Pore Size Modulation in Flexible Metal‐Organic Framework Enabling High Performance Gas Sensing
Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 26; pp. e202302996 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.06.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials.
The solvent‐coordination directed structure swelling method was used to modulate the pore size of MIL‐88B, which enables to reveal the pore‐size‐dependent gas sensitivity and selectivity of MOF materials for the first time. |
---|---|
AbstractList | Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials.
The solvent‐coordination directed structure swelling method was used to modulate the pore size of MIL‐88B, which enables to reveal the pore‐size‐dependent gas sensitivity and selectivity of MOF materials for the first time. Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B . Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H 2 S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials. Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials. Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials. Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore‐size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent‐coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL‐88B. Pore‐size‐dependent gas sensitivity and selectivity were studied for the first time in the MIL‐88B samples. The optimized MIL‐88B‐20 % sample showed one of the best sensing performances among all the reported MOF‐based H2S‐sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore‐size and properties, but also may inspire the development of high‐performance gas sensing materials. |
Author | Wang, Guan‐E Li, Qiao‐Hong Lv, Jia Chen, Jie Xu, Gang Wang, Chuan‐Zhe Ye, Xiao‐Liang |
Author_xml | – sequence: 1 givenname: Chuan‐Zhe surname: Wang fullname: Wang, Chuan‐Zhe organization: Chinese Academy of Sciences – sequence: 2 givenname: Jie surname: Chen fullname: Chen, Jie organization: Chinese Academy of Sciences – sequence: 3 givenname: Qiao‐Hong surname: Li fullname: Li, Qiao‐Hong email: lqh2382@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Guan‐E surname: Wang fullname: Wang, Guan‐E organization: University of Chinese Academy of Sciences (UCAS) – sequence: 5 givenname: Xiao‐Liang surname: Ye fullname: Ye, Xiao‐Liang organization: Chinese Academy of Sciences – sequence: 6 givenname: Jia surname: Lv fullname: Lv, Jia organization: Chongqing University – sequence: 7 givenname: Gang orcidid: 0000-0001-8562-0724 surname: Xu fullname: Xu, Gang email: gxu@fjirsm.ac.cn organization: University of Chinese Academy of Sciences (UCAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37106275$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhi1ExfeVY2WJC5ds_RHbyRGhXUCiBQk4BzuZXUwdG-xElJ76E_ob-0vq7VIqIVVcPJbneWfG826jdR88ILRPyYQSwj5pb2HCCOOE1bVcQ1tUMFpwpfh6vpecF6oSdBNtp3Sf-aoicgNtckWJZEpsodvLEAFf2e-AP4dudHqwwWPr8czBN2tcfoZBu18_fl7ERW7W4lnUPTyF-BVPvTbO-gU-tYs7fAlxHmKvfQv4RCd8BT7l5C76MNcuwd5L3EE3s-n18WlxfnFydnx0XrRccVlI0YFQpBSVakVFlJG1EkZSyY0q8znvlh_shFEVzcMbKjiUpqO0EnVJiOI76HBV9yGGxxHS0PQ2teCc9hDG1LBctKa0liKjB2_Q-zBGn6fLFMtAKSTL1McXajQ9dM1DtL2Oz83f3WVgsgLaGFKKMH9FKGmW5jRLc5pXc7KgfCNo7fBn4UPU1v1fVq9kT9bB8ztNmqMvZ9N_2t9bdaGW |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_104332 crossref_primary_10_1039_D3DT04292H crossref_primary_10_1016_j_snb_2024_136659 crossref_primary_10_1039_D4NH00140K crossref_primary_10_3390_bios14090420 crossref_primary_10_1007_s40843_024_3044_0 crossref_primary_10_1039_D4TA08756A crossref_primary_10_1039_D3TA07007G crossref_primary_10_1016_j_rineng_2024_103581 crossref_primary_10_1039_D3RA05135H crossref_primary_10_1002_smll_202408119 crossref_primary_10_1039_D4CE01023J crossref_primary_10_1021_jacs_4c11470 crossref_primary_10_1016_j_seppur_2024_129431 crossref_primary_10_1002_advs_202308483 crossref_primary_10_1016_j_device_2024_100293 crossref_primary_10_1039_D3FB00196B crossref_primary_10_1016_j_talanta_2024_126110 crossref_primary_10_1002_smll_202307285 crossref_primary_10_1039_D3SD00214D crossref_primary_10_1007_s44275_024_00014_z crossref_primary_10_1002_adma_202409294 crossref_primary_10_1021_acs_accounts_4c00469 crossref_primary_10_1021_acssensors_3c02659 crossref_primary_10_1021_acs_cgd_4c00068 crossref_primary_10_1038_s43246_024_00565_6 crossref_primary_10_1021_acssensors_4c01050 crossref_primary_10_1007_s00604_025_07055_7 crossref_primary_10_1016_j_microc_2024_110496 crossref_primary_10_1016_j_jcis_2024_06_245 crossref_primary_10_1021_acs_inorgchem_4c04642 crossref_primary_10_1039_D4MH00538D |
Cites_doi | 10.1039/D1CS00558H 10.1038/ncomms9348 10.1021/ja411468e 10.1039/C8CC06875E 10.1021/acs.inorgchem.2c00223 10.1002/anie.201704974 10.1021/jacs.9b00232 10.1021/jacs.9b03441 10.1016/j.micromeso.2021.111643 10.1021/acs.inorgchem.8b01232 10.1021/acs.est.1c01277 10.1002/adma.201506457 10.1039/C4CS00041B 10.1126/science.aam7232 10.1002/anie.201903323 10.1021/acsomega.1c01946 10.1038/ncomms14429 10.1126/science.1137975 10.1002/anie.201907772 10.1039/C9CE01323G 10.1016/j.snb.2021.130954 10.1002/anie.201002413 10.1021/acs.chemmater.6b00602 10.1002/adma.202002563 10.1038/s41467-018-07298-4 10.1002/smll.201803088 10.1021/cr300014x 10.1021/jacs.1c04766 10.1021/ja206936e 10.1021/ac403498x 10.1021/ja2115713 10.1021/cg301738p 10.1021/ic800538r 10.1021/acs.jpcc.1c01033 10.1002/anie.201906222 10.1002/anie.202115308 10.1021/jacs.9b02640 10.1002/adma.202201768 10.1021/ja311613p 10.1038/46248 10.1038/s41467-019-08972-x 10.1002/anie.201902738 10.1021/ja209197f 10.1002/anie.201907074 10.1016/j.cej.2019.05.228 10.1126/science.1231451 10.1021/jacs.7b04268 10.1021/jacs.5b09600 10.1002/anie.202204066 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202302996 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37106275 10_1002_anie_202302996 ANIE202302996 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the Natural Science Foundation of Fujian Province funderid: 2021J02017, 2022J05088 and 2022J06032 – fundername: National Natural Science Foundation of China funderid: 22171263, 62227815 and 22271281 – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China funderid: 2021ZR101 – fundername: Scientific Research and Equipment Development Project of CAS funderid: YJKYQ20210024 – fundername: Scientific Research and Equipment Development Project of CAS grantid: YJKYQ20210024 – fundername: National Natural Science Foundation of China grantid: 22171263, 62227815 and 22271281 – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China grantid: 2021ZR101 – fundername: the Natural Science Foundation of Fujian Province grantid: 2021J02017, 2022J05088 and 2022J06032 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3736-65de5704587c5807b6975b6163b74163fd0299d5b781710b153e4bd1185940073 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:19:15 EDT 2025 Sun Jul 13 04:34:11 EDT 2025 Thu Apr 03 07:13:20 EDT 2025 Tue Jul 01 01:47:11 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Jan 22 16:19:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | Flexible Gas Sensing Metal-Organic Frameworks Pore-Size Modulation Thin Film |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-65de5704587c5807b6975b6163b74163fd0299d5b781710b153e4bd1185940073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8562-0724 |
PMID | 37106275 |
PQID | 2826534562 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2807911965 proquest_journals_2826534562 pubmed_primary_37106275 crossref_primary_10_1002_anie_202302996 crossref_citationtrail_10_1002_anie_202302996 wiley_primary_10_1002_anie_202302996_ANIE202302996 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 26, 2023 |
PublicationDateYYYYMMDD | 2023-06-26 |
PublicationDate_xml | – month: 06 year: 2023 text: June 26, 2023 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 331 2022; 351 2017; 8 2021; 6 2015; 6 2019; 55 2019; 10 2021; 125 2019; 15 2019; 58 2020; 32 2021; 143 2021; 50 2019; 141 1999; 402 2017; 356 2014; 136 2011; 133 2014; 43 2017; 139 2014; 86 2018; 9 2010; 49 2012; 112 2012; 134 2021; 55 2007; 315 2015; 137 2013; 339 2022; 61 2013; 13 2019; 21 2017; 56 2022; 34 2008; 47 2013; 135 2016; 28 2019; 374 2018; 57 e_1_2_3_50_2 e_1_2_3_6_1 e_1_2_3_39_1 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_35_1 e_1_2_3_56_2 e_1_2_3_58_1 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_14_2 e_1_2_3_31_1 e_1_2_3_52_2 e_1_2_3_10_1 e_1_2_3_54_1 e_1_2_3_60_2 e_1_2_3_49_2 e_1_2_3_28_1 e_1_2_3_45_2 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_26_1 e_1_2_3_41_2 e_1_2_3_20_1 e_1_2_3_62_2 e_1_2_3_22_1 e_1_2_3_43_1 e_1_2_3_51_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_1 e_1_2_3_55_2 e_1_2_3_59_1 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_57_2 e_1_2_3_30_2 e_1_2_3_32_2 e_1_2_3_53_2 e_1_2_3_61_2 e_1_2_3_27_1 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_46_1 e_1_2_3_23_2 e_1_2_3_44_2 e_1_2_3_25_2 e_1_2_3_40_2 e_1_2_3_21_1 e_1_2_3_63_1 e_1_2_3_42_2 |
References_xml | – volume: 55 start-page: 8341 year: 2021 end-page: 8350 publication-title: Environ. Sci. Technol. – volume: 134 start-page: 4501 year: 2012 end-page: 4504 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8348 year: 2015 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 11426 year: 2017 end-page: 11430 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 8073 year: 2019 end-page: 8077 publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 12837 year: 2021 end-page: 12847 publication-title: J. Phys. Chem. C – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 13 start-page: 2286 year: 2013 end-page: 2291 publication-title: Cryst. Growth Des. – volume: 137 start-page: 13780 year: 2015 end-page: 13783 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5229 year: 2016 end-page: 5234 publication-title: Adv. Mater. – volume: 86 start-page: 4178 year: 2014 end-page: 4187 publication-title: Anal. Chem. – volume: 43 start-page: 5618 year: 2014 end-page: 5656 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 10104 year: 2019 end-page: 10109 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 10081 year: 2018 end-page: 10089 publication-title: Inorg. Chem. – volume: 47 start-page: 7568 year: 2008 end-page: 7576 publication-title: Inorg. Chem. – volume: 21 start-page: 7303 year: 2019 end-page: 7312 publication-title: CrystEngComm – volume: 141 start-page: 8315 year: 2019 end-page: 8326 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 14429 year: 2017 publication-title: Nat. Commun. – volume: 402 start-page: 276 year: 1999 end-page: 279 publication-title: Nature – volume: 15 year: 2019 publication-title: Small – volume: 136 start-page: 1738 year: 2014 end-page: 1741 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 349 year: 2019 end-page: 352 publication-title: Chem. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 134 start-page: 99 year: 2012 end-page: 102 publication-title: J. Am. Chem. Soc. – volume: 356 start-page: 1193 year: 2017 end-page: 1196 publication-title: Science – volume: 6 start-page: 14701 year: 2021 end-page: 14712 publication-title: ACS Omega – volume: 10 start-page: 1340 year: 2019 publication-title: Nat. Commun. – volume: 143 start-page: 12165 year: 2021 end-page: 12174 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 14089 year: 2019 end-page: 14094 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 4899 year: 2018 publication-title: Nat. Commun. – volume: 133 start-page: 17839 year: 2011 end-page: 17847 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 3749 year: 2016 publication-title: Chem. Mater. – volume: 61 start-page: 6881 year: 2022 end-page: 6887 publication-title: Inorg. Chem. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 315 start-page: 1828 year: 2007 end-page: 1831 publication-title: Science – volume: 58 start-page: 14915 year: 2019 end-page: 14919 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 4130 year: 2019 end-page: 4136 publication-title: J. Am. Chem. Soc. – volume: 331 year: 2022 publication-title: Microporous Mesoporous Mater. – volume: 339 start-page: 193 year: 2013 end-page: 196 publication-title: Science – volume: 50 start-page: 11530 year: 2021 end-page: 11558 publication-title: Chem. Soc. Rev. – volume: 374 start-page: 793 year: 2019 end-page: 801 publication-title: Chem. Eng. J. – volume: 351 year: 2022 publication-title: Sens. Actuators B – volume: 49 start-page: 7501 year: 2010 end-page: 7503 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 11929 year: 2019 end-page: 11937 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7733 year: 2017 end-page: 7736 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 12175 year: 2019 end-page: 12179 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 1252 year: 2013 end-page: 1255 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_20_1 doi: 10.1039/D1CS00558H – ident: e_1_2_3_24_2 doi: 10.1038/ncomms9348 – ident: e_1_2_3_7_2 doi: 10.1021/ja411468e – ident: e_1_2_3_12_2 doi: 10.1039/C8CC06875E – ident: e_1_2_3_35_1 – ident: e_1_2_3_43_1 – ident: e_1_2_3_51_1 – ident: e_1_2_3_45_2 doi: 10.1021/acs.inorgchem.2c00223 – ident: e_1_2_3_25_2 doi: 10.1002/anie.201704974 – ident: e_1_2_3_23_2 doi: 10.1021/jacs.9b00232 – ident: e_1_2_3_61_2 doi: 10.1021/jacs.9b03441 – ident: e_1_2_3_57_2 doi: 10.1016/j.micromeso.2021.111643 – ident: e_1_2_3_60_2 doi: 10.1021/acs.inorgchem.8b01232 – ident: e_1_2_3_37_2 doi: 10.1021/acs.est.1c01277 – ident: e_1_2_3_52_2 doi: 10.1002/adma.201506457 – ident: e_1_2_3_5_1 doi: 10.1039/C4CS00041B – ident: e_1_2_3_4_2 doi: 10.1126/science.aam7232 – ident: e_1_2_3_44_2 doi: 10.1002/anie.201903323 – ident: e_1_2_3_59_1 – ident: e_1_2_3_56_2 doi: 10.1021/acsomega.1c01946 – ident: e_1_2_3_8_2 doi: 10.1038/ncomms14429 – ident: e_1_2_3_40_2 doi: 10.1126/science.1137975 – ident: e_1_2_3_10_1 – ident: e_1_2_3_13_2 doi: 10.1002/anie.201907772 – ident: e_1_2_3_14_2 doi: 10.1039/C9CE01323G – ident: e_1_2_3_63_1 doi: 10.1016/j.snb.2021.130954 – ident: e_1_2_3_29_2 doi: 10.1002/anie.201002413 – ident: e_1_2_3_48_2 doi: 10.1021/acs.chemmater.6b00602 – ident: e_1_2_3_26_1 doi: 10.1002/adma.202002563 – ident: e_1_2_3_30_2 doi: 10.1038/s41467-018-07298-4 – ident: e_1_2_3_1_1 – ident: e_1_2_3_46_1 – ident: e_1_2_3_38_2 doi: 10.1002/smll.201803088 – ident: e_1_2_3_3_2 doi: 10.1021/cr300014x – ident: e_1_2_3_49_2 doi: 10.1021/jacs.1c04766 – ident: e_1_2_3_54_1 – ident: e_1_2_3_36_2 doi: 10.1021/ja206936e – ident: e_1_2_3_31_1 – ident: e_1_2_3_58_1 doi: 10.1021/ac403498x – ident: e_1_2_3_33_2 doi: 10.1021/ja2115713 – ident: e_1_2_3_42_2 doi: 10.1021/cg301738p – ident: e_1_2_3_41_2 doi: 10.1021/ic800538r – ident: e_1_2_3_50_2 doi: 10.1021/acs.jpcc.1c01033 – ident: e_1_2_3_15_2 doi: 10.1002/anie.201906222 – ident: e_1_2_3_53_2 doi: 10.1002/anie.202115308 – ident: e_1_2_3_62_2 doi: 10.1021/jacs.9b02640 – ident: e_1_2_3_16_2 doi: 10.1002/adma.202201768 – ident: e_1_2_3_27_1 doi: 10.1021/ja311613p – ident: e_1_2_3_22_1 – ident: e_1_2_3_2_2 doi: 10.1038/46248 – ident: e_1_2_3_39_1 – ident: e_1_2_3_9_2 doi: 10.1038/s41467-019-08972-x – ident: e_1_2_3_17_1 – ident: e_1_2_3_28_1 – ident: e_1_2_3_19_2 doi: 10.1002/anie.201902738 – ident: e_1_2_3_32_2 doi: 10.1021/ja209197f – ident: e_1_2_3_47_2 doi: 10.1002/anie.201907074 – ident: e_1_2_3_55_2 doi: 10.1016/j.cej.2019.05.228 – ident: e_1_2_3_6_1 – ident: e_1_2_3_34_1 doi: 10.1126/science.1231451 – ident: e_1_2_3_18_2 doi: 10.1021/jacs.7b04268 – ident: e_1_2_3_11_2 doi: 10.1021/jacs.5b09600 – ident: e_1_2_3_21_1 doi: 10.1002/anie.202204066 |
SSID | ssj0028806 |
Score | 2.6071818 |
Snippet | Pore size plays a critical role in determining the performance of metal‐organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation.... Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202302996 |
SubjectTerms | Catalysis Flexible Gas Sensing Gas sensors Hydrogen sulfide Metal-Organic Frameworks Pore size Pore-Size Modulation Thin Film |
Title | Pore Size Modulation in Flexible Metal‐Organic Framework Enabling High Performance Gas Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202302996 https://www.ncbi.nlm.nih.gov/pubmed/37106275 https://www.proquest.com/docview/2826534562 https://www.proquest.com/docview/2807911965 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hLnCBZR-Q5SGvhMTJJY1juzki1MIigRAsErdgOw6qQCmi7YUTP4HfyC9hJi_orlZIcMvDSfwazzfxzDcA293Y92j_i4dexDx2UnHjbchz1J1Zz-XdLKR45-MTdXgRH13KyzdR_BU_RPvDjSSjXK9JwI0d776ShlIEdoeSf4e4ohLnNjlsESo6a_mjIpycVXiREJyy0DesjWG0O_v4rFb6B2rOItdS9QyWwTSVrjxObjrTie24h7_4HD_Tqi-wVONStldNpBWY88VXWNhv0sF9g6vT0b1n58MHz45HWZ30iw0LNiBKTXuLlz0C-efHpyq807FB4_fF-hSghTqSkVcJO32NVWAHZszOyYe-uP4OF4P-n_1DXqdn4E5oobiSmZeaNlq1k71QW5VoaRUCPFvCvDyjNmTS6l4XcYzFtdXHNkOLRpbZ2MUPmC9GhV8DlqsokS5xOkfrzSS5EWiX0pvCXGfGiAB4Mzypq7nLKYXGbVqxLkcp9Vva9lsAO235u4q1478lN5rRTmvpHadohiopyDYM4Fd7G_ubNlNM4UdTKhNqVBSJkgGsVrOk_ZTA5hL7cwBROdbv1CHdO_ndb89-fuShdVikY_Jhi9QGzE_up34T0dLEbpUS8QLwJAk6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoALtDxDaTESEicv2Ti2N0dEd7s8doUKSNxC7DgIgbIIdi-c-hP6G_tLOpMX2iJUCY5x7MTv-cae-QZgpx26Dt1_cd-JkIdWKp444_MMZWfasVk79cnfeTBU_Yvw6FLW1oTkC1PyQzQHbrQyiv2aFjgdSO89s4aSC3aLon_7uKWqGfhIYb2JPv_7z4ZBKsDpWToYCcEpDn3N2-gHe9Plp-XSC7A5jV0L4dNbBFNXu7Q5uW1NxqZln_5hdHxXuz7BQgVN2X45lz7DB5cvwdxBHRFuGa5ORw-Ond08OTYYpVXcL3aTsx6xapo7THaI5f_8-l16eFrWq02_WJd8tFBMMjIsYafP7grsR_LIzsiMPr9egYte9_ygz6sIDdwKLRRXMnVS012rtrLja6MiLY1CjGcKpJel1IZUGt1pI5QxuL260KSo1MgiILtYhdl8lLt1YJkKImkjqzNU4JIoSwSqpvQlP9NpkggPeD0-sa3oyymKxl1cEi8HMfVb3PSbB7tN_vuSuOPVnJv1cMfVAn6MURNVUpB66MF28xr7m-5TktyNJpTH1ygrIiU9WCunSfMrgc0lAmgPgmKw_1OHeH942G2eNt5SaAvm-ueDk_jkcHj8BeYpnUzaArUJs-OHifuK4GlsvhXL4y-N0Q1W |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXyrMNLWAkJE7eeuPY3hyrdkMLdLWiVOotxI-gqlW2ancvPfET-I38EmbyKgtCSHCM4yR-jeebeOYbgNfDJIzo_IuLIBOeOKV5EazgJepOP3Ll0AuKdz6c6P3j5N2JOvkpir_hh-h_uJFk1Ps1CfiFL7dvSEMpAntAyb8F7qj6NtxJtEgpecPex55AKsbV2cQXSckpDX1H2yji7eXnl9XSb1hzGbrWuidbg6JrdeNycjZYzO3AXf9C6Pg_3XoA91tgynaalfQQboXqEdzb7fLBPYbP09llYEen14Edznyb9YudViwjTk17jsUBkfz3r9-a-E7Hss7xi40pQguVJCO3Eja9CVZgb4srdkRO9NWXJ3CcjT_t7vM2PwN30kjNtfJBGTppNU6NhLE6NcpqRHi2xnmlpz54Zc1oiEDG4uYaEuvRpFF1Onb5FFaqWRU2gJU6TpVLnSnRfCvSspBomNKbRGl8UcgIeDc9uWvJyymHxnne0C7HOY1b3o9bBG_6-hcNbccfa251s5234nuVox2qlSTjMIJX_W0cbzpNKaowW1AdYVBTpFpFsN6skv5TErtL9M8RxPVc_6UN-c7kYNxfPfuXh17C3eleln84mLzfhFUqJn-2WG_ByvxyEZ4jcprbF7Vw_ABOgQwF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pore+Size+Modulation+in+Flexible+Metal%E2%80%90Organic+Framework+Enabling+High+Performance+Gas+Sensing&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Chuan%E2%80%90Zhe&rft.au=Chen%2C+Jie&rft.au=Li%2C+Qiao%E2%80%90Hong&rft.au=Wang%2C+Guan%E2%80%90E&rft.date=2023-06-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=26&rft_id=info:doi/10.1002%2Fanie.202302996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202302996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |