A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High‐Rate and Long‐Cycling Zinc–Air Batteries

Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evoluti...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 15; pp. e2008606 - n/a
Main Authors Zhao, Chang‐Xin, Liu, Jia‐Ning, Wang, Juan, Ren, Ding, Yu, Jia, Chen, Xiao, Li, Bo‐Quan, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage. Ultrahigh bifunctional electrocatalytic activity for oxygen reduction and evolution is achieved with the indicator ΔE = 0.63 V, far exceeding the noble‐metal‐based benchmark and most reported electrocatalysts. Corresponding rechargeable zinc–air batteries afford ultralong lifespan over 3600 cycles at 10 mA cm−2 and ultrahigh cycling current density of 100 mA cm−2.
AbstractList Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator Δ E of 0.63 V, far exceeding the noble‐metal‐based Pt/C + Ir/C benchmark ( Δ E = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm −2 ) and excellent rate performances (cycling current density at 100 mA cm −2 ) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage.
Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage.
Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high-performance noble-metal-free bifunctional electrocatalysts that exceed the current noble-metal-based benchmarks. Herein, a noble-metal-free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc-air batteries. Concretely, atomic Co-N-C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble-metal-based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm ) and excellent rate performances (cycling current density at 100 mA cm ) are achieved in rechargeable zinc-air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high-rate and long-cycling rechargeable zinc-air batteries for efficient sustainable energy storage.
Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage. Ultrahigh bifunctional electrocatalytic activity for oxygen reduction and evolution is achieved with the indicator ΔE = 0.63 V, far exceeding the noble‐metal‐based benchmark and most reported electrocatalysts. Corresponding rechargeable zinc–air batteries afford ultralong lifespan over 3600 cycles at 10 mA cm−2 and ultrahigh cycling current density of 100 mA cm−2.
Author Ren, Ding
Zhang, Qiang
Zhao, Chang‐Xin
Liu, Jia‐Ning
Li, Bo‐Quan
Chen, Xiao
Wang, Juan
Yu, Jia
Author_xml – sequence: 1
  givenname: Chang‐Xin
  orcidid: 0000-0003-3133-0814
  surname: Zhao
  fullname: Zhao, Chang‐Xin
– sequence: 2
  givenname: Jia‐Ning
  orcidid: 0000-0002-1582-8244
  surname: Liu
  fullname: Liu, Jia‐Ning
– sequence: 3
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
– sequence: 4
  givenname: Ding
  surname: Ren
  fullname: Ren, Ding
– sequence: 5
  givenname: Jia
  orcidid: 0000-0002-4766-8054
  surname: Yu
  fullname: Yu, Jia
– sequence: 6
  givenname: Xiao
  orcidid: 0000-0003-1104-6146
  surname: Chen
  fullname: Chen, Xiao
– sequence: 7
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  email: libq@bit.edu.cn
– sequence: 8
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33656780$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9u1DAUBnALFdFpYcsSWWLDJoP_xE68YJEOA600VSVUsWATOc7L4MpjlzgRZNcjVCoH4CwcgEP0JPVo2iKxYWU96fc-6fk7QHs-eEDoJSVzSgh7q9uNnjPCCCklkU_QjApGs5wosYdmRHGRKZmX--ggxgtCiEroGdrnXApZlGSGQoX__Fz-_vUOk7nk-DM-st3ozWCD1w6f_ZjW4PHSgRn6YPSg3RQHvPS6cRDxsV1_vb26_qQHwNq3eBX8Os2LyTjr1_iL9eb26qayPT7SwwC9hfgcPe20i_Di_j1E5x-W54vjbHX28WRRrTLDCy4zgJzxtjFCpSO7juet1kZ2CqjJW1oWhegaQVtheENYTg1p26KDztBG5Lkh_BC92cVe9uHbCHGoNzYacE57CGOsWa4kE2lVJPr6H3oRxj5dn5SgjEmqyq2a75TpQ4w9dPVlbze6n2pK6m0T9baJ-rGJtPDqPnZsNtA-8oevT0DtwHfrYPpPXF29P63-ht8Bd8eZqA
CitedBy_id crossref_primary_10_1039_D3CP03049K
crossref_primary_10_1016_j_cej_2023_141868
crossref_primary_10_1021_acsanm_3c03056
crossref_primary_10_1039_D3SE00315A
crossref_primary_10_1002_ange_202303845
crossref_primary_10_1007_s11581_021_04328_y
crossref_primary_10_1002_est2_313
crossref_primary_10_1016_j_jelechem_2024_118369
crossref_primary_10_1021_acssuschemeng_3c01799
crossref_primary_10_1002_eem2_12219
crossref_primary_10_1002_smll_202305062
crossref_primary_10_1039_D1NJ04258K
crossref_primary_10_1039_D3NA00074E
crossref_primary_10_1021_acs_iecr_3c01472
crossref_primary_10_1002_smll_202310250
crossref_primary_10_1016_j_jechem_2022_01_025
crossref_primary_10_1016_j_jcis_2024_02_120
crossref_primary_10_1016_j_cej_2021_131140
crossref_primary_10_1002_aenm_202203244
crossref_primary_10_1016_j_apcatb_2024_123866
crossref_primary_10_1039_D2QI02564G
crossref_primary_10_1016_j_apcatb_2024_124315
crossref_primary_10_1016_j_matlet_2022_132531
crossref_primary_10_1039_D2DT02132C
crossref_primary_10_1021_acsami_2c14657
crossref_primary_10_1021_acsnano_2c06700
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1002_anie_202304852
crossref_primary_10_1039_D1CY01688A
crossref_primary_10_1016_j_jallcom_2023_170460
crossref_primary_10_1021_acs_nanolett_2c02159
crossref_primary_10_1039_D3NJ01204B
crossref_primary_10_1002_admi_202300038
crossref_primary_10_1002_smtd_202100865
crossref_primary_10_1002_ange_202117703
crossref_primary_10_1016_j_jechem_2021_08_041
crossref_primary_10_1039_D2TA09626A
crossref_primary_10_1021_acsami_1c17151
crossref_primary_10_1002_smll_202105487
crossref_primary_10_1016_j_apsusc_2023_159080
crossref_primary_10_1039_D1MA00809A
crossref_primary_10_1016_j_apcatb_2022_121150
crossref_primary_10_1016_j_jechem_2022_03_025
crossref_primary_10_3390_ma16145105
crossref_primary_10_1039_D3NJ05928F
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1016_j_jechem_2021_07_003
crossref_primary_10_1039_D2TA05777H
crossref_primary_10_1016_j_cej_2021_133509
crossref_primary_10_1002_advs_202203391
crossref_primary_10_1002_ange_202313029
crossref_primary_10_1021_acsaem_3c01880
crossref_primary_10_1016_j_apsusc_2022_152683
crossref_primary_10_1039_D2GC02958H
crossref_primary_10_1016_j_jechem_2022_01_047
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1021_acscatal_1c04454
crossref_primary_10_1002_anie_202117703
crossref_primary_10_1039_D2TA06297F
crossref_primary_10_1007_s40820_021_00768_3
crossref_primary_10_1146_annurev_matsci_010622_105440
crossref_primary_10_1016_j_gee_2021_11_003
crossref_primary_10_3390_catal11111394
crossref_primary_10_1002_sstr_202200267
crossref_primary_10_1007_s40820_023_01022_8
crossref_primary_10_1039_D2TA01716D
crossref_primary_10_1039_D4TA02444C
crossref_primary_10_1016_j_jallcom_2022_164829
crossref_primary_10_1016_j_cej_2021_133734
crossref_primary_10_1002_sstr_202300111
crossref_primary_10_1016_j_carbon_2023_01_034
crossref_primary_10_1002_adma_202105812
crossref_primary_10_1002_aenm_202300325
crossref_primary_10_1039_D3CC00742A
crossref_primary_10_1002_er_7841
crossref_primary_10_1021_acsmaterialslett_1c00762
crossref_primary_10_1021_acsaem_2c03084
crossref_primary_10_1016_j_nxmate_2024_100162
crossref_primary_10_1246_bcsj_20230051
crossref_primary_10_1016_j_jechem_2023_04_049
crossref_primary_10_1007_s11467_022_1208_8
crossref_primary_10_1007_s11708_024_0928_6
crossref_primary_10_1021_acsnano_3c08839
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1002_anie_202313029
crossref_primary_10_1016_j_jechem_2024_06_051
crossref_primary_10_1021_acsanm_2c05107
crossref_primary_10_1002_asia_202300547
crossref_primary_10_1016_j_cej_2022_137049
crossref_primary_10_1021_acsnano_2c07542
crossref_primary_10_1002_smll_202404065
crossref_primary_10_1016_j_jcis_2022_11_119
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1039_D3EY00160A
crossref_primary_10_1002_ente_202100940
crossref_primary_10_1002_smll_202107207
crossref_primary_10_1002_adma_202311105
crossref_primary_10_1073_pnas_2313239121
crossref_primary_10_1002_adma_202109407
crossref_primary_10_1002_adma_202308326
crossref_primary_10_1126_sciadv_abn5091
crossref_primary_10_1002_ange_202304852
crossref_primary_10_1016_j_microc_2024_109916
crossref_primary_10_1007_s12274_022_4429_9
crossref_primary_10_1021_acsami_3c00651
crossref_primary_10_1016_j_jcis_2024_05_232
crossref_primary_10_1016_j_nxener_2023_100025
crossref_primary_10_1021_acs_iecr_3c01793
crossref_primary_10_1021_acs_jpcc_2c07219
crossref_primary_10_1021_jacs_4c01550
crossref_primary_10_1016_j_cej_2021_131589
crossref_primary_10_1002_smll_202101720
crossref_primary_10_1016_j_jallcom_2022_168210
crossref_primary_10_1002_cnl2_43
crossref_primary_10_1016_j_jechem_2021_08_054
crossref_primary_10_1002_sstr_202300293
crossref_primary_10_1016_j_jcis_2022_07_148
crossref_primary_10_1007_s11581_023_05343_x
crossref_primary_10_1021_acs_nanolett_2c01388
crossref_primary_10_1016_j_jcis_2023_02_148
crossref_primary_10_1007_s12598_023_02531_6
crossref_primary_10_1002_anie_202303845
crossref_primary_10_1016_j_jallcom_2022_164092
crossref_primary_10_1002_adfm_202310820
crossref_primary_10_1016_j_matlet_2022_133665
crossref_primary_10_1016_j_apsusc_2022_154953
crossref_primary_10_1016_j_nanoen_2024_109713
crossref_primary_10_1021_acs_langmuir_2c00347
crossref_primary_10_1016_j_cej_2024_149671
crossref_primary_10_1039_D1QM00885D
crossref_primary_10_1016_j_jechem_2022_09_022
crossref_primary_10_1016_j_jechem_2021_10_012
crossref_primary_10_1016_j_ccr_2023_215565
crossref_primary_10_1002_smll_202103737
crossref_primary_10_1016_j_jechem_2021_10_014
crossref_primary_10_1039_D2EE02440C
crossref_primary_10_1016_j_cej_2024_148798
crossref_primary_10_1016_j_jechem_2022_10_010
crossref_primary_10_1002_cjoc_202200217
crossref_primary_10_1016_j_apcato_2024_206929
crossref_primary_10_1016_j_jechem_2022_07_039
crossref_primary_10_1002_smll_202206531
crossref_primary_10_1021_acsanm_3c02346
crossref_primary_10_1021_acscatal_4c01728
crossref_primary_10_3390_catal12080843
crossref_primary_10_1002_adfm_202302234
crossref_primary_10_1039_D3TA02293E
crossref_primary_10_1039_D1NR04503B
crossref_primary_10_1002_smll_202306504
crossref_primary_10_1002_smll_202201197
crossref_primary_10_1039_D3CC05597C
crossref_primary_10_1002_adfm_202316699
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1002_adfm_202210143
crossref_primary_10_1039_D1DT02787E
crossref_primary_10_1002_smll_202302414
crossref_primary_10_1016_j_jpowsour_2022_231076
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1021_acsaem_1c02288
crossref_primary_10_1002_aenm_202102235
crossref_primary_10_1088_1361_6463_ac96fe
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1038/s41929-018-0063-z
10.1002/adma.201701410
10.1016/j.apenergy.2013.11.021
10.1002/adma.201703185
10.1021/acs.nanolett.0c01925
10.1002/aenm.201601172
10.1039/C8EE02679C
10.1021/jacs.6b05046
10.1002/anie.201908736
10.1002/adma.201908488
10.1021/ja4027715
10.1039/C9EE03573G
10.1016/j.joule.2018.07.006
10.1002/adma.201808267
10.1038/nchem.2085
10.1002/adma.201800561
10.1002/adma.201800005
10.1021/acs.nanolett.8b03666
10.1002/adma.201706102
10.1002/adfm.201901301
10.1002/inf2.12056
10.1039/C5EE03149D
10.1016/j.nanoen.2019.04.076
10.1002/advs.201900628
10.1002/adfm.202006533
10.1002/inf2.12000
10.1038/nature07853
10.1002/adfm.201806153
10.1016/j.nanoen.2019.05.059
10.1002/anie.201907595
10.1039/C5EE03440J
10.1038/ncomms5477
10.1126/science.aam5852
10.1002/cssc.201903071
10.1002/adma.201900592
10.1002/aenm.201802605
10.1021/acsnano.7b09064
10.1021/acsami.6b12100
10.1149/1.1838821
10.1021/ar2002705
10.1016/0025-5408(80)90012-4
10.1038/s41929-020-00550-5
10.1039/C4CC01625D
10.1126/science.aab1595
10.1002/adfm.201102222
10.1002/adma.201705580
10.1002/adma.202003649
10.1021/jacs.8b09805
10.1016/j.jechem.2020.01.034
10.1039/C8EE00977E
10.1021/acs.accounts.6b00460
10.1038/natrevmats.2016.13
10.1002/adfm.201904481
10.1002/aenm.201903854
10.1002/aenm.201700260
10.1002/adma.201801072
10.1002/anie.201813519
10.1016/j.cclet.2019.03.026
10.1016/j.jechem.2017.09.015
10.1126/sciadv.aat3446
10.1021/cr020731c
10.1002/anie.201610119
10.1002/anie.201604802
10.1002/adma.201808281
10.1002/smtd.201900853
10.1039/D0CS00137F
10.1002/adma.201807468
10.1039/C9CS00728H
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202008606
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202008606
33656780
ADMA202008606
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0200102
– fundername: National Natural Science Foundation of China
  funderid: 21825501; U1801257
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
– fundername: National Key Research and Development Program
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: National Key Research and Development Program
  grantid: 2016YFA0200102
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0200102
– fundername: National Natural Science Foundation of China
  grantid: U1801257
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3736-ee423dbc59002ff34daac6f9e1c4d18775fb51d5c3b0241c0dd7fefc1b544c03
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Wed Dec 04 08:00:10 EST 2024
Tue Nov 19 06:29:46 EST 2024
Fri Dec 06 01:31:22 EST 2024
Sat Sep 28 08:23:05 EDT 2024
Sat Aug 24 01:04:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords oxygen evolution reaction
bifunctional electrocatalysts
rechargeable zinc-air batteries
oxygen reduction reaction
electrocatalysis
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-ee423dbc59002ff34daac6f9e1c4d18775fb51d5c3b0241c0dd7fefc1b544c03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-9544-5795
0000-0002-4766-8054
0000-0002-3929-1541
0000-0002-1582-8244
0000-0003-3133-0814
0000-0003-1104-6146
PMID 33656780
PQID 2512261985
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2496250245
proquest_journals_2512261985
crossref_primary_10_1002_adma_202008606
pubmed_primary_33656780
wiley_primary_10_1002_adma_202008606_ADMA202008606
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2020; 20
2019; 12
2019; 58
2020; 13
2020; 10
2017; 356
2020; 4
2014; 5
2018; 2
2019; 62
2018; 4
2019; 61
2018; 1
2020; 49
2019; 29
2018; 30
2014; 50
2016; 49
2012; 22
2019; 9
2018; 28
2004; 104
2021; 4
2019; 6
2018; 140
2019; 31
2017; 26
2019; 30
2013; 46
2019; 1
2017; 29
2020; 32
2015; 7
2014; 115
2016; 55
2009; 458
2015; 350
1980; 15
2018; 18
2016; 1
2020; 31
2017; 56
2013; 135
2016; 138
2018; 12
2018; 11
1998; 145
2016; 8
2016; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 115
  start-page: 242
  year: 2014
  publication-title: Appl. Energy
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 1094
  year: 2017
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 727
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 3806
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 2796
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 62
  start-page: 550
  year: 2019
  publication-title: Nano Energy
– volume: 56
  start-page: 610
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 49
  start-page: 4667
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 46
  start-page: 1053
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 4477
  year: 2014
  publication-title: Nat. Commun.
– volume: 1
  start-page: 6
  year: 2019
  publication-title: InfoMat
– volume: 1
  start-page: 533
  year: 2019
  publication-title: InfoMat
– volume: 15
  start-page: 783
  year: 1980
  publication-title: Mater. Res. Bull.
– volume: 30
  start-page: 911
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 145
  start-page: 3418
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 61
  start-page: 245
  year: 2019
  publication-title: Nano Energy
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 13
  start-page: 1711
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 58
  start-page: 5810
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 283
  year: 2020
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 102
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 9
  start-page: 478
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 675
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1648
  year: 2018
  publication-title: Joule
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 458
  start-page: 190
  year: 2009
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 4
  start-page: 36
  year: 2021
  publication-title: Nat. Catal.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 339
  year: 2018
  publication-title: Nat. Catal.
– volume: 11
  start-page: 1723
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1949
  year: 2018
  publication-title: ACS Nano
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 6479
  year: 2014
  publication-title: Chem. Commun.
– volume: 13
  start-page: 1529
  year: 2020
  publication-title: ChemSusChem
– volume: 20
  start-page: 5443
  year: 2020
  publication-title: Nano Lett.
– volume: 350
  start-page: 938
  year: 2015
  publication-title: Science
– volume: 18
  start-page: 7870
  year: 2018
  publication-title: Nano Lett.
– ident: e_1_2_7_48_1
  doi: 10.1038/s41929-018-0063-z
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201701410
– ident: e_1_2_7_7_1
  doi: 10.1016/j.apenergy.2013.11.021
– ident: e_1_2_7_57_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.nanolett.0c01925
– ident: e_1_2_7_32_1
  doi: 10.1002/aenm.201601172
– ident: e_1_2_7_35_1
  doi: 10.1039/C8EE02679C
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.6b05046
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201908736
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201908488
– ident: e_1_2_7_68_1
  doi: 10.1021/ja4027715
– ident: e_1_2_7_51_1
  doi: 10.1039/C9EE03573G
– ident: e_1_2_7_17_1
  doi: 10.1016/j.joule.2018.07.006
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201808267
– ident: e_1_2_7_1_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201800005
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.nanolett.8b03666
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.201901301
– ident: e_1_2_7_56_1
  doi: 10.1002/inf2.12056
– ident: e_1_2_7_61_1
  doi: 10.1039/C5EE03149D
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2019.04.076
– ident: e_1_2_7_42_1
  doi: 10.1002/advs.201900628
– ident: e_1_2_7_28_1
  doi: 10.1002/adfm.202006533
– ident: e_1_2_7_12_1
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_59_1
  doi: 10.1038/nature07853
– ident: e_1_2_7_63_1
  doi: 10.1002/adfm.201806153
– ident: e_1_2_7_24_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201907595
– ident: e_1_2_7_50_1
  doi: 10.1039/C5EE03440J
– ident: e_1_2_7_65_1
  doi: 10.1038/ncomms5477
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_7_45_1
  doi: 10.1002/cssc.201903071
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201900592
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201802605
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.7b09064
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.6b12100
– ident: e_1_2_7_8_1
  doi: 10.1149/1.1838821
– ident: e_1_2_7_10_1
  doi: 10.1021/ar2002705
– ident: e_1_2_7_9_1
  doi: 10.1016/0025-5408(80)90012-4
– ident: e_1_2_7_30_1
  doi: 10.1038/s41929-020-00550-5
– ident: e_1_2_7_52_1
  doi: 10.1039/C4CC01625D
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201102222
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201705580
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202003649
– ident: e_1_2_7_44_1
  doi: 10.1021/jacs.8b09805
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jechem.2020.01.034
– ident: e_1_2_7_22_1
  doi: 10.1039/C8EE00977E
– ident: e_1_2_7_60_1
  doi: 10.1021/acs.accounts.6b00460
– ident: e_1_2_7_15_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201904481
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201903854
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201801072
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201813519
– ident: e_1_2_7_49_1
  doi: 10.1016/j.cclet.2019.03.026
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jechem.2017.09.015
– ident: e_1_2_7_19_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_7_11_1
  doi: 10.1021/cr020731c
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201610119
– ident: e_1_2_7_55_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201808281
– ident: e_1_2_7_62_1
  doi: 10.1002/smtd.201900853
– ident: e_1_2_7_13_1
  doi: 10.1039/D0CS00137F
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201807468
– ident: e_1_2_7_58_1
  doi: 10.1039/C9CS00728H
SSID ssj0009606
Score 2.7195344
SecondaryResourceType review_article
Snippet Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize...
Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2008606
SubjectTerms Benchmarks
bifunctional electrocatalysts
Chemical evolution
Current density
Cycles
electrocatalysis
Electrocatalysts
Energy storage
Hydroxides
Iridium
Iron compounds
Life span
Materials science
Metal air batteries
Nickel compounds
oxygen evolution reaction
oxygen reduction reaction
Rechargeable batteries
rechargeable zinc–air batteries
Storage batteries
Zinc
Zinc-oxygen batteries
Title A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High‐Rate and Long‐Cycling Zinc–Air Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008606
https://www.ncbi.nlm.nih.gov/pubmed/33656780
https://www.proquest.com/docview/2512261985
https://search.proquest.com/docview/2496250245
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHFadyaKH0I0ArI1XqKUsSO18HDildhFBpJUQr1EsUf6FVpWzF7kosJx4BqTwAz9IH6EPwJJ2xdwPbHiq1Ryu24tgz8c_2-G-A1zjKCF2IOEyE1aFAJAjLUsuQF1YhfqcyNjRRPPyQ7X8SByfpyb1T_F4foltwI89w_2ty8EaOtu9EQxvtdINo_z5zmtsx-gpR0dGdfhThuRPb41iFTBRz1cYo2V4svjgq_YGai-Tqhp69x9DMK-0jTr72JmPZUxe_6Tn-z1etwKMZl7LKG9IqPDDtE1i-p1a4BsOK_bzu_7jZYVEv4-wzezugUdEvJrKP51O0Rdb31-q4VaHpaMz67mzWiFE8ye3l1RGiLWtazd4P21NM707paOYp-zJo1e3l92pwxrziJ07gn8LxXv94dz-c3dcQKp7zLDQG2UxLRReRJtZyoZtGZbY0sRI6LvI8tTKNdaq4RDKIVaR1bg3ahEyFUBF_BkvtsDUvgJWyTKzBLAUSHidBmgTJtrCRFHmuNA_gzby76m9elaP2-stJTS1Ydy0YwOa8N-uZd45qYjqaORZpAFvdY_Qr2ixpWjOcYB5R4tSQNqYDeO6toHsV50jBeREFkLi-_Esd6urdYdWl1v-l0AY8TCiYxoUMbcLS-GxiXiINjeUrZ_G_AEmrAlA
link.rule.ids 315,781,785,1376,27929,27930,46299,46723
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMCBYyExCnbJHb-Dj2EstUCu0WqFoS4RPFPqhVSFnV3JZZTHwGJPgDP0gfoQ_RJmLE3KQsHJDhasRXHnsl88-PPAM_QygididCPRK19gZDAz3MtfZ7VCuF3LENDjuJoPxm8E68_xG01IZ2FcfwQXcCNNMP-r0nBKSC9fcEaWmlLHEQJ_IRIty-jzjuv6uCCQYoAuqXb4ziJRGQtb2MQba-PX7dLf4DNdexqjc_eDZDttF3NyafeYi576utvjI7_9V034foKmrLCydItuGSa23DtF8LCOzAt2NlJ__THDgt6CWfv2YsJGUYXT2RvvyxRHFnf3axjA0PL2Zz17fGsGaOSkvPjbweIblnVaDacNofY3l3S6cxD9nHSqPPj78XkiDnST_Th78J4rz_eHfirKxt8xVOe-MYgPNNS0V2kUV1zoatKJXVuQiV0mKVpXMs41LHiEsFBqAKt09qgWMhYCBXwe7DRTBtzH1gu86g22CVDkMeJkyZCcJvVgRRpqjT34Hm7X-VnR8xROgrmqKQVLLsV9GCr3c5ypaCzkmAdOY9Z7MHT7jGqFuVLqsZMF9hH5OgdUm7ag00nBt2rOEcgnGaBB5HdzL_MoSxejoqu9eBfBj2BK4PxaFgOX-2_eQhXI6qtsRVEW7AxP1qYRwiO5vKxFf-fbLgGbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUJEQLCh3UgoYCYlVpkns3BYsQjujAm1BVUEVmyi-VSOkTNWZkRhWfQQkeACehQfgIfoknGPPpB1YIMEyiq049rHPd3z5DfAUvYzQhYjDRFgdCkSCsCy1DHlhFeJ3KmNDgeLuXrb9Trw6TA8vnOL3-hDdhBv1DDdeUwc_1nbjXDS00U43iNbvM9LcviwyHFoJi_bPBaSIz53aHscyZKJYyDZGycZy_mW39AdrLqOr8z2DVWgWpfZbTj72phPZU59_E3T8n9-6AdfnYMoqb0k34ZJpb8G1C3KFt2FUsZ_f-j--P2dRL-PsPXsxJLfoZxPZm08zNEbW9_fquGmh2XjC-u5w1pjRhpKz0y_7yLasaTXbGbVH-Lw5o7OZR-zDsFVnp1-r4Qnzkp8Ywd-Bg0H_YHM7nF_YECqe8yw0BuFMS0U3kSbWcqGbRmW2NLESOi7yPLUyjXWquEQ0iFWkdW4NGoVMhVARvwsr7ag194GVskyswSQFIh4nRZoE0bawkRR5rjQP4NmiuepjL8tRewHmpKYarLsaDGB90Zr1vHuOa4I6Ch2LNIAn3WvsWLRa0rRmNMU0osTYkFamA7jnraD7FOeIwXkRBZC4tvxLGepqa7fqntb-JdNjuPJ2a1DvvNx7_QCuJrSxxm0fWoeVycnUPEQymshHzvh_AW9HBSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%CE%94+E+%C2%A0%3D+0.63+V+Bifunctional+Oxygen+Electrocatalyst+Enables+High%E2%80%90Rate+and+Long%E2%80%90Cycling+Zinc%E2%80%93Air+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chang%E2%80%90Xin&rft.au=Liu%2C+Jia%E2%80%90Ning&rft.au=Wang%2C+Juan&rft.au=Ren%2C+Ding&rft.date=2021-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.202008606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202008606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon