Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters
A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mo...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 22; pp. e202201886 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
23.05.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene (SBF) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework.
By incorporating a three‐dimensional spiro unit into multiple resonance thermally activated delayed fluorescence emitters, the device efficiency is increased to nearly 1.5 times that of the unhindered emitter. Notably, the linkage pattern with spatial interaction and hindrance can maintain the narrow FWHM and curb unfavorable redshifts at a high doping ratio. |
---|---|
AbstractList | A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework. A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene (SBF) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework. By incorporating a three‐dimensional spiro unit into multiple resonance thermally activated delayed fluorescence emitters, the device efficiency is increased to nearly 1.5 times that of the unhindered emitter. Notably, the linkage pattern with spatial interaction and hindrance can maintain the narrow FWHM and curb unfavorable redshifts at a high doping ratio. A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework. A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene ( SBF ) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN , seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework. A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9 '-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (approximate to 27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in pi-framework. |
ArticleNumber | 202201886 |
Author | Feng, Zi‐Qi Zhu, Yuan‐Hao Fan, Jian Tang, Xun Liao, Liang‐Sheng Kong, Fan‐Cheng Adachi, Chihaya Jiang, Zuo‐Quan Zhou, Dong‐Ying Huang, Chen‐Chao Qu, Yang‐Kun Zheng, Qi |
Author_xml | – sequence: 1 givenname: Yang‐Kun orcidid: 0000-0003-0241-308X surname: Qu fullname: Qu, Yang‐Kun organization: Soochow University – sequence: 2 givenname: Dong‐Ying surname: Zhou fullname: Zhou, Dong‐Ying organization: Soochow University – sequence: 3 givenname: Fan‐Cheng surname: Kong fullname: Kong, Fan‐Cheng organization: Soochow University – sequence: 4 givenname: Qi surname: Zheng fullname: Zheng, Qi organization: Soochow University – sequence: 5 givenname: Xun surname: Tang fullname: Tang, Xun organization: Kyushu University – sequence: 6 givenname: Yuan‐Hao surname: Zhu fullname: Zhu, Yuan‐Hao organization: Soochow University – sequence: 7 givenname: Chen‐Chao surname: Huang fullname: Huang, Chen‐Chao organization: Soochow University – sequence: 8 givenname: Zi‐Qi surname: Feng fullname: Feng, Zi‐Qi organization: Soochow University – sequence: 9 givenname: Jian surname: Fan fullname: Fan, Jian organization: Soochow University – sequence: 10 givenname: Chihaya surname: Adachi fullname: Adachi, Chihaya organization: Kyushu University – sequence: 11 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng organization: Macau University of Science and Technology – sequence: 12 givenname: Zuo‐Quan orcidid: 0000-0003-4447-2408 surname: Jiang fullname: Jiang, Zuo‐Quan email: zqjiang@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35293091$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctrGzEQh0VJaB7ttcci6KUQ1tFrV9pjMG4SyAPq5rxotaNWYS25kpbi_75y7boQKO1p5vB9M8P8ztCRDx4QekfJjBLCLrV3MGOEMUKVal6hU1ozWnEp-VHpBeeVVDU9QWcpPRdeKdK8Rie8Zi0nLT1FT8sM0Rl8H4Zp1NkFj4PFy7WLAS9znEyeImAbIr5xX7-NG7yw1hkHPuP7acxuPQL-DCl47Q3gxcrlMi-9QcdWjwne7us5evq0-DK_qe4er2_nV3eV4ZI3VU16oW3faGJ7aoah6VtWC8aZMY3mqpZWCssG3g5aguhb6Ilqe80aW3quLT9HH3dz1zF8nyDlbuWSgXHUHsKUOtYIQoTijBX0wwv0OUzRl-sK1QhZC87qQr3fU1O_gqFbR7fScdP9flgB1A74AX2wafsJAweMECJlTSkr2RBC5y7_euk8TD4X9eL_1ULPdrSJIaUI9kBS0m2j77bRd4foiyBeCGa_Pkftxr9r7f4qN8LmH0u6q4fbxR_3J6hgwLk |
CitedBy_id | crossref_primary_10_1039_D3TC00676J crossref_primary_10_1002_adma_202409746 crossref_primary_10_1002_ange_202310943 crossref_primary_10_1021_acsami_2c22266 crossref_primary_10_1016_j_cej_2024_155350 crossref_primary_10_1039_D3CC01235B crossref_primary_10_1002_smll_202409328 crossref_primary_10_1039_D4SC03705G crossref_primary_10_1002_anie_202408712 crossref_primary_10_1002_ange_202216473 crossref_primary_10_1002_jccs_202300315 crossref_primary_10_1016_j_jorganchem_2022_122564 crossref_primary_10_1002_adom_202402464 crossref_primary_10_1002_agt2_585 crossref_primary_10_1002_adom_202203002 crossref_primary_10_1002_adfm_202316355 crossref_primary_10_1002_adma_202307725 crossref_primary_10_1002_adom_202202950 crossref_primary_10_1002_anie_202401120 crossref_primary_10_1002_ange_202316479 crossref_primary_10_1002_anie_202300934 crossref_primary_10_1039_D2TC04952J crossref_primary_10_1039_D3TC01321A crossref_primary_10_1093_nsr_nwae115 crossref_primary_10_1002_ange_202415607 crossref_primary_10_1002_flm2_15 crossref_primary_10_1016_j_cej_2024_155864 crossref_primary_10_1016_j_dyepig_2023_111520 crossref_primary_10_1002_anie_202301988 crossref_primary_10_1055_a_2213_1732 crossref_primary_10_1007_s11426_024_2057_7 crossref_primary_10_1002_adpr_202200201 crossref_primary_10_1002_anie_202415113 crossref_primary_10_1016_j_cjsc_2024_100451 crossref_primary_10_1002_adma_202209396 crossref_primary_10_1039_D4TC05428H crossref_primary_10_1002_anie_202316479 crossref_primary_10_1002_adom_202302987 crossref_primary_10_1021_acs_jpcc_4c04343 crossref_primary_10_1021_acsmaterialslett_4c00178 crossref_primary_10_1002_anie_202212861 crossref_primary_10_1002_adfm_202313726 crossref_primary_10_1002_anie_202213157 crossref_primary_10_1021_acsmaterialslett_4c00210 crossref_primary_10_1002_adom_202403139 crossref_primary_10_1002_adom_202401754 crossref_primary_10_1002_adom_202402960 crossref_primary_10_1002_anie_202310943 crossref_primary_10_1016_j_cej_2023_144664 crossref_primary_10_1002_anie_202415400 crossref_primary_10_1021_jacs_2c10946 crossref_primary_10_1021_jacs_3c02873 crossref_primary_10_3389_fchem_2023_1198404 crossref_primary_10_1002_adfm_202213056 crossref_primary_10_1039_D3TC00065F crossref_primary_10_1002_ange_202312451 crossref_primary_10_1016_j_chempr_2024_10_020 crossref_primary_10_1002_adom_202203065 crossref_primary_10_1039_D3CS00871A crossref_primary_10_70401_smd_2025_0001 crossref_primary_10_1002_adom_202201714 crossref_primary_10_1088_2058_8585_acf326 crossref_primary_10_1002_cjoc_202200356 crossref_primary_10_1002_anie_202420489 crossref_primary_10_3390_molecules27228099 crossref_primary_10_1002_ange_202318742 crossref_primary_10_1002_smll_202407220 crossref_primary_10_6023_cjoc202304027 crossref_primary_10_1002_anie_202312451 crossref_primary_10_1002_asia_202401640 crossref_primary_10_1038_s41467_024_50370_5 crossref_primary_10_1038_s41528_022_00212_5 crossref_primary_10_1002_ange_202301988 crossref_primary_10_1002_ange_202300934 crossref_primary_10_1039_D3TC04771G crossref_primary_10_6023_cjoc202212037 crossref_primary_10_1021_acsaenm_4c00196 crossref_primary_10_1002_adom_202300195 crossref_primary_10_1038_s41467_024_50815_x crossref_primary_10_1002_ange_202415113 crossref_primary_10_1016_j_cej_2024_151517 crossref_primary_10_1039_D3CS00837A crossref_primary_10_1002_anie_202411268 crossref_primary_10_1126_sciadv_adh8296 crossref_primary_10_1002_adfm_202404278 crossref_primary_10_1016_j_cej_2024_150785 crossref_primary_10_1016_j_dyepig_2024_111981 crossref_primary_10_1016_j_cej_2023_142900 crossref_primary_10_1038_s41467_024_44981_1 crossref_primary_10_1002_adma_202205166 crossref_primary_10_1002_anie_202423002 crossref_primary_10_1002_ange_202401120 crossref_primary_10_1002_adfm_202211893 crossref_primary_10_1002_ange_202316710 crossref_primary_10_1002_ange_202408712 crossref_primary_10_1002_ange_202213157 crossref_primary_10_1002_anie_202212575 crossref_primary_10_1002_ange_202212861 crossref_primary_10_1016_j_cjph_2025_02_031 crossref_primary_10_1016_j_orgel_2024_107084 crossref_primary_10_1038_s41563_024_01812_4 crossref_primary_10_1002_agt2_391 crossref_primary_10_1002_adom_202303295 crossref_primary_10_1002_ange_202415400 crossref_primary_10_1039_D4TC00429A crossref_primary_10_1039_D3SC06470K crossref_primary_10_1039_D3SC00246B crossref_primary_10_1039_D4SC05383D crossref_primary_10_1002_anie_202216473 crossref_primary_10_1002_ange_202423002 crossref_primary_10_1002_anie_202316710 crossref_primary_10_1007_s11426_022_1382_5 crossref_primary_10_1002_adom_202301217 crossref_primary_10_1039_D4MH00634H crossref_primary_10_1002_ange_202212575 crossref_primary_10_1002_adma_202400158 crossref_primary_10_1021_acsami_3c14514 crossref_primary_10_1039_D3TC02708B crossref_primary_10_1016_j_orgel_2024_107072 crossref_primary_10_1002_adom_202302791 crossref_primary_10_1002_ange_202306413 crossref_primary_10_1016_j_cej_2024_148794 crossref_primary_10_1002_adom_202403459 crossref_primary_10_1002_anie_202301930 crossref_primary_10_1002_adom_202401033 crossref_primary_10_1039_D3TC02902F crossref_primary_10_1002_ange_202420489 crossref_primary_10_1039_D4SC07503J crossref_primary_10_1039_D4SC08708A crossref_primary_10_1002_anie_202415607 crossref_primary_10_1039_D4SC04835K crossref_primary_10_1007_s11426_023_1669_9 crossref_primary_10_1016_j_cej_2023_142848 crossref_primary_10_1039_D3QM00498H crossref_primary_10_1002_anie_202318742 crossref_primary_10_1002_adom_202301732 crossref_primary_10_1002_cphc_202400955 crossref_primary_10_1002_ange_202301930 crossref_primary_10_1002_ange_202411268 crossref_primary_10_1002_anie_202306413 |
Cites_doi | 10.1002/ange.202109335 10.1038/nature11687 10.1021/cr0501341 10.1002/ange.202011384 10.1002/adfm.201908677 10.1002/adfm.202104980 10.1002/anie.202007210 10.1016/S0009-2614(97)01466-8 10.1002/anie.202106315 10.1002/anie.202109335 10.1002/anie.202113206 10.1021/acsami.1c11399 10.1002/adom.202000922 10.1021/jacs.7b10578 10.1002/anie.202011384 10.1021/accountsmr.1c00208 10.1002/ange.201813604 10.1002/adom.202100825 10.1038/s41566-021-00763-5 10.1002/adma.202104125 10.1002/ange.202007210 10.1021/acsami.0c20619 10.1002/adom.201801536 10.1002/ange.202106315 10.1038/s41563-020-0710-z 10.1002/adma.201401476 10.1002/adom.201901627 10.1038/s41566-020-00745-z 10.1016/j.cclet.2020.08.045 10.1002/chem.201700570 10.1038/s41566-020-0667-0 10.1039/b508541a 10.1002/adom.201902142 10.1063/1.5089637 10.1002/anie.201911266 10.1002/anie.201813604 10.1038/s41566-019-0476-5 10.1002/ange.202107848 10.1039/C9CC07169E 10.1039/C7CP02110K 10.1021/acs.chemrev.5b00263 10.1021/om100106e 10.1021/acs.orglett.0c04159 10.1038/s41467-019-08495-5 10.1021/jacs.0c10081 10.1038/natrevmats.2018.20 10.1002/adma.202004072 10.1021/acs.jpcc.9b02507 10.1002/adma.201505491 10.1039/C5MH00258C 10.1002/adma.202105080 10.1002/anie.202107848 10.1002/ange.201911266 10.1038/s41566-021-00870-3 10.1002/ange.202113206 10.31635/ccschem.021.202101033 10.1002/adma.201908355 10.1063/1.110582 10.1039/b810189b 10.1002/adma.202000193 10.1002/adma.202008029 10.1039/c5mh00258c 10.1039/c7cp02110k 10.1016/j.mtener.2021.100792 10.1002/anie.202116854 10.1039/c9cc07169e |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202201886 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35293091 000775112100001 10_1002_anie_202201886 ANIE202201886 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51873139; 61961160731; 62175171; 22175124 – fundername: Suzhou Science and Technology Plan Project funderid: SYG202010 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 51873139; 61961160731; 62175171; 22175124 – fundername: Suzhou Science and Technology Plan Project grantid: SYG202010 – fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Centre of Suzhou Nano Science & Technology (Nano-CIC) – fundername: "111" Project; Ministry of Education, China - 111 Project – fundername: National Natural Science Foundation of China grantid: 22175124 – fundername: National Natural Science Foundation of China grantid: 61961160731 – fundername: National Natural Science Foundation of China grantid: 62175171 – fundername: National Natural Science Foundation of China grantid: 51873139 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3736-50b4afb6a0fb1cdd6b9254232cc6a3857f74f2d39da7e4b9eb089ba26fb9e3af3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 139 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000775112100001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 23:51:03 EDT 2025 Fri Jul 25 10:25:01 EDT 2025 Mon Jul 21 06:00:36 EDT 2025 Fri Aug 29 16:11:44 EDT 2025 Mon Jul 21 06:55:32 EDT 2025 Tue Jul 01 01:18:18 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Wed Jan 22 16:25:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Spiro Compounds Steric Effects Fluorescence OLEDs DIODES Multiple Resonance Thermally Activated Delayed Fluorescence EMISSION |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3736-50b4afb6a0fb1cdd6b9254232cc6a3857f74f2d39da7e4b9eb089ba26fb9e3af3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4447-2408 0000-0003-0241-308X 0000-0002-2645-6212 0000-0003-3385-1613 0000-0001-6117-9604 0000-0001-6209-2578 |
PMID | 35293091 |
PQID | 2664754325 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_anie_202201886 wiley_primary_10_1002_anie_202201886_ANIE202201886 webofscience_primary_000775112100001CitationCount crossref_citationtrail_10_1002_anie_202201886 proquest_journals_2664754325 webofscience_primary_000775112100001 proquest_miscellaneous_2640048322 pubmed_primary_35293091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 23, 2022 |
PublicationDateYYYYMMDD | 2022-05-23 |
PublicationDate_xml | – month: 05 year: 2022 text: May 23, 2022 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 7 2021; 21 2007; 107 2018; 140 2021; 3 2021; 23 2021; 2 2020; 142 2019; 55 2019; 10 2019; 13 1993; 63 2017; 23 2020 2020; 59 132 2014; 26 2020; 14 2008; 10 2020; 32 2019 2019; 58 131 2019; 123 2020; 19 2020; 8 2021; 13 2012; 492 2021; 15 2022 2022; 61 134 2021; 32 2018; 3 2021; 31 2021; 33 2016; 3 2015; 115 2020; 30 2010; 29 2022; 34 2021 2021; 60 133 2005; 7 2017; 19 2016; 28 1998; 286 2019; 150 e_1_2_7_5_2 e_1_2_7_3_2 Park I. S. (e_1_2_7_22_2) 2021; 33 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_3 e_1_2_7_17_2 e_1_2_7_60_3 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_62_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_49_2 e_1_2_7_25_3 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_37_2 e_1_2_7_39_2 Jiang P. (e_1_2_7_19_2) 2021; 33 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 (e_1_2_7_18_3) 2022; 134 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_61_3 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_32_1 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 Kim J. H. (e_1_2_7_21_2) 2021; 21 e_1_2_7_36_2 e_1_2_7_59_3 e_1_2_7_38_2 e_1_2_7_59_2 Yang, ML (WOS:000696247200001) 2021; 60 Chan, CY (WOS:000604898500001) 2021; 15 Xu, YC (WOS:000810728900024) 2022; 4 Mei, J (WOS:000364727100004) 2015; 115 Lefebvre, C (WOS:000405424100045) 2017; 19 Liu, YC (WOS:000430173500006) 2018; 3 Kothavale, SS (WOS:000570191000001) 2020; 8 Dutta, AK (WOS:000466698700028) 2019; 150 Zhang, YW (WOS:000492218500001) 2019; 58 Kondo, Y (WOS:000487333400005) 2019; 13 Stavrou, K (WOS:000623228500075) 2021; 13 Poriel, C (WOS:000681585200001) 2021; 31 Qu, YK (WOS:000736496600013) 2021; 2 Kim, JH (WOS:000701824000002) 2021; 21 Hall, D (WOS:000500297000001) 2020; 8 Sicard, L (WOS:000402799200016) 2017; 23 Saragi, TPI (WOS:000245600000004) 2007; 107 Wada, Y (WOS:000555386900002) 2020; 14 Hatakeyama, T (WOS:000373839600014) 2016; 28 Park, J (WOS:000703995900066) 2021; 13 (000775112100001.55) 2021; 133 Jeon, SO (WOS:000618183700001) 2021; 15 Jiang, P. (000775112100001.18) 2021; 33 Luo, YY (WOS:000674246500001) 2021; 60 Suresh, SM (WOS:000535648400001) 2020; 30 Yang, ML (WOS:000592911000007) 2020; 142 Matsui, K (WOS:000424313000002) 2018; 140 Wang, XQ (WOS:000606866600001) 2021; 60 Li, HC (WOS:000642400700007) 2021; 32 Fulmer, GR (WOS:000277212300025) 2010; 29 Xu, YC (WOS:000555866800001) 2020; 59 Ren, YM (WOS:000530300000008) 2020; 32 TAKADA, N (WOS:A1993MA97700007) 1993; 63 Yuan, Y (WOS:000466383600003) 2019; 7 Uoyama, H (WOS:000312259300038) 2012; 492 Lodge, MS (WOS:000643150200001) 2021; 33 Ikeda, N (WOS:000564015100001) 2020; 32 Benedict, LX (WOS:000073568400021) 1998; 286 Zhang, YW (WOS:000723906400001) 2022; 61 Zhang, YW (WOS:000678178400001) 2021; 60 Poriel, C (WOS:000500001300001) 2019; 55 Zhang, DD (WOS:000340500700023) 2014; 26 Li, W (WOS:000753670600001) 2022; 61 Wu, XG (WOS:000710320800001) 2022; 34 Weigend, F (WOS:000231618300007) 2005; 7 Chai, JD (WOS:000260775400004) 2008; 10 (000775112100001.16) 2020; 132 Pershin, A (WOS:000457749000006) 2019; 10 Sicard, LJ (WOS:000462680700028) 2019; 58 Jiang, PC (WOS:000686175100001) 2021; 9 Park, I.S. (000775112100001.21) 2021; 33 Zhang, DD (WOS:000371611800007) 2016; 3 Wu, XG (WOS:000701197600014) 2021; 15 Sicard, L (WOS:000480502300035) 2019; 123 Zou, SN (WOS:000629001700062) 2021; 23 Tang, X (WOS:000540412500004) 2020; 19 Xu, YC (WOS:000531416200016) 2020; 8 |
References_xml | – volume: 21 year: 2021 publication-title: Mater. Today – volume: 13 start-page: 678 year: 2019 end-page: 682 publication-title: Nat. Photonics – volume: 286 start-page: 490 year: 1998 end-page: 496 publication-title: Chem. Phys. Lett. – volume: 107 start-page: 1011 year: 2007 end-page: 1065 publication-title: Chem. Rev. – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 19 start-page: 17928 year: 2017 end-page: 17936 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 208 year: 2021 end-page: 215 publication-title: Nat. Photonics – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 13 start-page: 8643 year: 2021 end-page: 8655 publication-title: ACS Appl. Mater. Interfaces – volume: 63 start-page: 2032 year: 1993 end-page: 2034 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 1332 year: 2020 end-page: 1338 publication-title: Nat. Mater. – volume: 142 start-page: 19468 year: 2020 end-page: 19472 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 start-page: 2176 year: 2010 end-page: 2179 publication-title: Organometallics – volume: 10 start-page: 6615 year: 2008 end-page: 6620 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 643 year: 2020 end-page: 649 publication-title: Nat. Photonics – volume: 28 start-page: 2777 year: 2016 end-page: 2781 publication-title: Adv. Mater. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 780 year: 2021 end-page: 786 publication-title: Nat. Photonics – volume: 13 start-page: 45798 year: 2021 end-page: 45805 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 5050 year: 2014 end-page: 5055 publication-title: Adv. Mater. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 58 131 start-page: 3848 3888 year: 2019 2019 end-page: 3853 3893 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 203 year: 2021 end-page: 207 publication-title: Nat. Photonics – volume: 32 start-page: 1245 year: 2021 end-page: 1248 publication-title: Chin. Chem. Lett. – volume: 140 start-page: 1195 year: 2018 end-page: 1198 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 60 133 start-page: 20498 20661 year: 2021 2021 end-page: 20503 20666 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 18852 19000 year: 2021 2021 end-page: 18859 19007 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 145 year: 2016 end-page: 151 publication-title: Mater. Horiz. – volume: 3 start-page: 18020 year: 2018 publication-title: Nat. Rev. Mater. – volume: 123 start-page: 19094 year: 2019 end-page: 19104 publication-title: J. Phys. Chem. C – volume: 150 year: 2019 publication-title: J. Chem. Phys. – volume: 2 start-page: 1261 year: 2021 end-page: 1271 publication-title: Acc. Mater. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 60 133 start-page: 23142 23326 year: 2021 2021 end-page: 23147 23331 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 7719 year: 2017 end-page: 7727 publication-title: Chem. Eur. J. – volume: 10 start-page: 597 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 2077 year: 2021 end-page: 2091 publication-title: CCS Chem. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 23 start-page: 958 year: 2021 end-page: 962 publication-title: Org. Lett. – volume: 55 start-page: 14238 year: 2019 end-page: 14254 publication-title: Chem. Commun. – volume: 58 131 start-page: 16912 17068 year: 2019 2019 end-page: 16917 17073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 17442 17595 year: 2020 2020 end-page: 17446 17599 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 492 start-page: 234 year: 2012 end-page: 238 publication-title: Nature – volume: 60 133 start-page: 5213 5273 year: 2021 2021 end-page: 5219 5279 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_24_3 doi: 10.1002/ange.202109335 – ident: e_1_2_7_46_2 doi: 10.1038/nature11687 – ident: e_1_2_7_33_2 doi: 10.1021/cr0501341 – ident: e_1_2_7_61_3 doi: 10.1002/ange.202011384 – ident: e_1_2_7_11_2 doi: 10.1002/adfm.201908677 – ident: e_1_2_7_35_2 doi: 10.1002/adfm.202104980 – ident: e_1_2_7_17_2 doi: 10.1002/anie.202007210 – ident: e_1_2_7_47_1 – ident: e_1_2_7_43_1 doi: 10.1016/S0009-2614(97)01466-8 – ident: e_1_2_7_52_1 – ident: e_1_2_7_59_2 doi: 10.1002/anie.202106315 – ident: e_1_2_7_10_1 – volume: 33 year: 2021 ident: e_1_2_7_22_2 publication-title: Adv. Mater. – ident: e_1_2_7_24_2 doi: 10.1002/anie.202109335 – ident: e_1_2_7_2_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202113206 – ident: e_1_2_7_8_2 doi: 10.1021/acsami.1c11399 – ident: e_1_2_7_12_2 doi: 10.1002/adom.202000922 – ident: e_1_2_7_14_2 doi: 10.1021/jacs.7b10578 – ident: e_1_2_7_32_1 – ident: e_1_2_7_61_2 doi: 10.1002/anie.202011384 – ident: e_1_2_7_36_2 doi: 10.1021/accountsmr.1c00208 – ident: e_1_2_7_60_3 doi: 10.1002/ange.201813604 – ident: e_1_2_7_20_2 doi: 10.1002/adom.202100825 – ident: e_1_2_7_56_2 doi: 10.1038/s41566-021-00763-5 – ident: e_1_2_7_62_2 doi: 10.1002/adma.202104125 – ident: e_1_2_7_17_3 doi: 10.1002/ange.202007210 – ident: e_1_2_7_29_2 doi: 10.1021/acsami.0c20619 – ident: e_1_2_7_5_2 doi: 10.1002/adom.201801536 – ident: e_1_2_7_59_3 doi: 10.1002/ange.202106315 – ident: e_1_2_7_37_2 doi: 10.1038/s41563-020-0710-z – ident: e_1_2_7_53_2 doi: 10.1002/adma.201401476 – ident: e_1_2_7_30_2 doi: 10.1002/adom.201901627 – ident: e_1_2_7_55_2 doi: 10.1038/s41566-020-00745-z – ident: e_1_2_7_40_2 doi: 10.1016/j.cclet.2020.08.045 – ident: e_1_2_7_34_2 doi: 10.1002/chem.201700570 – ident: e_1_2_7_63_1 doi: 10.1038/s41566-020-0667-0 – ident: e_1_2_7_49_2 doi: 10.1039/b508541a – ident: e_1_2_7_16_2 doi: 10.1002/adom.201902142 – ident: e_1_2_7_51_1 doi: 10.1063/1.5089637 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201911266 – ident: e_1_2_7_60_2 doi: 10.1002/anie.201813604 – ident: e_1_2_7_4_2 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_7_25_3 doi: 10.1002/ange.202107848 – ident: e_1_2_7_28_1 – ident: e_1_2_7_39_2 doi: 10.1039/C9CC07169E – ident: e_1_2_7_41_1 doi: 10.1039/C7CP02110K – ident: e_1_2_7_31_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_7_42_1 doi: 10.1021/om100106e – ident: e_1_2_7_26_2 doi: 10.1021/acs.orglett.0c04159 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-019-08495-5 – ident: e_1_2_7_7_2 doi: 10.1021/jacs.0c10081 – ident: e_1_2_7_45_2 doi: 10.1038/natrevmats.2018.20 – volume: 33 year: 2021 ident: e_1_2_7_19_2 publication-title: Adv. Mater. – ident: e_1_2_7_44_1 – ident: e_1_2_7_15_2 doi: 10.1002/adma.202004072 – ident: e_1_2_7_38_2 doi: 10.1021/acs.jpcc.9b02507 – ident: e_1_2_7_58_1 – ident: e_1_2_7_3_2 doi: 10.1002/adma.201505491 – ident: e_1_2_7_57_1 doi: 10.1039/C5MH00258C – ident: e_1_2_7_27_2 doi: 10.1002/adma.202105080 – ident: e_1_2_7_25_2 doi: 10.1002/anie.202107848 – ident: e_1_2_7_6_3 doi: 10.1002/ange.201911266 – ident: e_1_2_7_9_2 doi: 10.1038/s41566-021-00870-3 – volume: 134 year: 2022 ident: e_1_2_7_18_3 publication-title: Angew. Chem. doi: 10.1002/ange.202113206 – ident: e_1_2_7_23_2 doi: 10.31635/ccschem.021.202101033 – ident: e_1_2_7_54_2 doi: 10.1002/adma.201908355 – ident: e_1_2_7_1_1 doi: 10.1063/1.110582 – volume: 21 year: 2021 ident: e_1_2_7_21_2 publication-title: Mater. Today – ident: e_1_2_7_48_2 doi: 10.1039/b810189b – volume: 133 start-page: 5273 year: 2021 ident: 000775112100001.55 publication-title: Angew. Chem – volume: 132 start-page: 17595 year: 2020 ident: 000775112100001.16 publication-title: Angew. Chem – volume: 15 start-page: 780 year: 2021 ident: WOS:000701197600014 article-title: The role of host-guest interactions in organic emitters employing MR-TADF publication-title: NATURE PHOTONICS doi: 10.1038/s41566-021-00870-3 – volume: 59 start-page: 17442 year: 2020 ident: WOS:000555866800001 article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007210 – volume: 286 start-page: 490 year: 1998 ident: WOS:000073568400021 article-title: Microscopic determination of the interlayer binding energy in graphite publication-title: CHEMICAL PHYSICS LETTERS – volume: 14 start-page: 643 year: 2020 ident: WOS:000555386900002 article-title: Organic light emitters exhibiting very fast reverse intersystem crossing publication-title: NATURE PHOTONICS doi: 10.1038/s41566-020-0667-0 – volume: 23 start-page: 7719 year: 2017 ident: WOS:000402799200016 article-title: Spirobifluorene Regioisomerism: A Structure-Property Relationship Study publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201700570 – volume: 31 start-page: ARTN 2104980 year: 2021 ident: WOS:000681585200001 article-title: Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202104980 – volume: 58 start-page: 16912 year: 2019 ident: WOS:000492218500001 article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911266 – volume: 32 start-page: ARTN 2000193 year: 2020 ident: WOS:000530300000008 article-title: A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202000193 – volume: 60 start-page: 20498 year: 2021 ident: WOS:000678178400001 article-title: Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202107848 – volume: 28 start-page: 2777 year: 2016 ident: WOS:000373839600014 article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505491 – volume: 30 start-page: ARTN 1908677 year: 2020 ident: WOS:000535648400001 article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201908677 – volume: 60 start-page: 18852 year: 2021 ident: WOS:000674246500001 article-title: Iridium(III)-Catalyzed Diarylation/Annulation of Benzoic Acids: Facile Access to Multi-Aryl Spirobifluorenes as Pure Hydrocarbon Hosts for High-Performance OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202106315 – volume: 60 start-page: 23142 year: 2021 ident: WOS:000696247200001 article-title: Wide-Range Color Tuning of Narrowband Emission in Multi-resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202109335 – volume: 9 start-page: ARTN 2100825 year: 2021 ident: WOS:000686175100001 article-title: Simple Acridan-Based Multi-Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202100825 – volume: 7 start-page: ARTN 1801536 year: 2019 ident: WOS:000466383600003 article-title: The Design of Fused Amine/Carbonyl System for Efficient Thermally Activated Delayed Fluorescence: Novel Multiple Resonance Core and Electron Acceptor publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201801536 – volume: 107 start-page: 1011 year: 2007 ident: WOS:000245600000004 article-title: Spiro compounds for organic optoelectronics publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0501341 – volume: 34 start-page: ARTN 2105080 year: 2022 ident: WOS:000710320800001 article-title: Fabrication of Circularly Polarized MR-TADF Emitters with Asymmetrical Peripheral-Lock Enhancing Helical B/N-Doped Nanographenes publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202105080 – volume: 23 start-page: 958 year: 2021 ident: WOS:000629001700062 article-title: Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.0c04159 – volume: 32 start-page: 1245 year: 2021 ident: WOS:000642400700007 article-title: Spatial donor/acceptor architecture for intramolecular charge-transfer emitter publication-title: CHINESE CHEMICAL LETTERS doi: 10.1016/j.cclet.2020.08.045 – volume: 8 start-page: ARTN 1901627 year: 2020 ident: WOS:000500297000001 article-title: Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201901627 – volume: 10 start-page: 6615 year: 2008 ident: WOS:000260775400004 article-title: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/b810189b – volume: 15 start-page: 208 year: 2021 ident: WOS:000618183700001 article-title: High-efficiency, long-lifetime deep-blue organic light-emitting diodes publication-title: NATURE PHOTONICS doi: 10.1038/s41566-021-00763-5 – volume: 33 year: 2021 ident: 000775112100001.18 publication-title: Adv. Mater – volume: 13 start-page: 678 year: 2019 ident: WOS:000487333400005 article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter publication-title: NATURE PHOTONICS doi: 10.1038/s41566-019-0476-5 – volume: 492 start-page: 234 year: 2012 ident: WOS:000312259300038 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: NATURE doi: 10.1038/nature11687 – volume: 140 start-page: 1195 year: 2018 ident: WOS:000424313000002 article-title: One-Shot Multiple Borylation toward BN-Doped Nanographenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b10578 – volume: 33 start-page: ARTN 2008029 year: 2021 ident: WOS:000643150200001 article-title: Atomically Thin Quantum Spin Hall Insulators publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202008029 – volume: 13 start-page: 45798 year: 2021 ident: WOS:000703995900066 article-title: Asymmetric Blue Multiresonance TADF Emitters with a Narrow Emission Band publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c11399 – volume: 29 start-page: 2176 year: 2010 ident: WOS:000277212300025 article-title: NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist publication-title: ORGANOMETALLICS doi: 10.1021/om100106e – volume: 3 start-page: 145 year: 2016 ident: WOS:000371611800007 article-title: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability publication-title: MATERIALS HORIZONS doi: 10.1039/c5mh00258c – volume: 123 start-page: 19094 year: 2019 ident: WOS:000480502300035 article-title: 1-Carbazolyl Spirobifluorene: Synthesis, Structural, Electrochemical, and Photophysical Properties publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.9b02507 – volume: 19 start-page: 17928 year: 2017 ident: WOS:000405424100045 article-title: Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c7cp02110k – volume: 15 start-page: 203 year: 2021 ident: WOS:000604898500001 article-title: Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission publication-title: NATURE PHOTONICS doi: 10.1038/s41566-020-00745-z – volume: 150 start-page: ARTN 164123 year: 2019 ident: WOS:000466698700028 article-title: A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.5089637 – volume: 32 start-page: ARTN 2004072 year: 2020 ident: WOS:000564015100001 article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202004072 – volume: 58 start-page: 3848 year: 2019 ident: WOS:000462680700028 article-title: C1-Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for High-Performance Blue Phosphorescent OLEDs publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201813604 – volume: 7 start-page: 3297 year: 2005 ident: WOS:000231618300007 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS – volume: 61 start-page: ARTN e202113206 year: 2022 ident: WOS:000723906400001 article-title: Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202113206 – volume: 115 start-page: 11718 year: 2015 ident: WOS:000364727100004 article-title: Aggregation-Induced Emission: Together We Shine, United We Soar! publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00263 – volume: 2 start-page: 1261 year: 2021 ident: WOS:000736496600013 article-title: Spiro Compounds for Organic Light-Emitting Diodes publication-title: ACCOUNTS OF MATERIALS RESEARCH doi: 10.1021/accountsmr.1c00208 – volume: 21 start-page: ARTN 100792 year: 2021 ident: WOS:000701824000002 article-title: Concentration quenching-resistant multiresonance thermally activated delayed fluorescence emitters publication-title: MATERIALS TODAY ENERGY doi: 10.1016/j.mtener.2021.100792 – volume: 8 start-page: ARTN 1902142 year: 2020 ident: WOS:000531416200016 article-title: Molecular-Structure and Device-Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201902142 – volume: 61 start-page: ARTN e202116854 year: 2022 ident: WOS:000753670600001 article-title: A Metallofullertube of Ce2@C100 with a Carbon Nanotube Segment: Synthesis, Single-Molecule Conductance and Supramolecular Assembly publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202116854 – volume: 4 start-page: 2065 year: 2022 ident: WOS:000810728900024 article-title: Highly Efficient Electroluminescent Materials with High Color Purity Based on Strong Acceptor Attachment onto B-N-Containing Multiple Resonance Frameworks publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.021.202101033 – volume: 8 start-page: ARTN 2000922 year: 2020 ident: WOS:000570191000001 article-title: Three- and Four-Coordinate, Boron-Based, Thermally Activated Delayed Fluorescent Emitters publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.202000922 – volume: 55 start-page: 14238 year: 2019 ident: WOS:000500001300001 article-title: New generations of spirobifluorene regioisomers for organic electronics: tuning electronic properties with the substitution pattern publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c9cc07169e – volume: 19 start-page: 1332 year: 2020 ident: WOS:000540412500004 article-title: Highly efficient luminescence from space-confined charge-transfer emitters publication-title: NATURE MATERIALS doi: 10.1038/s41563-020-0710-z – volume: 33 year: 2021 ident: 000775112100001.21 publication-title: Adv. Mater – volume: 60 start-page: 5213 year: 2021 ident: WOS:000606866600001 article-title: Multi-Layer π-Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011384 – volume: 10 start-page: ARTN 597 year: 2019 ident: WOS:000457749000006 article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-08495-5 – volume: 142 start-page: 19468 year: 2020 ident: WOS:000592911000007 article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10081 – volume: 63 start-page: 2032 year: 1993 ident: WOS:A1993MA97700007 article-title: CONTROL OF EMISSION CHARACTERISTICS IN ORGANIC THIN-FILM ELECTROLUMINESCENT DIODES USING AN OPTICAL-MICROCAVITY STRUCTURE publication-title: APPLIED PHYSICS LETTERS – volume: 3 start-page: ARTN 18020 year: 2018 ident: WOS:000430173500006 article-title: All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2018.20 – volume: 26 start-page: 5050 year: 2014 ident: WOS:000340500700023 article-title: High-Efficiency Fluorescent Organic Light-Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201401476 – volume: 13 start-page: 8643 year: 2021 ident: WOS:000623228500075 article-title: Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c20619 |
SSID | ssj0028806 |
Score | 2.6629477 |
Snippet | A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios,... A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios,... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202201886 |
SubjectTerms | Chemistry Chemistry, Multidisciplinary Doping Electroluminescence Emitters Fluorescence Modulation Multiple Resonance Thermally Activated Delayed Fluorescence OLEDs Physical Sciences Resonance Science & Technology Spiro Compounds Steric Effects Substitutes |
Title | Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202201886 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000775112100001 https://www.ncbi.nlm.nih.gov/pubmed/35293091 https://www.proquest.com/docview/2664754325 https://www.proquest.com/docview/2640048322 |
Volume | 61 |
WOS | 000775112100001 |
WOSCitedRecordID | wos000775112100001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHiEu5tFD6CNDKSEg9Gby28zqi1SJaaTmwrMQtsmNbQqUbBLsH-td3xnmUpapatbesMlFkZ8bzy2b8DcCRcxhBIXiuTeG4dsJzo4LgRZpakTrlspz2Dk8vsvO5_nKdXj_Zxd_yIYY_3Cgy4npNAW7sw8lPaCjtwMb3O4kZrCiIuU0FW6SKLgd-lETnbLcXKcWpC31PbRTyZP3y9az0i9R8lpXWhWzMRGevwPRjaAtQvh6vlva4_v4M7_g_g9yGl51MZaetX-3Ahl-8hhfjvjvcLsxnBHmu2bRxXQMw1gQ2u7u5b9gsMmlX956hImZUSXL7yCaRVYEpjk27GkZGnw6I9-HZ5NtNxHy-gfnZ5Gp8zrsWDbxWucp4Kqw2wWZGBDuqnctsiW-cqNLqOjOqSPOQ6yCdKp3Jvbalt6IorZFZwGNlgnoLm4tm4d8DU9aJwnrt8oyQP7iQ1EZZWQS0N6hbE-D9I6rqjl9ObTRuq5a8LCuarGqYrAQ-DfZ3Lbnjt5YH_ROvugh-qFC46DzVSuKND4fTOMn0QcUsfLMim7gC4pqYwLvWU4ZbobAtFYqxBI6eus5wXkT44Ij4baSzExj9jdm4GzgBC5YJyOg7fxhedXrxeTL82vuXi_Zhi46pakKqA9hEN_IfUIwt7ccYcD8AwU0qfw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJEqcXKbtR0nOVarrbbQ3QPblbhFdmxLVcumKrsH-PXMOA_YIgSCWxKPFdme8Xy2x98A7DuHFhSC58oUjiuXem5kSHmRZTbNnHQ6p7vDs7meLtX7T1kfTUh3YVp-iGHDjSwjztdk4LQhffiDNZSuYOMCT6ALKwp9G-5QWu-4qvo4MEgJVM_2gpGUnPLQ97yNqTjcrr_tl34Bmzf80jaUjb7o-D7YvhVtCMrFwWZtD-pvNwge_6uZD-Beh1TZUataD-GWXz2C3XGfIO4xLBfE81yzWeO6HGCsCWxxdX7dsEWkpd1ce4agmFEwyeVXNol0Fejl2KwLY2R0ekCUH55NPp9Hps8nsDyenI2nvMvSwGuZS82z1CoTrDZpsKPaOW1LXHQiUKtrbWSR5SFXQThZOpN7ZUtv06K0RuiAz9IE-RR2Vs3KPwcmrUsL65XLNbH-4FxSG2lFEVDeIHRNgPdjVNUdhTll0risWvJlUVFnVUNnJfBukL9qyTt-K7nXD3nVGfGXCrGLyjMlBf747VCMnUxnKmblmw3JxEkQp8UEnrWqMvwKsW0pEY8lsP-z7gzlaeQfHBGFG0HtBEZ_IzbuGk6cBesERFSePzSvOpqfTIa3F_9S6Q3sTs9mp9XpyfzDS7hL3ymIQsg92EGV8q8Qm63t62h93wFb5S6a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMCTghd8_AgOMNImnbK7tOOnj1LXagFaIUmlvkR3b0sRoqtE-wF_PnfODdQiB4C1NLops3_m-aezPAew5hxEUgk-VKVyqHPepkYGnRZZZnjnpdE57h6czfbxQb0-z00u7-Bs-RP-HG0VGnK8pwFcuHPyEhtIObHy_E5jBikJfhxtK84L8-uhjD5AS6J3N_iIpUypD32EbuTjYvn87Lf2iNa-kpW0lG1PR5C6YrhHNCpTP-5u13a--X-E7_k8r78GdVqeyw8ax7sM1v3wAt0ZdebiHsJgT5bli09q1FcBYHdh8dXZRs3mE0m4uPENJzGgpyfk3No6wCsxxbNouYmT07YCAH56Nv5xFzucjWEzGn0bHaVujIa1kLnWacatMsNrwYAeVc9oO8ZUTZVpVaSOLLA-5CsLJoTO5V3boLQ6SNUIHPJYmyMews6yX_ikwaR0vrFcu18T8wZmkMtKKIqC9QeGaQNoNUVm1AHOqo3FeNuhlUVJnlX1nJfCmt1816I7fWu52I162Ify1ROWi8kxJgQ9-3V_GTqYvKmbp6w3ZxCkQJ8UEnjSe0j8Kle1QohpLYO-y6_TXeaQPDgjgRkI7gcHfmI3ahhOxYJ2AiL7zh-aVh7OTcf_r2b_c9ApufjialO9PZu-ew206TSsohNyFHfQo_wKF2dq-jLH3A8DzLVI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steric+Modulation+of+Spiro+Structure+for+Highly+Efficient+Multiple+Resonance+Emitters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qu%2C+Yang%E2%80%90Kun&rft.au=Zhou%2C+Dong%E2%80%90Ying&rft.au=Kong%2C+Fan%E2%80%90Cheng&rft.au=Zheng%2C+Qi&rft.date=2022-05-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=22&rft_id=info:doi/10.1002%2Fanie.202201886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202201886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |