Linkage Chemistry of S(VI) Fluorides

Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage comp...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 33; pp. e202300536 - n/a
Main Authors Zeng, Daming, Deng, Wei‐Ping, Jiang, Xuefeng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.06.2023
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.202300536

Cover

Loading…
Abstract Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)‐fluoride exchange: This review summarizes recent advances in the linkage chemistry of S(VI) fluorides since 2014, emphasizing the formation of S−O, S−N, and S−C bonds. The divergent SuFEx linkage is deployed in the assembly of S(VI)‐containing compounds library.
AbstractList Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.
Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI−F bond in comparison to SVI−Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry. Sulfur(VI)‐fluoride exchange: This review summarizes recent advances in the linkage chemistry of S(VI) fluorides since 2014, emphasizing the formation of S−O, S−N, and S−C bonds. The divergent SuFEx linkage is deployed in the assembly of S(VI)‐containing compounds library.
Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal‐free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The S VI −F bond in comparison to S VI −Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S−O and S−N bonds via commercially available phenols and amines, yet less study on C ‐SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S−O, S−N, and S−C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.
Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI -F bond in comparison to SVI -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The SVI -F bond in comparison to SVI -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.
Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the SuFEx reaction proceeds under metal-free conditions, and the reactive linkers are variable, enabling access to a diverse class of linkage compounds. Therein, a series of SuFEx linkers emerged has been widely prevalent in diverse fields. The S -F bond in comparison to S -Cl bond features excellent stability and chemoselectivity. The linkage chemistry primarily involves the formation of S-O and S-N bonds via commercially available phenols and amines, yet less study on C-SuFEx linkage. This review will focus on three types of linkage for SuFEx linkers comprising S-O, S-N, and S-C bonds, and we hope to provide a practical guidance for SuFEx linkage chemistry.
Author Deng, Wei‐Ping
Zeng, Daming
Jiang, Xuefeng
Author_xml – sequence: 1
  givenname: Daming
  surname: Zeng
  fullname: Zeng, Daming
  organization: East China Normal University
– sequence: 2
  givenname: Wei‐Ping
  surname: Deng
  fullname: Deng, Wei‐Ping
  email: weiping_deng@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Xuefeng
  orcidid: 0000-0002-1849-6572
  surname: Jiang
  fullname: Jiang, Xuefeng
  email: xfjiang@chem.ecnu.edu.cn
  organization: East China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36959094$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1LwzAYxoNM3IdePcpAD_PQ-aZpkuYoZXPCxIMf19CmqWZ27UxaZP-9GdsUBuIph_f3e3jy9FGnqiuN0DmGMQYIb9S7Xo5DCAkAJewI9TANcUA4ox3UAxHxgFEiuqjv3AIABCPkBHUJE1T4aw9dzU31kb7pYeKDjGvselgXw6fR6_31cFq2tTW5dqfouEhLp8927wC9TCfPySyYP97dJ7fzQBFOWCBSwIxrDhyrjPCYi5xGpNA4yjKcZjoUscpiBjmjcRFz7GnIVUwjrLOc-GoDNNrmrmz92WrXSF9J6bJMK123ToZcYMIx58Sjlwfoom5t5dvJMA4ZRFFMqacudlSbLXUuV9YsU7uW-_97INoCytbOWV1IZZq0MXXV2NSUEoPczCw3M8ufmb02PtD2yX8KYit8mVKv_6FlMps8_LrfXM-LPw
CitedBy_id crossref_primary_10_1038_s41467_024_44998_6
crossref_primary_10_1002_ange_202313779
crossref_primary_10_1002_anie_202415873
crossref_primary_10_1016_j_tetlet_2023_154696
crossref_primary_10_1021_acs_orglett_5c00015
crossref_primary_10_1016_j_checat_2023_100821
crossref_primary_10_1038_s41467_023_40615_0
crossref_primary_10_1002_cjoc_202401088
crossref_primary_10_1021_acs_orglett_4c03687
crossref_primary_10_1021_acs_joc_3c01656
crossref_primary_10_1021_acs_orglett_4c03726
crossref_primary_10_1038_s44160_024_00633_2
crossref_primary_10_1002_ange_202415873
crossref_primary_10_1002_anie_202406915
crossref_primary_10_1021_acs_orglett_4c03420
crossref_primary_10_1055_a_2410_2039
crossref_primary_10_1002_chem_202403365
crossref_primary_10_1039_D3SC04727J
crossref_primary_10_1055_a_2446_7967
crossref_primary_10_1039_D4QO00502C
crossref_primary_10_1055_a_2435_5669
crossref_primary_10_1021_acs_orglett_3c01902
crossref_primary_10_1039_D4GC06205A
crossref_primary_10_1002_ajoc_202400619
crossref_primary_10_1002_anie_202313779
crossref_primary_10_1002_anie_202416638
crossref_primary_10_1021_jacsau_4c00042
crossref_primary_10_1002_tcr_202300221
crossref_primary_10_1055_a_2508_3355
crossref_primary_10_1002_adsc_202301024
crossref_primary_10_1016_j_trechm_2024_12_006
crossref_primary_10_1039_D5OB00113G
crossref_primary_10_1002_ange_202416638
crossref_primary_10_1002_ejoc_202301143
crossref_primary_10_1021_acs_orglett_3c03628
crossref_primary_10_1002_ange_202406915
crossref_primary_10_1039_D4QO00428K
crossref_primary_10_1021_acs_orglett_4c03495
Cites_doi 10.1055/s-1984-30774
10.1038/nchem.2796
10.1021/je60077a020
10.1002/ange.202116158
10.1002/ange.201608807
10.1002/anie.202207100
10.1021/acs.chemrev.1c00993
10.1038/s41467-022-31089-7
10.1016/j.bioorg.2022.106227
10.1002/anie.200903924
10.1038/s41467-022-31296-2
10.1021/acs.orglett.8b03610
10.1021/ol103030w
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1002/anie.202003219
10.1021/acs.orglett.2c01509
10.1002/ange.201309399
10.1002/anie.202013976
10.1039/D0SC03606D
10.1038/s44160-021-00017-w
10.1021/acs.chemrev.7b00090
10.1002/anie.202116158
10.1021/acs.orglett.6b03634
10.1039/C8CC00986D
10.1002/ange.201902489
10.1039/C9CC08487H
10.1039/C9QO00747D
10.1039/D2OB01891H
10.1002/anie.201915519
10.1039/D1SC06267K
10.1002/ange.202204565
10.1002/ange.202105583
10.1002/ange.201701160
10.1002/ajoc.201700591
10.1002/ange.201509016
10.1021/acsmedchemlett.8b00276
10.1021/jacs.9b13652
10.1039/C5SC00408J
10.1038/s41557-021-00856-2
10.1002/anie.201712429
10.1021/acs.orglett.1c01193
10.1186/s41181-017-0028-6
10.1039/D2CC01219G
10.1021/acs.orglett.9b00165
10.1002/ange.201806037
10.1002/anie.201509016
10.1002/anie.202115593
10.1073/pnas.1909972116
10.1021/jacs.0c09306
10.1002/ange.202007211
10.1021/cr00075a004
10.1021/jacs.8b01087
10.1002/anie.202207684
10.1002/anie.201608807
10.1039/C8CS00960K
10.1021/acscatal.1c01201
10.1002/anie.201601875
10.1038/s41557-021-00726-x
10.1021/jo00149a001
10.1002/ange.200903924
10.1016/j.chempr.2022.02.013
10.1038/s41586-019-1589-1
10.1021/acscentsci.1c01015
10.1002/ange.201403758
10.1021/jacs.2c11295
10.1002/ange.201611048
10.1002/ange.202207684
10.1021/jacs.8b11309
10.1002/anie.202200904
10.1002/cssc.202201842
10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0
10.1002/ange.202112375
10.1016/j.jfluchem.2018.07.008
10.1002/ange.201813761
10.1021/jacs.8b01523
10.1002/anie.202105583
10.1021/acs.inorgchem.2c01230
10.1002/ange.201601875
10.1039/C9SC03368H
10.1021/acs.orglett.1c00671
10.1002/1521-3757(20010601)113:11<2056::AID-ANGE2056>3.0.CO;2-W
10.1002/anie.201611048
10.1002/9783527824342.ch21
10.1021/acs.joc.7b00051
10.1073/pnas.2208540119
10.1038/s41557-022-01038-4
10.1002/ange.202111977
10.1021/jacs.6b02960
10.1002/anie.202204565
10.1039/c39800001228
10.1038/s44160-022-00060-1
10.1021/jacs.7b08366
10.1002/ange.201712145
10.1038/s41467-022-30132-x
10.1002/ange.202207100
10.1002/anie.201811051
10.1002/anie.202112375
10.1038/s41570-021-00352-8
10.1002/ange.202003219
10.1038/s41557-022-01059-z
10.1002/anie.202007211
10.1021/acs.orglett.1c01118
10.1002/anie.201309399
10.1021/acs.orglett.5b00654
10.1002/anie.201912728
10.1021/acs.orglett.8b01520
10.1002/anie.202111977
10.1002/ange.202013976
10.1039/C8CC03400A
10.1021/acs.chemrev.1c00611
10.1002/anie.201902489
10.1002/ange.201915519
10.1002/anie.201701160
10.1002/ange.201811051
10.1039/c3cs60049a
10.1021/acs.joc.6b01449
10.1002/anie.201712145
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
10.1073/pnas.0707090104
10.1021/acs.chemrev.9b00665
10.1021/acscentsci.0c01550
10.1021/jacs.5b06307
10.1063/1.1675363
10.1021/acs.orglett.0c01397
10.1021/jacs.1c04259
10.1021/acschembio.2c00788
10.1002/ange.202115593
10.1002/ange.201912728
10.1039/C7QO01128H
10.1021/acs.orglett.1c01907
10.1002/ange.202200904
10.1021/acs.orglett.8b01309
10.1021/acs.orglett.7b03950
10.1002/anie.201806037
10.1038/s41467-019-11805-6
10.1002/anie.201813761
10.1021/acschembio.7b00403
10.1002/chem.202002265
10.1038/s41557-020-0530-4
10.1039/D2QO01429G
10.1021/jacs.7b12788
10.1016/j.cclet.2021.03.035
10.1002/anie.201303159
10.1039/C9MD00542K
10.1039/D2QO00416J
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202300536
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 36959094
10_1002_chem_202300536
CHEM202300536
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  funderid: 22125103 and 21971065
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 20XD1421500 and 20JC1416800
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 22125103 and 21971065
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 20XD1421500 and 20JC1416800
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3736-9a0167e7071cb37879d543fe14bb1abe298cb860d658f8710160dc8541ebd3963
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 16:32:54 EDT 2025
Fri Jul 25 10:29:52 EDT 2025
Sat Aug 02 01:41:13 EDT 2025
Tue Jul 01 00:43:48 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Wed Jan 22 16:20:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords SuFEx
S−C bond
S−O bond
linkage chemistry
S−N bond
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-9a0167e7071cb37879d543fe14bb1abe298cb860d658f8710160dc8541ebd3963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1849-6572
PMID 36959094
PQID 2826044855
PQPubID 986340
PageCount 15
ParticipantIDs proquest_miscellaneous_2791371773
proquest_journals_2826044855
pubmed_primary_36959094
crossref_citationtrail_10_1002_chem_202300536
crossref_primary_10_1002_chem_202300536
wiley_primary_10_1002_chem_202300536_CHEM202300536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 13, 2023
PublicationDateYYYYMMDD 2023-06-13
PublicationDate_xml – month: 06
  year: 2023
  text: June 13, 2023
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2007; 104
2017; 2
2021; 23
2017; 82
2020; 120
2019; 55
2019; 10
2023; 145
2020 2020; 59 132
2022; 24
2011; 13
2020; 12
2020; 11
2021; 121
2017; 9
2017; 117
2018; 7
2022; 122
2023; 21
2018; 9
2022 2022; 61 134
1971; 54
2021; 32
2018; 5
2002 2002; 41 114
1978; 23
2015; 137
1986; 86
2023; 130
2019; 21
2018 2018; 57 130
2018; 213
2019; 116
2016; 81
1980
2023; 10
2021; 7
2015; 6
2015; 17
2018; 140
2019; 6
2020; 142
2013; 42
2007
2010 2010; 49 122
1984; 1984
2017 2017; 56 129
2021; 143
2022; 119
2018; 20
2019 2019; 58 131
2021; 13
2016 2016; 55 128
2021; 11
2023
2022; 61
2022; 6
2020
2022; 8
2019; 48
2022; 9
2017; 12
2022; 13
2021 2021; 60 133
2022; 14
2020; 26
2022; 58
2022; 15
2017; 19
2016; 138
2022; 1
2020; 22
2001 2001; 40 113
2018; 54
1983; 48
2022; 17
2019; 574
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_94_2
e_1_2_9_94_3
e_1_2_9_33_1
e_1_2_9_75_2
e_1_2_9_90_2
e_1_2_9_107_2
e_1_2_9_126_1
e_1_2_9_126_2
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_145_2
e_1_2_9_103_2
Wu J. W. (e_1_2_9_119_2) 2023
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_141_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_41_2
e_1_2_9_87_2
e_1_2_9_60_2
e_1_2_9_68_1
e_1_2_9_45_2
e_1_2_9_83_2
e_1_2_9_22_3
e_1_2_9_64_3
e_1_2_9_22_2
e_1_2_9_64_2
e_1_2_9_6_1
e_1_2_9_2_2
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_2
e_1_2_9_134_1
e_1_2_9_115_2
e_1_2_9_115_1
e_1_2_9_49_2
e_1_2_9_130_2
e_1_2_9_26_2
e_1_2_9_30_2
e_1_2_9_72_2
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_95_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_91_2
e_1_2_9_129_2
e_1_2_9_102_2
e_1_2_9_106_2
e_1_2_9_121_2
e_1_2_9_144_1
(e_1_2_9_84_3) 2022; 134
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_38_2
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_61_2
e_1_2_9_88_2
e_1_2_9_65_3
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_84_2
e_1_2_9_42_3
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_118_2
(e_1_2_9_139_2) 2022; 134
e_1_2_9_1_2
e_1_2_9_1_1
Gilbert K. E. (e_1_2_9_47_2) 2023
e_1_2_9_137_2
e_1_2_9_110_3
e_1_2_9_110_2
e_1_2_9_133_2
e_1_2_9_9_2
e_1_2_9_23_3
e_1_2_9_46_2
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_77_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_2
e_1_2_9_128_2
e_1_2_9_105_2
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_120_1
e_1_2_9_143_1
(e_1_2_9_102_3) 2022; 134
e_1_2_9_62_3
e_1_2_9_62_2
(e_1_2_9_44_3) 2022; 134
e_1_2_9_89_2
e_1_2_9_20_3
e_1_2_9_66_3
e_1_2_9_20_2
e_1_2_9_66_2
e_1_2_9_85_1
e_1_2_9_43_2
e_1_2_9_81_1
e_1_2_9_4_2
Yeom C.-E. (e_1_2_9_114_1) 2007
e_1_2_9_136_2
e_1_2_9_113_1
e_1_2_9_132_2
e_1_2_9_117_1
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_89_3
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_70_3
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_13_1
e_1_2_9_32_2
e_1_2_9_108_1
e_1_2_9_70_2
e_1_2_9_127_1
Ball N. D. (e_1_2_9_99_2) 2020
e_1_2_9_100_2
e_1_2_9_123_1
e_1_2_9_104_2
(e_1_2_9_116_2) 2022; 134
e_1_2_9_59_2
(e_1_2_9_26_3) 2022; 134
e_1_2_9_36_2
e_1_2_9_142_2
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_86_2
e_1_2_9_63_1
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_82_2
e_1_2_9_67_1
e_1_2_9_82_3
e_1_2_9_7_2
e_1_2_9_3_1
e_1_2_9_112_2
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_2
e_1_2_9_25_2
e_1_2_9_48_1
e_1_2_9_131_2
e_1_2_9_29_2
(e_1_2_9_58_3) 2018; 130
References_xml – volume: 19
  start-page: 480
  year: 2017
  end-page: 483
  publication-title: Org. Lett.
– volume: 15
  start-page: 21
  year: 2022
  end-page: 32
  publication-title: Nat. Chem.
– volume: 23
  start-page: 2766
  year: 2021
  end-page: 2771
  publication-title: Org. Lett.
– volume: 20
  start-page: 3749
  year: 2018
  end-page: 3752
  publication-title: Org. Lett.
– volume: 53 126
  start-page: 946 9620
  year: 2014 2014
  end-page: 9470 9624
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 21195 21365
  year: 2021 2021
  end-page: 21199 21369
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 20
  start-page: 3943
  year: 2018
  end-page: 3947
  publication-title: Org. Lett.
– volume: 59 132
  start-page: 7494 7564
  year: 2020 2020
  end-page: 7500 7570
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 768
  year: 2011
  end-page: 771
  publication-title: Org. Lett.
– volume: 21
  start-page: 1426
  year: 2019
  end-page: 1429
  publication-title: Org. Lett.
– volume: 40 113
  start-page: 2004 2056
  year: 2001 2001
  end-page: 2021 2075
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 16194 16426
  year: 2018 2018
  end-page: 16199 16431
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 812
  year: 2018
  end-page: 815
  publication-title: Org. Lett.
– volume: 60 133
  start-page: 25307 25511
  year: 2021 2021
  end-page: 25312 25516
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  year: 2023
  publication-title: Bioorg. Chem.
– volume: 57 130
  start-page: 1939 1957
  year: 2018 2018
  end-page: 1943 1961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41 114
  start-page: 2596 2708
  year: 2002 2002
  end-page: 2599 2711
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 82
  start-page: 2294
  year: 2017
  end-page: 2299
  publication-title: J. Org. Chem.
– volume: 57 130
  start-page: 2605 2653
  year: 2018 2018
  end-page: 2610 2640
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 4389
  year: 2020
  end-page: 4394
  publication-title: Org. Lett.
– volume: 6
  start-page: 2650
  year: 2015
  end-page: 2659
  publication-title: Chem. Sci.
– volume: 145
  start-page: 2364
  year: 2023
  end-page: 2374
  publication-title: J. Am. Chem. Soc.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1137
  year: 2022
  end-page: 1146
  publication-title: Chem
– start-page: 0146
  year: 2007
  end-page: 0150
  publication-title: Synlett
– volume: 138
  start-page: 7353
  year: 2016
  end-page: 7364
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1083
  year: 2017
  end-page: 1088
  publication-title: Nat. Chem.
– volume: 11
  start-page: 10
  year: 2020
  end-page: 17
  publication-title: RSC Med. Chem.
– volume: 6
  start-page: 3490
  year: 2019
  end-page: 3516
  publication-title: Org. Chem. Front.
– volume: 1984
  start-page: 214
  year: 1984
  end-page: 217
  publication-title: Synthesis
– volume: 24
  start-page: 4046
  year: 2022
  end-page: 4051
  publication-title: Org. Lett.
– volume: 23
  start-page: 4228
  year: 2021
  end-page: 4232
  publication-title: Org. Lett.
– volume: 60 133
  start-page: 7397 7473
  year: 2021 2021
  end-page: 7404 7480
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 3445
  year: 1971
  end-page: 3449
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 14555
  year: 2021
  end-page: 14593
  publication-title: Chem. Rev.
– volume: 143
  start-page: 10341
  year: 2021
  end-page: 10351
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 662
  year: 2018
  end-page: 682
  publication-title: Asian J. Org.
– volume: 104
  start-page: 16793
  year: 2007
  end-page: 16797
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 9571
  year: 2015
  end-page: 9574
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 5131
  year: 2013
  end-page: 5142
  publication-title: Chem. Soc. Rev.
– volume: 53 126
  start-page: 9430 9584
  year: 2014 2014
  end-page: 9448 9603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 14753
  year: 2019
  end-page: 14756
  publication-title: Chem. Commun.
– start-page: 1228
  year: 1980
  end-page: 1229
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 58
  start-page: 5387
  year: 2022
  end-page: 5390
  publication-title: Chem. Commun.
– volume: 7
  start-page: 815
  year: 2021
  end-page: 830
  publication-title: ACS Cent. Sci.
– volume: 58 131
  start-page: 957 969
  year: 2019 2019
  end-page: 966 978
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 33
  year: 2022
  end-page: 42
  publication-title: Nat. Chem.
– volume: 5
  start-page: 1411
  year: 2018
  end-page: 1415
  publication-title: Org. Chem. Front.
– volume: 14
  start-page: 160
  year: 2022
  end-page: 169
  publication-title: Nat. Chem.
– volume: 61
  start-page: 9746
  year: 2022
  end-page: 9755
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 906
  year: 2020
  end-page: 913
  publication-title: Nat. Chem.
– volume: 21
  start-page: 1356
  year: 2023
  end-page: 1372
  publication-title: Org. Biomol. Chem.
– volume: 55 128
  start-page: 12664 12854
  year: 2016 2016
  end-page: 12667 12858
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 1181 1197
  year: 2020 2020
  end-page: 1186 1202
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 1942
  year: 2015
  end-page: 1945
  publication-title: Org. Lett.
– volume: 122
  start-page: 1483
  year: 2022
  end-page: 1484
  publication-title: Chem. Rev.
– volume: 23
  start-page: 3975
  year: 2021
  end-page: 3980
  publication-title: Org. Lett.
– volume: 1
  start-page: 455
  year: 2022
  end-page: 463
  publication-title: Nat. Synth.
– volume: 140
  start-page: 2919
  year: 2018
  end-page: 2925
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 6020
  year: 2018
  end-page: 6023
  publication-title: Chem. Commun.
– volume: 9
  start-page: 3540
  year: 2022
  end-page: 3545
  publication-title: Org. Chem. Front.
– volume: 10
  start-page: 404
  year: 2023
  end-page: 409
  publication-title: Org. Chem. Front.
– volume: 13
  start-page: 2270
  year: 2022
  end-page: 2279
  publication-title: Chem. Sci.
– volume: 10
  start-page: 7835
  year: 2019
  end-page: 7851
  publication-title: Chem. Sci.
– volume: 142
  start-page: 10899
  year: 2020
  end-page: 10904
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 4995
  year: 2018
  end-page: 4999
  publication-title: J. Am. Chem. Soc.
– volume: 49 122
  start-page: 1540 1584
  year: 2010 2010
  end-page: 1573 1617
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 10358
  year: 2017
  end-page: 10376
  publication-title: Chem. Rev.
– volume: 48
  start-page: 4731
  year: 2019
  end-page: 4758
  publication-title: Chem. Soc. Rev.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59 132
  start-page: 18435 18593
  year: 2020 2020
  end-page: 18441 18599
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 6898
  year: 2016
  end-page: 6926
  publication-title: J. Org. Chem.
– volume: 56 129
  start-page: 2903 2949
  year: 2017 2017
  end-page: 2908 2954
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 6578
  year: 2021
  end-page: 6589
  publication-title: ACS Catal.
– volume: 17
  start-page: 2959
  year: 2022
  end-page: 2961
  publication-title: ACS Chem. Biol.
– year: 2023
  publication-title: ACS Chem. Biol.
– volume: 86
  start-page: 781
  year: 1986
  end-page: 793
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 4552 4600
  year: 2019 2019
  end-page: 4556 4604
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3515
  year: 2022
  publication-title: Nat. Commun.
– volume: 26
  start-page: 12533
  year: 2020
  end-page: 12538
  publication-title: Chem. Eur. J.
– volume: 143
  start-page: 3753
  year: 2021
  end-page: 3763
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 12460 12560
  year: 2020 2020
  end-page: 12469 12569
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 2752
  year: 2022
  publication-title: Nat. Commun.
– volume: 2
  start-page: 9
  year: 2017
  publication-title: EJNMMI Radiopharm. Chem.
– volume: 140
  start-page: 200
  year: 2018
  end-page: 210
  publication-title: J. Am. Chem. Soc.
– volume: 574
  start-page: 86
  year: 2019
  end-page: 89
  publication-title: Nature
– volume: 48
  start-page: 1
  year: 1983
  end-page: 3
  publication-title: J. Org. Lett.
– volume: 54
  start-page: 4477
  year: 2018
  end-page: 4480
  publication-title: Chem. Commun.
– volume: 13
  start-page: 858
  year: 2021
  end-page: 867
  publication-title: Nat. Chem.
– volume: 23
  start-page: 174
  year: 1978
  end-page: 175
  publication-title: J. Chem. Eng. Data
– volume: 11
  start-page: 7807
  year: 2020
  end-page: 7812
  publication-title: Chem. Sci.
– volume: 7
  start-page: 1919
  year: 2021
  end-page: 1928
  publication-title: ACS Cent. Sci.
– volume: 23
  start-page: 5271
  year: 2021
  end-page: 5276
  publication-title: Org. Lett.
– start-page: 621
  year: 2020
  end-page: 674
– volume: 56 129
  start-page: 11203 11355
  year: 2017 2017
  end-page: 11208 11360
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 1835 1867
  year: 2016 2016
  end-page: 1838 1870
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 14155 14361
  year: 2016 2016
  end-page: 14158 14364
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 16464
  year: 2018
  end-page: 16468
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 8
  year: 2022
  end-page: 10
  publication-title: Nat. Synth.
– volume: 213
  start-page: 87
  year: 2018
  end-page: 112
  publication-title: J. Fluorine Chem.
– volume: 21
  start-page: 428
  year: 2019
  end-page: 433
  publication-title: Org. Lett.
– year: 2023
  publication-title: ACS Polym. Au
– volume: 140
  start-page: 5004
  year: 2018
  end-page: 5008
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 2736
  year: 2021
  end-page: 2750
  publication-title: Chin. Chem. Lett.
– volume: 6
  start-page: 146
  year: 2022
  end-page: 162
  publication-title: Nat. Chem. Rev.
– volume: 10
  start-page: 3752
  year: 2019
  publication-title: Nat. Commun.
– volume: 120
  start-page: 4301
  year: 2020
  end-page: 4354
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 8029 8113
  year: 2019 2019
  end-page: 8033 8117
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 18808
  year: 2019
  end-page: 18814
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 3370
  year: 2022
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2015
  year: 2017
  end-page: 2020
  publication-title: ACS Chem. Biol.
– volume: 9
  start-page: 584
  year: 2018
  end-page: 586
  publication-title: ACS Med. Chem. Lett.
– volume: 15
  year: 2022
  publication-title: ChemSusChem
– ident: e_1_2_9_81_1
– ident: e_1_2_9_48_1
– ident: e_1_2_9_128_2
– ident: e_1_2_9_136_2
  doi: 10.1055/s-1984-30774
– ident: e_1_2_9_21_2
  doi: 10.1038/nchem.2796
– ident: e_1_2_9_54_2
  doi: 10.1021/je60077a020
– volume: 134
  year: 2022
  ident: e_1_2_9_26_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202116158
– ident: e_1_2_9_70_3
  doi: 10.1002/ange.201608807
– ident: e_1_2_9_139_1
  doi: 10.1002/anie.202207100
– ident: e_1_2_9_142_2
  doi: 10.1021/acs.chemrev.1c00993
– ident: e_1_2_9_60_2
  doi: 10.1038/s41467-022-31089-7
– ident: e_1_2_9_104_2
  doi: 10.1016/j.bioorg.2022.106227
– year: 2023
  ident: e_1_2_9_47_2
  publication-title: ACS Chem. Biol.
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.200903924
– ident: e_1_2_9_61_2
  doi: 10.1038/s41467-022-31296-2
– ident: e_1_2_9_137_2
  doi: 10.1021/acs.orglett.8b03610
– ident: e_1_2_9_144_1
  doi: 10.1021/ol103030w
– ident: e_1_2_9_1_1
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– ident: e_1_2_9_82_2
  doi: 10.1002/anie.202003219
– ident: e_1_2_9_96_1
– ident: e_1_2_9_80_2
  doi: 10.1021/acs.orglett.2c01509
– ident: e_1_2_9_14_2
  doi: 10.1002/ange.201309399
– ident: e_1_2_9_140_1
– ident: e_1_2_9_126_1
  doi: 10.1002/anie.202013976
– ident: e_1_2_9_118_2
  doi: 10.1039/D0SC03606D
– ident: e_1_2_9_18_2
  doi: 10.1038/s44160-021-00017-w
– ident: e_1_2_9_63_1
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.chemrev.7b00090
– ident: e_1_2_9_26_2
  doi: 10.1002/anie.202116158
– ident: e_1_2_9_71_2
  doi: 10.1021/acs.orglett.6b03634
– ident: e_1_2_9_79_2
  doi: 10.1039/C8CC00986D
– ident: e_1_2_9_66_3
  doi: 10.1002/ange.201902489
– ident: e_1_2_9_129_2
  doi: 10.1039/C9CC08487H
– ident: e_1_2_9_56_1
  doi: 10.1039/C9QO00747D
– ident: e_1_2_9_52_1
– ident: e_1_2_9_103_2
  doi: 10.1039/D2OB01891H
– ident: e_1_2_9_106_1
  doi: 10.1002/anie.201915519
– ident: e_1_2_9_113_1
  doi: 10.1039/D1SC06267K
– volume: 134
  year: 2022
  ident: e_1_2_9_44_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202204565
– ident: e_1_2_9_121_2
  doi: 10.1002/ange.202105583
– ident: e_1_2_9_22_3
  doi: 10.1002/ange.201701160
– ident: e_1_2_9_33_1
– ident: e_1_2_9_98_2
  doi: 10.1002/ajoc.201700591
– ident: e_1_2_9_105_2
  doi: 10.1002/ange.201509016
– ident: e_1_2_9_36_2
  doi: 10.1021/acsmedchemlett.8b00276
– ident: e_1_2_9_31_2
  doi: 10.1021/jacs.9b13652
– ident: e_1_2_9_34_2
  doi: 10.1039/C5SC00408J
– ident: e_1_2_9_95_2
  doi: 10.1038/s41557-021-00856-2
– ident: e_1_2_9_58_2
  doi: 10.1002/anie.201712429
– ident: e_1_2_9_75_2
  doi: 10.1021/acs.orglett.1c01193
– ident: e_1_2_9_49_2
  doi: 10.1186/s41181-017-0028-6
– ident: e_1_2_9_130_2
  doi: 10.1039/D2CC01219G
– ident: e_1_2_9_73_2
  doi: 10.1021/acs.orglett.9b00165
– ident: e_1_2_9_42_3
  doi: 10.1002/ange.201806037
– ident: e_1_2_9_133_2
– ident: e_1_2_9_105_1
  doi: 10.1002/anie.201509016
– ident: e_1_2_9_84_2
  doi: 10.1002/anie.202115593
– year: 2023
  ident: e_1_2_9_119_2
  publication-title: ACS Polym. Au
– ident: e_1_2_9_85_1
– ident: e_1_2_9_30_2
  doi: 10.1073/pnas.1909972116
– ident: e_1_2_9_50_2
  doi: 10.1021/jacs.0c09306
– ident: e_1_2_9_115_2
  doi: 10.1002/ange.202007211
– ident: e_1_2_9_7_2
  doi: 10.1021/cr00075a004
– ident: e_1_2_9_41_2
  doi: 10.1021/jacs.8b01087
– ident: e_1_2_9_110_2
  doi: 10.1002/anie.202207684
– ident: e_1_2_9_70_2
  doi: 10.1002/anie.201608807
– ident: e_1_2_9_109_1
– ident: e_1_2_9_16_2
  doi: 10.1039/C8CS00960K
– ident: e_1_2_9_125_1
– ident: e_1_2_9_101_2
  doi: 10.1021/acscatal.1c01201
– ident: e_1_2_9_107_1
  doi: 10.1002/anie.201601875
– ident: e_1_2_9_24_2
  doi: 10.1038/s41557-021-00726-x
– ident: e_1_2_9_135_2
  doi: 10.1021/jo00149a001
– ident: e_1_2_9_15_1
– ident: e_1_2_9_10_2
  doi: 10.1002/ange.200903924
– ident: e_1_2_9_67_1
  doi: 10.1016/j.chempr.2022.02.013
– ident: e_1_2_9_90_2
  doi: 10.1038/s41586-019-1589-1
– ident: e_1_2_9_25_2
  doi: 10.1021/acscentsci.1c01015
– ident: e_1_2_9_20_3
  doi: 10.1002/ange.201403758
– ident: e_1_2_9_112_2
  doi: 10.1021/jacs.2c11295
– ident: e_1_2_9_64_3
  doi: 10.1002/ange.201611048
– ident: e_1_2_9_62_3
  doi: 10.1002/ange.202207684
– ident: e_1_2_9_88_2
  doi: 10.1021/jacs.8b11309
– ident: e_1_2_9_102_2
  doi: 10.1002/anie.202200904
– ident: e_1_2_9_111_2
  doi: 10.1002/cssc.202201842
– ident: e_1_2_9_2_2
  doi: 10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0
– volume: 134
  year: 2022
  ident: e_1_2_9_116_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202112375
– ident: e_1_2_9_97_2
  doi: 10.1016/j.jfluchem.2018.07.008
– ident: e_1_2_9_3_1
– ident: e_1_2_9_145_2
  doi: 10.1002/ange.201813761
– ident: e_1_2_9_87_2
  doi: 10.1021/jacs.8b01523
– ident: e_1_2_9_121_1
  doi: 10.1002/anie.202105583
– ident: e_1_2_9_124_1
  doi: 10.1021/acs.inorgchem.2c01230
– ident: e_1_2_9_107_2
  doi: 10.1002/ange.201601875
– ident: e_1_2_9_5_2
  doi: 10.1039/C9SC03368H
– ident: e_1_2_9_51_2
  doi: 10.1021/acs.orglett.1c00671
– volume: 130
  start-page: 2653
  year: 2018
  ident: e_1_2_9_58_3
  publication-title: Angew. Chem.
– ident: e_1_2_9_39_1
– ident: e_1_2_9_62_2
  doi: 10.1002/anie.202207684
– ident: e_1_2_9_1_2
  doi: 10.1002/1521-3757(20010601)113:11<2056::AID-ANGE2056>3.0.CO;2-W
– ident: e_1_2_9_64_2
  doi: 10.1002/anie.201611048
– ident: e_1_2_9_69_1
– start-page: 621
  volume-title: Emerging Fluorinated Motifs: Synthesis, Properties, and Applications 2
  year: 2020
  ident: e_1_2_9_99_2
  doi: 10.1002/9783527824342.ch21
– ident: e_1_2_9_108_1
  doi: 10.1021/acs.joc.7b00051
– ident: e_1_2_9_83_2
  doi: 10.1073/pnas.2208540119
– ident: e_1_2_9_27_1
– ident: e_1_2_9_45_2
  doi: 10.1038/s41557-022-01038-4
– ident: e_1_2_9_94_3
  doi: 10.1002/ange.202111977
– ident: e_1_2_9_40_2
  doi: 10.1021/jacs.6b02960
– ident: e_1_2_9_44_2
  doi: 10.1002/anie.202204565
– ident: e_1_2_9_55_2
  doi: 10.1039/c39800001228
– start-page: 0146
  year: 2007
  ident: e_1_2_9_114_1
  publication-title: Synlett
– ident: e_1_2_9_138_1
  doi: 10.1038/s44160-022-00060-1
– ident: e_1_2_9_28_2
  doi: 10.1021/jacs.7b08366
– ident: e_1_2_9_57_1
– ident: e_1_2_9_65_3
  doi: 10.1002/ange.201712145
– ident: e_1_2_9_91_2
  doi: 10.1038/s41467-022-30132-x
– volume: 134
  year: 2022
  ident: e_1_2_9_139_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202207100
– ident: e_1_2_9_23_2
  doi: 10.1002/anie.201811051
– ident: e_1_2_9_116_1
  doi: 10.1002/anie.202112375
– ident: e_1_2_9_17_2
  doi: 10.1038/s41570-021-00352-8
– ident: e_1_2_9_82_3
  doi: 10.1002/ange.202003219
– ident: e_1_2_9_46_2
  doi: 10.1038/s41557-022-01059-z
– ident: e_1_2_9_115_1
  doi: 10.1002/anie.202007211
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.orglett.1c01118
– ident: e_1_2_9_134_1
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.201309399
– ident: e_1_2_9_93_2
  doi: 10.1021/acs.orglett.5b00654
– ident: e_1_2_9_89_2
  doi: 10.1002/anie.201912728
– ident: e_1_2_9_122_1
  doi: 10.1021/acs.orglett.8b01520
– ident: e_1_2_9_94_2
  doi: 10.1002/anie.202111977
– ident: e_1_2_9_126_2
  doi: 10.1002/ange.202013976
– ident: e_1_2_9_77_2
  doi: 10.1039/C8CC03400A
– ident: e_1_2_9_92_1
– ident: e_1_2_9_9_2
  doi: 10.1021/acs.chemrev.1c00611
– ident: e_1_2_9_6_1
– ident: e_1_2_9_76_1
– ident: e_1_2_9_66_2
  doi: 10.1002/anie.201902489
– ident: e_1_2_9_106_2
  doi: 10.1002/ange.201915519
– ident: e_1_2_9_22_2
  doi: 10.1002/anie.201701160
– ident: e_1_2_9_23_3
  doi: 10.1002/ange.201811051
– ident: e_1_2_9_8_2
  doi: 10.1039/c3cs60049a
– ident: e_1_2_9_141_2
  doi: 10.1021/acs.joc.6b01449
– ident: e_1_2_9_65_2
  doi: 10.1002/anie.201712145
– ident: e_1_2_9_2_1
  doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
– ident: e_1_2_9_4_2
  doi: 10.1073/pnas.0707090104
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.chemrev.9b00665
– ident: e_1_2_9_38_2
  doi: 10.1021/acscentsci.0c01550
– ident: e_1_2_9_110_3
  doi: 10.1002/ange.202207684
– ident: e_1_2_9_127_1
– ident: e_1_2_9_19_1
– ident: e_1_2_9_86_2
  doi: 10.1021/jacs.5b06307
– ident: e_1_2_9_53_2
  doi: 10.1063/1.1675363
– ident: e_1_2_9_123_1
  doi: 10.1021/acs.orglett.0c01397
– ident: e_1_2_9_43_2
  doi: 10.1021/jacs.1c04259
– ident: e_1_2_9_13_1
  doi: 10.1021/acschembio.2c00788
– volume: 134
  year: 2022
  ident: e_1_2_9_84_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202115593
– ident: e_1_2_9_89_3
  doi: 10.1002/ange.201912728
– ident: e_1_2_9_72_2
  doi: 10.1039/C7QO01128H
– ident: e_1_2_9_131_2
  doi: 10.1021/acs.orglett.1c01907
– volume: 134
  year: 2022
  ident: e_1_2_9_102_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202200904
– ident: e_1_2_9_78_2
  doi: 10.1021/acs.orglett.8b01309
– ident: e_1_2_9_59_2
  doi: 10.1021/acs.orglett.7b03950
– ident: e_1_2_9_42_2
  doi: 10.1002/anie.201806037
– ident: e_1_2_9_74_2
  doi: 10.1038/s41467-019-11805-6
– ident: e_1_2_9_145_1
  doi: 10.1002/anie.201813761
– ident: e_1_2_9_117_1
– ident: e_1_2_9_35_2
  doi: 10.1021/acschembio.7b00403
– ident: e_1_2_9_120_1
  doi: 10.1002/chem.202002265
– ident: e_1_2_9_32_2
  doi: 10.1038/s41557-020-0530-4
– ident: e_1_2_9_143_1
  doi: 10.1039/D2QO01429G
– ident: e_1_2_9_29_2
  doi: 10.1021/jacs.7b12788
– ident: e_1_2_9_100_2
  doi: 10.1016/j.cclet.2021.03.035
– ident: e_1_2_9_20_2
  doi: 10.1002/anie.201303159
– ident: e_1_2_9_37_2
  doi: 10.1039/C9MD00542K
– ident: e_1_2_9_132_2
  doi: 10.1039/D2QO00416J
SSID ssj0009633
Score 2.5850809
SecondaryResourceType review_article
Snippet Sulfur(VI)‐fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the...
Sulfur(VI)-fluoride exchange linkage as a next generation of click chemistry was introduced by Sharpless and coworkers in 2014. Distinguished from CuAAC, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300536
SubjectTerms Amines
Chemical synthesis
Chemistry
Click Chemistry
Fluorides - chemistry
linkage chemistry
Nitrogen - chemistry
Phenols
Polymers - chemistry
SuFEx
Sulfur
Sulfur - chemistry
S−C bond
S−N bond
S−O bond
Title Linkage Chemistry of S(VI) Fluorides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300536
https://www.ncbi.nlm.nih.gov/pubmed/36959094
https://www.proquest.com/docview/2826044855
https://www.proquest.com/docview/2791371773
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfQmUKkiVgEPaJs7mY1uoChIcgKLeIm-REFWLulz4emaaJqUghAS3LHbssWfsN479BqCiuVaI-kNHxDxwfEVhXtDHdgJXCF7XRHhE6x1392Gn69_2gt6nU_wZP0Sx4EaWMRuvycCFHNcWpKEoE50k94hvnRHnNm3YIlT0sOCPQu3KYsn7kUMcrDlrY92rLWdfnpW-Qc1l5DqbetpbIPJKZztOXqvTiayq9y98jv-Rahs257jUbmSKtAMrZrAL6608HNweVMhrxcHHLp7Zw9R-vHi-ubTb_elw9KLNeB-67eunVseZh1hwFItY6HBBxxBMhEBDSYbGy3Xgs9S4vpSukMbjsZJxWNcIVFL0rYiPTqs48F0jNcPmPYDVwXBgjsBWOgxTgR9jkfEFAksVKJV63OXSpDzWFjh5Eydqzj9OYTD6Scac7CUke1LIbsF5kf4tY974MWUp77FkboHjBF3JsO4T9Y0FZ8VrbB_6ISIGZjjFNBF3GfqzEbPgMOvpoigW8oCj4ljgzfrrlzokxGBR3B3_JdMJbNA17UNzWQlWJ6OpOUXEM5FlWGs0r5rt8ky7PwDN-_R8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHMqFfQlrkCoBh7RNnDjxERWqAm0PUBC3KF4iIaoWlfbC1zPTNKkKQkhwjGMnHnvGfuPlDUBZC60Q9XMniUTg-IrCvKCP7QRukoiaJsIjWu9od3jz0b99DvLThHQXJuOHKBbcyDIm4zUZOC1IV2esoSgUXSX3iHCd8UVYprDeZJtX9zMGKdSvLJq8HzrEwprzNta86nz5-XnpG9icx66TyaexBjKvdnbm5LUyHsmK-vjC6PgvudZhdQpN7ctMlzZgwfQ3oVTPI8JtQZkcVxx_7CLNHqT2w_nTzYXd6I0Hwxdt3rfhsXHdrTedaZQFR7GQcUckdBPBhIg1lGRov0IHPkuN60vpJtJ4IlIy4jWNWCVF94oo6bSKAt81UjNs3x1Y6g_6Zg9spTlPE_wYC42fILZUgVKpJ1whTSoibYGTt3GsphTkFAmjF2fkyV5MsseF7BacFfnfMvKNH3Me5l0WT43wPUZvktd8Yr-x4LR4je1DeyJJ3wzGmCcULkOXNmQW7GZdXfyKcREI1BwLvEmH_VKHmEgsiqf9vxQ6gVKz227FrZvO3QGsUDodS3PZISyNhmNzhABoJI8nKv4JcXT3Iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48QH3xPupZQVAfqm2Tps2jqIs34oVvJVdBlF3R3Rd_vTPbbXUVEfSxadJmkpnkmxzfAGxYaQ2ifhGoTCYBNxTmBX3sIImUkqElwiNa7zi_EEe3_OQ-uf90i7_kh6gX3MgyuuM1GfizLXY_SENRJrpJHhPfOhODMMxFmJH7dXD1QSCF6lUGk-dpQCSsFW1jGO_2l--flr5hzX7o2p17GhOgqlqXR04edzptvWPevhA6_kesSRjvAVN_r9SkKRhwzWkY3a_iwc3ABrmtOPr4dZrfKvzrrbvjbb_x1Gm9PFj3Ogu3jcOb_aOgF2MhMCxlIpCK7iG4FJGG0QytV9qEs8JFXOtIaRfLzOhMhBaRSoHOFRHSWZMlPHLaMmzeORhqtppuAXxjhSgUfoyljitEliYxpohlJLUrZGY9CKomzk2PgJziYDzlJXVynJPseS27B5t1_ueSeuPHnMtVj-U9E3zN0ZcUISfuGw_W69fYPrQjopqu1cE8qYwYOrQp82C-7On6V0zIRKLieBB3--uXOuREYVE_Lf6l0BqMXB408rPji9MlGKNkOpMWsWUYar903Aqin7Ze7Sr4O5ym9ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+Chemistry+of+S%28VI%29+Fluorides&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zeng%2C+Daming&rft.au=Wei%E2%80%90Ping+Deng&rft.au=Jiang%2C+Xuefeng&rft.date=2023-06-13&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=33&rft_id=info:doi/10.1002%2Fchem.202300536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon