Construction and Comparative Research of Two MOFs Proton Conducting Materials Containing Nitro Groups

In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro‐containing Cd‐bas...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 31; no. 3; pp. e202403296 - n/a
Main Authors Guo, Yuan‐Yuan, Wang, Rui‐Dong, Zhao, Xu‐Hui, Lv, Hong‐Bo, Wei, Wei‐Ming, Wang, Lei, Zhang, Suo‐Shu, Du, Lin, Zhao, Qi‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.01.2025
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.202403296

Cover

Abstract In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro‐containing Cd‐based MOFs, MOF‐1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2] ⋅ 17H2O}n and MOF‐2 {[Cd(TIPE)0.5(nip)] ⋅ 10H2O}n (TIPE=1,1,2,2‐tetrakis(4‐(1H‐imidazole‐1‐yl)phenyl)ethene, H2nip=5‐Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton‐conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10−3 and 3.00×10−3 S cm−1 for MOF‐1 and MOF‐2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF‐1 and MOF‐2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in‐depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity. Two nitro‐containing Cd‐based MOFs, MOF‐1 and MOF‐2, are being synthesized and investigated for their proton conductivity. Both materials show peak conductivity at 98% RH and 90 °C, with MOF‐1 demonstrating significantly higher proton conductivity (9.13 × 10−3 S⋅cm−1) compared to MOF‐2 (3.00×10−3 S⋅cm−1). The study emphasizes the role of nitrate in enhancing proton conduction.
AbstractList In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro‐containing Cd‐based MOFs, MOF‐ 1 {[Cd 3 (TIPE) 1.5 (NO 3 ) 5 Cl(H 2 O) 2 ] ⋅ 17H 2 O} n and MOF‐ 2 {[Cd(TIPE) 0.5 (nip)] ⋅ 10H 2 O} n (TIPE=1,1,2,2‐tetrakis(4‐( 1 H‐imidazole‐1‐yl)phenyl)ethene, H 2 nip=5‐Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton‐conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10 −3 and 3.00×10 −3  S cm −1 for MOF‐ 1 and MOF‐ 2 , respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy ( E a ) values. It was found that the difference in proton conductivity between MOF‐ 1 and MOF‐ 2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in‐depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.
In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro-containing Cd-based MOFs, MOF-1 {[Cd (TIPE) (NO ) Cl(H O) ] ⋅ 17H O} and MOF-2 {[Cd(TIPE) (nip)] ⋅ 10H O} (TIPE=1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H nip=5-Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton-conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10 and 3.00×10  S cm for MOF-1 and MOF-2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (E ) values. It was found that the difference in proton conductivity between MOF-1 and MOF-2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in-depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.
In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro-containing Cd-based MOFs, MOF-1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2] ⋅ 17H2O}n and MOF-2 {[Cd(TIPE)0.5(nip)] ⋅ 10H2O}n (TIPE=1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H2nip=5-Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton-conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10-3 and 3.00×10-3 S cm-1 for MOF-1 and MOF-2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF-1 and MOF-2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in-depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro-containing Cd-based MOFs, MOF-1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2] ⋅ 17H2O}n and MOF-2 {[Cd(TIPE)0.5(nip)] ⋅ 10H2O}n (TIPE=1,1,2,2-tetrakis(4-(1H-imidazole-1-yl)phenyl)ethene, H2nip=5-Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton-conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10-3 and 3.00×10-3 S cm-1 for MOF-1 and MOF-2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF-1 and MOF-2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in-depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.
In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro‐containing Cd‐based MOFs, MOF‐1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2] ⋅ 17H2O}n and MOF‐2 {[Cd(TIPE)0.5(nip)] ⋅ 10H2O}n (TIPE=1,1,2,2‐tetrakis(4‐(1H‐imidazole‐1‐yl)phenyl)ethene, H2nip=5‐Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton‐conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10−3 and 3.00×10−3 S cm−1 for MOF‐1 and MOF‐2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF‐1 and MOF‐2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in‐depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity.
In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore, how to design and synthesize MOFs with high proton conductivity is considered crucial. In this study, two examples of nitro‐containing Cd‐based MOFs, MOF‐1 {[Cd3(TIPE)1.5(NO3)5Cl(H2O)2] ⋅ 17H2O}n and MOF‐2 {[Cd(TIPE)0.5(nip)] ⋅ 10H2O}n (TIPE=1,1,2,2‐tetrakis(4‐(1H‐imidazole‐1‐yl)phenyl)ethene, H2nip=5‐Nitroisophthalic Acid), had been successfully designed and synthesized, and their proton‐conducting properties were thoroughly investigated. Notably, both materials displayed peak proton conductivity at 98 % RH and 90 °C, exhibiting values of 9.13×10−3 and 3.00×10−3 S cm−1 for MOF‐1 and MOF‐2, respectively. The plausible proton conduction pathways and mechanisms were elucidated through structural analyses, water vapor adsorption studies, and the determination of activation energy (Ea) values. It was found that the difference in proton conductivity between MOF‐1 and MOF‐2 was mainly associated with the different water absorption rates of the samples. The uniqueness of this study was that for the first time conducted an in‐depth study of the role of nitrate in proton conduction, providing new ideas for designing materials with excellent proton conductivity. Two nitro‐containing Cd‐based MOFs, MOF‐1 and MOF‐2, are being synthesized and investigated for their proton conductivity. Both materials show peak conductivity at 98% RH and 90 °C, with MOF‐1 demonstrating significantly higher proton conductivity (9.13 × 10−3 S⋅cm−1) compared to MOF‐2 (3.00×10−3 S⋅cm−1). The study emphasizes the role of nitrate in enhancing proton conduction.
Author Zhao, Qi‐Hua
Guo, Yuan‐Yuan
Wang, Rui‐Dong
Du, Lin
Zhang, Suo‐Shu
Lv, Hong‐Bo
Wang, Lei
Zhao, Xu‐Hui
Wei, Wei‐Ming
Author_xml – sequence: 1
  givenname: Yuan‐Yuan
  surname: Guo
  fullname: Guo, Yuan‐Yuan
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Rui‐Dong
  surname: Wang
  fullname: Wang, Rui‐Dong
  organization: Yunnan University
– sequence: 3
  givenname: Xu‐Hui
  surname: Zhao
  fullname: Zhao, Xu‐Hui
  organization: Yunnan University
– sequence: 4
  givenname: Hong‐Bo
  surname: Lv
  fullname: Lv, Hong‐Bo
  organization: Yunnan University
– sequence: 5
  givenname: Wei‐Ming
  surname: Wei
  fullname: Wei, Wei‐Ming
  organization: Yunnan University
– sequence: 6
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Yunnan University
– sequence: 7
  givenname: Suo‐Shu
  surname: Zhang
  fullname: Zhang, Suo‐Shu
  organization: Yunnan University
– sequence: 8
  givenname: Lin
  surname: Du
  fullname: Du, Lin
  email: qhzhao@ynu.edu.cn
  organization: Yunnan University
– sequence: 9
  givenname: Qi‐Hua
  orcidid: 0000-0001-8165-1793
  surname: Zhao
  fullname: Zhao, Qi‐Hua
  email: lindu@ynu.edu.cn
  organization: Yunnan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39502015$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G1161ICbtzMNd8zs5ShH0KvFanrkJuca1NmkmuSsfTfm-G2CgVxFTh5nsPhfU_QUYgBEHpLyZoSwj7aW5jWjDBBOOvVC7SiktGGt0oeoRXpRdsoyftjdJLzHSGkV5y_Qse8l4QRKlcIhhhySbMtPgZsgsNDnPYmmeJ_Af4GGUyytzju8M19xJvr84y_plgqW0W3aOEH3pgCyZsxL8NifFiGX3xJEV-kOO_za_RyV7_hzeN7ir6fn90Ml83V9cXn4dNVY3nLVQNb5vrWia5nDJxjTllo-Y4ax5gUvBfGWeqIs3brWmqJMHZrjOyEVMqBMvwUfTjs3af4c4Zc9OSzhXE0AeKcNadMqK6m0lX0_TP0Ls4p1OsqJSWhrehopd49UvN2Aqf3yU8mPeinACsgDoBNMecEO219MUuYJRk_akr00pNeetJ_eqra-pn2tPmfQn8Q7v0ID_-h9XB5tvnr_gZmYqYV
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c05281
Cites_doi 10.1021/acsenergylett.7b00560
10.1039/C8NJ04331K
10.1002/anie.201506219
10.1016/j.ccr.2020.213747
10.1007/s10934-022-01275-5
10.1021/jacs.7b11364
10.1039/D2TA04572A
10.1021/acs.langmuir.3c03075
10.1021/acssuschemeng.2c02722
10.1016/j.ccr.2017.03.027
10.1039/D1CS00004G
10.1021/cm950192a
10.1021/la304151r
10.1016/j.cej.2022.138538
10.1016/j.ccr.2022.214740
10.1016/j.jsamd.2021.06.005
10.1021/ja109810w
10.1038/s41560-017-0018-7
10.1016/j.ccr.2019.213100
10.1063/1.5135319
10.1002/anie.201510855
10.1039/C6CS00528D
10.1039/C1CC15589J
10.1021/acs.chemmater.6b05497
10.1039/C4CS00093E
10.1007/s11243-020-00378-9
10.1021/ic502098h
10.1016/j.scitotenv.2021.148622
10.1039/C8QI01055B
10.1021/cr020711a
10.1002/smll.202006189
10.1002/anie.198202082
10.1002/anie.202108766
10.1021/cm304055k
10.1021/acsami.4c07876
10.1002/anie.202106181
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202403296
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 39502015
10_1002_chem_202403296
CHEM202403296
Genre article
Journal Article
GrantInformation_xml – fundername: Yunnan Provincial Department of Education funding for the research fund project
  funderid: No.2024Y026
– fundername: the National Natural Science Foundation of China
  funderid: No.22061047
– fundername: the project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform
  funderid: 2022YKZY001
– fundername: Yunnan Provincial Department of Education funding for the research fund project
  grantid: No.2024Y026
– fundername: the project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform
  grantid: 2022YKZY001
– fundername: the National Natural Science Foundation of China
  grantid: No.22061047
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
53G
7X8
ID FETCH-LOGICAL-c3736-eb2d97d48922edd2d6ce73f1ad2254394adc1d0dccbd71c04acbaa584566de6a3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 11:16:43 EDT 2025
Fri Jul 25 12:15:09 EDT 2025
Wed Feb 19 02:00:27 EST 2025
Thu Apr 24 23:12:30 EDT 2025
Tue Jul 01 00:44:08 EDT 2025
Wed Jan 22 17:11:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nitro groups
Proton conductivity
Synthesis and structure
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-eb2d97d48922edd2d6ce73f1ad2254394adc1d0dccbd71c04acbaa584566de6a3
Notes These authors contribute equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8165-1793
PMID 39502015
PQID 3155017481
PQPubID 986340
PageCount 10
ParticipantIDs proquest_miscellaneous_3124689478
proquest_journals_3155017481
pubmed_primary_39502015
crossref_citationtrail_10_1002_chem_202403296
crossref_primary_10_1002_chem_202403296
wiley_primary_10_1002_chem_202403296_CHEM202403296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 14, 2025
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: January 14, 2025
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2004; 104
2022; 471
2013; 25
2017; 2
2019; 6
2018; 140
2017; 46
2015; 54
2020; 403
2017; 29
2021; 50
2024; 16
2018; 42
2011; 133
2022; 29
2014; 43
2016; 55
2020; 7
2021; 431
2021; 17
2023; 451
2024; 40
2012; 28
2020; 45
2021; 793
2022; 10
2012; 48
2021; 60
2017; 344
1996; 8
2003; 21
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 42
  start-page: 20197
  year: 2018
  end-page: 20204
  publication-title: New J. Chem.
– volume: 50
  start-page: 6349
  year: 2021
  end-page: 6368
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 18592
  year: 2022
  end-page: 18597
  publication-title: J. Mater. Chem. A
– volume: 431
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 184
  year: 2019
  end-page: 191
  publication-title: Inorg. Chem. Front.
– volume: 55
  start-page: 3919
  year: 2016
  end-page: 3924
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 610
  year: 1996
  end-page: 641
  publication-title: Chem. Mater
– volume: 29
  start-page: 1689
  year: 2022
  end-page: 1706
  publication-title: J. Porous Mater.
– volume: 54
  start-page: 1218
  year: 2015
  end-page: 1222
  publication-title: Inorg. Chem.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 2
  start-page: 2313
  year: 2017
  end-page: 2318
  publication-title: ACS Energy Lett.
– volume: 60
  start-page: 25419
  year: 2021
  end-page: 25427
  publication-title: Angew. Chem. Int. Ed.
– volume: 403
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 509
  year: 2021
  end-page: 515
  publication-title: J. Sci.: Adv. Mater. Devices
– volume: 10
  start-page: 11867
  year: 2022
  end-page: 11874
  publication-title: ACS Sustain. Chem. Eng.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 16874
  year: 2012
  end-page: 16880
  publication-title: Langmuir
– volume: 104
  start-page: 4587
  year: 2004
  end-page: 4612
  publication-title: Chem. Rev.
– volume: 48
  start-page: 907
  year: 2012
  end-page: 909
  publication-title: Chem. Commun.
– volume: 133
  start-page: 2034
  year: 2011
  end-page: 2036
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 34240
  year: 2024
  end-page: 34253
  publication-title: ACS Appl. Mater. Interfaces
– volume: 471
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 793
  year: 2021
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 790
  year: 2013
  end-page: 798
  publication-title: Chem. Mater.
– volume: 55
  start-page: 3566
  year: 2016
  end-page: 3579
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 4132
  year: 2024
  end-page: 4141
  publication-title: Langmuir
– volume: 344
  start-page: 54
  year: 2017
  end-page: 82
  publication-title: Coord. Chem. Rev.
– volume: 60
  start-page: 20173
  year: 2021
  end-page: 20177
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 5913
  year: 2014
  end-page: 5932
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 464
  year: 2017
  end-page: 480
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 267
  year: 2020
  end-page: 278
  publication-title: Trans. Met. Chem.
– volume: 21
  start-page: 208
  year: 2003
  end-page: 209
  publication-title: Angew. Chem. Int. Edn. English
– volume: 2
  start-page: 877
  year: 2017
  end-page: 883
  publication-title: Nat. Energy
– volume: 29
  start-page: 2321
  year: 2017
  end-page: 2331
  publication-title: Chem. Mater.
– volume: 140
  start-page: 1077
  year: 2018
  end-page: 1082
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
– ident: e_1_2_8_26_1
  doi: 10.1021/acsenergylett.7b00560
– ident: e_1_2_8_22_1
  doi: 10.1039/C8NJ04331K
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201506219
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ccr.2020.213747
– ident: e_1_2_8_6_1
  doi: 10.1007/s10934-022-01275-5
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.7b11364
– ident: e_1_2_8_30_1
  doi: 10.1039/D2TA04572A
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.langmuir.3c03075
– ident: e_1_2_8_27_1
  doi: 10.1021/acssuschemeng.2c02722
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ccr.2017.03.027
– ident: e_1_2_8_5_1
  doi: 10.1039/D1CS00004G
– ident: e_1_2_8_32_1
  doi: 10.1021/cm950192a
– ident: e_1_2_8_15_1
  doi: 10.1021/la304151r
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2022.138538
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ccr.2022.214740
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jsamd.2021.06.005
– ident: e_1_2_8_9_1
  doi: 10.1021/ja109810w
– ident: e_1_2_8_23_1
  doi: 10.1038/s41560-017-0018-7
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ccr.2019.213100
– ident: e_1_2_8_1_1
  doi: 10.1063/1.5135319
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201510855
– ident: e_1_2_8_3_1
  doi: 10.1039/C6CS00528D
– ident: e_1_2_8_18_1
  doi: 10.1039/C1CC15589J
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.chemmater.6b05497
– ident: e_1_2_8_10_1
  doi: 10.1039/C4CS00093E
– ident: e_1_2_8_24_1
  doi: 10.1007/s11243-020-00378-9
– ident: e_1_2_8_28_1
  doi: 10.1021/ic502098h
– ident: e_1_2_8_17_1
  doi: 10.1016/j.scitotenv.2021.148622
– ident: e_1_2_8_20_1
  doi: 10.1039/C8QI01055B
– ident: e_1_2_8_2_1
  doi: 10.1021/cr020711a
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.202006189
– ident: e_1_2_8_33_1
  doi: 10.1002/anie.198202082
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.202108766
– ident: e_1_2_8_14_1
  doi: 10.1021/cm304055k
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.4c07876
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.202106181
SSID ssj0009633
Score 2.4701648
Snippet In field of electrochemistry, there has been a growing interest in the potential applications of proton‐conducting metal‐organic frameworks (MOFs). Therefore,...
In field of electrochemistry, there has been a growing interest in the potential applications of proton-conducting metal-organic frameworks (MOFs). Therefore,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202403296
SubjectTerms Antifungal agents
Cadmium
CD3 antigen
Conduction
Conductivity
Electrochemistry
Ethene
Ethylene
Imidazole
Metal-organic frameworks
Nitrates
Nitro groups
Proton conduction
Proton conductivity
Synthesis
Synthesis and structure
Water absorption
Water vapor
Title Construction and Comparative Research of Two MOFs Proton Conducting Materials Containing Nitro Groups
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202403296
https://www.ncbi.nlm.nih.gov/pubmed/39502015
https://www.proquest.com/docview/3155017481
https://www.proquest.com/docview/3124689478
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-KL_alrdbatFq2UPApmv24TfIop4cUzpai4FvYr4AoiXiRQv_6zmQvuV6LFPQxySzJ7szs_Haz8xuAL55rnHqdTo3kOlWlCjgPUjGzzOmgjfGmz62an-uzS_X1anL1RxZ_5IcYN9zIM_r5mhzc2MXRijQU-0SZ5MQnJ0ri3OZSE3n-yY8VfxRaV6wlr_KUOFgH1sZMHK03X49K_0DNdeTah57ZazDDR8cTJzeHD509dL_-4nN8Tq_ewKslLmXH0ZC24EVotmFzOpSDewuBSnsOZLPMNJ5NV8ThbDjAx9qaXfxs2fzbbMG-37eILFGuIVJZjJFsbrpo8XSzi8Up2Pl1d9-yfhNssQOXs9OL6Vm6rNGQOplLneLC3Je5V0UpRPBeeFR9LmtuvKA0-1IZ77jPvHPW59xlyjhrDKIehJEejUG-g42mbcJ7YLW1OuTWaC8ChlZtrdSmzqysLaKqok4gHXRUuSWBOdXRuK0i9bKoaPCqcfASOBjl7yJ1x6OSe4PKq6ULLypJizdcrxU8gc_jYxx0-qNimtA-kIxQukDrKhLYjaYyvkqWE4TifJKA6BX-n2-oiAJjvPrwlEYf4aWg6sQZT7nagw20ibCPkKmzn3q3-A3L0Q7B
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0PtQX67dpq64g-JQ2-3Gb5FFOj1N7p8gVfAv7FShKIr0Uwb--M9lLjlNE0McksyS7M7Pzm83ubwBeeq5x6nU6NZLrVJUq4DxIxcwyp4M2xpv-bNViqefn6v2XybCbkM7CRH6IccGNPKOfr8nBaUH6dMsaip2io-REKCdKfRNuKUQblH-9-bxlkEL7itXkVZ4SC-vA25iJ0932u3HpN7C5i1374DM7ADt8dtxz8vXkqrMn7ucvjI7_1a-7cGcDTdnraEv34EZo7sP-dKgI9wACVfcc-GaZaTybbrnD2bCHj7U1W_1o2eLjbM0-XbYILlGuIV5ZDJNsYbpo9HSzi_Up2PKiu2xZvw62fgjns7er6TzdlGlIncylTjE392XuVVEKEbwXHrWfy5obL-ikfamMd9xn3jnrc-4yZZw1BoEPIkmP9iAfwV7TNuEJsNpaHXJrtBcBo6u2VmpTZ1bWFoFVUSeQDkqq3IbDnEppfKsi-7KoaPCqcfASeDXKf4_sHX-UPB50Xm28eF1Jyt8wZSt4Ai_Gxzjo9FPFNKG9IhmhdIHmVSTwONrK-CpZThCN80kCotf4X76hIhaM8erwXxo9h_35anFWnb1bfjiC24KKFWc85eoY9tA-wlNEUJ191vvINbwWEuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0gvbFb2tq1RUEn9JmP26TPMrpUT_uLNJC38J-BaQlKb0Uwb--M9lLzlNE0McksyS7M7Pz283ObwBee65x6nU6NZLrVJUq4DxIxcwyp4M2xps-t2q-0Icn6uPp5PSnLP7IDzFuuJFn9PM1OfiFrw_WpKHYJ8okJz45UeqbcEtphBMEi76uCaTQvGIxeZWnRMI60DZm4mCz_WZY-g1rbkLXPvbM7oEZvjoeOTnbv-rsvvvxC6Hj_3TrPtxdAVP2NlrSA7gRmodwZzrUg3sEgWp7DmyzzDSeTdfM4Ww4wcfamh1_b9n8y2zJji5bhJYo1xCrLAZJNjddNHm62cXqFGzxrbtsWb8LtnwMJ7P3x9PDdFWkIXUylzrFlbkvc6-KUojgvfCo-1zW3HhBefalMt5xn3nnrM-5y5Rx1hiEPYgjPVqDfAJbTduEp8Bqa3XIrdFeBIyt2lqpTZ1ZWVuEVUWdQDroqHIrBnMqpHFeRe5lUdHgVePgJfBmlL-I3B1_lNwbVF6tfHhZSVq94YKt4Am8Gh_joNMvFdOE9opkhNIFWleRwE40lfFVspwgFueTBESv8L98Q0UcGOPV7r80egm3j97Nqs8fFp-ewbagSsUZT7nagy00j_Ac4VNnX_Qecg1yERGP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+and+Comparative+Research+of+Two+MOFs+Proton+Conducting+Materials+Containing+Nitro+Groups&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Guo%2C+Yuan%E2%80%90Yuan&rft.au=Wang%2C+Rui%E2%80%90Dong&rft.au=Zhao%2C+Xu%E2%80%90Hui&rft.au=Lv%2C+Hong%E2%80%90Bo&rft.date=2025-01-14&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=31&rft.issue=3&rft_id=info:doi/10.1002%2Fchem.202403296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202403296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon