Four‐State Electrochromism in Tris(4‐aminophenyl)amine‐ terephthalaldehyde‐based Covalent Organic Framework
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism mark...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 4; pp. e202416046 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.01.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices.
While several electrochromic COFs (denoted as ecCOFs) have been reported to date, a closer survey suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state (orange, pear, green, and cyan) electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde‐based COF constructed through the metal‐catalyst free Schiff base approach. |
---|---|
AbstractList | Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices. Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [ J. Am. Chem. Soc. 2019, 141, 19831–19838 ]. Since then, new and novel COF structures with electrochromic features (denoted as ec COFs) have been searched continuously. Yet, only a handful of ec COFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [ Angew. Chem. 2021, 133, 12606–1261 ]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ec COF opens several futuristic avenues for ec COF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices. Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as COFs) have been searched continuously. Yet, only a handful of COFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA COF opens several futuristic avenues for COF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices. Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application‐oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831–19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde (TAPA‐PDA)‐based COF constructed through the metal‐catalyst free Schiff base approach. The four‐state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA‐PDA ecCOF opens several futuristic avenues for ecCOF′s end use in flip‐flop logic gates, intelligent windows, decorative displays, and energy‐saving devices. While several electrochromic COFs (denoted as ecCOFs) have been reported to date, a closer survey suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three‐state electrochromism [Angew. Chem. 2021, 133, 12606–1261]. Herein, we report four‐state (orange, pear, green, and cyan) electrochromism in tris(4‐aminophenyl)amine‐terephthalaldehyde‐based COF constructed through the metal‐catalyst free Schiff base approach. Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices. |
Author | Kumar Silori, Gaurav Lin, Li‐Chiang Ho, Kuo‐Chuan Chien, Szu‐Chia |
Author_xml | – sequence: 1 givenname: Gaurav surname: Kumar Silori fullname: Kumar Silori, Gaurav organization: National Taiwan University – sequence: 2 givenname: Szu‐Chia surname: Chien fullname: Chien, Szu‐Chia organization: National Central University – sequence: 3 givenname: Li‐Chiang surname: Lin fullname: Lin, Li‐Chiang organization: The Ohio State University – sequence: 4 givenname: Kuo‐Chuan orcidid: 0000-0002-1246-2531 surname: Ho fullname: Ho, Kuo‐Chuan email: kcho@ntu.edu.tw organization: National Taiwan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39250327$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJFYlMWGfyX2F5WoxmoVNEFZR059g1xcezBzrSaHY_AM_IkeDSlSJUQK19ffce-95xTdBRiAIReE7wgGNP3OjhYUEw5aTFvn6ET0lBSMyHYUak5Y7WQDTlGpznfFl5K3L5Ax0zRBjMqTlBex2369ePn51nPUK08mDlFM6Y4uTxVLlQ3yeVzXgg9uRA3I4Sdf7evofSqGRJsxnnUXnsL487uu73OYKtlvNMewlxdp69lSlOtk57gPqZvL9HzQfsMrx7OM_RlvbpZfqyvrj9cLi-uasMEa-tGEYaNxlA2En0re1BAiLWDMdyWu5J4EK3qrRyg0Rx4P1DOBRmYUU3fW3aGzg_vblL8voU8d2UpA97rAHGbO0aKb62SChf07RP0tvgSynSFaoWkjaS0UG8eqG0_ge02yU067bo_dhZgcQBMijknGB4Rgrt9Xt0-r-4xryLgTwTGlSRcDHPSzv9bpg6ye-dh959PuotPl6u_2t9fR69Q |
CitedBy_id | crossref_primary_10_1021_acsami_4c16702 |
Cites_doi | 10.1021/cr900129a 10.1039/C8EE00080H 10.1002/adfm.201705553 10.1038/s41563-019-0471-8 10.1021/acs.macromol.2c01767 10.1016/j.micromeso.2020.110739 10.1016/j.solmat.2022.111969 10.1021/acs.chemrev.1c01055 10.1016/j.electacta.2021.139301 10.1021/acsami.3c04685 10.1039/C5EE03160E 10.1039/C9TC00416E 10.1039/D3TC01969A 10.1038/s41467-021-21852-7 10.1021/acs.accounts.5b00369 10.1039/C6TC01150K 10.1002/adma.201703238 10.1016/j.ccr.2022.214891 10.1016/j.cej.2024.149417 10.1016/j.cej.2022.139082 10.1038/s41467-020-19315-6 10.1021/acs.chemmater.1c02565 10.1021/acsami.2c14341 10.1002/adfm.201809223 10.1002/slct.201600608 10.1016/j.jelechem.2023.117563 10.1016/j.solmat.2021.111489 10.1016/S0065-2792(08)60179-X 10.1002/pola.24819 10.1002/anie.201504584 10.1039/C2CS35072F 10.1002/9783527679850 10.1021/acsnanoscienceau.2c00049 10.1021/jacs.2c05382 10.1021/acsenergylett.3c00159 10.1021/jacs.9b08628 10.1021/jacs.9b09956 10.1021/jacs.0c12392 10.1002/anie.200701595 10.1039/C9TC02861G 10.1021/acsami.3c15521 10.1002/anie.202100870 10.1021/acs.jpcc.5b00310 10.1021/acsami.3c16506 10.1021/acs.accounts.6b00183 10.1021/jacs.2c13817 10.1016/j.jlumin.2014.02.032 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. 2025 Wiley-VCH GmbH |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. – notice: 2025 Wiley-VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202416046 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 39250327 10_1002_anie_202416046 ANIE202416046 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Ministry of Education funderid: 112L9006; MOE-110-YSFEE-0003-002-P1 – fundername: Ministry of Science and Technology, Taiwan funderid: 111-2221-E-002-019-MY3; 107-2221-E-002-173-MY3 – fundername: National Science and Technology Council funderid: 110-2222-E-008-007-MY3 – fundername: National Science and Technology Council grantid: 110-2222-E-008-007-MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: 111-2221-E-002-019-MY3 – fundername: Ministry of Education grantid: 112L9006 – fundername: Ministry of Science and Technology, Taiwan grantid: 107-2221-E-002-173-MY3 – fundername: Ministry of Education grantid: MOE-110-YSFEE-0003-002-P1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 53G 7X8 |
ID | FETCH-LOGICAL-c3736-59130ca0e5217b68be9e11ddfcc4db68980f769bd8fe5a4e4bf24471f3c95bbd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:40:11 EDT 2025 Sat Jul 12 02:48:24 EDT 2025 Thu Apr 03 07:08:34 EDT 2025 Tue Jul 01 04:41:24 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Thu Jan 23 09:59:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | electrochromic device gel-polymer electrolyte TAPA-PDA Covalent organic framework (COF) four-state electrochromism |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-59130ca0e5217b68be9e11ddfcc4db68980f769bd8fe5a4e4bf24471f3c95bbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1246-2531 |
PMID | 39250327 |
PQID | 3167825822 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3102469890 proquest_journals_3167825822 pubmed_primary_39250327 crossref_primary_10_1002_anie_202416046 crossref_citationtrail_10_1002_anie_202416046 wiley_primary_10_1002_anie_202416046_ANIE202416046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 21, 2025 |
PublicationDateYYYYMMDD | 2025-01-21 |
PublicationDate_xml | – month: 01 year: 2025 text: January 21, 2025 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2018; 28 2023; 11 2023; 56 2020; 142 2023; 15 2023; 8 2023; 145 2013; 42 2015; 54 2023; 942 2024; 484 2019; 18 2017; 29 2020; 11 2021; 143 2023; 3 2019; 141 2024; 16 2014; 153 2022; 235 2022; 122 2022; 144 2016; 4 2015; 48 2016; 1 2021; 12 2021; 398 2021; 312 2023; 475 2023; 451 2010; 110 2022; 34 2022; 14 2019; 29 2015; 119 2015 2021; 60 2011; 49 2018; 11 2016; 49 2007; 46 2022; 247 1968 2016; 9 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_38_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_13_1 e_1_2_3_34_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_31_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_11_1 e_1_2_3_32_1 e_1_2_3_40_1 Granqvist C.-G. (e_1_2_3_9_1) 2015 e_1_2_3_27_1 e_1_2_3_28_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_24_1 e_1_2_3_45_1 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_42_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_22_1 e_1_2_3_43_1 |
References_xml | – volume: 14 start-page: 46876 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 1469 year: 2016 publication-title: Acc. Chem. Res. – volume: 9 start-page: 117 year: 2016 publication-title: Energy Environ. Sci. – volume: 484 year: 2024 publication-title: Chem. Eng. J. – volume: 46 start-page: 8574 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 54 start-page: 9192 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 3053 year: 2015 publication-title: Acc. Chem. Res. – volume: 60 start-page: 12498 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 268 year: 2010 publication-title: Chem. Rev. – volume: 247 year: 2022 publication-title: Sol. Energy Mater. Sol. Cells – volume: 16 start-page: 4958 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 2319 year: 2023 publication-title: Macromolecules – volume: 143 start-page: 7351 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1870 year: 2023 publication-title: ACS Energy Lett. – volume: 16 start-page: 342 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 145 start-page: 3248 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 3805 year: 2011 publication-title: J. Polym. Sci. Part A – volume: 119 start-page: 9460 year: 2015 publication-title: J. Phys. Chem. C – volume: 15 start-page: 25791 year: 2023 publication-title: ACS Appl. Mater. Interfaces – start-page: 247 year: 1968 end-page: 422 – volume: 3 start-page: 153 year: 2023 publication-title: ACS Nanosci. Au – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 153 start-page: 5 year: 2014 publication-title: J. Lumin. – volume: 141 start-page: 19831 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 12761 year: 2019 publication-title: J. Mater. Chem. C – start-page: 1 year: 2015 end-page: 40 – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 235 year: 2022 publication-title: Sol. Energy Mater. Sol. Cells – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 4622 year: 2019 publication-title: J. Mater. Chem. C – volume: 34 start-page: 529 year: 2022 publication-title: Chem. Mater. – volume: 18 start-page: 1335 year: 2019 publication-title: Nat. Mater. – volume: 122 start-page: 14679 year: 2022 publication-title: Chem. Rev. – volume: 312 year: 2021 publication-title: Microporous Mesoporous Mater. – volume: 12 start-page: 1587 year: 2021 publication-title: Nat. Commun. – volume: 1 start-page: 2792 year: 2016 publication-title: ChemistrySelect – volume: 4 start-page: 7364 year: 2016 publication-title: J. Mater. Chem. C – volume: 142 start-page: 783 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5534 year: 2020 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 12989 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 398 year: 2021 publication-title: Electrochim. Acta – volume: 11 start-page: 2124 year: 2018 publication-title: Energy Environ. Sci. – volume: 475 year: 2023 publication-title: Coord. Chem. Rev. – year: 2015 – volume: 11 start-page: 10107 year: 2023 publication-title: J. Mater. Chem. C – volume: 942 year: 2023 publication-title: J. Electroanal. Chem. – ident: e_1_2_3_8_1 doi: 10.1021/cr900129a – ident: e_1_2_3_45_1 doi: 10.1039/C8EE00080H – ident: e_1_2_3_21_1 doi: 10.1002/adfm.201705553 – ident: e_1_2_3_44_1 doi: 10.1038/s41563-019-0471-8 – ident: e_1_2_3_42_1 doi: 10.1021/acs.macromol.2c01767 – ident: e_1_2_3_33_1 doi: 10.1016/j.micromeso.2020.110739 – ident: e_1_2_3_29_1 doi: 10.1016/j.solmat.2022.111969 – ident: e_1_2_3_2_1 doi: 10.1021/acs.chemrev.1c01055 – ident: e_1_2_3_27_1 doi: 10.1016/j.electacta.2021.139301 – ident: e_1_2_3_41_1 doi: 10.1021/acsami.3c04685 – ident: e_1_2_3_47_1 doi: 10.1039/C5EE03160E – ident: e_1_2_3_10_1 doi: 10.1039/C9TC00416E – ident: e_1_2_3_11_1 doi: 10.1039/D3TC01969A – ident: e_1_2_3_13_1 doi: 10.1038/s41467-021-21852-7 – ident: e_1_2_3_17_1 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_3_46_1 doi: 10.1039/C6TC01150K – ident: e_1_2_3_6_1 doi: 10.1002/adma.201703238 – ident: e_1_2_3_14_1 doi: 10.1016/j.ccr.2022.214891 – ident: e_1_2_3_15_1 doi: 10.1016/j.cej.2024.149417 – ident: e_1_2_3_31_1 doi: 10.1016/j.cej.2022.139082 – start-page: 1 volume-title: Electrochromic Materials and Devices year: 2015 ident: e_1_2_3_9_1 – ident: e_1_2_3_24_1 doi: 10.1038/s41467-020-19315-6 – ident: e_1_2_3_35_1 doi: 10.1021/acs.chemmater.1c02565 – ident: e_1_2_3_34_1 doi: 10.1021/acsami.2c14341 – ident: e_1_2_3_12_1 doi: 10.1002/adfm.201809223 – ident: e_1_2_3_38_1 doi: 10.1002/slct.201600608 – ident: e_1_2_3_30_1 doi: 10.1016/j.jelechem.2023.117563 – ident: e_1_2_3_28_1 doi: 10.1016/j.solmat.2021.111489 – ident: e_1_2_3_39_1 doi: 10.1016/S0065-2792(08)60179-X – ident: e_1_2_3_36_1 doi: 10.1002/pola.24819 – ident: e_1_2_3_43_1 doi: 10.1002/anie.201504584 – ident: e_1_2_3_16_1 doi: 10.1039/C2CS35072F – ident: e_1_2_3_1_1 doi: 10.1002/9783527679850 – ident: e_1_2_3_26_1 doi: 10.1021/acsnanoscienceau.2c00049 – ident: e_1_2_3_20_1 doi: 10.1021/jacs.2c05382 – ident: e_1_2_3_48_1 doi: 10.1021/acsenergylett.3c00159 – ident: e_1_2_3_22_1 doi: 10.1021/jacs.9b08628 – ident: e_1_2_3_23_1 doi: 10.1021/jacs.9b09956 – ident: e_1_2_3_25_1 doi: 10.1021/jacs.0c12392 – ident: e_1_2_3_3_1 doi: 10.1002/anie.200701595 – ident: e_1_2_3_7_1 doi: 10.1039/C9TC02861G – ident: e_1_2_3_19_1 doi: 10.1021/acsami.3c15521 – ident: e_1_2_3_32_1 doi: 10.1002/anie.202100870 – ident: e_1_2_3_37_1 doi: 10.1021/acs.jpcc.5b00310 – ident: e_1_2_3_4_1 doi: 10.1021/acsami.3c16506 – ident: e_1_2_3_5_1 doi: 10.1021/acs.accounts.6b00183 – ident: e_1_2_3_18_1 doi: 10.1021/jacs.2c13817 – ident: e_1_2_3_40_1 doi: 10.1016/j.jlumin.2014.02.032 |
SSID | ssj0028806 |
Score | 2.5296893 |
Snippet | Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202416046 |
SubjectTerms | Catalysis Covalent organic framework (COF) Drug delivery Drug delivery systems electrochromic device Electrochromism Energy conservation four-state electrochromism gel-polymer electrolyte Imines Logic circuits TAPA-PDA |
Title | Four‐State Electrochromism in Tris(4‐aminophenyl)amine‐ terephthalaldehyde‐based Covalent Organic Framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202416046 https://www.ncbi.nlm.nih.gov/pubmed/39250327 https://www.proquest.com/docview/3167825822 https://www.proquest.com/docview/3102469890 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXugFSssjfclISMAhbWI7r2O12lVBogfUSr1FfmordrNVd_fQnvoT-hv5JczEm9AFISS4Jc44D3vG841jfwPwznDvc19qDEusxAAFTbEUkseoO7KQ6A-UofmOL2f56YX8fJldPtrFH_gh-gk3sox2vCYDV3p-_JM0lHZgY3yHHijHGA8HYVqwRajoa88fxVE5w_YiIWLKQt-xNib8eL36ulf6DWquI9fW9Yyeg-peOqw4-Xa0XOgjc_cLn-P_fNUWPFvhUnYSFOkFPHHNNjwddOngdmA-QpHv9w8tOmXDkD3HjG9mKDBlVw07x-Hig0QJNb1qiK2guZ18pGOHZQy7z12PF2M1URPrxreWSsmFWjaYobaj72NhX6hho27B2Eu4GA3PB6fxKmNDbEQh8jir0CUalTgEBYXOS-0ql6bWemOkxfOqTHyRV9qW3mVKOqk9wosi9cJUmdZWvIKNZta4N8CUFFzlpXS5ttIIjGqcwuAnkU5VhfMqgrjrsdqs6Mwpq8akDkTMvKamrPumjOB9L38diDz-KLnfKUC9Muh5TYQBGEwjnIrgbX8ZW5j-r6jGzZYkg7eghJxJBK-D4vSPQhiaJYIXEfC2-__yDvXJ2adhf7b7L5X2YJNTruIkjXm6DxuLm6U7QAC10IetkfwACOMWfg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8MBRYJBBzc2rvrvwOHKk2U0DYHlEq9mf2zUpE6VZMIhROPwKvwKjwCT8KMHRsFhJCQeuDmXY_X692ZnZn1zjcAzw0virhINbolVqKDgqKYCsl95B2ZSNQHytB-x9Ew7h_LtyfRyQZ8bWJhanyIdsONJKNar0nAaUN69ydqKIVgo4OHKihGJ291rvLALT-i1zZ7M9jHKX7Bea876vT9VWIB34hExH6U4cptVOBQdyU6TrXLXBhaWxgjLZazNCiSONM2LVykpJO6QC2YhIUwWaS1FdjuFbhKacQJrn__XYtYxVEc6oAmIXzKe9_gRAZ8d72_63rwN-N23VaulF3vBnxrhqk-4_JhZzHXO-bTLwiS_9U43oTrK9Ob7dWycgs2XHkbtjpNxrs7MOshyffPXyoDnHXrBEFmfDFFgjN2WrIRroivJFKos9OSABnK5eQ1XTusY8ih7nw8H6uJmlg3XlqqJSvBss4UBRrVO6tDXw3rNWfi7sLxpXzzPdgsp6V7AExJwVWcShdrK41Ax80p9O8C6VSWuEJ54DcskpsVYjslDpnkNdY0z2nq8nbqPHjZ0p_XWCV_pNxuOC5frVmznDARUh6hxejBs_Y2jjD9QlKlmy6IBpugnKOBB_drTm1fhZZ2FAieeMArfvtLH_K94aDblh7-y0NPYas_OjrMDwfDg0dwjVNq5iD0ebgNm_OLhXuM9uJcP6kklMH7y2blHyLndis |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o9AASOBgEPaxHZeBw7V7kZdCiuEWqm31E9txTa76u4KLSd-Aj-Fv8Jf4JcwzgstCCEh9cAtdiaOY894ZhzPNwBPFbU2tqlEt0RzdFBQFFPGqY-8wxOO-kAot9_xdhTvHfLXR9HRBnxtY2FqfIhuw81JRrVeOwGfabvzEzTURWCjf4caKEYfrzlWuW9WH9Fpm78a9nGGn1GaDw56e36TV8BXLGGxH2W4cCsRGFRdiYxTaTIThlpbpbjGcpYGNokzqVNrIsENlxaVYBJaprJISs2w3QtwkcdB5pJF9N93gFUUpaGOZ2LMd2nvW5jIgO6s93ddDf5m266bypWuy6_Bt3aU6iMuH7aXC7mtPv0CIPk_DeN1uNoY3mS3lpQbsGHKm3C51-a7uwXzHEm-f_5Smd9kUKcHUuOzKRKckpOSHOB6-IIjhTg9KR0cQ7mavHTXBusI8qeZjRdjMRETbcYr7WqdjaBJb4rijMqd1IGviuTtibjbcHgu33wHNstpae4BEZxREafcxFJzxdBtMwK9u4AbkSXGCg_8lkMK1eC1u7Qhk6JGmqaFm7qimzoPnnf0sxqp5I-UWy3DFc2KNS8cIkJKI7QXPXjS3cYRdj-QRGmmS0eDTbiMo4EHd2tG7V6FdnYUMJp4QCt2-0sfit3RcNCV7v_LQ4_h0rt-XrwZjvYfwBXq8jIHoU_DLdhcnC3NQzQWF_JRJZ8Ejs-bk38AP_B02g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-State+Electrochromism+in+Tris%284-aminophenyl%29amine-+terephthalaldehyde-based+Covalent+Organic+Framework&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Kumar+Silori%2C+Gaurav&rft.au=Chien%2C+Szu-Chia&rft.au=Lin%2C+Li-Chiang&rft.au=Ho%2C+Kuo-Chuan&rft.date=2025-01-21&rft.eissn=1521-3773&rft.volume=64&rft.issue=4&rft.spage=e202416046&rft_id=info:doi/10.1002%2Fanie.202416046&rft_id=info%3Apmid%2F39250327&rft.externalDocID=39250327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |