterials.2017.04.050 – ident: e_1_2_8_40_1 doi: 10.1016/0032-3861(86)90274-0 – ident: e_1_2_8_57_1 doi: 10.1021/acs.chemrev.9b00812 – ident: e_1_2_8_2_1 doi: 10.1038/nprot.2016.123 – ident: e_1_2_8_14_1 doi: 10.1038/s41551-019-0471-7 – ident: e_1_2_8_29_1 doi: 10.1016/j.mtbio.2020.100074 – ident: e_1_2_8_38_1 doi: 10.1371/journal.pone.0163902 – ident: e_1_2_8_49_1 doi: 10.1021/bm100199m – ident: e_1_2_8_6_1 doi: 10.1016/j.biomaterials.2012.01.048 |
SSID | ssj0031247 |
Score | 2.5847292 |
Snippet | It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular... It is well-known that tissue engineering scaffolds that feature highly interconnected and size-adjustable micropores are oftentimes desired to promote cellular... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2106357 |
SubjectTerms | 3-D printers additive manufacturing biofabrication dextran Dextrans Ethylene oxide Extrusion Gelatin Nanotechnology poly(ethylene oxide) poly(vinyl alcohol) Polyethylene oxide Polyvinyl alcohol regenerative medicine Three dimensional printing Tissue engineering |
Title | Micropore‐Forming Gelatin Methacryloyl (GelMA) Bioink Toolbox 2.0: Designable Tunability and Adaptability for 3D Bioprinting Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202106357 https://www.ncbi.nlm.nih.gov/pubmed/35607752 https://www.proquest.com/docview/2679515740 https://www.proquest.com/docview/2668912468 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPbUHHi2PQKlcCQk4ZJt1nDjhtlC2FWo4wFbqLbIdBxBLUnWzEu2p9174jfwSZpxNugtCSHCM40kcZ8bzjT3-DPC0SI1WWha-KGXpC5VGfhLbxC-VSQt09ypwZNXZu_joRLw9jU6XdvG3_BD9hBtZhhuvycCVnu3fkIbOvk5p6QBDFqJUw0GYErYIFb3v-aNCdF7udBX0WT4Rb3WsjQHfXxVf9Uq_Qc1V5Opcz_g2qK7RbcbJl8G80QNz-Quf4_981R24tcClbNQq0l1Ys9UWbC6xFW7DdUbJe4jX7Y-r7-Oakmg-skOXTFexzDaflDnH8P9iyp5jaTZ6wV59rjHUZZO6nur6G-OD4CU7cCkjtGGLTeZVyxJ-wVRVsFGhzpquALE0Cw_oCTTzSLnZbLS01n4PTsZvJq-P_MVZDr4JZYjjGP6LSBg5LHlgS0QNhTWRSYg_UJaxEjrA0KbgqVRxom0ZIexCuWGgDLfDmJvwPqxXdWUfAlPENqE5R0ktAl1oRKAiKoll0Vo1FB743b_MzYLonM7bmOYtRTPPqZPzvpM9eNbXP2spPv5Yc6dTjXxh6rOcxxJRaiRF4MFefxuNlFZeVGXrOdWJkxSVMU48eNCqVP-qEDGnlBH3gDvF-Esb8g_Z8XF_9ehfhB7DBqdNHG4uaQfWm_O5fYLQqtG7znx-ApHGG3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BcgAOvB-BBYyEBBzSTR0nTrgVllKg2QN0JW6R7TiACMlqN5UoJ-5c-I38EmacJmxBCAmOcTyJY89kPtvjbwDuFanRSsvCF6UsfaHSyE9im_ilMmmB7l4Fjqw624tn--LFm6iPJqSzMB0_xLDgRpbh_tdk4LQgvfOTNfToY0V7BzhnIU61k3CK0nq7WdWrgUEqRPfl8qug1_KJeqvnbQz4zqb8pl_6DWxuYlfnfKbnQffN7mJOPoyWrR6Zz78wOv7Xd12Ac2toyiadLl2EE7a-BGePERZehq8Zxe8hZLffv3ybNhRH85Y9c_F0Ncts-06Zw1XVrCr2AEuzyUP2-H2Ds122aJpKN58YHwWP2K6LGqEzW2yxrDui8BVTdcEmhTpo-wKE0yzcpSfQ4iOFZ7PJse32K7A_fbp4MvPX6Rx8E8oQf2U4GJEwclzywJYIHAprIpMQhaAsYyV0gLObgqdSxYm2ZYTIC-XGgTLcjmNuwquwVTe1vQ5MEeGE5hwltQh0oRGEiqgkokVr1Vh44PeDmZs11zml3KjyjqWZ59TJ-dDJHtwf6h90LB9_rLnd60a-tvajnMcSgWokReDB3eE22iltvqjaNkuqEycpamOceHCt06nhVSHCTikj7gF3mvGXNuSvs_l8uLrxL0J34PRskc3z-fO9lzfhDKczHW5paRu22sOlvYVIq9W3nS39AD8CH4s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIiE48H4EFjASEnBIN3WcOOFWKGWBZoWgK-0t8iuAKEm1m0osJ-5c-I38EmaSJrQghATHOJ7EsWcy39jjzwD3bGq00tL6opCFL1Qa-UnsEr9QJrXo7lXQkFVne_HuvnhxEB2s7eJv-SH6CTeyjOZ_TQa-sMXOT9LQo49zWjrAkIUo1U7CKREHCen1-HVPIBWi92qOV0Gn5RPzVkfbGPCdTflNt_Qb1tyEro3vmZwH1bW6TTn5MFjWemA-_0Lo-D-fdQHOrYApG7WadBFOuPISnF2jK7wMXzPK3kPA7r5_-TapKIvmLXvWZNOVLHP1O2UOMf4_nrMHWJqNHrLH7yuMddmsqua6-sT4IHjExk3OCO3YYrNl2dKEHzNVWjayalF3BQimWTimJ9DUIyVns9HaYvsV2J88nT3Z9VeHOfgmlCH-yHAsImHksOCBKxA2WGcikxCBoCxiJXSAsY3lqVRxol0RIe5CuWGgDHfDmJvwKmyVVemuA1NEN6E5R0ktAm01QlARFUSz6JwaCg_8bixzs2I6pwM35nnL0cxz6uS872QP7vf1Fy3Hxx9rbneqka9s_SjnsUSYGkkReHC3v41WSksvqnTVkurESYrKGCceXGtVqn9ViKBTyoh7wBvF-Esb8jfZdNpf3fgXoTtw-tV4kk-f7728CWc4beho5pW2Yas-XLpbCLNqfbuxpB_exx5D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micropore%E2%80%90Forming+Gelatin+Methacryloyl+%28GelMA%29+Bioink+Toolbox+2.0%3A+Designable+Tunability+and+Adaptability+for+3D+Bioprinting+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sili+Yi&rft.au=Liu%2C+Qiong&rft.au=Luo%2C+Zeyu&rft.au=He%2C+Jacqueline+Jialu&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=25&rft_id=info:doi/10.1002%2Fsmll.202106357&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |