Post‐Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers

A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 16; pp. e202300726 - n/a
Main Authors Chen, Guang‐Hui, He, Yan‐Ping, Yu, Yinghua, Lv, Hong, Li, Shangda, Wang, Fei, Gu, Zhi‐Gang, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.04.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks. A chiral metal–organic cage has been extended and introduced into a porous framework by using a post‐assembly modification strategy. The microporous frameworks were successfully utilized for the recognition and separation of isomeric molecules, including aromatic compounds, nitriles, and chiral aromatic alcohols.
AbstractList A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti4 L6 (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti4 L6 ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti4 L6 moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks.A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti4 L6 (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti4 L6 ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti4 L6 moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks.
A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the host-guest chemistry of the solid-state MOC using a single-crystal diffraction technique. Anionic Ti L (L=embonate) cage can be used as a 4-connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ- and ΛΛΛΛ-[Ti L ] cages were obtained. Accordingly, a pair of homochiral cage-based microporous frameworks (PTC-236(Δ) and PTC-236(Λ)) were easily prepared by a post-assembly reaction. PTC-236 has rich recognition sites provided by the Ti L moieties, chiral channels and high framework stability, affording a single-crystal-to-single-crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well-defined MOCs into functional porous frameworks.
A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks. A chiral metal–organic cage has been extended and introduced into a porous framework by using a post‐assembly modification strategy. The microporous frameworks were successfully utilized for the recognition and separation of isomeric molecules, including aromatic compounds, nitriles, and chiral aromatic alcohols.
A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti 4 L 6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti 4 L 6 ] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks ( PTC‐236(Δ) and PTC‐236(Λ) ) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti 4 L 6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks.
A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the host–guest chemistry of the solid‐state MOC using a single‐crystal diffraction technique. Anionic Ti4L6 (L=embonate) cage can be used as a 4‐connecting crystal engineering tecton, and its optical resolution was achieved, thus homochiral ΔΔΔΔ‐ and ΛΛΛΛ‐[Ti4L6] cages were obtained. Accordingly, a pair of homochiral cage‐based microporous frameworks (PTC‐236(Δ) and PTC‐236(Λ)) were easily prepared by a post‐assembly reaction. PTC‐236 has rich recognition sites provided by the Ti4L6 moieties, chiral channels and high framework stability, affording a single‐crystal‐to‐single‐crystal transformation for guest structure analyses. Thus it was successfully utilized for the recognition and separation of isomeric molecules. This study provides a new approach for the orderly combination of well‐defined MOCs into functional porous frameworks.
Author Wang, Fei
Gu, Zhi‐Gang
Li, Shangda
Zhang, Jian
Chen, Guang‐Hui
Yu, Yinghua
He, Yan‐Ping
Lv, Hong
Author_xml – sequence: 1
  givenname: Guang‐Hui
  surname: Chen
  fullname: Chen, Guang‐Hui
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Yan‐Ping
  surname: He
  fullname: He, Yan‐Ping
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yinghua
  surname: Yu
  fullname: Yu, Yinghua
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Hong
  surname: Lv
  fullname: Lv, Hong
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Shangda
  surname: Li
  fullname: Li, Shangda
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zhi‐Gang
  surname: Gu
  fullname: Gu, Zhi‐Gang
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Jian
  orcidid: 0000-0003-3373-9621
  surname: Zhang
  fullname: Zhang, Jian
  email: zhj@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36807676$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsMmg38SO1mORi0dqaUIyjpy7OvBlRMPdqJqdn0EJN6wT1JPpwxSJcTKd_Gdc33POUYHQxgAobeUzCgh7KMaHMwYYZwQycQLdEQrRgsuJT_Ic8l5IeuKHqLjlG4yX9dEvEKHXNRECimO0O2XkMb7u1_zlKDv_AZfBuOs02p0YcDB4vPQB_3DReXxtRvzuqm_v_t9FVd51HihVpCwDRF_BR1Wg3uUqcHgb7BWce9yGTzoyauIlyn0ENNr9NIqn-DN03uCvp-dXi_Oi4urT8vF_KLQXHJRVEobqAzlRFttoSbc2JJRBSZfX3KjGiG0qVinbNeVjaqFtJWqrDKCcFqW_AR92PmuY_g5QRrb3iUN3qsBwpRaJmXdSMGoyOj7Z-hNmOKQf5ephtcNFXRr-O6JmroeTLuOrldx0_6JNAOzHaBjSCmC3SOUtNvO2m1n7b6zLCifCXQOepvcGJXz_5Y1O9mt87D5z5J2_nl5-lf7ACPArsU
CitedBy_id crossref_primary_10_1021_acs_inorgchem_5c00715
crossref_primary_10_53941_see_2024_100008
crossref_primary_10_1016_j_inoche_2023_111393
crossref_primary_10_1039_D3QM00492A
crossref_primary_10_20517_cs_2023_54
crossref_primary_10_1002_jssc_202400415
crossref_primary_10_1007_s40242_024_3287_2
crossref_primary_10_1021_acs_inorgchem_3c03277
crossref_primary_10_1021_jacs_4c00885
crossref_primary_10_1021_acs_analchem_3c01178
crossref_primary_10_1021_jacs_3c13244
crossref_primary_10_1039_D4QI01624F
crossref_primary_10_1038_s41467_024_49964_w
crossref_primary_10_1002_adfm_202307518
crossref_primary_10_1021_acs_inorgchem_4c03956
crossref_primary_10_1039_D4QI01103A
Cites_doi 10.1021/jacs.2c00760
10.1002/anie.201901668
10.1021/acsmaterialslett.0c00511
10.1002/advs.202104753
10.1016/j.memsci.2021.119564
10.1039/C9CS00091G
10.1016/j.xcrp.2021.100692
10.1002/anie.202209340
10.1021/acs.chemrev.0c00672
10.1021/acs.accounts.8b00328
10.1039/D1CS00759A
10.1021/jacs.9b04909
10.1021/jacs.0c00459
10.1016/j.ccr.2022.214439
10.1038/nature20771
10.1016/j.ccr.2017.10.031
10.1002/ange.201501081
10.1002/ange.202013839
10.1021/jacs.1c05613
10.1016/j.chempr.2020.06.038
10.1002/ange.202003220
10.1021/jacs.8b03781
10.1021/jacs.1c09278
10.1039/C9SC04543K
10.3389/fchem.2021.696081
10.1021/jacs.1c00108
10.1021/jacs.9b07178
10.1002/ange.202209340
10.1038/s41570-022-00380-y
10.1021/jacs.0c00640
10.1021/jacs.9b04520
10.1016/j.ccr.2020.213656
10.1002/ange.201901668
10.1021/acs.nanolett.1c02379
10.1039/D1CC01185E
10.1002/ange.202001059
10.1021/jacs.5b00832
10.1021/jacs.8b11527
10.1039/C9CC01745C
10.1021/jacs.0c02806
10.1016/j.ccr.2021.214354
10.1002/anie.202013839
10.1002/anie.201900429
10.1246/cl.190131
10.1021/jacs.9b05155
10.1021/acs.chemrev.1c00811
10.1021/jacs.0c08589
10.1002/anie.202003220
10.1002/asia.202000744
10.1002/ange.202205725
10.1016/j.memsci.2021.119354
10.1016/j.chempr.2021.07.017
10.1002/ange.202013977
10.1021/jacs.2c07978
10.1038/s41467-018-05818-w
10.1002/ange.201900429
10.1126/sciadv.1701126
10.1002/ange.202104164
10.1021/acs.cgd.0c01059
10.1002/asia.202100080
10.1002/cplu.202200172
10.1039/D1SC02883A
10.1002/anie.202205725
10.1021/jacs.8b08030
10.1021/jacs.8b09582
10.1021/acsami.0c16366
10.1002/anie.202001059
10.1002/anie.202013977
10.1039/D0CC01205J
10.1038/s41586-018-0339-0
10.1039/D0CS00038H
10.1002/anie.201501081
10.1002/anie.202104164
10.1021/jacs.0c01626
10.1021/jacs.9b06222
10.1021/jacs.7b09463
10.1039/C9SC01892A
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202300726
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36807676
10_1002_anie_202300726
ANIE202300726
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2021M703217
– fundername: National Natural Science Foundation of China
  funderid: 21935010, 92261108 and 21971241
– fundername: China National Postdoctoral Program for Innovative Talents
  funderid: BX2021316
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1501500
– fundername: National Natural Science Foundation of China
  grantid: 21935010, 92261108 and 21971241
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M703217
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA1501500
– fundername: China National Postdoctoral Program for Innovative Talents
  grantid: BX2021316
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3736-5acde5d130cfcfe803df421aed10043da966cd52bafbb49a867f5a5fad6031443
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:26:15 EDT 2025
Sun Jul 13 05:37:12 EDT 2025
Wed Feb 19 02:24:35 EST 2025
Thu Apr 24 22:54:46 EDT 2025
Tue Jul 01 01:47:05 EDT 2025
Wed Jan 22 16:22:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Post-Assembly Modification
Chiral Cage-Based Frameworks
Recognition and Separation
Titanium-Organic Cages
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-5acde5d130cfcfe803df421aed10043da966cd52bafbb49a867f5a5fad6031443
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3373-9621
PMID 36807676
PQID 2793891614
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2778976216
proquest_journals_2793891614
pubmed_primary_36807676
crossref_primary_10_1002_anie_202300726
crossref_citationtrail_10_1002_anie_202300726
wiley_primary_10_1002_anie_202300726_ANIE202300726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 11, 2023
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 04
  year: 2023
  text: April 11, 2023
  day: 11
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2018; 560
2021; 7
2021; 21
2018; 140
2017; 3
2021; 3
2020; 20
2020; 120
2020; 142
2019; 55
2022; 51
2019; 10
2020 2020; 59 132
2016; 540
2020; 15
2020; 12
2020; 56
2022; 87
2021; 143
2019; 141
2022; 459
2019 2019; 58 131
2017; 139
2022; 455
2022; 122
2022; 144
2021; 57
2020; 6
2018; 9
2021; 16
2022 2022; 61 134
2021; 12
2020; 2
2022; 3
2015; 137
2021; 632
2022; 6
2019; 48
2022; 9
2021; 636
2020; 49
2021 2021; 60 133
2015 2015; 54 127
2019; 378
2018; 51
2021; 430
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_47_3
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_28_3
Liu G. (e_1_2_7_55_2) 2020; 2
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_3
e_1_2_7_77_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_3
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_58_3
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_10_1
e_1_2_7_44_3
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_2
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_74_3
e_1_2_7_76_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 636
  year: 2021
  publication-title: J. Membr. Sci.
– volume: 55
  start-page: 6177
  year: 2019
  end-page: 6180
  publication-title: Chem. Commun.
– volume: 459
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 430
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 632
  year: 2021
  publication-title: J. Membr. Sci.
– volume: 455
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 59 132
  start-page: 7435 7505
  year: 2020 2020
  end-page: 7438 7508
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  year: 2021
  publication-title: Front. Chem.
– volume: 139
  start-page: 16845
  year: 2017
  end-page: 16851
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2447
  year: 2018
  end-page: 2455
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 3562
  year: 2021
  end-page: 3570
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 4244
  year: 2022
  end-page: 4253
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2771
  year: 2021
  end-page: 2786
  publication-title: Chem
– volume: 378
  start-page: 333
  year: 2019
  end-page: 349
  publication-title: Coord. Chem. Rev.
– volume: 142
  start-page: 17721
  year: 2020
  end-page: 17729
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 56310
  year: 2020
  end-page: 56318
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 3967
  year: 2015
  end-page: 3974
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 597
  year: 2019
  end-page: 600
  publication-title: Chem. Lett.
– volume: 560
  start-page: 65
  year: 2018
  end-page: 69
  publication-title: Nature
– volume: 120
  start-page: 13480
  year: 2020
  end-page: 13544
  publication-title: Chem. Rev.
– volume: 141
  start-page: 19634
  year: 2019
  end-page: 19643
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 10833
  year: 2019
  end-page: 10842
  publication-title: Chem. Sci.
– volume: 59 132
  start-page: 11101 11194
  year: 2020 2020
  end-page: 11107 11200
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 16594 16730
  year: 2021 2021
  end-page: 16599 16735
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 6907
  year: 2020
  end-page: 6912
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 16877
  year: 2018
  end-page: 16881
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 6190 6288
  year: 2015 2015
  end-page: 6195 6293
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2395
  year: 2020
  end-page: 2406
  publication-title: Chem
– volume: 140
  start-page: 14547
  year: 2018
  end-page: 14551
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 7674
  year: 2018
  end-page: 7680
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 268
  year: 2021
  end-page: 274
  publication-title: ACS Mater. Lett.
– volume: 87
  year: 2022
  publication-title: ChemPlusChem
– volume: 16
  start-page: 1092
  year: 2021
  end-page: 1100
  publication-title: Chem. Asian J.
– volume: 143
  start-page: 14956
  year: 2021
  end-page: 14961
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 7270
  year: 2020
  end-page: 7275
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 6316
  year: 2020
  end-page: 6320
  publication-title: Cryst. Growth Des.
– volume: 15
  start-page: 3275
  year: 2020
  end-page: 3280
  publication-title: Chem. Asian J.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phys. Sci.
– volume: 2
  start-page: 1382
  year: 2020
  end-page: 1390
  publication-title: CCS Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 4876
  year: 2022
  end-page: 4889
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 3889
  year: 2020
  end-page: 3919
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 6661
  year: 2019
  end-page: 6665
  publication-title: Chem. Sci.
– volume: 58 131
  start-page: 6347 6413
  year: 2019 2019
  end-page: 6350 6416
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 12244
  year: 2022
  end-page: 12307
  publication-title: Chem. Rev.
– volume: 143
  start-page: 21195
  year: 2021
  end-page: 21199
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 8031
  year: 2020
  end-page: 8034
  publication-title: Chem. Commun.
– volume: 141
  start-page: 1045
  year: 2019
  end-page: 1053
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 9021
  year: 2021
  end-page: 9029
  publication-title: Nano Lett.
– volume: 57
  start-page: 5187
  year: 2021
  end-page: 5190
  publication-title: Chem. Commun.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 142
  start-page: 9594
  year: 2020
  end-page: 9598
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 4707
  year: 2019
  end-page: 4730
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 2920 2956
  year: 2021 2021
  end-page: 2923 2959
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 5729 5793
  year: 2021 2021
  end-page: 5733 5797
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 13114
  year: 2019
  end-page: 13123
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 11621
  year: 2019
  end-page: 11627
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 636
  year: 2017
  end-page: 647
  publication-title: Sci. Adv.
– volume: 144
  start-page: 19475
  year: 2022
  end-page: 19484
  publication-title: J. Am. Chem. Soc.
– volume: 540
  start-page: 563
  year: 2016
  end-page: 566
  publication-title: Nature
– volume: 9
  start-page: 3587
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 339
  year: 2022
  end-page: 356
  publication-title: Nat. Chem. Rev.
– volume: 58 131
  start-page: 7982 8066
  year: 2019 2019
  end-page: 7986 8070
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 5504
  year: 2020
  end-page: 5508
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 12064
  year: 2019
  end-page: 12070
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 12556
  year: 2021
  end-page: 12563
  publication-title: Chem. Sci.
– volume: 141
  start-page: 14005
  year: 2019
  end-page: 14020
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.2c00760
– ident: e_1_2_7_47_2
  doi: 10.1002/anie.201901668
– ident: e_1_2_7_65_2
  doi: 10.1021/acsmaterialslett.0c00511
– ident: e_1_2_7_73_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_34_2
  doi: 10.1002/advs.202104753
– ident: e_1_2_7_62_2
  doi: 10.1016/j.memsci.2021.119564
– ident: e_1_2_7_15_2
  doi: 10.1039/C9CS00091G
– ident: e_1_2_7_22_2
  doi: 10.1016/j.xcrp.2021.100692
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.202209340
– ident: e_1_2_7_5_2
  doi: 10.1021/acs.chemrev.0c00672
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.accounts.8b00328
– ident: e_1_2_7_36_2
  doi: 10.1039/D1CS00759A
– ident: e_1_2_7_16_2
  doi: 10.1021/jacs.9b04909
– ident: e_1_2_7_26_2
  doi: 10.1021/jacs.0c00459
– ident: e_1_2_7_3_2
  doi: 10.1016/j.ccr.2022.214439
– ident: e_1_2_7_33_1
– ident: e_1_2_7_9_2
  doi: 10.1038/nature20771
– ident: e_1_2_7_7_2
  doi: 10.1016/j.ccr.2017.10.031
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.201501081
– ident: e_1_2_7_44_3
  doi: 10.1002/ange.202013839
– ident: e_1_2_7_53_2
  doi: 10.1021/jacs.1c05613
– ident: e_1_2_7_14_2
  doi: 10.1016/j.chempr.2020.06.038
– ident: e_1_2_7_10_1
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.202003220
– ident: e_1_2_7_60_2
  doi: 10.1021/jacs.8b03781
– ident: e_1_2_7_51_2
  doi: 10.1021/jacs.1c09278
– ident: e_1_2_7_57_2
  doi: 10.1039/C9SC04543K
– ident: e_1_2_7_64_2
  doi: 10.3389/fchem.2021.696081
– ident: e_1_2_7_41_2
  doi: 10.1021/jacs.1c00108
– ident: e_1_2_7_17_2
  doi: 10.1021/jacs.9b07178
– ident: e_1_2_7_23_3
  doi: 10.1002/ange.202209340
– ident: e_1_2_7_35_2
  doi: 10.1038/s41570-022-00380-y
– ident: e_1_2_7_38_1
– ident: e_1_2_7_42_2
  doi: 10.1021/jacs.0c00640
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.9b04520
– ident: e_1_2_7_12_2
  doi: 10.1016/j.ccr.2020.213656
– ident: e_1_2_7_47_3
  doi: 10.1002/ange.201901668
– ident: e_1_2_7_40_2
  doi: 10.1021/acs.nanolett.1c02379
– ident: e_1_2_7_52_2
  doi: 10.1039/D1CC01185E
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.202001059
– ident: e_1_2_7_49_1
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.5b00832
– ident: e_1_2_7_70_2
  doi: 10.1021/jacs.8b11527
– ident: e_1_2_7_68_2
  doi: 10.1039/C9CC01745C
– ident: e_1_2_7_56_2
  doi: 10.1021/jacs.0c02806
– ident: e_1_2_7_2_2
  doi: 10.1016/j.ccr.2021.214354
– ident: e_1_2_7_44_2
  doi: 10.1002/anie.202013839
– ident: e_1_2_7_58_2
  doi: 10.1002/anie.201900429
– ident: e_1_2_7_71_2
  doi: 10.1246/cl.190131
– ident: e_1_2_7_69_2
  doi: 10.1021/jacs.9b05155
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.chemrev.1c00811
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.0c08589
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.202003220
– ident: e_1_2_7_43_2
  doi: 10.1002/asia.202000744
– ident: e_1_2_7_21_3
  doi: 10.1002/ange.202205725
– ident: e_1_2_7_66_2
  doi: 10.1016/j.memsci.2021.119354
– ident: e_1_2_7_24_2
  doi: 10.1016/j.chempr.2021.07.017
– ident: e_1_2_7_74_3
  doi: 10.1002/ange.202013977
– ident: e_1_2_7_39_2
  doi: 10.1021/jacs.2c07978
– ident: e_1_2_7_59_2
  doi: 10.1038/s41467-018-05818-w
– ident: e_1_2_7_1_1
– ident: e_1_2_7_58_3
  doi: 10.1002/ange.201900429
– ident: e_1_2_7_19_2
  doi: 10.1126/sciadv.1701126
– volume: 2
  start-page: 1382
  year: 2020
  ident: e_1_2_7_55_2
  publication-title: CCS Chem.
– ident: e_1_2_7_13_3
  doi: 10.1002/ange.202104164
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.cgd.0c01059
– ident: e_1_2_7_63_2
  doi: 10.1002/asia.202100080
– ident: e_1_2_7_37_2
  doi: 10.1002/cplu.202200172
– ident: e_1_2_7_50_2
  doi: 10.1039/D1SC02883A
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.202205725
– ident: e_1_2_7_48_2
  doi: 10.1021/jacs.8b08030
– ident: e_1_2_7_77_1
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.8b09582
– ident: e_1_2_7_54_2
  doi: 10.1021/acsami.0c16366
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202001059
– ident: e_1_2_7_74_2
  doi: 10.1002/anie.202013977
– ident: e_1_2_7_61_1
– ident: e_1_2_7_67_2
  doi: 10.1039/D0CC01205J
– ident: e_1_2_7_72_2
  doi: 10.1038/s41586-018-0339-0
– ident: e_1_2_7_4_2
  doi: 10.1039/D0CS00038H
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201501081
– ident: e_1_2_7_13_2
  doi: 10.1002/anie.202104164
– ident: e_1_2_7_45_2
  doi: 10.1021/jacs.0c01626
– ident: e_1_2_7_6_2
  doi: 10.1021/jacs.9b06222
– ident: e_1_2_7_75_2
  doi: 10.1021/jacs.7b09463
– ident: e_1_2_7_46_2
  doi: 10.1039/C9SC01892A
SSID ssj0028806
Score 2.5170841
Snippet A chiral metal–organic cage (MOC) was extended and fixed into a porous framework using a post‐assembly modification strategy, which made it easier to study the...
A chiral metal-organic cage (MOC) was extended and fixed into a porous framework using a post-assembly modification strategy, which made it easier to study the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300726
SubjectTerms Assembly
Cages
Chiral Cage-Based Frameworks
Isomers
Post-Assembly Modification
Recognition
Recognition and Separation
Separation
Supramolecular compounds
Titanium
Titanium–Organic Cages
Title Post‐Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202300726
https://www.ncbi.nlm.nih.gov/pubmed/36807676
https://www.proquest.com/docview/2793891614
https://www.proquest.com/docview/2778976216
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmXtgLGxuwjos8adKeXBI7F_OIqlbtpPLQgcRb5PgiKmiCaCsET_wEJP4hv4Rz4iasmxASvCXxJY7POfYX2-c7hPwUWqRWqphZGyYMd_ZYrrlgUqNzmtHCWlzvGB4l_ZPo92l8-pcXv-eHaBbc0DKq8RoNXOXT_WfSUPTAbmPwbyS_Rs5tPLCFqGjU8EdxUE7vXiQEwyj0NWtjwPeXiy_PSv9BzWXkWk09vU9E1Y32J07O2_NZ3ta3__A5vuerPpO1BS6lh16R1skHW3whq506HNxXco1hfR_v7nGXeJJf3NBhafCYUSVZWjraLyelPhtfQS3HY4Cc4_nk8e7B-3pq2oFxa0oBIdNRfWQJiqnC0D_W04_7WoZ1uF46mJa4pr5BTnrd406fLaI2MBC7SFistLGxgblRO-2sDIRxEQ-VNUhOJ4yCHyxtYp4rl-fRgZJJ6mIVO2Uw4HUUiU2yUpSF_UYoPBLOKCvD2ESOJ8rIA-Nk4ILUCQBOLcJqqWV6QWmOkTUuMk_GzDPszqzpzhb51eS_9GQeL-bcqZUgWxj1NOMwlkmA02HUIj-aZBAD7rGowpZzzJNKQHg8hCq2vPI0rxKJDNIkhRReqcArbcgOjwbd5u77Wwptk494jbtfYbhDVmZXc7sLIGqW71WG8gTfohbb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbhMxFL2CsigbyptAKUZCYuV0xp6Hu6yiVgk0WZRUYjfy-CEimhnUJEKw6idU4g_7Jdw7zgwKFUKC5Xhsj8e-to8f9xyAN9LI3CmdcufijNPJHi-NkFwZck6zRjpH-x3jSTY8S959TNvbhOQLE_ghug036hnNeE0dnDak93-xhpILdp_Uv4n9OrsNd0jWu1lVnXYMUgLNMzgYSclJh77lbYzE_mb6zXnpBtjcxK7N5HO8A2Vb7HDn5HN_tSz75vtvjI7_9V_34d4amrLDYEsP4JarHsL2oFWEewRfSdn3-vKKDorn5fk3Nq4t3TRqGpfVng3reW0-zS4wl-kMUedsNb--_BHcPQ0b4NC1YAiS2Wl7awmT6cqyDy4wkIdcxq1iLxstatpWfwxnx0fTwZCvhRs4trzMeKqNdanF6dF4452KpPWJiLWzxE8nrcY1lrGpKLUvy-RAqyz3qU69tqR5nSTyCWxVdeWeAcMg6a12Kk5t4kWmrTqwXkU-yr1E7NQD3jZbYdas5iSucV4EPmZRUHUWXXX24G0X_0vg8_hjzN3WCop1v14UAoczhYg6TnrwunuNzUDHLLpy9Yri5ApBnogxi6fBerpPyUxFeZbjG9HYwF_KUBxORkfd0_N_SfQKtofT8UlxMpq8fwF3KZwOw-J4F7aWFyv3EjHVstxres1POZ0a9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgSMALG5dBYQMjIfHkLrETx3uculUt0AqNTdpb5PgiKtZkWlsheNpPmLR_uF_COXGTURBCgsf4Fsfn2P7i4_MdQt4IIzKndMqciyVDyx4rDBdMGXROs0Y4h-cdo7EcHCfvTtKTn7z4Az9Ee-CGM6Ner3GCn1m_c0Maih7YXQz-jeTX8ja5k8hIoV7vH7YEUhy0M_gXCcEwDH1D2xjxndX6q9vSb1hzFbrWe09_neim1-HKyZfuYl50zfdfCB3_57M2yIMlMKV7QZMekluufETu9Zp4cI_JV4zre31xiWbiaXH6jY4qi_eMatHSytNBNa3M58k5tHI0Acw5WUyvL66Cs6ehPVi4ZhQgMj1s7ixBNV1a-skF_vHQyqiJ10uHswoP1Z-Q4_7BUW_AlmEbGMhdSJZqY11qYXM03ninImF9wmPtLLLTCavhD8vYlBfaF0Wyq5XMfKpTry1GvE4SsUnWyqp0zwiFJOGtdipObeK51FbtWq8iH2VeAHLqENZILTdLTnMMrXGaBzZmnuNw5u1wdsjbtvxZYPP4Y8mtRgny5aye5RwWMwV4Ok465HWbDWJAI4suXbXAMpkCiMdjaOJpUJ72VUKqKJMZ5PBaBf7Sh3xvPDxon57_S6VX5O7H_X7-YTh-_4Lcx2S0hMXxFlmbny_cNgCqefGynjM_APOaGa4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post%E2%80%90Assembly+Modification+of+Homochiral+Titanium%E2%80%93Organic+Cages+for+Recognition+and+Separation+of+Molecular+Isomers&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Guang%E2%80%90Hui&rft.au=He%2C+Yan%E2%80%90Ping&rft.au=Yu%2C+Yinghua&rft.au=Lv%2C+Hong&rft.date=2023-04-11&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=16&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202300726&rft.externalDBID=10.1002%252Fanie.202300726&rft.externalDocID=ANIE202300726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon