A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High‐Rate and Long‐Cycling Zinc–Air Batteries
Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evoluti...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 15; pp. e2008606 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage.
Ultrahigh bifunctional electrocatalytic activity for oxygen reduction and evolution is achieved with the indicator ΔE = 0.63 V, far exceeding the noble‐metal‐based benchmark and most reported electrocatalysts. Corresponding rechargeable zinc–air batteries afford ultralong lifespan over 3600 cycles at 10 mA cm−2 and ultrahigh cycling current density of 100 mA cm−2. |
---|---|
AbstractList | Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator
Δ
E
of 0.63 V, far exceeding the noble‐metal‐based Pt/C
+
Ir/C benchmark (
Δ
E
=
0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm
−2
) and excellent rate performances (cycling current density at 100 mA cm
−2
) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage. Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage. Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high-performance noble-metal-free bifunctional electrocatalysts that exceed the current noble-metal-based benchmarks. Herein, a noble-metal-free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc-air batteries. Concretely, atomic Co-N-C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble-metal-based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm ) and excellent rate performances (cycling current density at 100 mA cm ) are achieved in rechargeable zinc-air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high-rate and long-cycling rechargeable zinc-air batteries for efficient sustainable energy storage. Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize high cycling current density and long cycling lifespan. Nevertheless, their cathodic reactions involving oxygen reduction and oxygen evolution are highly sluggish in kinetics, requiring high‐performance noble‐metal‐free bifunctional electrocatalysts that exceed the current noble‐metal‐based benchmarks. Herein, a noble‐metal‐free bifunctional electrocatalyst is fabricated, which demonstrates ultrahigh bifunctional activity and renders excellent performance in rechargeable zinc–air batteries. Concretely, atomic Co–N–C and NiFe layered double hydroxides (LDHs) are respectively selected as oxygen reduction and evolution active sites and are further rationally integrated to afford the resultant CoNC@LDH composite electrocatalyst. The CoNC@LDH electrocatalyst exhibits remarkable bifunctional activity delivering an indicator ΔE of 0.63 V, far exceeding the noble‐metal‐based Pt/C+Ir/C benchmark (ΔE = 0.77 V) and most reported electrocatalysts. Correspondingly, ultralong lifespan (over 3600 cycles at 10 mA cm−2) and excellent rate performances (cycling current density at 100 mA cm−2) are achieved in rechargeable zinc–air batteries. This work highlights the current advances of bifunctional oxygen electrocatalysis and endows high‐rate and long‐cycling rechargeable zinc–air batteries for efficient sustainable energy storage. Ultrahigh bifunctional electrocatalytic activity for oxygen reduction and evolution is achieved with the indicator ΔE = 0.63 V, far exceeding the noble‐metal‐based benchmark and most reported electrocatalysts. Corresponding rechargeable zinc–air batteries afford ultralong lifespan over 3600 cycles at 10 mA cm−2 and ultrahigh cycling current density of 100 mA cm−2. |
Author | Ren, Ding Zhang, Qiang Zhao, Chang‐Xin Liu, Jia‐Ning Li, Bo‐Quan Chen, Xiao Wang, Juan Yu, Jia |
Author_xml | – sequence: 1 givenname: Chang‐Xin orcidid: 0000-0003-3133-0814 surname: Zhao fullname: Zhao, Chang‐Xin – sequence: 2 givenname: Jia‐Ning orcidid: 0000-0002-1582-8244 surname: Liu fullname: Liu, Jia‐Ning – sequence: 3 givenname: Juan surname: Wang fullname: Wang, Juan – sequence: 4 givenname: Ding surname: Ren fullname: Ren, Ding – sequence: 5 givenname: Jia orcidid: 0000-0002-4766-8054 surname: Yu fullname: Yu, Jia – sequence: 6 givenname: Xiao orcidid: 0000-0003-1104-6146 surname: Chen fullname: Chen, Xiao – sequence: 7 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan email: libq@bit.edu.cn – sequence: 8 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33656780$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9u1DAUBnALFdFpYcsSWWLDJoP_xE68YJEOA600VSVUsWATOc7L4MpjlzgRZNcjVCoH4CwcgEP0JPVo2iKxYWU96fc-6fk7QHs-eEDoJSVzSgh7q9uNnjPCCCklkU_QjApGs5wosYdmRHGRKZmX--ggxgtCiEroGdrnXApZlGSGQoX__Fz-_vUOk7nk-DM-st3ozWCD1w6f_ZjW4PHSgRn6YPSg3RQHvPS6cRDxsV1_vb26_qQHwNq3eBX8Os2LyTjr1_iL9eb26qayPT7SwwC9hfgcPe20i_Di_j1E5x-W54vjbHX28WRRrTLDCy4zgJzxtjFCpSO7juet1kZ2CqjJW1oWhegaQVtheENYTg1p26KDztBG5Lkh_BC92cVe9uHbCHGoNzYacE57CGOsWa4kE2lVJPr6H3oRxj5dn5SgjEmqyq2a75TpQ4w9dPVlbze6n2pK6m0T9baJ-rGJtPDqPnZsNtA-8oevT0DtwHfrYPpPXF29P63-ht8Bd8eZqA |
CitedBy_id | crossref_primary_10_1039_D3CP03049K crossref_primary_10_1016_j_cej_2023_141868 crossref_primary_10_1021_acsanm_3c03056 crossref_primary_10_1039_D3SE00315A crossref_primary_10_1002_ange_202303845 crossref_primary_10_1007_s11581_021_04328_y crossref_primary_10_1002_est2_313 crossref_primary_10_1016_j_jelechem_2024_118369 crossref_primary_10_1021_acssuschemeng_3c01799 crossref_primary_10_1002_eem2_12219 crossref_primary_10_1002_smll_202305062 crossref_primary_10_1039_D1NJ04258K crossref_primary_10_1039_D3NA00074E crossref_primary_10_1021_acs_iecr_3c01472 crossref_primary_10_1002_smll_202310250 crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1016_j_jcis_2024_02_120 crossref_primary_10_1016_j_cej_2021_131140 crossref_primary_10_1002_aenm_202203244 crossref_primary_10_1016_j_apcatb_2024_123866 crossref_primary_10_1039_D2QI02564G crossref_primary_10_1016_j_apcatb_2024_124315 crossref_primary_10_1016_j_matlet_2022_132531 crossref_primary_10_1039_D2DT02132C crossref_primary_10_1021_acsami_2c14657 crossref_primary_10_1021_acsnano_2c06700 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1002_anie_202304852 crossref_primary_10_1039_D1CY01688A crossref_primary_10_1016_j_jallcom_2023_170460 crossref_primary_10_1021_acs_nanolett_2c02159 crossref_primary_10_1039_D3NJ01204B crossref_primary_10_1002_admi_202300038 crossref_primary_10_1002_smtd_202100865 crossref_primary_10_1002_ange_202117703 crossref_primary_10_1016_j_jechem_2021_08_041 crossref_primary_10_1039_D2TA09626A crossref_primary_10_1021_acsami_1c17151 crossref_primary_10_1002_smll_202105487 crossref_primary_10_1016_j_apsusc_2023_159080 crossref_primary_10_1039_D1MA00809A crossref_primary_10_1016_j_apcatb_2022_121150 crossref_primary_10_1016_j_jechem_2022_03_025 crossref_primary_10_3390_ma16145105 crossref_primary_10_1039_D3NJ05928F crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1016_j_jechem_2021_07_003 crossref_primary_10_1039_D2TA05777H crossref_primary_10_1016_j_cej_2021_133509 crossref_primary_10_1002_advs_202203391 crossref_primary_10_1002_ange_202313029 crossref_primary_10_1021_acsaem_3c01880 crossref_primary_10_1016_j_apsusc_2022_152683 crossref_primary_10_1039_D2GC02958H crossref_primary_10_1016_j_jechem_2022_01_047 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1021_acscatal_1c04454 crossref_primary_10_1002_anie_202117703 crossref_primary_10_1039_D2TA06297F crossref_primary_10_1007_s40820_021_00768_3 crossref_primary_10_1146_annurev_matsci_010622_105440 crossref_primary_10_1016_j_gee_2021_11_003 crossref_primary_10_3390_catal11111394 crossref_primary_10_1002_sstr_202200267 crossref_primary_10_1007_s40820_023_01022_8 crossref_primary_10_1039_D2TA01716D crossref_primary_10_1039_D4TA02444C crossref_primary_10_1016_j_jallcom_2022_164829 crossref_primary_10_1016_j_cej_2021_133734 crossref_primary_10_1002_sstr_202300111 crossref_primary_10_1016_j_carbon_2023_01_034 crossref_primary_10_1002_adma_202105812 crossref_primary_10_1002_aenm_202300325 crossref_primary_10_1039_D3CC00742A crossref_primary_10_1002_er_7841 crossref_primary_10_1021_acsmaterialslett_1c00762 crossref_primary_10_1021_acsaem_2c03084 crossref_primary_10_1016_j_nxmate_2024_100162 crossref_primary_10_1246_bcsj_20230051 crossref_primary_10_1016_j_jechem_2023_04_049 crossref_primary_10_1007_s11467_022_1208_8 crossref_primary_10_1007_s11708_024_0928_6 crossref_primary_10_1021_acsnano_3c08839 crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1002_anie_202313029 crossref_primary_10_1016_j_jechem_2024_06_051 crossref_primary_10_1021_acsanm_2c05107 crossref_primary_10_1002_asia_202300547 crossref_primary_10_1016_j_cej_2022_137049 crossref_primary_10_1021_acsnano_2c07542 crossref_primary_10_1002_smll_202404065 crossref_primary_10_1016_j_jcis_2022_11_119 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1039_D3EY00160A crossref_primary_10_1002_ente_202100940 crossref_primary_10_1002_smll_202107207 crossref_primary_10_1002_adma_202311105 crossref_primary_10_1073_pnas_2313239121 crossref_primary_10_1002_adma_202109407 crossref_primary_10_1002_adma_202308326 crossref_primary_10_1126_sciadv_abn5091 crossref_primary_10_1002_ange_202304852 crossref_primary_10_1016_j_microc_2024_109916 crossref_primary_10_1007_s12274_022_4429_9 crossref_primary_10_1021_acsami_3c00651 crossref_primary_10_1016_j_jcis_2024_05_232 crossref_primary_10_1016_j_nxener_2023_100025 crossref_primary_10_1021_acs_iecr_3c01793 crossref_primary_10_1021_acs_jpcc_2c07219 crossref_primary_10_1021_jacs_4c01550 crossref_primary_10_1016_j_cej_2021_131589 crossref_primary_10_1002_smll_202101720 crossref_primary_10_1016_j_jallcom_2022_168210 crossref_primary_10_1002_cnl2_43 crossref_primary_10_1016_j_jechem_2021_08_054 crossref_primary_10_1002_sstr_202300293 crossref_primary_10_1016_j_jcis_2022_07_148 crossref_primary_10_1007_s11581_023_05343_x crossref_primary_10_1021_acs_nanolett_2c01388 crossref_primary_10_1016_j_jcis_2023_02_148 crossref_primary_10_1007_s12598_023_02531_6 crossref_primary_10_1002_anie_202303845 crossref_primary_10_1016_j_jallcom_2022_164092 crossref_primary_10_1002_adfm_202310820 crossref_primary_10_1016_j_matlet_2022_133665 crossref_primary_10_1016_j_apsusc_2022_154953 crossref_primary_10_1016_j_nanoen_2024_109713 crossref_primary_10_1021_acs_langmuir_2c00347 crossref_primary_10_1016_j_cej_2024_149671 crossref_primary_10_1039_D1QM00885D crossref_primary_10_1016_j_jechem_2022_09_022 crossref_primary_10_1016_j_jechem_2021_10_012 crossref_primary_10_1016_j_ccr_2023_215565 crossref_primary_10_1002_smll_202103737 crossref_primary_10_1016_j_jechem_2021_10_014 crossref_primary_10_1039_D2EE02440C crossref_primary_10_1016_j_cej_2024_148798 crossref_primary_10_1016_j_jechem_2022_10_010 crossref_primary_10_1002_cjoc_202200217 crossref_primary_10_1016_j_apcato_2024_206929 crossref_primary_10_1016_j_jechem_2022_07_039 crossref_primary_10_1002_smll_202206531 crossref_primary_10_1021_acsanm_3c02346 crossref_primary_10_1021_acscatal_4c01728 crossref_primary_10_3390_catal12080843 crossref_primary_10_1002_adfm_202302234 crossref_primary_10_1039_D3TA02293E crossref_primary_10_1039_D1NR04503B crossref_primary_10_1002_smll_202306504 crossref_primary_10_1002_smll_202201197 crossref_primary_10_1039_D3CC05597C crossref_primary_10_1002_adfm_202316699 crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1002_adfm_202210143 crossref_primary_10_1039_D1DT02787E crossref_primary_10_1002_smll_202302414 crossref_primary_10_1016_j_jpowsour_2022_231076 crossref_primary_10_1039_D4EY00014E crossref_primary_10_1021_acsaem_1c02288 crossref_primary_10_1002_aenm_202102235 crossref_primary_10_1088_1361_6463_ac96fe crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1038/s41929-018-0063-z 10.1002/adma.201701410 10.1016/j.apenergy.2013.11.021 10.1002/adma.201703185 10.1021/acs.nanolett.0c01925 10.1002/aenm.201601172 10.1039/C8EE02679C 10.1021/jacs.6b05046 10.1002/anie.201908736 10.1002/adma.201908488 10.1021/ja4027715 10.1039/C9EE03573G 10.1016/j.joule.2018.07.006 10.1002/adma.201808267 10.1038/nchem.2085 10.1002/adma.201800561 10.1002/adma.201800005 10.1021/acs.nanolett.8b03666 10.1002/adma.201706102 10.1002/adfm.201901301 10.1002/inf2.12056 10.1039/C5EE03149D 10.1016/j.nanoen.2019.04.076 10.1002/advs.201900628 10.1002/adfm.202006533 10.1002/inf2.12000 10.1038/nature07853 10.1002/adfm.201806153 10.1016/j.nanoen.2019.05.059 10.1002/anie.201907595 10.1039/C5EE03440J 10.1038/ncomms5477 10.1126/science.aam5852 10.1002/cssc.201903071 10.1002/adma.201900592 10.1002/aenm.201802605 10.1021/acsnano.7b09064 10.1021/acsami.6b12100 10.1149/1.1838821 10.1021/ar2002705 10.1016/0025-5408(80)90012-4 10.1038/s41929-020-00550-5 10.1039/C4CC01625D 10.1126/science.aab1595 10.1002/adfm.201102222 10.1002/adma.201705580 10.1002/adma.202003649 10.1021/jacs.8b09805 10.1016/j.jechem.2020.01.034 10.1039/C8EE00977E 10.1021/acs.accounts.6b00460 10.1038/natrevmats.2016.13 10.1002/adfm.201904481 10.1002/aenm.201903854 10.1002/aenm.201700260 10.1002/adma.201801072 10.1002/anie.201813519 10.1016/j.cclet.2019.03.026 10.1016/j.jechem.2017.09.015 10.1126/sciadv.aat3446 10.1021/cr020731c 10.1002/anie.201610119 10.1002/anie.201604802 10.1002/adma.201808281 10.1002/smtd.201900853 10.1039/D0CS00137F 10.1002/adma.201807468 10.1039/C9CS00728H |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202008606 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202008606 33656780 ADMA202008606 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFA0200102 – fundername: National Natural Science Foundation of China funderid: 21825501; U1801257 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 – fundername: National Key Research and Development Program grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: National Key Research and Development Program grantid: 2016YFA0200102 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0200102 – fundername: National Natural Science Foundation of China grantid: U1801257 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX ACRPL ACYXJ CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3736-ee423dbc59002ff34daac6f9e1c4d18775fb51d5c3b0241c0dd7fefc1b544c03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Wed Dec 04 08:00:10 EST 2024 Tue Nov 19 06:29:46 EST 2024 Fri Dec 06 01:31:22 EST 2024 Sat Sep 28 08:23:05 EDT 2024 Sat Aug 24 01:04:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | oxygen evolution reaction bifunctional electrocatalysts rechargeable zinc-air batteries oxygen reduction reaction electrocatalysis |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-ee423dbc59002ff34daac6f9e1c4d18775fb51d5c3b0241c0dd7fefc1b544c03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-9544-5795 0000-0002-4766-8054 0000-0002-3929-1541 0000-0002-1582-8244 0000-0003-3133-0814 0000-0003-1104-6146 |
PMID | 33656780 |
PQID | 2512261985 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2496250245 proquest_journals_2512261985 crossref_primary_10_1002_adma_202008606 pubmed_primary_33656780 wiley_primary_10_1002_adma_202008606_ADMA202008606 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2020; 20 2019; 12 2019; 58 2020; 13 2020; 10 2017; 356 2020; 4 2014; 5 2018; 2 2019; 62 2018; 4 2019; 61 2018; 1 2020; 49 2019; 29 2018; 30 2014; 50 2016; 49 2012; 22 2019; 9 2018; 28 2004; 104 2021; 4 2019; 6 2018; 140 2019; 31 2017; 26 2019; 30 2013; 46 2019; 1 2017; 29 2020; 32 2015; 7 2014; 115 2016; 55 2009; 458 2015; 350 1980; 15 2018; 18 2016; 1 2020; 31 2017; 56 2013; 135 2016; 138 2018; 12 2018; 11 1998; 145 2016; 8 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 115 start-page: 242 year: 2014 publication-title: Appl. Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 26 start-page: 1094 year: 2017 publication-title: J. Energy Chem. – volume: 12 start-page: 727 year: 2019 publication-title: Energy Environ. Sci. – volume: 49 start-page: 3806 year: 2020 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 2796 year: 2016 publication-title: Acc. Chem. Res. – volume: 62 start-page: 550 year: 2019 publication-title: Nano Energy – volume: 56 start-page: 610 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 49 start-page: 4667 year: 2020 publication-title: Chem. Soc. Rev. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 46 start-page: 1053 year: 2013 publication-title: Acc. Chem. Res. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 4477 year: 2014 publication-title: Nat. Commun. – volume: 1 start-page: 6 year: 2019 publication-title: InfoMat – volume: 1 start-page: 533 year: 2019 publication-title: InfoMat – volume: 15 start-page: 783 year: 1980 publication-title: Mater. Res. Bull. – volume: 30 start-page: 911 year: 2019 publication-title: Chin. Chem. Lett. – volume: 145 start-page: 3418 year: 1998 publication-title: J. Electrochem. Soc. – volume: 61 start-page: 245 year: 2019 publication-title: Nano Energy – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 13 start-page: 1711 year: 2020 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 58 start-page: 5810 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 283 year: 2020 publication-title: J. Energy Chem. – volume: 9 start-page: 102 year: 2016 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 9 start-page: 478 year: 2016 publication-title: Energy Environ. Sci. – volume: 22 start-page: 675 year: 2012 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1648 year: 2018 publication-title: Joule – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 458 start-page: 190 year: 2009 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 4 start-page: 36 year: 2021 publication-title: Nat. Catal. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 339 year: 2018 publication-title: Nat. Catal. – volume: 11 start-page: 1723 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1949 year: 2018 publication-title: ACS Nano – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 6479 year: 2014 publication-title: Chem. Commun. – volume: 13 start-page: 1529 year: 2020 publication-title: ChemSusChem – volume: 20 start-page: 5443 year: 2020 publication-title: Nano Lett. – volume: 350 start-page: 938 year: 2015 publication-title: Science – volume: 18 start-page: 7870 year: 2018 publication-title: Nano Lett. – ident: e_1_2_7_48_1 doi: 10.1038/s41929-018-0063-z – ident: e_1_2_7_46_1 doi: 10.1002/adma.201701410 – ident: e_1_2_7_7_1 doi: 10.1016/j.apenergy.2013.11.021 – ident: e_1_2_7_57_1 doi: 10.1002/adma.201703185 – ident: e_1_2_7_29_1 doi: 10.1021/acs.nanolett.0c01925 – ident: e_1_2_7_32_1 doi: 10.1002/aenm.201601172 – ident: e_1_2_7_35_1 doi: 10.1039/C8EE02679C – ident: e_1_2_7_23_1 doi: 10.1021/jacs.6b05046 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201908736 – ident: e_1_2_7_64_1 doi: 10.1002/adma.201908488 – ident: e_1_2_7_68_1 doi: 10.1021/ja4027715 – ident: e_1_2_7_51_1 doi: 10.1039/C9EE03573G – ident: e_1_2_7_17_1 doi: 10.1016/j.joule.2018.07.006 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201808267 – ident: e_1_2_7_1_1 doi: 10.1038/nchem.2085 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800561 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201800005 – ident: e_1_2_7_36_1 doi: 10.1021/acs.nanolett.8b03666 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201706102 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.201901301 – ident: e_1_2_7_56_1 doi: 10.1002/inf2.12056 – ident: e_1_2_7_61_1 doi: 10.1039/C5EE03149D – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2019.04.076 – ident: e_1_2_7_42_1 doi: 10.1002/advs.201900628 – ident: e_1_2_7_28_1 doi: 10.1002/adfm.202006533 – ident: e_1_2_7_12_1 doi: 10.1002/inf2.12000 – ident: e_1_2_7_59_1 doi: 10.1038/nature07853 – ident: e_1_2_7_63_1 doi: 10.1002/adfm.201806153 – ident: e_1_2_7_24_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_7_27_1 doi: 10.1002/anie.201907595 – ident: e_1_2_7_50_1 doi: 10.1039/C5EE03440J – ident: e_1_2_7_65_1 doi: 10.1038/ncomms5477 – ident: e_1_2_7_2_1 doi: 10.1126/science.aam5852 – ident: e_1_2_7_45_1 doi: 10.1002/cssc.201903071 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201900592 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201802605 – ident: e_1_2_7_38_1 doi: 10.1021/acsnano.7b09064 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.6b12100 – ident: e_1_2_7_8_1 doi: 10.1149/1.1838821 – ident: e_1_2_7_10_1 doi: 10.1021/ar2002705 – ident: e_1_2_7_9_1 doi: 10.1016/0025-5408(80)90012-4 – ident: e_1_2_7_30_1 doi: 10.1038/s41929-020-00550-5 – ident: e_1_2_7_52_1 doi: 10.1039/C4CC01625D – ident: e_1_2_7_18_1 doi: 10.1126/science.aab1595 – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201102222 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201705580 – ident: e_1_2_7_41_1 doi: 10.1002/adma.202003649 – ident: e_1_2_7_44_1 doi: 10.1021/jacs.8b09805 – ident: e_1_2_7_33_1 doi: 10.1016/j.jechem.2020.01.034 – ident: e_1_2_7_22_1 doi: 10.1039/C8EE00977E – ident: e_1_2_7_60_1 doi: 10.1021/acs.accounts.6b00460 – ident: e_1_2_7_15_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201904481 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201903854 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201801072 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201813519 – ident: e_1_2_7_49_1 doi: 10.1016/j.cclet.2019.03.026 – ident: e_1_2_7_67_1 doi: 10.1016/j.jechem.2017.09.015 – ident: e_1_2_7_19_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_7_11_1 doi: 10.1021/cr020731c – ident: e_1_2_7_37_1 doi: 10.1002/anie.201610119 – ident: e_1_2_7_55_1 doi: 10.1002/anie.201604802 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201808281 – ident: e_1_2_7_62_1 doi: 10.1002/smtd.201900853 – ident: e_1_2_7_13_1 doi: 10.1039/D0CS00137F – ident: e_1_2_7_34_1 doi: 10.1002/adma.201807468 – ident: e_1_2_7_58_1 doi: 10.1039/C9CS00728H |
SSID | ssj0009606 |
Score | 2.7195344 |
SecondaryResourceType | review_article |
Snippet | Rechargeable zinc–air batteries constitute promising next‐generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize... Rechargeable zinc-air batteries constitute promising next-generation energy storage devices due to their intrinsic safety, low cost, and feasibility to realize... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2008606 |
SubjectTerms | Benchmarks bifunctional electrocatalysts Chemical evolution Current density Cycles electrocatalysis Electrocatalysts Energy storage Hydroxides Iridium Iron compounds Life span Materials science Metal air batteries Nickel compounds oxygen evolution reaction oxygen reduction reaction Rechargeable batteries rechargeable zinc–air batteries Storage batteries Zinc Zinc-oxygen batteries |
Title | A ΔE = 0.63 V Bifunctional Oxygen Electrocatalyst Enables High‐Rate and Long‐Cycling Zinc–Air Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008606 https://www.ncbi.nlm.nih.gov/pubmed/33656780 https://www.proquest.com/docview/2512261985 https://search.proquest.com/docview/2496250245 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHFadyaKH0I0ArI1XqKUsSO18HDildhFBpJUQr1EsUf6FVpWzF7kosJx4BqTwAz9IH6EPwJJ2xdwPbHiq1Ryu24tgz8c_2-G-A1zjKCF2IOEyE1aFAJAjLUsuQF1YhfqcyNjRRPPyQ7X8SByfpyb1T_F4foltwI89w_2ty8EaOtu9EQxvtdINo_z5zmtsx-gpR0dGdfhThuRPb41iFTBRz1cYo2V4svjgq_YGai-Tqhp69x9DMK-0jTr72JmPZUxe_6Tn-z1etwKMZl7LKG9IqPDDtE1i-p1a4BsOK_bzu_7jZYVEv4-wzezugUdEvJrKP51O0Rdb31-q4VaHpaMz67mzWiFE8ye3l1RGiLWtazd4P21NM707paOYp-zJo1e3l92pwxrziJ07gn8LxXv94dz-c3dcQKp7zLDQG2UxLRReRJtZyoZtGZbY0sRI6LvI8tTKNdaq4RDKIVaR1bg3ahEyFUBF_BkvtsDUvgJWyTKzBLAUSHidBmgTJtrCRFHmuNA_gzby76m9elaP2-stJTS1Ydy0YwOa8N-uZd45qYjqaORZpAFvdY_Qr2ixpWjOcYB5R4tSQNqYDeO6toHsV50jBeREFkLi-_Esd6urdYdWl1v-l0AY8TCiYxoUMbcLS-GxiXiINjeUrZ_G_AEmrAlA |
link.rule.ids | 315,781,785,1376,27929,27930,46299,46723 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMCBYyExCnbJHb-Dj2EstUCu0WqFoS4RPFPqhVSFnV3JZZTHwGJPgDP0gfoQ_RJmLE3KQsHJDhasRXHnsl88-PPAM_QygididCPRK19gZDAz3MtfZ7VCuF3LENDjuJoPxm8E68_xG01IZ2FcfwQXcCNNMP-r0nBKSC9fcEaWmlLHEQJ_IRIty-jzjuv6uCCQYoAuqXb4ziJRGQtb2MQba-PX7dLf4DNdexqjc_eDZDttF3NyafeYi576utvjI7_9V034foKmrLCydItuGSa23DtF8LCOzAt2NlJ__THDgt6CWfv2YsJGUYXT2RvvyxRHFnf3axjA0PL2Zz17fGsGaOSkvPjbweIblnVaDacNofY3l3S6cxD9nHSqPPj78XkiDnST_Th78J4rz_eHfirKxt8xVOe-MYgPNNS0V2kUV1zoatKJXVuQiV0mKVpXMs41LHiEsFBqAKt09qgWMhYCBXwe7DRTBtzH1gu86g22CVDkMeJkyZCcJvVgRRpqjT34Hm7X-VnR8xROgrmqKQVLLsV9GCr3c5ypaCzkmAdOY9Z7MHT7jGqFuVLqsZMF9hH5OgdUm7ag00nBt2rOEcgnGaBB5HdzL_MoSxejoqu9eBfBj2BK4PxaFgOX-2_eQhXI6qtsRVEW7AxP1qYRwiO5vKxFf-fbLgGbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUJEQLCh3UgoYCYlVpkns3BYsQjujAm1BVUEVmyi-VSOkTNWZkRhWfQQkeACehQfgIfoknGPPpB1YIMEyiq049rHPd3z5DfAUvYzQhYjDRFgdCkSCsCy1DHlhFeJ3KmNDgeLuXrb9Trw6TA8vnOL3-hDdhBv1DDdeUwc_1nbjXDS00U43iNbvM9LcviwyHFoJi_bPBaSIz53aHscyZKJYyDZGycZy_mW39AdrLqOr8z2DVWgWpfZbTj72phPZU59_E3T8n9-6AdfnYMoqb0k34ZJpb8G1C3KFt2FUsZ_f-j--P2dRL-PsPXsxJLfoZxPZm08zNEbW9_fquGmh2XjC-u5w1pjRhpKz0y_7yLasaTXbGbVH-Lw5o7OZR-zDsFVnp1-r4Qnzkp8Ywd-Bg0H_YHM7nF_YECqe8yw0BuFMS0U3kSbWcqGbRmW2NLESOi7yPLUyjXWquEQ0iFWkdW4NGoVMhVARvwsr7ag194GVskyswSQFIh4nRZoE0bawkRR5rjQP4NmiuepjL8tRewHmpKYarLsaDGB90Zr1vHuOa4I6Ch2LNIAn3WvsWLRa0rRmNMU0osTYkFamA7jnraD7FOeIwXkRBZC4tvxLGepqa7fqntb-JdNjuPJ2a1DvvNx7_QCuJrSxxm0fWoeVycnUPEQymshHzvh_AW9HBSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%CE%94+E+%C2%A0%3D+0.63+V+Bifunctional+Oxygen+Electrocatalyst+Enables+High%E2%80%90Rate+and+Long%E2%80%90Cycling+Zinc%E2%80%93Air+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chang%E2%80%90Xin&rft.au=Liu%2C+Jia%E2%80%90Ning&rft.au=Wang%2C+Juan&rft.au=Ren%2C+Ding&rft.date=2021-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=15&rft_id=info:doi/10.1002%2Fadma.202008606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202008606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |