Pore Size Modulation in Flexible Metal‐Organic Framework Enabling High Performance Gas Sensing

Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 26; pp. e202302996 - n/a
Main Authors Wang, Chuan‐Zhe, Chen, Jie, Li, Qiao‐Hong, Wang, Guan‐E, Ye, Xiao‐Liang, Lv, Jia, Xu, Gang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.06.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials. The solvent‐coordination directed structure swelling method was used to modulate the pore size of MIL‐88B, which enables to reveal the pore‐size‐dependent gas sensitivity and selectivity of MOF materials for the first time.
AbstractList Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials. The solvent‐coordination directed structure swelling method was used to modulate the pore size of MIL‐88B, which enables to reveal the pore‐size‐dependent gas sensitivity and selectivity of MOF materials for the first time.
Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B . Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H 2 S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials.
Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.
Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.
Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials.
Author Wang, Guan‐E
Li, Qiao‐Hong
Lv, Jia
Chen, Jie
Xu, Gang
Wang, Chuan‐Zhe
Ye, Xiao‐Liang
Author_xml – sequence: 1
  givenname: Chuan‐Zhe
  surname: Wang
  fullname: Wang, Chuan‐Zhe
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Qiao‐Hong
  surname: Li
  fullname: Li, Qiao‐Hong
  email: lqh2382@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Guan‐E
  surname: Wang
  fullname: Wang, Guan‐E
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 5
  givenname: Xiao‐Liang
  surname: Ye
  fullname: Ye, Xiao‐Liang
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jia
  surname: Lv
  fullname: Lv, Jia
  organization: Chongqing University
– sequence: 7
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  email: gxu@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37106275$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi1ExfeVY2WJC5ds_RHbyRGhXUCiBQk4BzuZXUwdG-xElJ76E_ob-0vq7VIqIVVcPJbneWfG826jdR88ILRPyYQSwj5pb2HCCOOE1bVcQ1tUMFpwpfh6vpecF6oSdBNtp3Sf-aoicgNtckWJZEpsodvLEAFf2e-AP4dudHqwwWPr8czBN2tcfoZBu18_fl7ERW7W4lnUPTyF-BVPvTbO-gU-tYs7fAlxHmKvfQv4RCd8BT7l5C76MNcuwd5L3EE3s-n18WlxfnFydnx0XrRccVlI0YFQpBSVakVFlJG1EkZSyY0q8znvlh_shFEVzcMbKjiUpqO0EnVJiOI76HBV9yGGxxHS0PQ2teCc9hDG1LBctKa0liKjB2_Q-zBGn6fLFMtAKSTL1McXajQ9dM1DtL2Oz83f3WVgsgLaGFKKMH9FKGmW5jRLc5pXc7KgfCNo7fBn4UPU1v1fVq9kT9bB8ztNmqMvZ9N_2t9bdaGW
CitedBy_id crossref_primary_10_1016_j_surfin_2024_104332
crossref_primary_10_1039_D3DT04292H
crossref_primary_10_1016_j_snb_2024_136659
crossref_primary_10_1039_D4NH00140K
crossref_primary_10_3390_bios14090420
crossref_primary_10_1007_s40843_024_3044_0
crossref_primary_10_1039_D4TA08756A
crossref_primary_10_1039_D3TA07007G
crossref_primary_10_1016_j_rineng_2024_103581
crossref_primary_10_1039_D3RA05135H
crossref_primary_10_1002_smll_202408119
crossref_primary_10_1039_D4CE01023J
crossref_primary_10_1021_jacs_4c11470
crossref_primary_10_1016_j_seppur_2024_129431
crossref_primary_10_1002_advs_202308483
crossref_primary_10_1016_j_device_2024_100293
crossref_primary_10_1039_D3FB00196B
crossref_primary_10_1016_j_talanta_2024_126110
crossref_primary_10_1002_smll_202307285
crossref_primary_10_1039_D3SD00214D
crossref_primary_10_1007_s44275_024_00014_z
crossref_primary_10_1002_adma_202409294
crossref_primary_10_1021_acs_accounts_4c00469
crossref_primary_10_1021_acssensors_3c02659
crossref_primary_10_1021_acs_cgd_4c00068
crossref_primary_10_1038_s43246_024_00565_6
crossref_primary_10_1021_acssensors_4c01050
crossref_primary_10_1007_s00604_025_07055_7
crossref_primary_10_1016_j_microc_2024_110496
crossref_primary_10_1016_j_jcis_2024_06_245
crossref_primary_10_1021_acs_inorgchem_4c04642
crossref_primary_10_1039_D4MH00538D
Cites_doi 10.1039/D1CS00558H
10.1038/ncomms9348
10.1021/ja411468e
10.1039/C8CC06875E
10.1021/acs.inorgchem.2c00223
10.1002/anie.201704974
10.1021/jacs.9b00232
10.1021/jacs.9b03441
10.1016/j.micromeso.2021.111643
10.1021/acs.inorgchem.8b01232
10.1021/acs.est.1c01277
10.1002/adma.201506457
10.1039/C4CS00041B
10.1126/science.aam7232
10.1002/anie.201903323
10.1021/acsomega.1c01946
10.1038/ncomms14429
10.1126/science.1137975
10.1002/anie.201907772
10.1039/C9CE01323G
10.1016/j.snb.2021.130954
10.1002/anie.201002413
10.1021/acs.chemmater.6b00602
10.1002/adma.202002563
10.1038/s41467-018-07298-4
10.1002/smll.201803088
10.1021/cr300014x
10.1021/jacs.1c04766
10.1021/ja206936e
10.1021/ac403498x
10.1021/ja2115713
10.1021/cg301738p
10.1021/ic800538r
10.1021/acs.jpcc.1c01033
10.1002/anie.201906222
10.1002/anie.202115308
10.1021/jacs.9b02640
10.1002/adma.202201768
10.1021/ja311613p
10.1038/46248
10.1038/s41467-019-08972-x
10.1002/anie.201902738
10.1021/ja209197f
10.1002/anie.201907074
10.1016/j.cej.2019.05.228
10.1126/science.1231451
10.1021/jacs.7b04268
10.1021/jacs.5b09600
10.1002/anie.202204066
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202302996
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37106275
10_1002_anie_202302996
ANIE202302996
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the Natural Science Foundation of Fujian Province
  funderid: 2021J02017, 2022J05088 and 2022J06032
– fundername: National Natural Science Foundation of China
  funderid: 22171263, 62227815 and 22271281
– fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
  funderid: 2021ZR101
– fundername: Scientific Research and Equipment Development Project of CAS
  funderid: YJKYQ20210024
– fundername: Scientific Research and Equipment Development Project of CAS
  grantid: YJKYQ20210024
– fundername: National Natural Science Foundation of China
  grantid: 22171263, 62227815 and 22271281
– fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
  grantid: 2021ZR101
– fundername: the Natural Science Foundation of Fujian Province
  grantid: 2021J02017, 2022J05088 and 2022J06032
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3736-65de5704587c5807b6975b6163b74163fd0299d5b781710b153e4bd1185940073
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:19:15 EDT 2025
Sun Jul 13 04:34:11 EDT 2025
Thu Apr 03 07:13:20 EDT 2025
Tue Jul 01 01:47:11 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Wed Jan 22 16:19:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Flexible
Gas Sensing
Metal-Organic Frameworks
Pore-Size Modulation
Thin Film
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-65de5704587c5807b6975b6163b74163fd0299d5b781710b153e4bd1185940073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8562-0724
PMID 37106275
PQID 2826534562
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2807911965
proquest_journals_2826534562
pubmed_primary_37106275
crossref_primary_10_1002_anie_202302996
crossref_citationtrail_10_1002_anie_202302996
wiley_primary_10_1002_anie_202302996_ANIE202302996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 26, 2023
PublicationDateYYYYMMDD 2023-06-26
PublicationDate_xml – month: 06
  year: 2023
  text: June 26, 2023
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 331
2022; 351
2017; 8
2021; 6
2015; 6
2019; 55
2019; 10
2021; 125
2019; 15
2019; 58
2020; 32
2021; 143
2021; 50
2019; 141
1999; 402
2017; 356
2014; 136
2011; 133
2014; 43
2017; 139
2014; 86
2018; 9
2010; 49
2012; 112
2012; 134
2021; 55
2007; 315
2015; 137
2013; 339
2022; 61
2013; 13
2019; 21
2017; 56
2022; 34
2008; 47
2013; 135
2016; 28
2019; 374
2018; 57
e_1_2_3_50_2
e_1_2_3_6_1
e_1_2_3_39_1
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_35_1
e_1_2_3_56_2
e_1_2_3_58_1
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_14_2
e_1_2_3_31_1
e_1_2_3_52_2
e_1_2_3_10_1
e_1_2_3_54_1
e_1_2_3_60_2
e_1_2_3_49_2
e_1_2_3_28_1
e_1_2_3_45_2
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_26_1
e_1_2_3_41_2
e_1_2_3_20_1
e_1_2_3_62_2
e_1_2_3_22_1
e_1_2_3_43_1
e_1_2_3_51_1
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_3_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_1
e_1_2_3_55_2
e_1_2_3_59_1
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_57_2
e_1_2_3_30_2
e_1_2_3_32_2
e_1_2_3_53_2
e_1_2_3_61_2
e_1_2_3_27_1
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_46_1
e_1_2_3_23_2
e_1_2_3_44_2
e_1_2_3_25_2
e_1_2_3_40_2
e_1_2_3_21_1
e_1_2_3_63_1
e_1_2_3_42_2
References_xml – volume: 55
  start-page: 8341
  year: 2021
  end-page: 8350
  publication-title: Environ. Sci. Technol.
– volume: 134
  start-page: 4501
  year: 2012
  end-page: 4504
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8348
  year: 2015
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 11426
  year: 2017
  end-page: 11430
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 8073
  year: 2019
  end-page: 8077
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 12837
  year: 2021
  end-page: 12847
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 13
  start-page: 2286
  year: 2013
  end-page: 2291
  publication-title: Cryst. Growth Des.
– volume: 137
  start-page: 13780
  year: 2015
  end-page: 13783
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 5229
  year: 2016
  end-page: 5234
  publication-title: Adv. Mater.
– volume: 86
  start-page: 4178
  year: 2014
  end-page: 4187
  publication-title: Anal. Chem.
– volume: 43
  start-page: 5618
  year: 2014
  end-page: 5656
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 10104
  year: 2019
  end-page: 10109
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 10081
  year: 2018
  end-page: 10089
  publication-title: Inorg. Chem.
– volume: 47
  start-page: 7568
  year: 2008
  end-page: 7576
  publication-title: Inorg. Chem.
– volume: 21
  start-page: 7303
  year: 2019
  end-page: 7312
  publication-title: CrystEngComm
– volume: 141
  start-page: 8315
  year: 2019
  end-page: 8326
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 14429
  year: 2017
  publication-title: Nat. Commun.
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  publication-title: Nature
– volume: 15
  year: 2019
  publication-title: Small
– volume: 136
  start-page: 1738
  year: 2014
  end-page: 1741
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 349
  year: 2019
  end-page: 352
  publication-title: Chem. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 134
  start-page: 99
  year: 2012
  end-page: 102
  publication-title: J. Am. Chem. Soc.
– volume: 356
  start-page: 1193
  year: 2017
  end-page: 1196
  publication-title: Science
– volume: 6
  start-page: 14701
  year: 2021
  end-page: 14712
  publication-title: ACS Omega
– volume: 10
  start-page: 1340
  year: 2019
  publication-title: Nat. Commun.
– volume: 143
  start-page: 12165
  year: 2021
  end-page: 12174
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 14089
  year: 2019
  end-page: 14094
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 4899
  year: 2018
  publication-title: Nat. Commun.
– volume: 133
  start-page: 17839
  year: 2011
  end-page: 17847
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 3749
  year: 2016
  publication-title: Chem. Mater.
– volume: 61
  start-page: 6881
  year: 2022
  end-page: 6887
  publication-title: Inorg. Chem.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 315
  start-page: 1828
  year: 2007
  end-page: 1831
  publication-title: Science
– volume: 58
  start-page: 14915
  year: 2019
  end-page: 14919
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 4130
  year: 2019
  end-page: 4136
  publication-title: J. Am. Chem. Soc.
– volume: 331
  year: 2022
  publication-title: Microporous Mesoporous Mater.
– volume: 339
  start-page: 193
  year: 2013
  end-page: 196
  publication-title: Science
– volume: 50
  start-page: 11530
  year: 2021
  end-page: 11558
  publication-title: Chem. Soc. Rev.
– volume: 374
  start-page: 793
  year: 2019
  end-page: 801
  publication-title: Chem. Eng. J.
– volume: 351
  year: 2022
  publication-title: Sens. Actuators B
– volume: 49
  start-page: 7501
  year: 2010
  end-page: 7503
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 11929
  year: 2019
  end-page: 11937
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7733
  year: 2017
  end-page: 7736
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 12175
  year: 2019
  end-page: 12179
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 1252
  year: 2013
  end-page: 1255
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_20_1
  doi: 10.1039/D1CS00558H
– ident: e_1_2_3_24_2
  doi: 10.1038/ncomms9348
– ident: e_1_2_3_7_2
  doi: 10.1021/ja411468e
– ident: e_1_2_3_12_2
  doi: 10.1039/C8CC06875E
– ident: e_1_2_3_35_1
– ident: e_1_2_3_43_1
– ident: e_1_2_3_51_1
– ident: e_1_2_3_45_2
  doi: 10.1021/acs.inorgchem.2c00223
– ident: e_1_2_3_25_2
  doi: 10.1002/anie.201704974
– ident: e_1_2_3_23_2
  doi: 10.1021/jacs.9b00232
– ident: e_1_2_3_61_2
  doi: 10.1021/jacs.9b03441
– ident: e_1_2_3_57_2
  doi: 10.1016/j.micromeso.2021.111643
– ident: e_1_2_3_60_2
  doi: 10.1021/acs.inorgchem.8b01232
– ident: e_1_2_3_37_2
  doi: 10.1021/acs.est.1c01277
– ident: e_1_2_3_52_2
  doi: 10.1002/adma.201506457
– ident: e_1_2_3_5_1
  doi: 10.1039/C4CS00041B
– ident: e_1_2_3_4_2
  doi: 10.1126/science.aam7232
– ident: e_1_2_3_44_2
  doi: 10.1002/anie.201903323
– ident: e_1_2_3_59_1
– ident: e_1_2_3_56_2
  doi: 10.1021/acsomega.1c01946
– ident: e_1_2_3_8_2
  doi: 10.1038/ncomms14429
– ident: e_1_2_3_40_2
  doi: 10.1126/science.1137975
– ident: e_1_2_3_10_1
– ident: e_1_2_3_13_2
  doi: 10.1002/anie.201907772
– ident: e_1_2_3_14_2
  doi: 10.1039/C9CE01323G
– ident: e_1_2_3_63_1
  doi: 10.1016/j.snb.2021.130954
– ident: e_1_2_3_29_2
  doi: 10.1002/anie.201002413
– ident: e_1_2_3_48_2
  doi: 10.1021/acs.chemmater.6b00602
– ident: e_1_2_3_26_1
  doi: 10.1002/adma.202002563
– ident: e_1_2_3_30_2
  doi: 10.1038/s41467-018-07298-4
– ident: e_1_2_3_1_1
– ident: e_1_2_3_46_1
– ident: e_1_2_3_38_2
  doi: 10.1002/smll.201803088
– ident: e_1_2_3_3_2
  doi: 10.1021/cr300014x
– ident: e_1_2_3_49_2
  doi: 10.1021/jacs.1c04766
– ident: e_1_2_3_54_1
– ident: e_1_2_3_36_2
  doi: 10.1021/ja206936e
– ident: e_1_2_3_31_1
– ident: e_1_2_3_58_1
  doi: 10.1021/ac403498x
– ident: e_1_2_3_33_2
  doi: 10.1021/ja2115713
– ident: e_1_2_3_42_2
  doi: 10.1021/cg301738p
– ident: e_1_2_3_41_2
  doi: 10.1021/ic800538r
– ident: e_1_2_3_50_2
  doi: 10.1021/acs.jpcc.1c01033
– ident: e_1_2_3_15_2
  doi: 10.1002/anie.201906222
– ident: e_1_2_3_53_2
  doi: 10.1002/anie.202115308
– ident: e_1_2_3_62_2
  doi: 10.1021/jacs.9b02640
– ident: e_1_2_3_16_2
  doi: 10.1002/adma.202201768
– ident: e_1_2_3_27_1
  doi: 10.1021/ja311613p
– ident: e_1_2_3_22_1
– ident: e_1_2_3_2_2
  doi: 10.1038/46248
– ident: e_1_2_3_39_1
– ident: e_1_2_3_9_2
  doi: 10.1038/s41467-019-08972-x
– ident: e_1_2_3_17_1
– ident: e_1_2_3_28_1
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.201902738
– ident: e_1_2_3_32_2
  doi: 10.1021/ja209197f
– ident: e_1_2_3_47_2
  doi: 10.1002/anie.201907074
– ident: e_1_2_3_55_2
  doi: 10.1016/j.cej.2019.05.228
– ident: e_1_2_3_6_1
– ident: e_1_2_3_34_1
  doi: 10.1126/science.1231451
– ident: e_1_2_3_18_2
  doi: 10.1021/jacs.7b04268
– ident: e_1_2_3_11_2
  doi: 10.1021/jacs.5b09600
– ident: e_1_2_3_21_1
  doi: 10.1002/anie.202204066
SSID ssj0028806
Score 2.6071818
Snippet Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation....
Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202302996
SubjectTerms Catalysis
Flexible
Gas Sensing
Gas sensors
Hydrogen sulfide
Metal-Organic Frameworks
Pore size
Pore-Size Modulation
Thin Film
Title Pore Size Modulation in Flexible Metal‐Organic Framework Enabling High Performance Gas Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202302996
https://www.ncbi.nlm.nih.gov/pubmed/37106275
https://www.proquest.com/docview/2826534562
https://www.proquest.com/docview/2807911965
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hLnCBZR-Q5SGvhMTJJY1juzki1MIigRAsErdgOw6qQCmi7YUTP4HfyC9hJi_orlZIcMvDSfwazzfxzDcA293Y92j_i4dexDx2UnHjbchz1J1Zz-XdLKR45-MTdXgRH13KyzdR_BU_RPvDjSSjXK9JwI0d776ShlIEdoeSf4e4ohLnNjlsESo6a_mjIpycVXiREJyy0DesjWG0O_v4rFb6B2rOItdS9QyWwTSVrjxObjrTie24h7_4HD_Tqi-wVONStldNpBWY88VXWNhv0sF9g6vT0b1n58MHz45HWZ30iw0LNiBKTXuLlz0C-efHpyq807FB4_fF-hSghTqSkVcJO32NVWAHZszOyYe-uP4OF4P-n_1DXqdn4E5oobiSmZeaNlq1k71QW5VoaRUCPFvCvDyjNmTS6l4XcYzFtdXHNkOLRpbZ2MUPmC9GhV8DlqsokS5xOkfrzSS5EWiX0pvCXGfGiAB4Mzypq7nLKYXGbVqxLkcp9Vva9lsAO235u4q1478lN5rRTmvpHadohiopyDYM4Fd7G_ubNlNM4UdTKhNqVBSJkgGsVrOk_ZTA5hL7cwBROdbv1CHdO_ndb89-fuShdVikY_Jhi9QGzE_up34T0dLEbpUS8QLwJAk6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALtDxDaTESEicv2Ti2N0dEd7s8doUKSNxC7DgIgbIIdi-c-hP6G_tLOpMX2iJUCY5x7MTv-cae-QZgpx26Dt1_cd-JkIdWKp444_MMZWfasVk79cnfeTBU_Yvw6FLW1oTkC1PyQzQHbrQyiv2aFjgdSO89s4aSC3aLon_7uKWqGfhIYb2JPv_7z4ZBKsDpWToYCcEpDn3N2-gHe9Plp-XSC7A5jV0L4dNbBFNXu7Q5uW1NxqZln_5hdHxXuz7BQgVN2X45lz7DB5cvwdxBHRFuGa5ORw-Ond08OTYYpVXcL3aTsx6xapo7THaI5f_8-l16eFrWq02_WJd8tFBMMjIsYafP7grsR_LIzsiMPr9egYte9_ygz6sIDdwKLRRXMnVS012rtrLja6MiLY1CjGcKpJel1IZUGt1pI5QxuL260KSo1MgiILtYhdl8lLt1YJkKImkjqzNU4JIoSwSqpvQlP9NpkggPeD0-sa3oyymKxl1cEi8HMfVb3PSbB7tN_vuSuOPVnJv1cMfVAn6MURNVUpB66MF28xr7m-5TktyNJpTH1ygrIiU9WCunSfMrgc0lAmgPgmKw_1OHeH942G2eNt5SaAvm-ueDk_jkcHj8BeYpnUzaArUJs-OHifuK4GlsvhXL4y-N0Q1W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXyrMNLWAkJE7eeuPY3hyrdkMLdLWiVOotxI-gqlW2ancvPfET-I38EmbyKgtCSHCM4yR-jeebeOYbgNfDJIzo_IuLIBOeOKV5EazgJepOP3Ll0AuKdz6c6P3j5N2JOvkpir_hh-h_uJFk1Ps1CfiFL7dvSEMpAntAyb8F7qj6NtxJtEgpecPex55AKsbV2cQXSckpDX1H2yji7eXnl9XSb1hzGbrWuidbg6JrdeNycjZYzO3AXf9C6Pg_3XoA91tgynaalfQQboXqEdzb7fLBPYbP09llYEen14Edznyb9YudViwjTk17jsUBkfz3r9-a-E7Hss7xi40pQguVJCO3Eja9CVZgb4srdkRO9NWXJ3CcjT_t7vM2PwN30kjNtfJBGTppNU6NhLE6NcpqRHi2xnmlpz54Zc1oiEDG4uYaEuvRpFF1Onb5FFaqWRU2gJU6TpVLnSnRfCvSspBomNKbRGl8UcgIeDc9uWvJyymHxnne0C7HOY1b3o9bBG_6-hcNbccfa251s5234nuVox2qlSTjMIJX_W0cbzpNKaowW1AdYVBTpFpFsN6skv5TErtL9M8RxPVc_6UN-c7kYNxfPfuXh17C3eleln84mLzfhFUqJn-2WG_ByvxyEZ4jcprbF7Vw_ABOgQwF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore+Size+Modulation+in+Flexible+Metal%E2%80%90Organic+Framework+Enabling+High+Performance+Gas+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Chuan%E2%80%90Zhe&rft.au=Chen%2C+Jie&rft.au=Li%2C+Qiao%E2%80%90Hong&rft.au=Wang%2C+Guan%E2%80%90E&rft.date=2023-06-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=26&rft_id=info:doi/10.1002%2Fanie.202302996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202302996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon