Linkage Chemistry of S(VI) Fluorides
Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage comp...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 33; pp. e202300536 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 1521-3765 |
DOI | 10.1002/chem.202300536 |
Cover
Loading…
Abstract | Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.
Sulfur(VI)‐fluoride exchange: This review summarizes recent advances in the linkage chemistry of S(VI) fluorides since 2014, emphasizing the formation of S−O, S−N, and S−C bonds. The divergent SuFEx linkage is deployed in the assembly of S(VI)‐containing compounds library. |
---|---|
AbstractList | Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)‐fluoride exchange: This review summarizes recent advances in the linkage chemistry of S(VI) fluorides since 2014, emphasizing the formation of S−O, S−N, and S−C bonds. The divergent SuFEx linkage is deployed in the assembly of S(VI)‐containing compounds library. Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The S VI −F bond in comparison to S VI −Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C ‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI -F bond in comparison to SVI -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI -F bond in comparison to SVI -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The S -F bond in comparison to S -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. |
Author | Deng, Wei‐Ping Zeng, Daming Jiang, Xuefeng |
Author_xml | – sequence: 1 givenname: Daming surname: Zeng fullname: Zeng, Daming organization: East China Normal University – sequence: 2 givenname: Wei‐Ping surname: Deng fullname: Deng, Wei‐Ping email: weiping_deng@ecust.edu.cn organization: East China University of Science and Technology – sequence: 3 givenname: Xuefeng orcidid: 0000-0002-1849-6572 surname: Jiang fullname: Jiang, Xuefeng email: xfjiang@chem.ecnu.edu.cn organization: East China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36959094$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1LwzAYxoNM3IdePcpAD_PQ-aZpkuYoZXPCxIMf19CmqWZ27UxaZP-9GdsUBuIph_f3e3jy9FGnqiuN0DmGMQYIb9S7Xo5DCAkAJewI9TANcUA4ox3UAxHxgFEiuqjv3AIABCPkBHUJE1T4aw9dzU31kb7pYeKDjGvselgXw6fR6_31cFq2tTW5dqfouEhLp8927wC9TCfPySyYP97dJ7fzQBFOWCBSwIxrDhyrjPCYi5xGpNA4yjKcZjoUscpiBjmjcRFz7GnIVUwjrLOc-GoDNNrmrmz92WrXSF9J6bJMK123ToZcYMIx58Sjlwfoom5t5dvJMA4ZRFFMqacudlSbLXUuV9YsU7uW-_97INoCytbOWV1IZZq0MXXV2NSUEoPczCw3M8ufmb02PtD2yX8KYit8mVKv_6FlMps8_LrfXM-LPw |
CitedBy_id | crossref_primary_10_1038_s41467_024_44998_6 crossref_primary_10_1002_ange_202313779 crossref_primary_10_1002_anie_202415873 crossref_primary_10_1016_j_tetlet_2023_154696 crossref_primary_10_1021_acs_orglett_5c00015 crossref_primary_10_1016_j_checat_2023_100821 crossref_primary_10_1038_s41467_023_40615_0 crossref_primary_10_1002_cjoc_202401088 crossref_primary_10_1021_acs_orglett_4c03687 crossref_primary_10_1021_acs_joc_3c01656 crossref_primary_10_1021_acs_orglett_4c03726 crossref_primary_10_1038_s44160_024_00633_2 crossref_primary_10_1002_ange_202415873 crossref_primary_10_1002_anie_202406915 crossref_primary_10_1021_acs_orglett_4c03420 crossref_primary_10_1055_a_2410_2039 crossref_primary_10_1002_chem_202403365 crossref_primary_10_1039_D3SC04727J crossref_primary_10_1055_a_2446_7967 crossref_primary_10_1039_D4QO00502C crossref_primary_10_1055_a_2435_5669 crossref_primary_10_1021_acs_orglett_3c01902 crossref_primary_10_1039_D4GC06205A crossref_primary_10_1002_ajoc_202400619 crossref_primary_10_1002_anie_202313779 crossref_primary_10_1002_anie_202416638 crossref_primary_10_1021_jacsau_4c00042 crossref_primary_10_1002_tcr_202300221 crossref_primary_10_1055_a_2508_3355 crossref_primary_10_1002_adsc_202301024 crossref_primary_10_1016_j_trechm_2024_12_006 crossref_primary_10_1039_D5OB00113G crossref_primary_10_1002_ange_202416638 crossref_primary_10_1002_ejoc_202301143 crossref_primary_10_1021_acs_orglett_3c03628 crossref_primary_10_1002_ange_202406915 crossref_primary_10_1039_D4QO00428K crossref_primary_10_1021_acs_orglett_4c03495 |
Cites_doi | 10.1055/s-1984-30774 10.1038/nchem.2796 10.1021/je60077a020 10.1002/ange.202116158 10.1002/ange.201608807 10.1002/anie.202207100 10.1021/acs.chemrev.1c00993 10.1038/s41467-022-31089-7 10.1016/j.bioorg.2022.106227 10.1002/anie.200903924 10.1038/s41467-022-31296-2 10.1021/acs.orglett.8b03610 10.1021/ol103030w 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1002/anie.202003219 10.1021/acs.orglett.2c01509 10.1002/ange.201309399 10.1002/anie.202013976 10.1039/D0SC03606D 10.1038/s44160-021-00017-w 10.1021/acs.chemrev.7b00090 10.1002/anie.202116158 10.1021/acs.orglett.6b03634 10.1039/C8CC00986D 10.1002/ange.201902489 10.1039/C9CC08487H 10.1039/C9QO00747D 10.1039/D2OB01891H 10.1002/anie.201915519 10.1039/D1SC06267K 10.1002/ange.202204565 10.1002/ange.202105583 10.1002/ange.201701160 10.1002/ajoc.201700591 10.1002/ange.201509016 10.1021/acsmedchemlett.8b00276 10.1021/jacs.9b13652 10.1039/C5SC00408J 10.1038/s41557-021-00856-2 10.1002/anie.201712429 10.1021/acs.orglett.1c01193 10.1186/s41181-017-0028-6 10.1039/D2CC01219G 10.1021/acs.orglett.9b00165 10.1002/ange.201806037 10.1002/anie.201509016 10.1002/anie.202115593 10.1073/pnas.1909972116 10.1021/jacs.0c09306 10.1002/ange.202007211 10.1021/cr00075a004 10.1021/jacs.8b01087 10.1002/anie.202207684 10.1002/anie.201608807 10.1039/C8CS00960K 10.1021/acscatal.1c01201 10.1002/anie.201601875 10.1038/s41557-021-00726-x 10.1021/jo00149a001 10.1002/ange.200903924 10.1016/j.chempr.2022.02.013 10.1038/s41586-019-1589-1 10.1021/acscentsci.1c01015 10.1002/ange.201403758 10.1021/jacs.2c11295 10.1002/ange.201611048 10.1002/ange.202207684 10.1021/jacs.8b11309 10.1002/anie.202200904 10.1002/cssc.202201842 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0 10.1002/ange.202112375 10.1016/j.jfluchem.2018.07.008 10.1002/ange.201813761 10.1021/jacs.8b01523 10.1002/anie.202105583 10.1021/acs.inorgchem.2c01230 10.1002/ange.201601875 10.1039/C9SC03368H 10.1021/acs.orglett.1c00671 10.1002/1521-3757(20010601)113:11<2056::AID-ANGE2056>3.0.CO;2-W 10.1002/anie.201611048 10.1002/9783527824342.ch21 10.1021/acs.joc.7b00051 10.1073/pnas.2208540119 10.1038/s41557-022-01038-4 10.1002/ange.202111977 10.1021/jacs.6b02960 10.1002/anie.202204565 10.1039/c39800001228 10.1038/s44160-022-00060-1 10.1021/jacs.7b08366 10.1002/ange.201712145 10.1038/s41467-022-30132-x 10.1002/ange.202207100 10.1002/anie.201811051 10.1002/anie.202112375 10.1038/s41570-021-00352-8 10.1002/ange.202003219 10.1038/s41557-022-01059-z 10.1002/anie.202007211 10.1021/acs.orglett.1c01118 10.1002/anie.201309399 10.1021/acs.orglett.5b00654 10.1002/anie.201912728 10.1021/acs.orglett.8b01520 10.1002/anie.202111977 10.1002/ange.202013976 10.1039/C8CC03400A 10.1021/acs.chemrev.1c00611 10.1002/anie.201902489 10.1002/ange.201915519 10.1002/anie.201701160 10.1002/ange.201811051 10.1039/c3cs60049a 10.1021/acs.joc.6b01449 10.1002/anie.201712145 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 10.1073/pnas.0707090104 10.1021/acs.chemrev.9b00665 10.1021/acscentsci.0c01550 10.1021/jacs.5b06307 10.1063/1.1675363 10.1021/acs.orglett.0c01397 10.1021/jacs.1c04259 10.1021/acschembio.2c00788 10.1002/ange.202115593 10.1002/ange.201912728 10.1039/C7QO01128H 10.1021/acs.orglett.1c01907 10.1002/ange.202200904 10.1021/acs.orglett.8b01309 10.1021/acs.orglett.7b03950 10.1002/anie.201806037 10.1038/s41467-019-11805-6 10.1002/anie.201813761 10.1021/acschembio.7b00403 10.1002/chem.202002265 10.1038/s41557-020-0530-4 10.1039/D2QO01429G 10.1021/jacs.7b12788 10.1016/j.cclet.2021.03.035 10.1002/anie.201303159 10.1039/C9MD00542K 10.1039/D2QO00416J |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202300536 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 36959094 10_1002_chem_202300536 CHEM202300536 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 22125103 and 21971065 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 20XD1421500 and 20JC1416800 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 22125103 and 21971065 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 20XD1421500 and 20JC1416800 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3736-9a0167e7071cb37879d543fe14bb1abe298cb860d658f8710160dc8541ebd3963 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 16:32:54 EDT 2025 Fri Jul 25 10:29:52 EDT 2025 Sat Aug 02 01:41:13 EDT 2025 Tue Jul 01 00:43:48 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Wed Jan 22 16:20:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | SuFEx S−C bond S−O bond linkage chemistry S−N bond |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-9a0167e7071cb37879d543fe14bb1abe298cb860d658f8710160dc8541ebd3963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1849-6572 |
PMID | 36959094 |
PQID | 2826044855 |
PQPubID | 986340 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2791371773 proquest_journals_2826044855 pubmed_primary_36959094 crossref_citationtrail_10_1002_chem_202300536 crossref_primary_10_1002_chem_202300536 wiley_primary_10_1002_chem_202300536_CHEM202300536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 13, 2023 |
PublicationDateYYYYMMDD | 2023-06-13 |
PublicationDate_xml | – month: 06 year: 2023 text: June 13, 2023 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2007; 104 2017; 2 2021; 23 2017; 82 2020; 120 2019; 55 2019; 10 2023; 145 2020 2020; 59 132 2022; 24 2011; 13 2020; 12 2020; 11 2021; 121 2017; 9 2017; 117 2018; 7 2022; 122 2023; 21 2018; 9 2022 2022; 61 134 1971; 54 2021; 32 2018; 5 2002 2002; 41 114 1978; 23 2015; 137 1986; 86 2023; 130 2019; 21 2018 2018; 57 130 2018; 213 2019; 116 2016; 81 1980 2023; 10 2021; 7 2015; 6 2015; 17 2018; 140 2019; 6 2020; 142 2013; 42 2007 2010 2010; 49 122 1984; 1984 2017 2017; 56 129 2021; 143 2022; 119 2018; 20 2019 2019; 58 131 2021; 13 2016 2016; 55 128 2021; 11 2023 2022; 61 2022; 6 2020 2022; 8 2019; 48 2022; 9 2017; 12 2022; 13 2021 2021; 60 133 2022; 14 2020; 26 2022; 58 2022; 15 2017; 19 2016; 138 2022; 1 2020; 22 2001 2001; 40 113 2018; 54 1983; 48 2022; 17 2019; 574 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_94_2 e_1_2_9_94_3 e_1_2_9_33_1 e_1_2_9_75_2 e_1_2_9_90_2 e_1_2_9_107_2 e_1_2_9_126_1 e_1_2_9_126_2 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_145_2 e_1_2_9_103_2 Wu J. W. (e_1_2_9_119_2) 2023 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_141_2 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_41_2 e_1_2_9_87_2 e_1_2_9_60_2 e_1_2_9_68_1 e_1_2_9_45_2 e_1_2_9_83_2 e_1_2_9_22_3 e_1_2_9_64_3 e_1_2_9_22_2 e_1_2_9_64_2 e_1_2_9_6_1 e_1_2_9_2_2 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_2 e_1_2_9_134_1 e_1_2_9_115_2 e_1_2_9_115_1 e_1_2_9_49_2 e_1_2_9_130_2 e_1_2_9_26_2 e_1_2_9_30_2 e_1_2_9_72_2 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_95_2 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_2 e_1_2_9_129_2 e_1_2_9_102_2 e_1_2_9_106_2 e_1_2_9_121_2 e_1_2_9_144_1 (e_1_2_9_84_3) 2022; 134 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_38_2 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_61_2 e_1_2_9_88_2 e_1_2_9_65_3 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_84_2 e_1_2_9_42_3 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_118_2 (e_1_2_9_139_2) 2022; 134 e_1_2_9_1_2 e_1_2_9_1_1 Gilbert K. E. (e_1_2_9_47_2) 2023 e_1_2_9_137_2 e_1_2_9_110_3 e_1_2_9_110_2 e_1_2_9_133_2 e_1_2_9_9_2 e_1_2_9_23_3 e_1_2_9_46_2 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_77_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_2 e_1_2_9_128_2 e_1_2_9_105_2 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_120_1 e_1_2_9_143_1 (e_1_2_9_102_3) 2022; 134 e_1_2_9_62_3 e_1_2_9_62_2 (e_1_2_9_44_3) 2022; 134 e_1_2_9_89_2 e_1_2_9_20_3 e_1_2_9_66_3 e_1_2_9_20_2 e_1_2_9_66_2 e_1_2_9_85_1 e_1_2_9_43_2 e_1_2_9_81_1 e_1_2_9_4_2 Yeom C.-E. (e_1_2_9_114_1) 2007 e_1_2_9_136_2 e_1_2_9_113_1 e_1_2_9_132_2 e_1_2_9_117_1 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_89_3 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_70_3 e_1_2_9_78_2 e_1_2_9_93_2 e_1_2_9_55_2 e_1_2_9_13_1 e_1_2_9_32_2 e_1_2_9_108_1 e_1_2_9_70_2 e_1_2_9_127_1 Ball N. D. (e_1_2_9_99_2) 2020 e_1_2_9_100_2 e_1_2_9_123_1 e_1_2_9_104_2 (e_1_2_9_116_2) 2022; 134 e_1_2_9_59_2 (e_1_2_9_26_3) 2022; 134 e_1_2_9_36_2 e_1_2_9_142_2 e_1_2_9_17_2 e_1_2_9_40_2 e_1_2_9_86_2 e_1_2_9_63_1 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_82_2 e_1_2_9_67_1 e_1_2_9_82_3 e_1_2_9_7_2 e_1_2_9_3_1 e_1_2_9_112_2 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_2 e_1_2_9_25_2 e_1_2_9_48_1 e_1_2_9_131_2 e_1_2_9_29_2 (e_1_2_9_58_3) 2018; 130 |
References_xml | – volume: 19 start-page: 480 year: 2017 end-page: 483 publication-title: Org. Lett. – volume: 15 start-page: 21 year: 2022 end-page: 32 publication-title: Nat. Chem. – volume: 23 start-page: 2766 year: 2021 end-page: 2771 publication-title: Org. Lett. – volume: 20 start-page: 3749 year: 2018 end-page: 3752 publication-title: Org. Lett. – volume: 53 126 start-page: 946 9620 year: 2014 2014 end-page: 9470 9624 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 21195 21365 year: 2021 2021 end-page: 21199 21369 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 20 start-page: 3943 year: 2018 end-page: 3947 publication-title: Org. Lett. – volume: 59 132 start-page: 7494 7564 year: 2020 2020 end-page: 7500 7570 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 768 year: 2011 end-page: 771 publication-title: Org. Lett. – volume: 21 start-page: 1426 year: 2019 end-page: 1429 publication-title: Org. Lett. – volume: 40 113 start-page: 2004 2056 year: 2001 2001 end-page: 2021 2075 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 16194 16426 year: 2018 2018 end-page: 16199 16431 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 812 year: 2018 end-page: 815 publication-title: Org. Lett. – volume: 60 133 start-page: 25307 25511 year: 2021 2021 end-page: 25312 25516 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 year: 2023 publication-title: Bioorg. Chem. – volume: 57 130 start-page: 1939 1957 year: 2018 2018 end-page: 1943 1961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 114 start-page: 2596 2708 year: 2002 2002 end-page: 2599 2711 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 82 start-page: 2294 year: 2017 end-page: 2299 publication-title: J. Org. Chem. – volume: 57 130 start-page: 2605 2653 year: 2018 2018 end-page: 2610 2640 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 4389 year: 2020 end-page: 4394 publication-title: Org. Lett. – volume: 6 start-page: 2650 year: 2015 end-page: 2659 publication-title: Chem. Sci. – volume: 145 start-page: 2364 year: 2023 end-page: 2374 publication-title: J. Am. Chem. Soc. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1137 year: 2022 end-page: 1146 publication-title: Chem – start-page: 0146 year: 2007 end-page: 0150 publication-title: Synlett – volume: 138 start-page: 7353 year: 2016 end-page: 7364 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1083 year: 2017 end-page: 1088 publication-title: Nat. Chem. – volume: 11 start-page: 10 year: 2020 end-page: 17 publication-title: RSC Med. Chem. – volume: 6 start-page: 3490 year: 2019 end-page: 3516 publication-title: Org. Chem. Front. – volume: 1984 start-page: 214 year: 1984 end-page: 217 publication-title: Synthesis – volume: 24 start-page: 4046 year: 2022 end-page: 4051 publication-title: Org. Lett. – volume: 23 start-page: 4228 year: 2021 end-page: 4232 publication-title: Org. Lett. – volume: 60 133 start-page: 7397 7473 year: 2021 2021 end-page: 7404 7480 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 3445 year: 1971 end-page: 3449 publication-title: J. Chem. Phys. – volume: 121 start-page: 14555 year: 2021 end-page: 14593 publication-title: Chem. Rev. – volume: 143 start-page: 10341 year: 2021 end-page: 10351 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 662 year: 2018 end-page: 682 publication-title: Asian J. Org. – volume: 104 start-page: 16793 year: 2007 end-page: 16797 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 9571 year: 2015 end-page: 9574 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 5131 year: 2013 end-page: 5142 publication-title: Chem. Soc. Rev. – volume: 53 126 start-page: 9430 9584 year: 2014 2014 end-page: 9448 9603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 14753 year: 2019 end-page: 14756 publication-title: Chem. Commun. – start-page: 1228 year: 1980 end-page: 1229 publication-title: J. Chem. Soc. Chem. Commun. – volume: 58 start-page: 5387 year: 2022 end-page: 5390 publication-title: Chem. Commun. – volume: 7 start-page: 815 year: 2021 end-page: 830 publication-title: ACS Cent. Sci. – volume: 58 131 start-page: 957 969 year: 2019 2019 end-page: 966 978 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 33 year: 2022 end-page: 42 publication-title: Nat. Chem. – volume: 5 start-page: 1411 year: 2018 end-page: 1415 publication-title: Org. Chem. Front. – volume: 14 start-page: 160 year: 2022 end-page: 169 publication-title: Nat. Chem. – volume: 61 start-page: 9746 year: 2022 end-page: 9755 publication-title: Inorg. Chem. – volume: 12 start-page: 906 year: 2020 end-page: 913 publication-title: Nat. Chem. – volume: 21 start-page: 1356 year: 2023 end-page: 1372 publication-title: Org. Biomol. Chem. – volume: 55 128 start-page: 12664 12854 year: 2016 2016 end-page: 12667 12858 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 1181 1197 year: 2020 2020 end-page: 1186 1202 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 1942 year: 2015 end-page: 1945 publication-title: Org. Lett. – volume: 122 start-page: 1483 year: 2022 end-page: 1484 publication-title: Chem. Rev. – volume: 23 start-page: 3975 year: 2021 end-page: 3980 publication-title: Org. Lett. – volume: 1 start-page: 455 year: 2022 end-page: 463 publication-title: Nat. Synth. – volume: 140 start-page: 2919 year: 2018 end-page: 2925 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 6020 year: 2018 end-page: 6023 publication-title: Chem. Commun. – volume: 9 start-page: 3540 year: 2022 end-page: 3545 publication-title: Org. Chem. Front. – volume: 10 start-page: 404 year: 2023 end-page: 409 publication-title: Org. Chem. Front. – volume: 13 start-page: 2270 year: 2022 end-page: 2279 publication-title: Chem. Sci. – volume: 10 start-page: 7835 year: 2019 end-page: 7851 publication-title: Chem. Sci. – volume: 142 start-page: 10899 year: 2020 end-page: 10904 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 4995 year: 2018 end-page: 4999 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 1540 1584 year: 2010 2010 end-page: 1573 1617 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 10358 year: 2017 end-page: 10376 publication-title: Chem. Rev. – volume: 48 start-page: 4731 year: 2019 end-page: 4758 publication-title: Chem. Soc. Rev. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 59 132 start-page: 18435 18593 year: 2020 2020 end-page: 18441 18599 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 81 start-page: 6898 year: 2016 end-page: 6926 publication-title: J. Org. Chem. – volume: 56 129 start-page: 2903 2949 year: 2017 2017 end-page: 2908 2954 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 6578 year: 2021 end-page: 6589 publication-title: ACS Catal. – volume: 17 start-page: 2959 year: 2022 end-page: 2961 publication-title: ACS Chem. Biol. – year: 2023 publication-title: ACS Chem. Biol. – volume: 86 start-page: 781 year: 1986 end-page: 793 publication-title: Chem. Rev. – volume: 58 131 start-page: 4552 4600 year: 2019 2019 end-page: 4556 4604 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3515 year: 2022 publication-title: Nat. Commun. – volume: 26 start-page: 12533 year: 2020 end-page: 12538 publication-title: Chem. Eur. J. – volume: 143 start-page: 3753 year: 2021 end-page: 3763 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 12460 12560 year: 2020 2020 end-page: 12469 12569 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 2752 year: 2022 publication-title: Nat. Commun. – volume: 2 start-page: 9 year: 2017 publication-title: EJNMMI Radiopharm. Chem. – volume: 140 start-page: 200 year: 2018 end-page: 210 publication-title: J. Am. Chem. Soc. – volume: 574 start-page: 86 year: 2019 end-page: 89 publication-title: Nature – volume: 48 start-page: 1 year: 1983 end-page: 3 publication-title: J. Org. Lett. – volume: 54 start-page: 4477 year: 2018 end-page: 4480 publication-title: Chem. Commun. – volume: 13 start-page: 858 year: 2021 end-page: 867 publication-title: Nat. Chem. – volume: 23 start-page: 174 year: 1978 end-page: 175 publication-title: J. Chem. Eng. Data – volume: 11 start-page: 7807 year: 2020 end-page: 7812 publication-title: Chem. Sci. – volume: 7 start-page: 1919 year: 2021 end-page: 1928 publication-title: ACS Cent. Sci. – volume: 23 start-page: 5271 year: 2021 end-page: 5276 publication-title: Org. Lett. – start-page: 621 year: 2020 end-page: 674 – volume: 56 129 start-page: 11203 11355 year: 2017 2017 end-page: 11208 11360 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 1835 1867 year: 2016 2016 end-page: 1838 1870 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 14155 14361 year: 2016 2016 end-page: 14158 14364 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 16464 year: 2018 end-page: 16468 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 8 year: 2022 end-page: 10 publication-title: Nat. Synth. – volume: 213 start-page: 87 year: 2018 end-page: 112 publication-title: J. Fluorine Chem. – volume: 21 start-page: 428 year: 2019 end-page: 433 publication-title: Org. Lett. – year: 2023 publication-title: ACS Polym. Au – volume: 140 start-page: 5004 year: 2018 end-page: 5008 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 2736 year: 2021 end-page: 2750 publication-title: Chin. Chem. Lett. – volume: 6 start-page: 146 year: 2022 end-page: 162 publication-title: Nat. Chem. Rev. – volume: 10 start-page: 3752 year: 2019 publication-title: Nat. Commun. – volume: 120 start-page: 4301 year: 2020 end-page: 4354 publication-title: Chem. Rev. – volume: 58 131 start-page: 8029 8113 year: 2019 2019 end-page: 8033 8117 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 18808 year: 2019 end-page: 18814 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 3370 year: 2022 publication-title: Nat. Commun. – volume: 12 start-page: 2015 year: 2017 end-page: 2020 publication-title: ACS Chem. Biol. – volume: 9 start-page: 584 year: 2018 end-page: 586 publication-title: ACS Med. Chem. Lett. – volume: 15 year: 2022 publication-title: ChemSusChem – ident: e_1_2_9_81_1 – ident: e_1_2_9_48_1 – ident: e_1_2_9_128_2 – ident: e_1_2_9_136_2 doi: 10.1055/s-1984-30774 – ident: e_1_2_9_21_2 doi: 10.1038/nchem.2796 – ident: e_1_2_9_54_2 doi: 10.1021/je60077a020 – volume: 134 year: 2022 ident: e_1_2_9_26_3 publication-title: Angew. Chem. doi: 10.1002/ange.202116158 – ident: e_1_2_9_70_3 doi: 10.1002/ange.201608807 – ident: e_1_2_9_139_1 doi: 10.1002/anie.202207100 – ident: e_1_2_9_142_2 doi: 10.1021/acs.chemrev.1c00993 – ident: e_1_2_9_60_2 doi: 10.1038/s41467-022-31089-7 – ident: e_1_2_9_104_2 doi: 10.1016/j.bioorg.2022.106227 – year: 2023 ident: e_1_2_9_47_2 publication-title: ACS Chem. Biol. – ident: e_1_2_9_10_1 doi: 10.1002/anie.200903924 – ident: e_1_2_9_61_2 doi: 10.1038/s41467-022-31296-2 – ident: e_1_2_9_137_2 doi: 10.1021/acs.orglett.8b03610 – ident: e_1_2_9_144_1 doi: 10.1021/ol103030w – ident: e_1_2_9_1_1 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: e_1_2_9_82_2 doi: 10.1002/anie.202003219 – ident: e_1_2_9_96_1 – ident: e_1_2_9_80_2 doi: 10.1021/acs.orglett.2c01509 – ident: e_1_2_9_14_2 doi: 10.1002/ange.201309399 – ident: e_1_2_9_140_1 – ident: e_1_2_9_126_1 doi: 10.1002/anie.202013976 – ident: e_1_2_9_118_2 doi: 10.1039/D0SC03606D – ident: e_1_2_9_18_2 doi: 10.1038/s44160-021-00017-w – ident: e_1_2_9_63_1 – ident: e_1_2_9_12_1 doi: 10.1021/acs.chemrev.7b00090 – ident: e_1_2_9_26_2 doi: 10.1002/anie.202116158 – ident: e_1_2_9_71_2 doi: 10.1021/acs.orglett.6b03634 – ident: e_1_2_9_79_2 doi: 10.1039/C8CC00986D – ident: e_1_2_9_66_3 doi: 10.1002/ange.201902489 – ident: e_1_2_9_129_2 doi: 10.1039/C9CC08487H – ident: e_1_2_9_56_1 doi: 10.1039/C9QO00747D – ident: e_1_2_9_52_1 – ident: e_1_2_9_103_2 doi: 10.1039/D2OB01891H – ident: e_1_2_9_106_1 doi: 10.1002/anie.201915519 – ident: e_1_2_9_113_1 doi: 10.1039/D1SC06267K – volume: 134 year: 2022 ident: e_1_2_9_44_3 publication-title: Angew. Chem. doi: 10.1002/ange.202204565 – ident: e_1_2_9_121_2 doi: 10.1002/ange.202105583 – ident: e_1_2_9_22_3 doi: 10.1002/ange.201701160 – ident: e_1_2_9_33_1 – ident: e_1_2_9_98_2 doi: 10.1002/ajoc.201700591 – ident: e_1_2_9_105_2 doi: 10.1002/ange.201509016 – ident: e_1_2_9_36_2 doi: 10.1021/acsmedchemlett.8b00276 – ident: e_1_2_9_31_2 doi: 10.1021/jacs.9b13652 – ident: e_1_2_9_34_2 doi: 10.1039/C5SC00408J – ident: e_1_2_9_95_2 doi: 10.1038/s41557-021-00856-2 – ident: e_1_2_9_58_2 doi: 10.1002/anie.201712429 – ident: e_1_2_9_75_2 doi: 10.1021/acs.orglett.1c01193 – ident: e_1_2_9_49_2 doi: 10.1186/s41181-017-0028-6 – ident: e_1_2_9_130_2 doi: 10.1039/D2CC01219G – ident: e_1_2_9_73_2 doi: 10.1021/acs.orglett.9b00165 – ident: e_1_2_9_42_3 doi: 10.1002/ange.201806037 – ident: e_1_2_9_133_2 – ident: e_1_2_9_105_1 doi: 10.1002/anie.201509016 – ident: e_1_2_9_84_2 doi: 10.1002/anie.202115593 – year: 2023 ident: e_1_2_9_119_2 publication-title: ACS Polym. Au – ident: e_1_2_9_85_1 – ident: e_1_2_9_30_2 doi: 10.1073/pnas.1909972116 – ident: e_1_2_9_50_2 doi: 10.1021/jacs.0c09306 – ident: e_1_2_9_115_2 doi: 10.1002/ange.202007211 – ident: e_1_2_9_7_2 doi: 10.1021/cr00075a004 – ident: e_1_2_9_41_2 doi: 10.1021/jacs.8b01087 – ident: e_1_2_9_110_2 doi: 10.1002/anie.202207684 – ident: e_1_2_9_70_2 doi: 10.1002/anie.201608807 – ident: e_1_2_9_109_1 – ident: e_1_2_9_16_2 doi: 10.1039/C8CS00960K – ident: e_1_2_9_125_1 – ident: e_1_2_9_101_2 doi: 10.1021/acscatal.1c01201 – ident: e_1_2_9_107_1 doi: 10.1002/anie.201601875 – ident: e_1_2_9_24_2 doi: 10.1038/s41557-021-00726-x – ident: e_1_2_9_135_2 doi: 10.1021/jo00149a001 – ident: e_1_2_9_15_1 – ident: e_1_2_9_10_2 doi: 10.1002/ange.200903924 – ident: e_1_2_9_67_1 doi: 10.1016/j.chempr.2022.02.013 – ident: e_1_2_9_90_2 doi: 10.1038/s41586-019-1589-1 – ident: e_1_2_9_25_2 doi: 10.1021/acscentsci.1c01015 – ident: e_1_2_9_20_3 doi: 10.1002/ange.201403758 – ident: e_1_2_9_112_2 doi: 10.1021/jacs.2c11295 – ident: e_1_2_9_64_3 doi: 10.1002/ange.201611048 – ident: e_1_2_9_62_3 doi: 10.1002/ange.202207684 – ident: e_1_2_9_88_2 doi: 10.1021/jacs.8b11309 – ident: e_1_2_9_102_2 doi: 10.1002/anie.202200904 – ident: e_1_2_9_111_2 doi: 10.1002/cssc.202201842 – ident: e_1_2_9_2_2 doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0 – volume: 134 year: 2022 ident: e_1_2_9_116_2 publication-title: Angew. Chem. doi: 10.1002/ange.202112375 – ident: e_1_2_9_97_2 doi: 10.1016/j.jfluchem.2018.07.008 – ident: e_1_2_9_3_1 – ident: e_1_2_9_145_2 doi: 10.1002/ange.201813761 – ident: e_1_2_9_87_2 doi: 10.1021/jacs.8b01523 – ident: e_1_2_9_121_1 doi: 10.1002/anie.202105583 – ident: e_1_2_9_124_1 doi: 10.1021/acs.inorgchem.2c01230 – ident: e_1_2_9_107_2 doi: 10.1002/ange.201601875 – ident: e_1_2_9_5_2 doi: 10.1039/C9SC03368H – ident: e_1_2_9_51_2 doi: 10.1021/acs.orglett.1c00671 – volume: 130 start-page: 2653 year: 2018 ident: e_1_2_9_58_3 publication-title: Angew. Chem. – ident: e_1_2_9_39_1 – ident: e_1_2_9_62_2 doi: 10.1002/anie.202207684 – ident: e_1_2_9_1_2 doi: 10.1002/1521-3757(20010601)113:11<2056::AID-ANGE2056>3.0.CO;2-W – ident: e_1_2_9_64_2 doi: 10.1002/anie.201611048 – ident: e_1_2_9_69_1 – start-page: 621 volume-title: Emerging Fluorinated Motifs: Synthesis, Properties, and Applications 2 year: 2020 ident: e_1_2_9_99_2 doi: 10.1002/9783527824342.ch21 – ident: e_1_2_9_108_1 doi: 10.1021/acs.joc.7b00051 – ident: e_1_2_9_83_2 doi: 10.1073/pnas.2208540119 – ident: e_1_2_9_27_1 – ident: e_1_2_9_45_2 doi: 10.1038/s41557-022-01038-4 – ident: e_1_2_9_94_3 doi: 10.1002/ange.202111977 – ident: e_1_2_9_40_2 doi: 10.1021/jacs.6b02960 – ident: e_1_2_9_44_2 doi: 10.1002/anie.202204565 – ident: e_1_2_9_55_2 doi: 10.1039/c39800001228 – start-page: 0146 year: 2007 ident: e_1_2_9_114_1 publication-title: Synlett – ident: e_1_2_9_138_1 doi: 10.1038/s44160-022-00060-1 – ident: e_1_2_9_28_2 doi: 10.1021/jacs.7b08366 – ident: e_1_2_9_57_1 – ident: e_1_2_9_65_3 doi: 10.1002/ange.201712145 – ident: e_1_2_9_91_2 doi: 10.1038/s41467-022-30132-x – volume: 134 year: 2022 ident: e_1_2_9_139_2 publication-title: Angew. Chem. doi: 10.1002/ange.202207100 – ident: e_1_2_9_23_2 doi: 10.1002/anie.201811051 – ident: e_1_2_9_116_1 doi: 10.1002/anie.202112375 – ident: e_1_2_9_17_2 doi: 10.1038/s41570-021-00352-8 – ident: e_1_2_9_82_3 doi: 10.1002/ange.202003219 – ident: e_1_2_9_46_2 doi: 10.1038/s41557-022-01059-z – ident: e_1_2_9_115_1 doi: 10.1002/anie.202007211 – ident: e_1_2_9_68_1 doi: 10.1021/acs.orglett.1c01118 – ident: e_1_2_9_134_1 – ident: e_1_2_9_14_1 doi: 10.1002/anie.201309399 – ident: e_1_2_9_93_2 doi: 10.1021/acs.orglett.5b00654 – ident: e_1_2_9_89_2 doi: 10.1002/anie.201912728 – ident: e_1_2_9_122_1 doi: 10.1021/acs.orglett.8b01520 – ident: e_1_2_9_94_2 doi: 10.1002/anie.202111977 – ident: e_1_2_9_126_2 doi: 10.1002/ange.202013976 – ident: e_1_2_9_77_2 doi: 10.1039/C8CC03400A – ident: e_1_2_9_92_1 – ident: e_1_2_9_9_2 doi: 10.1021/acs.chemrev.1c00611 – ident: e_1_2_9_6_1 – ident: e_1_2_9_76_1 – ident: e_1_2_9_66_2 doi: 10.1002/anie.201902489 – ident: e_1_2_9_106_2 doi: 10.1002/ange.201915519 – ident: e_1_2_9_22_2 doi: 10.1002/anie.201701160 – ident: e_1_2_9_23_3 doi: 10.1002/ange.201811051 – ident: e_1_2_9_8_2 doi: 10.1039/c3cs60049a – ident: e_1_2_9_141_2 doi: 10.1021/acs.joc.6b01449 – ident: e_1_2_9_65_2 doi: 10.1002/anie.201712145 – ident: e_1_2_9_2_1 doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 – ident: e_1_2_9_4_2 doi: 10.1073/pnas.0707090104 – ident: e_1_2_9_11_1 doi: 10.1021/acs.chemrev.9b00665 – ident: e_1_2_9_38_2 doi: 10.1021/acscentsci.0c01550 – ident: e_1_2_9_110_3 doi: 10.1002/ange.202207684 – ident: e_1_2_9_127_1 – ident: e_1_2_9_19_1 – ident: e_1_2_9_86_2 doi: 10.1021/jacs.5b06307 – ident: e_1_2_9_53_2 doi: 10.1063/1.1675363 – ident: e_1_2_9_123_1 doi: 10.1021/acs.orglett.0c01397 – ident: e_1_2_9_43_2 doi: 10.1021/jacs.1c04259 – ident: e_1_2_9_13_1 doi: 10.1021/acschembio.2c00788 – volume: 134 year: 2022 ident: e_1_2_9_84_3 publication-title: Angew. Chem. doi: 10.1002/ange.202115593 – ident: e_1_2_9_89_3 doi: 10.1002/ange.201912728 – ident: e_1_2_9_72_2 doi: 10.1039/C7QO01128H – ident: e_1_2_9_131_2 doi: 10.1021/acs.orglett.1c01907 – volume: 134 year: 2022 ident: e_1_2_9_102_3 publication-title: Angew. Chem. doi: 10.1002/ange.202200904 – ident: e_1_2_9_78_2 doi: 10.1021/acs.orglett.8b01309 – ident: e_1_2_9_59_2 doi: 10.1021/acs.orglett.7b03950 – ident: e_1_2_9_42_2 doi: 10.1002/anie.201806037 – ident: e_1_2_9_74_2 doi: 10.1038/s41467-019-11805-6 – ident: e_1_2_9_145_1 doi: 10.1002/anie.201813761 – ident: e_1_2_9_117_1 – ident: e_1_2_9_35_2 doi: 10.1021/acschembio.7b00403 – ident: e_1_2_9_120_1 doi: 10.1002/chem.202002265 – ident: e_1_2_9_32_2 doi: 10.1038/s41557-020-0530-4 – ident: e_1_2_9_143_1 doi: 10.1039/D2QO01429G – ident: e_1_2_9_29_2 doi: 10.1021/jacs.7b12788 – ident: e_1_2_9_100_2 doi: 10.1016/j.cclet.2021.03.035 – ident: e_1_2_9_20_2 doi: 10.1002/anie.201303159 – ident: e_1_2_9_37_2 doi: 10.1039/C9MD00542K – ident: e_1_2_9_132_2 doi: 10.1039/D2QO00416J |
SSID | ssj0009633 |
Score | 2.5850809 |
SecondaryResourceType | review_article |
Snippet | Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the... Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300536 |
SubjectTerms | Amines Chemical synthesis Chemistry Click Chemistry Fluorides - chemistry linkage chemistry Nitrogen - chemistry Phenols Polymers - chemistry SuFEx Sulfur Sulfur - chemistry S−C bond S−N bond S−O bond |
Title | Linkage Chemistry of S(VI) Fluorides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300536 https://www.ncbi.nlm.nih.gov/pubmed/36959094 https://www.proquest.com/docview/2826044855 https://www.proquest.com/docview/2791371773 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfQmUKkiVgEPaJs7mY1uoChIcgKLeIm-REFWLulz4emaaJqUghAS3LHbssWfsN479BqCiuVaI-kNHxDxwfEVhXtDHdgJXCF7XRHhE6x1392Gn69_2gt6nU_wZP0Sx4EaWMRuvycCFHNcWpKEoE50k94hvnRHnNm3YIlT0sOCPQu3KYsn7kUMcrDlrY92rLWdfnpW-Qc1l5DqbetpbIPJKZztOXqvTiayq9y98jv-Rahs257jUbmSKtAMrZrAL6608HNweVMhrxcHHLp7Zw9R-vHi-ubTb_elw9KLNeB-67eunVseZh1hwFItY6HBBxxBMhEBDSYbGy3Xgs9S4vpSukMbjsZJxWNcIVFL0rYiPTqs48F0jNcPmPYDVwXBgjsBWOgxTgR9jkfEFAksVKJV63OXSpDzWFjh5Eydqzj9OYTD6Scac7CUke1LIbsF5kf4tY974MWUp77FkboHjBF3JsO4T9Y0FZ8VrbB_6ISIGZjjFNBF3GfqzEbPgMOvpoigW8oCj4ljgzfrrlzokxGBR3B3_JdMJbNA17UNzWQlWJ6OpOUXEM5FlWGs0r5rt8ky7PwDN-_R8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHMqFfQlrkCoBh7RNnDjxERWqAm0PUBC3KF4iIaoWlfbC1zPTNKkKQkhwjGMnHnvGfuPlDUBZC60Q9XMniUTg-IrCvKCP7QRukoiaJsIjWu9od3jz0b99DvLThHQXJuOHKBbcyDIm4zUZOC1IV2esoSgUXSX3iHCd8UVYprDeZJtX9zMGKdSvLJq8HzrEwprzNta86nz5-XnpG9icx66TyaexBjKvdnbm5LUyHsmK-vjC6PgvudZhdQpN7ctMlzZgwfQ3oVTPI8JtQZkcVxx_7CLNHqT2w_nTzYXd6I0Hwxdt3rfhsXHdrTedaZQFR7GQcUckdBPBhIg1lGRov0IHPkuN60vpJtJ4IlIy4jWNWCVF94oo6bSKAt81UjNs3x1Y6g_6Zg9spTlPE_wYC42fILZUgVKpJ1whTSoibYGTt3GsphTkFAmjF2fkyV5MsseF7BacFfnfMvKNH3Me5l0WT43wPUZvktd8Yr-x4LR4je1DeyJJ3wzGmCcULkOXNmQW7GZdXfyKcREI1BwLvEmH_VKHmEgsiqf9vxQ6gVKz227FrZvO3QGsUDodS3PZISyNhmNzhABoJI8nKv4JcXT3Iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QH3xPupZQVAfqm2Tps2jqIs34oVvJVdBlF3R3Rd_vTPbbXUVEfSxadJmkpnkmxzfAGxYaQ2ifhGoTCYBNxTmBX3sIImUkqElwiNa7zi_EEe3_OQ-uf90i7_kh6gX3MgyuuM1GfizLXY_SENRJrpJHhPfOhODMMxFmJH7dXD1QSCF6lUGk-dpQCSsFW1jGO_2l--flr5hzX7o2p17GhOgqlqXR04edzptvWPevhA6_kesSRjvAVN_r9SkKRhwzWkY3a_iwc3ABrmtOPr4dZrfKvzrrbvjbb_x1Gm9PFj3Ogu3jcOb_aOgF2MhMCxlIpCK7iG4FJGG0QytV9qEs8JFXOtIaRfLzOhMhBaRSoHOFRHSWZMlPHLaMmzeORhqtppuAXxjhSgUfoyljitEliYxpohlJLUrZGY9CKomzk2PgJziYDzlJXVynJPseS27B5t1_ueSeuPHnMtVj-U9E3zN0ZcUISfuGw_W69fYPrQjopqu1cE8qYwYOrQp82C-7On6V0zIRKLieBB3--uXOuREYVE_Lf6l0BqMXB408rPji9MlGKNkOpMWsWUYar903Aqin7Ze7Sr4O5ym9ds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+Chemistry+of+S%28VI%29+Fluorides&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zeng%2C+Daming&rft.au=Wei%E2%80%90Ping+Deng&rft.au=Jiang%2C+Xuefeng&rft.date=2023-06-13&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fchem.202300536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |