Post‐Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers
A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 16; pp. e202300726 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
11.04.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks.
A chiral metal–organic cage has been extended and introduced into a porous framework by using a post‐assembly modification strategy. The microporous frameworks were successfully utilized for the recognition and separation of isomeric molecules, including aromatic compounds, nitriles, and chiral aromatic alcohols. |
---|---|
AbstractList | A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti4 L6 (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti4 L6 ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti4 L6 moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks.A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti4 L6 (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti4 L6 ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti4 L6 moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks. A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti L (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti L ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti L moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks. A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks. A chiral metal–organic cage has been extended and introduced into a porous framework by using a post‐assembly modification strategy. The microporous frameworks were successfully utilized for the recognition and separation of isomeric molecules, including aromatic compounds, nitriles, and chiral aromatic alcohols. A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti 4 L 6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti 4 L 6 ] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks ( PTC‐236(Δ) and PTC‐236(Λ) ) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti 4 L 6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks. A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks. |
Author | Wang, Fei Gu, Zhi‐Gang Li, Shangda Zhang, Jian Chen, Guang‐Hui Yu, Yinghua He, Yan‐Ping Lv, Hong |
Author_xml | – sequence: 1 givenname: Guang‐Hui surname: Chen fullname: Chen, Guang‐Hui organization: Chinese Academy of Sciences – sequence: 2 givenname: Yan‐Ping surname: He fullname: He, Yan‐Ping organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Yinghua surname: Yu fullname: Yu, Yinghua organization: Chinese Academy of Sciences – sequence: 4 givenname: Hong surname: Lv fullname: Lv, Hong organization: Chinese Academy of Sciences – sequence: 5 givenname: Shangda surname: Li fullname: Li, Shangda organization: Chinese Academy of Sciences – sequence: 6 givenname: Fei surname: Wang fullname: Wang, Fei organization: Chinese Academy of Sciences – sequence: 7 givenname: Zhi‐Gang surname: Gu fullname: Gu, Zhi‐Gang organization: Chinese Academy of Sciences – sequence: 8 givenname: Jian orcidid: 0000-0003-3373-9621 surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36807676$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsMmg38SO1mORi0dqaUIyjpy7OvBlRMPdqJqdn0EJN6wT1JPpwxSJcTKd_Gdc33POUYHQxgAobeUzCgh7KMaHMwYYZwQycQLdEQrRgsuJT_Ic8l5IeuKHqLjlG4yX9dEvEKHXNRECimO0O2XkMb7u1_zlKDv_AZfBuOs02p0YcDB4vPQB_3DReXxtRvzuqm_v_t9FVd51HihVpCwDRF_BR1Wg3uUqcHgb7BWce9yGTzoyauIlyn0ENNr9NIqn-DN03uCvp-dXi_Oi4urT8vF_KLQXHJRVEobqAzlRFttoSbc2JJRBSZfX3KjGiG0qVinbNeVjaqFtJWqrDKCcFqW_AR92PmuY_g5QRrb3iUN3qsBwpRaJmXdSMGoyOj7Z-hNmOKQf5ephtcNFXRr-O6JmroeTLuOrldx0_6JNAOzHaBjSCmC3SOUtNvO2m1n7b6zLCifCXQOepvcGJXz_5Y1O9mt87D5z5J2_nl5-lf7ACPArsU |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_5c00715 crossref_primary_10_53941_see_2024_100008 crossref_primary_10_1016_j_inoche_2023_111393 crossref_primary_10_1039_D3QM00492A crossref_primary_10_20517_cs_2023_54 crossref_primary_10_1002_jssc_202400415 crossref_primary_10_1007_s40242_024_3287_2 crossref_primary_10_1021_acs_inorgchem_3c03277 crossref_primary_10_1021_jacs_4c00885 crossref_primary_10_1021_acs_analchem_3c01178 crossref_primary_10_1021_jacs_3c13244 crossref_primary_10_1039_D4QI01624F crossref_primary_10_1038_s41467_024_49964_w crossref_primary_10_1002_adfm_202307518 crossref_primary_10_1021_acs_inorgchem_4c03956 crossref_primary_10_1039_D4QI01103A |
Cites_doi | 10.1021/jacs.2c00760 10.1002/anie.201901668 10.1021/acsmaterialslett.0c00511 10.1002/advs.202104753 10.1016/j.memsci.2021.119564 10.1039/C9CS00091G 10.1016/j.xcrp.2021.100692 10.1002/anie.202209340 10.1021/acs.chemrev.0c00672 10.1021/acs.accounts.8b00328 10.1039/D1CS00759A 10.1021/jacs.9b04909 10.1021/jacs.0c00459 10.1016/j.ccr.2022.214439 10.1038/nature20771 10.1016/j.ccr.2017.10.031 10.1002/ange.201501081 10.1002/ange.202013839 10.1021/jacs.1c05613 10.1016/j.chempr.2020.06.038 10.1002/ange.202003220 10.1021/jacs.8b03781 10.1021/jacs.1c09278 10.1039/C9SC04543K 10.3389/fchem.2021.696081 10.1021/jacs.1c00108 10.1021/jacs.9b07178 10.1002/ange.202209340 10.1038/s41570-022-00380-y 10.1021/jacs.0c00640 10.1021/jacs.9b04520 10.1016/j.ccr.2020.213656 10.1002/ange.201901668 10.1021/acs.nanolett.1c02379 10.1039/D1CC01185E 10.1002/ange.202001059 10.1021/jacs.5b00832 10.1021/jacs.8b11527 10.1039/C9CC01745C 10.1021/jacs.0c02806 10.1016/j.ccr.2021.214354 10.1002/anie.202013839 10.1002/anie.201900429 10.1246/cl.190131 10.1021/jacs.9b05155 10.1021/acs.chemrev.1c00811 10.1021/jacs.0c08589 10.1002/anie.202003220 10.1002/asia.202000744 10.1002/ange.202205725 10.1016/j.memsci.2021.119354 10.1016/j.chempr.2021.07.017 10.1002/ange.202013977 10.1021/jacs.2c07978 10.1038/s41467-018-05818-w 10.1002/ange.201900429 10.1126/sciadv.1701126 10.1002/ange.202104164 10.1021/acs.cgd.0c01059 10.1002/asia.202100080 10.1002/cplu.202200172 10.1039/D1SC02883A 10.1002/anie.202205725 10.1021/jacs.8b08030 10.1021/jacs.8b09582 10.1021/acsami.0c16366 10.1002/anie.202001059 10.1002/anie.202013977 10.1039/D0CC01205J 10.1038/s41586-018-0339-0 10.1039/D0CS00038H 10.1002/anie.201501081 10.1002/anie.202104164 10.1021/jacs.0c01626 10.1021/jacs.9b06222 10.1021/jacs.7b09463 10.1039/C9SC01892A |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202300726 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36807676 10_1002_anie_202300726 ANIE202300726 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2021M703217 – fundername: National Natural Science Foundation of China funderid: 21935010, 92261108 and 21971241 – fundername: China National Postdoctoral Program for Innovative Talents funderid: BX2021316 – fundername: National Key Research and Development Program of China funderid: 2021YFA1501500 – fundername: National Natural Science Foundation of China grantid: 21935010, 92261108 and 21971241 – fundername: China Postdoctoral Science Foundation grantid: 2021M703217 – fundername: National Key Research and Development Program of China grantid: 2021YFA1501500 – fundername: China National Postdoctoral Program for Innovative Talents grantid: BX2021316 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3736-5acde5d130cfcfe803df421aed10043da966cd52bafbb49a867f5a5fad6031443 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:26:15 EDT 2025 Sun Jul 13 05:37:12 EDT 2025 Wed Feb 19 02:24:35 EST 2025 Thu Apr 24 22:54:46 EDT 2025 Tue Jul 01 01:47:05 EDT 2025 Wed Jan 22 16:22:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Post-Assembly Modification Chiral Cage-Based Frameworks Recognition and Separation Titanium-Organic Cages |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-5acde5d130cfcfe803df421aed10043da966cd52bafbb49a867f5a5fad6031443 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3373-9621 |
PMID | 36807676 |
PQID | 2793891614 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2778976216 proquest_journals_2793891614 pubmed_primary_36807676 crossref_primary_10_1002_anie_202300726 crossref_citationtrail_10_1002_anie_202300726 wiley_primary_10_1002_anie_202300726_ANIE202300726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 11, 2023 |
PublicationDateYYYYMMDD | 2023-04-11 |
PublicationDate_xml | – month: 04 year: 2023 text: April 11, 2023 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2018; 560 2021; 7 2021; 21 2018; 140 2017; 3 2021; 3 2020; 20 2020; 120 2020; 142 2019; 55 2022; 51 2019; 10 2020 2020; 59 132 2016; 540 2020; 15 2020; 12 2020; 56 2022; 87 2021; 143 2019; 141 2022; 459 2019 2019; 58 131 2017; 139 2022; 455 2022; 122 2022; 144 2021; 57 2020; 6 2018; 9 2021; 16 2022 2022; 61 134 2021; 12 2020; 2 2022; 3 2015; 137 2021; 632 2022; 6 2019; 48 2022; 9 2021; 636 2020; 49 2021 2021; 60 133 2015 2015; 54 127 2019; 378 2018; 51 2021; 430 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_47_3 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_28_3 Liu G. (e_1_2_7_55_2) 2020; 2 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_3 e_1_2_7_77_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_3 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_58_3 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_10_1 e_1_2_7_44_3 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_2 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_74_3 e_1_2_7_76_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 636 year: 2021 publication-title: J. Membr. Sci. – volume: 55 start-page: 6177 year: 2019 end-page: 6180 publication-title: Chem. Commun. – volume: 459 year: 2022 publication-title: Coord. Chem. Rev. – volume: 430 year: 2021 publication-title: Coord. Chem. Rev. – volume: 632 year: 2021 publication-title: J. Membr. Sci. – volume: 455 year: 2022 publication-title: Coord. Chem. Rev. – volume: 59 132 start-page: 7435 7505 year: 2020 2020 end-page: 7438 7508 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 year: 2021 publication-title: Front. Chem. – volume: 139 start-page: 16845 year: 2017 end-page: 16851 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2447 year: 2018 end-page: 2455 publication-title: Acc. Chem. Res. – volume: 143 start-page: 3562 year: 2021 end-page: 3570 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 4244 year: 2022 end-page: 4253 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2771 year: 2021 end-page: 2786 publication-title: Chem – volume: 378 start-page: 333 year: 2019 end-page: 349 publication-title: Coord. Chem. Rev. – volume: 142 start-page: 17721 year: 2020 end-page: 17729 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 56310 year: 2020 end-page: 56318 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 3967 year: 2015 end-page: 3974 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 597 year: 2019 end-page: 600 publication-title: Chem. Lett. – volume: 560 start-page: 65 year: 2018 end-page: 69 publication-title: Nature – volume: 120 start-page: 13480 year: 2020 end-page: 13544 publication-title: Chem. Rev. – volume: 141 start-page: 19634 year: 2019 end-page: 19643 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 10833 year: 2019 end-page: 10842 publication-title: Chem. Sci. – volume: 59 132 start-page: 11101 11194 year: 2020 2020 end-page: 11107 11200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 16594 16730 year: 2021 2021 end-page: 16599 16735 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 6907 year: 2020 end-page: 6912 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 16877 year: 2018 end-page: 16881 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 6190 6288 year: 2015 2015 end-page: 6195 6293 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2395 year: 2020 end-page: 2406 publication-title: Chem – volume: 140 start-page: 14547 year: 2018 end-page: 14551 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 7674 year: 2018 end-page: 7680 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 268 year: 2021 end-page: 274 publication-title: ACS Mater. Lett. – volume: 87 year: 2022 publication-title: ChemPlusChem – volume: 16 start-page: 1092 year: 2021 end-page: 1100 publication-title: Chem. Asian J. – volume: 143 start-page: 14956 year: 2021 end-page: 14961 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 7270 year: 2020 end-page: 7275 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 6316 year: 2020 end-page: 6320 publication-title: Cryst. Growth Des. – volume: 15 start-page: 3275 year: 2020 end-page: 3280 publication-title: Chem. Asian J. – volume: 3 year: 2022 publication-title: Cell Rep. Phys. Sci. – volume: 2 start-page: 1382 year: 2020 end-page: 1390 publication-title: CCS Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 4876 year: 2022 end-page: 4889 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 3889 year: 2020 end-page: 3919 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 6661 year: 2019 end-page: 6665 publication-title: Chem. Sci. – volume: 58 131 start-page: 6347 6413 year: 2019 2019 end-page: 6350 6416 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 122 start-page: 12244 year: 2022 end-page: 12307 publication-title: Chem. Rev. – volume: 143 start-page: 21195 year: 2021 end-page: 21199 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 8031 year: 2020 end-page: 8034 publication-title: Chem. Commun. – volume: 141 start-page: 1045 year: 2019 end-page: 1053 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 9021 year: 2021 end-page: 9029 publication-title: Nano Lett. – volume: 57 start-page: 5187 year: 2021 end-page: 5190 publication-title: Chem. Commun. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 142 start-page: 9594 year: 2020 end-page: 9598 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 4707 year: 2019 end-page: 4730 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 2920 2956 year: 2021 2021 end-page: 2923 2959 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 5729 5793 year: 2021 2021 end-page: 5733 5797 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 13114 year: 2019 end-page: 13123 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 11621 year: 2019 end-page: 11627 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 636 year: 2017 end-page: 647 publication-title: Sci. Adv. – volume: 144 start-page: 19475 year: 2022 end-page: 19484 publication-title: J. Am. Chem. Soc. – volume: 540 start-page: 563 year: 2016 end-page: 566 publication-title: Nature – volume: 9 start-page: 3587 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 339 year: 2022 end-page: 356 publication-title: Nat. Chem. Rev. – volume: 58 131 start-page: 7982 8066 year: 2019 2019 end-page: 7986 8070 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 5504 year: 2020 end-page: 5508 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 12064 year: 2019 end-page: 12070 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 12556 year: 2021 end-page: 12563 publication-title: Chem. Sci. – volume: 141 start-page: 14005 year: 2019 end-page: 14020 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_32_1 doi: 10.1021/jacs.2c00760 – ident: e_1_2_7_47_2 doi: 10.1002/anie.201901668 – ident: e_1_2_7_65_2 doi: 10.1021/acsmaterialslett.0c00511 – ident: e_1_2_7_73_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_34_2 doi: 10.1002/advs.202104753 – ident: e_1_2_7_62_2 doi: 10.1016/j.memsci.2021.119564 – ident: e_1_2_7_15_2 doi: 10.1039/C9CS00091G – ident: e_1_2_7_22_2 doi: 10.1016/j.xcrp.2021.100692 – ident: e_1_2_7_23_2 doi: 10.1002/anie.202209340 – ident: e_1_2_7_5_2 doi: 10.1021/acs.chemrev.0c00672 – ident: e_1_2_7_8_2 doi: 10.1021/acs.accounts.8b00328 – ident: e_1_2_7_36_2 doi: 10.1039/D1CS00759A – ident: e_1_2_7_16_2 doi: 10.1021/jacs.9b04909 – ident: e_1_2_7_26_2 doi: 10.1021/jacs.0c00459 – ident: e_1_2_7_3_2 doi: 10.1016/j.ccr.2022.214439 – ident: e_1_2_7_33_1 – ident: e_1_2_7_9_2 doi: 10.1038/nature20771 – ident: e_1_2_7_7_2 doi: 10.1016/j.ccr.2017.10.031 – ident: e_1_2_7_28_3 doi: 10.1002/ange.201501081 – ident: e_1_2_7_44_3 doi: 10.1002/ange.202013839 – ident: e_1_2_7_53_2 doi: 10.1021/jacs.1c05613 – ident: e_1_2_7_14_2 doi: 10.1016/j.chempr.2020.06.038 – ident: e_1_2_7_10_1 – ident: e_1_2_7_27_3 doi: 10.1002/ange.202003220 – ident: e_1_2_7_60_2 doi: 10.1021/jacs.8b03781 – ident: e_1_2_7_51_2 doi: 10.1021/jacs.1c09278 – ident: e_1_2_7_57_2 doi: 10.1039/C9SC04543K – ident: e_1_2_7_64_2 doi: 10.3389/fchem.2021.696081 – ident: e_1_2_7_41_2 doi: 10.1021/jacs.1c00108 – ident: e_1_2_7_17_2 doi: 10.1021/jacs.9b07178 – ident: e_1_2_7_23_3 doi: 10.1002/ange.202209340 – ident: e_1_2_7_35_2 doi: 10.1038/s41570-022-00380-y – ident: e_1_2_7_38_1 – ident: e_1_2_7_42_2 doi: 10.1021/jacs.0c00640 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.9b04520 – ident: e_1_2_7_12_2 doi: 10.1016/j.ccr.2020.213656 – ident: e_1_2_7_47_3 doi: 10.1002/ange.201901668 – ident: e_1_2_7_40_2 doi: 10.1021/acs.nanolett.1c02379 – ident: e_1_2_7_52_2 doi: 10.1039/D1CC01185E – ident: e_1_2_7_25_3 doi: 10.1002/ange.202001059 – ident: e_1_2_7_49_1 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.5b00832 – ident: e_1_2_7_70_2 doi: 10.1021/jacs.8b11527 – ident: e_1_2_7_68_2 doi: 10.1039/C9CC01745C – ident: e_1_2_7_56_2 doi: 10.1021/jacs.0c02806 – ident: e_1_2_7_2_2 doi: 10.1016/j.ccr.2021.214354 – ident: e_1_2_7_44_2 doi: 10.1002/anie.202013839 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201900429 – ident: e_1_2_7_71_2 doi: 10.1246/cl.190131 – ident: e_1_2_7_69_2 doi: 10.1021/jacs.9b05155 – ident: e_1_2_7_11_2 doi: 10.1021/acs.chemrev.1c00811 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.0c08589 – ident: e_1_2_7_27_2 doi: 10.1002/anie.202003220 – ident: e_1_2_7_43_2 doi: 10.1002/asia.202000744 – ident: e_1_2_7_21_3 doi: 10.1002/ange.202205725 – ident: e_1_2_7_66_2 doi: 10.1016/j.memsci.2021.119354 – ident: e_1_2_7_24_2 doi: 10.1016/j.chempr.2021.07.017 – ident: e_1_2_7_74_3 doi: 10.1002/ange.202013977 – ident: e_1_2_7_39_2 doi: 10.1021/jacs.2c07978 – ident: e_1_2_7_59_2 doi: 10.1038/s41467-018-05818-w – ident: e_1_2_7_1_1 – ident: e_1_2_7_58_3 doi: 10.1002/ange.201900429 – ident: e_1_2_7_19_2 doi: 10.1126/sciadv.1701126 – volume: 2 start-page: 1382 year: 2020 ident: e_1_2_7_55_2 publication-title: CCS Chem. – ident: e_1_2_7_13_3 doi: 10.1002/ange.202104164 – ident: e_1_2_7_76_1 doi: 10.1021/acs.cgd.0c01059 – ident: e_1_2_7_63_2 doi: 10.1002/asia.202100080 – ident: e_1_2_7_37_2 doi: 10.1002/cplu.202200172 – ident: e_1_2_7_50_2 doi: 10.1039/D1SC02883A – ident: e_1_2_7_21_2 doi: 10.1002/anie.202205725 – ident: e_1_2_7_48_2 doi: 10.1021/jacs.8b08030 – ident: e_1_2_7_77_1 – ident: e_1_2_7_18_2 doi: 10.1021/jacs.8b09582 – ident: e_1_2_7_54_2 doi: 10.1021/acsami.0c16366 – ident: e_1_2_7_25_2 doi: 10.1002/anie.202001059 – ident: e_1_2_7_74_2 doi: 10.1002/anie.202013977 – ident: e_1_2_7_61_1 – ident: e_1_2_7_67_2 doi: 10.1039/D0CC01205J – ident: e_1_2_7_72_2 doi: 10.1038/s41586-018-0339-0 – ident: e_1_2_7_4_2 doi: 10.1039/D0CS00038H – ident: e_1_2_7_28_2 doi: 10.1002/anie.201501081 – ident: e_1_2_7_13_2 doi: 10.1002/anie.202104164 – ident: e_1_2_7_45_2 doi: 10.1021/jacs.0c01626 – ident: e_1_2_7_6_2 doi: 10.1021/jacs.9b06222 – ident: e_1_2_7_75_2 doi: 10.1021/jacs.7b09463 – ident: e_1_2_7_46_2 doi: 10.1039/C9SC01892A |
SSID | ssj0028806 |
Score | 2.5170841 |
Snippet | A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the... A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300726 |
SubjectTerms | Assembly Cages Chiral Cage-Based Frameworks Isomers Post-Assembly Modification Recognition Recognition and Separation Separation Supramolecular compounds Titanium Titanium–Organic Cages |
Title | Post‐Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300726 https://www.ncbi.nlm.nih.gov/pubmed/36807676 https://www.proquest.com/docview/2793891614 https://www.proquest.com/docview/2778976216 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmXtgLGxuwjos8adKeXBI7F_OIqlbtpPLQgcRb5PgiKmiCaCsET_wEJP4hv4Rz4iasmxASvCXxJY7POfYX2-c7hPwUWqRWqphZGyYMd_ZYrrlgUqNzmtHCWlzvGB4l_ZPo92l8-pcXv-eHaBbc0DKq8RoNXOXT_WfSUPTAbmPwbyS_Rs5tPLCFqGjU8EdxUE7vXiQEwyj0NWtjwPeXiy_PSv9BzWXkWk09vU9E1Y32J07O2_NZ3ta3__A5vuerPpO1BS6lh16R1skHW3whq506HNxXco1hfR_v7nGXeJJf3NBhafCYUSVZWjraLyelPhtfQS3HY4Cc4_nk8e7B-3pq2oFxa0oBIdNRfWQJiqnC0D_W04_7WoZ1uF46mJa4pr5BTnrd406fLaI2MBC7SFistLGxgblRO-2sDIRxEQ-VNUhOJ4yCHyxtYp4rl-fRgZJJ6mIVO2Uw4HUUiU2yUpSF_UYoPBLOKCvD2ESOJ8rIA-Nk4ILUCQBOLcJqqWV6QWmOkTUuMk_GzDPszqzpzhb51eS_9GQeL-bcqZUgWxj1NOMwlkmA02HUIj-aZBAD7rGowpZzzJNKQHg8hCq2vPI0rxKJDNIkhRReqcArbcgOjwbd5u77Wwptk494jbtfYbhDVmZXc7sLIGqW71WG8gTfohbb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFL2CsigbyptAKUZCYuV0xp6Hu6yiVgk0WZRUYjfy-CEimhnUJEKw6idU4g_7Jdw7zgwKFUKC5Xhsj8e-to8f9xyAN9LI3CmdcufijNPJHi-NkFwZck6zRjpH-x3jSTY8S959TNvbhOQLE_ghug036hnNeE0dnDak93-xhpILdp_Uv4n9OrsNd0jWu1lVnXYMUgLNMzgYSclJh77lbYzE_mb6zXnpBtjcxK7N5HO8A2Vb7HDn5HN_tSz75vtvjI7_9V_34d4amrLDYEsP4JarHsL2oFWEewRfSdn3-vKKDorn5fk3Nq4t3TRqGpfVng3reW0-zS4wl-kMUedsNb--_BHcPQ0b4NC1YAiS2Wl7awmT6cqyDy4wkIdcxq1iLxstatpWfwxnx0fTwZCvhRs4trzMeKqNdanF6dF4452KpPWJiLWzxE8nrcY1lrGpKLUvy-RAqyz3qU69tqR5nSTyCWxVdeWeAcMg6a12Kk5t4kWmrTqwXkU-yr1E7NQD3jZbYdas5iSucV4EPmZRUHUWXXX24G0X_0vg8_hjzN3WCop1v14UAoczhYg6TnrwunuNzUDHLLpy9Yri5ApBnogxi6fBerpPyUxFeZbjG9HYwF_KUBxORkfd0_N_SfQKtofT8UlxMpq8fwF3KZwOw-J4F7aWFyv3EjHVstxres1POZ0a9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgSMALG5dBYQMjIfHkLrETx3uculUt0AqNTdpb5PgiKtZkWlsheNpPmLR_uF_COXGTURBCgsf4Fsfn2P7i4_MdQt4IIzKndMqciyVDyx4rDBdMGXROs0Y4h-cdo7EcHCfvTtKTn7z4Az9Ee-CGM6Ner3GCn1m_c0Maih7YXQz-jeTX8ja5k8hIoV7vH7YEUhy0M_gXCcEwDH1D2xjxndX6q9vSb1hzFbrWe09_neim1-HKyZfuYl50zfdfCB3_57M2yIMlMKV7QZMekluufETu9Zp4cI_JV4zre31xiWbiaXH6jY4qi_eMatHSytNBNa3M58k5tHI0Acw5WUyvL66Cs6ehPVi4ZhQgMj1s7ixBNV1a-skF_vHQyqiJ10uHswoP1Z-Q4_7BUW_AlmEbGMhdSJZqY11qYXM03ninImF9wmPtLLLTCavhD8vYlBfaF0Wyq5XMfKpTry1GvE4SsUnWyqp0zwiFJOGtdipObeK51FbtWq8iH2VeAHLqENZILTdLTnMMrXGaBzZmnuNw5u1wdsjbtvxZYPP4Y8mtRgny5aye5RwWMwV4Ok465HWbDWJAI4suXbXAMpkCiMdjaOJpUJ72VUKqKJMZ5PBaBf7Sh3xvPDxon57_S6VX5O7H_X7-YTh-_4Lcx2S0hMXxFlmbny_cNgCqefGynjM_APOaGa4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post%E2%80%90Assembly+Modification+of+Homochiral+Titanium%E2%80%93Organic+Cages+for+Recognition+and+Separation+of+Molecular+Isomers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Guang%E2%80%90Hui&rft.au=He%2C+Yan%E2%80%90Ping&rft.au=Yu%2C+Yinghua&rft.au=Lv%2C+Hong&rft.date=2023-04-11&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202300726&rft.externalDBID=10.1002%252Fanie.202300726&rft.externalDocID=ANIE202300726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |