Four‐State Electrochromism in Tris(4‐aminophenyl)amine‐ terephthalaldehyde‐based Covalent Organic Framework

Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism mark...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 4; pp. e202416046 - n/a
Main Authors Kumar Silori, Gaurav, Chien, Szu‐Chia, Lin, Li‐Chiang, Ho, Kuo‐Chuan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.01.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices. While several electrochromic COFs (denoted as ecCOFs) have been reported to date, a closer survey suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state (orange, pear, green, and cyan) electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde‐based COF constructed through the metal‐catalyst free Schiff base approach.
AbstractList Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices.
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [ J. Am. Chem. Soc. 2019, 141, 19831–19838 ]. Since then, new and novel COF structures with electrochromic features (denoted as ec COFs) have been searched continuously. Yet, only a handful of ec COFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [ Angew. Chem. 2021, 133, 12606–1261 ]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ec COF opens several futuristic avenues for ec COF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices.
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as COFs) have been searched continuously. Yet, only a handful of COFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA COF opens several futuristic avenues for COF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices. While several electrochromic COFs (denoted as ecCOFs) have been reported to date, a closer survey suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state (orange, pear, green, and cyan) electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde‐based COF constructed through the metal‐catalyst free Schiff base approach.
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.
Author Kumar Silori, Gaurav
Lin, Li‐Chiang
Ho, Kuo‐Chuan
Chien, Szu‐Chia
Author_xml – sequence: 1
  givenname: Gaurav
  surname: Kumar Silori
  fullname: Kumar Silori, Gaurav
  organization: National Taiwan University
– sequence: 2
  givenname: Szu‐Chia
  surname: Chien
  fullname: Chien, Szu‐Chia
  organization: National Central University
– sequence: 3
  givenname: Li‐Chiang
  surname: Lin
  fullname: Lin, Li‐Chiang
  organization: The Ohio State University
– sequence: 4
  givenname: Kuo‐Chuan
  orcidid: 0000-0002-1246-2531
  surname: Ho
  fullname: Ho, Kuo‐Chuan
  email: kcho@ntu.edu.tw
  organization: National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39250327$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJFYlMWGfyX2F5WoxmoVNEFZR059g1xcezBzrSaHY_AM_IkeDSlSJUQK19ffce-95xTdBRiAIReE7wgGNP3OjhYUEw5aTFvn6ET0lBSMyHYUak5Y7WQDTlGpznfFl5K3L5Ax0zRBjMqTlBex2369ePn51nPUK08mDlFM6Y4uTxVLlQ3yeVzXgg9uRA3I4Sdf7evofSqGRJsxnnUXnsL487uu73OYKtlvNMewlxdp69lSlOtk57gPqZvL9HzQfsMrx7OM_RlvbpZfqyvrj9cLi-uasMEa-tGEYaNxlA2En0re1BAiLWDMdyWu5J4EK3qrRyg0Rx4P1DOBRmYUU3fW3aGzg_vblL8voU8d2UpA97rAHGbO0aKb62SChf07RP0tvgSynSFaoWkjaS0UG8eqG0_ge02yU067bo_dhZgcQBMijknGB4Rgrt9Xt0-r-4xryLgTwTGlSRcDHPSzv9bpg6ye-dh959PuotPl6u_2t9fR69Q
CitedBy_id crossref_primary_10_1021_acsami_4c16702
Cites_doi 10.1021/cr900129a
10.1039/C8EE00080H
10.1002/adfm.201705553
10.1038/s41563-019-0471-8
10.1021/acs.macromol.2c01767
10.1016/j.micromeso.2020.110739
10.1016/j.solmat.2022.111969
10.1021/acs.chemrev.1c01055
10.1016/j.electacta.2021.139301
10.1021/acsami.3c04685
10.1039/C5EE03160E
10.1039/C9TC00416E
10.1039/D3TC01969A
10.1038/s41467-021-21852-7
10.1021/acs.accounts.5b00369
10.1039/C6TC01150K
10.1002/adma.201703238
10.1016/j.ccr.2022.214891
10.1016/j.cej.2024.149417
10.1016/j.cej.2022.139082
10.1038/s41467-020-19315-6
10.1021/acs.chemmater.1c02565
10.1021/acsami.2c14341
10.1002/adfm.201809223
10.1002/slct.201600608
10.1016/j.jelechem.2023.117563
10.1016/j.solmat.2021.111489
10.1016/S0065-2792(08)60179-X
10.1002/pola.24819
10.1002/anie.201504584
10.1039/C2CS35072F
10.1002/9783527679850
10.1021/acsnanoscienceau.2c00049
10.1021/jacs.2c05382
10.1021/acsenergylett.3c00159
10.1021/jacs.9b08628
10.1021/jacs.9b09956
10.1021/jacs.0c12392
10.1002/anie.200701595
10.1039/C9TC02861G
10.1021/acsami.3c15521
10.1002/anie.202100870
10.1021/acs.jpcc.5b00310
10.1021/acsami.3c16506
10.1021/acs.accounts.6b00183
10.1021/jacs.2c13817
10.1016/j.jlumin.2014.02.032
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202416046
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 39250327
10_1002_anie_202416046
ANIE202416046
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Ministry of Education
  funderid: 112L9006; MOE-110-YSFEE-0003-002-P1
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 111-2221-E-002-019-MY3; 107-2221-E-002-173-MY3
– fundername: National Science and Technology Council
  funderid: 110-2222-E-008-007-MY3
– fundername: National Science and Technology Council
  grantid: 110-2222-E-008-007-MY3
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 111-2221-E-002-019-MY3
– fundername: Ministry of Education
  grantid: 112L9006
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 107-2221-E-002-173-MY3
– fundername: Ministry of Education
  grantid: MOE-110-YSFEE-0003-002-P1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
53G
7X8
ID FETCH-LOGICAL-c3736-59130ca0e5217b68be9e11ddfcc4db68980f769bd8fe5a4e4bf24471f3c95bbd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:40:11 EDT 2025
Sat Jul 12 02:48:24 EDT 2025
Thu Apr 03 07:08:34 EDT 2025
Tue Jul 01 04:41:24 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Thu Jan 23 09:59:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords electrochromic device
gel-polymer electrolyte
TAPA-PDA
Covalent organic framework (COF)
four-state electrochromism
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-59130ca0e5217b68be9e11ddfcc4db68980f769bd8fe5a4e4bf24471f3c95bbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1246-2531
PMID 39250327
PQID 3167825822
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3102469890
proquest_journals_3167825822
pubmed_primary_39250327
crossref_primary_10_1002_anie_202416046
crossref_citationtrail_10_1002_anie_202416046
wiley_primary_10_1002_anie_202416046_ANIE202416046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 21, 2025
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 01
  year: 2025
  text: January 21, 2025
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2018; 28
2023; 11
2023; 56
2020; 142
2023; 15
2023; 8
2023; 145
2013; 42
2015; 54
2023; 942
2024; 484
2019; 18
2017; 29
2020; 11
2021; 143
2023; 3
2019; 141
2024; 16
2014; 153
2022; 235
2022; 122
2022; 144
2016; 4
2015; 48
2016; 1
2021; 12
2021; 398
2021; 312
2023; 475
2023; 451
2010; 110
2022; 34
2022; 14
2019; 29
2015; 119
2015
2021; 60
2011; 49
2018; 11
2016; 49
2007; 46
2022; 247
1968
2016; 9
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_38_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_13_1
e_1_2_3_34_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_31_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_11_1
e_1_2_3_32_1
e_1_2_3_40_1
Granqvist C.-G. (e_1_2_3_9_1) 2015
e_1_2_3_27_1
e_1_2_3_28_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_24_1
e_1_2_3_45_1
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_42_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_22_1
e_1_2_3_43_1
References_xml – volume: 14
  start-page: 46876
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 1469
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 117
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 484
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 8574
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 54
  start-page: 9192
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 3053
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 60
  start-page: 12498
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 268
  year: 2010
  publication-title: Chem. Rev.
– volume: 247
  year: 2022
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 16
  start-page: 4958
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 2319
  year: 2023
  publication-title: Macromolecules
– volume: 143
  start-page: 7351
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1870
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 342
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 145
  start-page: 3248
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 3805
  year: 2011
  publication-title: J. Polym. Sci. Part A
– volume: 119
  start-page: 9460
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 25791
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 247
  year: 1968
  end-page: 422
– volume: 3
  start-page: 153
  year: 2023
  publication-title: ACS Nanosci. Au
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 153
  start-page: 5
  year: 2014
  publication-title: J. Lumin.
– volume: 141
  start-page: 19831
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12761
  year: 2019
  publication-title: J. Mater. Chem. C
– start-page: 1
  year: 2015
  end-page: 40
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 235
  year: 2022
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 4622
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 34
  start-page: 529
  year: 2022
  publication-title: Chem. Mater.
– volume: 18
  start-page: 1335
  year: 2019
  publication-title: Nat. Mater.
– volume: 122
  start-page: 14679
  year: 2022
  publication-title: Chem. Rev.
– volume: 312
  year: 2021
  publication-title: Microporous Mesoporous Mater.
– volume: 12
  start-page: 1587
  year: 2021
  publication-title: Nat. Commun.
– volume: 1
  start-page: 2792
  year: 2016
  publication-title: ChemistrySelect
– volume: 4
  start-page: 7364
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 142
  start-page: 783
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5534
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 12989
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 398
  year: 2021
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 2124
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 475
  year: 2023
  publication-title: Coord. Chem. Rev.
– year: 2015
– volume: 11
  start-page: 10107
  year: 2023
  publication-title: J. Mater. Chem. C
– volume: 942
  year: 2023
  publication-title: J. Electroanal. Chem.
– ident: e_1_2_3_8_1
  doi: 10.1021/cr900129a
– ident: e_1_2_3_45_1
  doi: 10.1039/C8EE00080H
– ident: e_1_2_3_21_1
  doi: 10.1002/adfm.201705553
– ident: e_1_2_3_44_1
  doi: 10.1038/s41563-019-0471-8
– ident: e_1_2_3_42_1
  doi: 10.1021/acs.macromol.2c01767
– ident: e_1_2_3_33_1
  doi: 10.1016/j.micromeso.2020.110739
– ident: e_1_2_3_29_1
  doi: 10.1016/j.solmat.2022.111969
– ident: e_1_2_3_2_1
  doi: 10.1021/acs.chemrev.1c01055
– ident: e_1_2_3_27_1
  doi: 10.1016/j.electacta.2021.139301
– ident: e_1_2_3_41_1
  doi: 10.1021/acsami.3c04685
– ident: e_1_2_3_47_1
  doi: 10.1039/C5EE03160E
– ident: e_1_2_3_10_1
  doi: 10.1039/C9TC00416E
– ident: e_1_2_3_11_1
  doi: 10.1039/D3TC01969A
– ident: e_1_2_3_13_1
  doi: 10.1038/s41467-021-21852-7
– ident: e_1_2_3_17_1
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_3_46_1
  doi: 10.1039/C6TC01150K
– ident: e_1_2_3_6_1
  doi: 10.1002/adma.201703238
– ident: e_1_2_3_14_1
  doi: 10.1016/j.ccr.2022.214891
– ident: e_1_2_3_15_1
  doi: 10.1016/j.cej.2024.149417
– ident: e_1_2_3_31_1
  doi: 10.1016/j.cej.2022.139082
– start-page: 1
  volume-title: Electrochromic Materials and Devices
  year: 2015
  ident: e_1_2_3_9_1
– ident: e_1_2_3_24_1
  doi: 10.1038/s41467-020-19315-6
– ident: e_1_2_3_35_1
  doi: 10.1021/acs.chemmater.1c02565
– ident: e_1_2_3_34_1
  doi: 10.1021/acsami.2c14341
– ident: e_1_2_3_12_1
  doi: 10.1002/adfm.201809223
– ident: e_1_2_3_38_1
  doi: 10.1002/slct.201600608
– ident: e_1_2_3_30_1
  doi: 10.1016/j.jelechem.2023.117563
– ident: e_1_2_3_28_1
  doi: 10.1016/j.solmat.2021.111489
– ident: e_1_2_3_39_1
  doi: 10.1016/S0065-2792(08)60179-X
– ident: e_1_2_3_36_1
  doi: 10.1002/pola.24819
– ident: e_1_2_3_43_1
  doi: 10.1002/anie.201504584
– ident: e_1_2_3_16_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_3_1_1
  doi: 10.1002/9783527679850
– ident: e_1_2_3_26_1
  doi: 10.1021/acsnanoscienceau.2c00049
– ident: e_1_2_3_20_1
  doi: 10.1021/jacs.2c05382
– ident: e_1_2_3_48_1
  doi: 10.1021/acsenergylett.3c00159
– ident: e_1_2_3_22_1
  doi: 10.1021/jacs.9b08628
– ident: e_1_2_3_23_1
  doi: 10.1021/jacs.9b09956
– ident: e_1_2_3_25_1
  doi: 10.1021/jacs.0c12392
– ident: e_1_2_3_3_1
  doi: 10.1002/anie.200701595
– ident: e_1_2_3_7_1
  doi: 10.1039/C9TC02861G
– ident: e_1_2_3_19_1
  doi: 10.1021/acsami.3c15521
– ident: e_1_2_3_32_1
  doi: 10.1002/anie.202100870
– ident: e_1_2_3_37_1
  doi: 10.1021/acs.jpcc.5b00310
– ident: e_1_2_3_4_1
  doi: 10.1021/acsami.3c16506
– ident: e_1_2_3_5_1
  doi: 10.1021/acs.accounts.6b00183
– ident: e_1_2_3_18_1
  doi: 10.1021/jacs.2c13817
– ident: e_1_2_3_40_1
  doi: 10.1016/j.jlumin.2014.02.032
SSID ssj0028806
Score 2.5296893
Snippet Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202416046
SubjectTerms Catalysis
Covalent organic framework (COF)
Drug delivery
Drug delivery systems
electrochromic device
Electrochromism
Energy conservation
four-state electrochromism
gel-polymer electrolyte
Imines
Logic circuits
TAPA-PDA
Title Four‐State Electrochromism in Tris(4‐aminophenyl)amine‐ terephthalaldehyde‐based Covalent Organic Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202416046
https://www.ncbi.nlm.nih.gov/pubmed/39250327
https://www.proquest.com/docview/3167825822
https://www.proquest.com/docview/3102469890
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXugFSssjfclISMAhbWI7r2O12lVBogfUSr1FfmordrNVd_fQnvoT-hv5JczEm9AFISS4Jc44D3vG841jfwPwznDvc19qDEusxAAFTbEUkseoO7KQ6A-UofmOL2f56YX8fJldPtrFH_gh-gk3sox2vCYDV3p-_JM0lHZgY3yHHijHGA8HYVqwRajoa88fxVE5w_YiIWLKQt-xNib8eL36ulf6DWquI9fW9Yyeg-peOqw4-Xa0XOgjc_cLn-P_fNUWPFvhUnYSFOkFPHHNNjwddOngdmA-QpHv9w8tOmXDkD3HjG9mKDBlVw07x-Hig0QJNb1qiK2guZ18pGOHZQy7z12PF2M1URPrxreWSsmFWjaYobaj72NhX6hho27B2Eu4GA3PB6fxKmNDbEQh8jir0CUalTgEBYXOS-0ql6bWemOkxfOqTHyRV9qW3mVKOqk9wosi9cJUmdZWvIKNZta4N8CUFFzlpXS5ttIIjGqcwuAnkU5VhfMqgrjrsdqs6Mwpq8akDkTMvKamrPumjOB9L38diDz-KLnfKUC9Muh5TYQBGEwjnIrgbX8ZW5j-r6jGzZYkg7eghJxJBK-D4vSPQhiaJYIXEfC2-__yDvXJ2adhf7b7L5X2YJNTruIkjXm6DxuLm6U7QAC10IetkfwACOMWfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8MBRYJBBzc2rvrvwOHKk2U0DYHlEq9mf2zUpE6VZMIhROPwKvwKjwCT8KMHRsFhJCQeuDmXY_X692ZnZn1zjcAzw0virhINbolVqKDgqKYCsl95B2ZSNQHytB-x9Ew7h_LtyfRyQZ8bWJhanyIdsONJKNar0nAaUN69ydqKIVgo4OHKihGJ291rvLALT-i1zZ7M9jHKX7Bea876vT9VWIB34hExH6U4cptVOBQdyU6TrXLXBhaWxgjLZazNCiSONM2LVykpJO6QC2YhIUwWaS1FdjuFbhKacQJrn__XYtYxVEc6oAmIXzKe9_gRAZ8d72_63rwN-N23VaulF3vBnxrhqk-4_JhZzHXO-bTLwiS_9U43oTrK9Ob7dWycgs2XHkbtjpNxrs7MOshyffPXyoDnHXrBEFmfDFFgjN2WrIRroivJFKos9OSABnK5eQ1XTusY8ih7nw8H6uJmlg3XlqqJSvBss4UBRrVO6tDXw3rNWfi7sLxpXzzPdgsp6V7AExJwVWcShdrK41Ax80p9O8C6VSWuEJ54DcskpsVYjslDpnkNdY0z2nq8nbqPHjZ0p_XWCV_pNxuOC5frVmznDARUh6hxejBs_Y2jjD9QlKlmy6IBpugnKOBB_drTm1fhZZ2FAieeMArfvtLH_K94aDblh7-y0NPYas_OjrMDwfDg0dwjVNq5iD0ebgNm_OLhXuM9uJcP6kklMH7y2blHyLndis
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o9AASOBgEPaxHZeBw7V7kZdCiuEWqm31E9txTa76u4KLSd-Aj-Fv8Jf4JcwzgstCCEh9cAtdiaOY894ZhzPNwBPFbU2tqlEt0RzdFBQFFPGqY-8wxOO-kAot9_xdhTvHfLXR9HRBnxtY2FqfIhuw81JRrVeOwGfabvzEzTURWCjf4caKEYfrzlWuW9WH9Fpm78a9nGGn1GaDw56e36TV8BXLGGxH2W4cCsRGFRdiYxTaTIThlpbpbjGcpYGNokzqVNrIsENlxaVYBJaprJISs2w3QtwkcdB5pJF9N93gFUUpaGOZ2LMd2nvW5jIgO6s93ddDf5m266bypWuy6_Bt3aU6iMuH7aXC7mtPv0CIPk_DeN1uNoY3mS3lpQbsGHKm3C51-a7uwXzHEm-f_5Smd9kUKcHUuOzKRKckpOSHOB6-IIjhTg9KR0cQ7mavHTXBusI8qeZjRdjMRETbcYr7WqdjaBJb4rijMqd1IGviuTtibjbcHgu33wHNstpae4BEZxREafcxFJzxdBtMwK9u4AbkSXGCg_8lkMK1eC1u7Qhk6JGmqaFm7qimzoPnnf0sxqp5I-UWy3DFc2KNS8cIkJKI7QXPXjS3cYRdj-QRGmmS0eDTbiMo4EHd2tG7V6FdnYUMJp4QCt2-0sfit3RcNCV7v_LQ4_h0rt-XrwZjvYfwBXq8jIHoU_DLdhcnC3NQzQWF_JRJZ8Ejs-bk38AP_B02g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-State+Electrochromism+in+Tris%284-aminophenyl%29amine-+terephthalaldehyde-based+Covalent+Organic+Framework&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Kumar+Silori%2C+Gaurav&rft.au=Chien%2C+Szu-Chia&rft.au=Lin%2C+Li-Chiang&rft.au=Ho%2C+Kuo-Chuan&rft.date=2025-01-21&rft.eissn=1521-3773&rft.volume=64&rft.issue=4&rft.spage=e202416046&rft_id=info:doi/10.1002%2Fanie.202416046&rft_id=info%3Apmid%2F39250327&rft.externalDocID=39250327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon