Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters

A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mo...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 22; pp. e202201886 - n/a
Main Authors Qu, Yang‐Kun, Zhou, Dong‐Ying, Kong, Fan‐Cheng, Zheng, Qi, Tang, Xun, Zhu, Yuan‐Hao, Huang, Chen‐Chao, Feng, Zi‐Qi, Fan, Jian, Adachi, Chihaya, Liao, Liang‐Sheng, Jiang, Zuo‐Quan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 23.05.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene (SBF) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework. By incorporating a three‐dimensional spiro unit into multiple resonance thermally activated delayed fluorescence emitters, the device efficiency is increased to nearly 1.5 times that of the unhindered emitter. Notably, the linkage pattern with spatial interaction and hindrance can maintain the narrow FWHM and curb unfavorable redshifts at a high doping ratio.
AbstractList A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.
A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene (SBF) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework. By incorporating a three‐dimensional spiro unit into multiple resonance thermally activated delayed fluorescence emitters, the device efficiency is increased to nearly 1.5 times that of the unhindered emitter. Notably, the linkage pattern with spatial interaction and hindrance can maintain the narrow FWHM and curb unfavorable redshifts at a high doping ratio.
A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.
A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono‐substituted design strategy by introducing spiro‐9,9′‐bifluorene ( SBF ) units with different substituted sites into the MR‐TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2–35.9 %) and narrow‐band emission (≈27 nm). Particularly, the shield‐like molecule, SF1BN , seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3‐substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR‐TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π‐framework.
A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9 '-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (approximate to 27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in pi-framework.
ArticleNumber 202201886
Author Feng, Zi‐Qi
Zhu, Yuan‐Hao
Fan, Jian
Tang, Xun
Liao, Liang‐Sheng
Kong, Fan‐Cheng
Adachi, Chihaya
Jiang, Zuo‐Quan
Zhou, Dong‐Ying
Huang, Chen‐Chao
Qu, Yang‐Kun
Zheng, Qi
Author_xml – sequence: 1
  givenname: Yang‐Kun
  orcidid: 0000-0003-0241-308X
  surname: Qu
  fullname: Qu, Yang‐Kun
  organization: Soochow University
– sequence: 2
  givenname: Dong‐Ying
  surname: Zhou
  fullname: Zhou, Dong‐Ying
  organization: Soochow University
– sequence: 3
  givenname: Fan‐Cheng
  surname: Kong
  fullname: Kong, Fan‐Cheng
  organization: Soochow University
– sequence: 4
  givenname: Qi
  surname: Zheng
  fullname: Zheng, Qi
  organization: Soochow University
– sequence: 5
  givenname: Xun
  surname: Tang
  fullname: Tang, Xun
  organization: Kyushu University
– sequence: 6
  givenname: Yuan‐Hao
  surname: Zhu
  fullname: Zhu, Yuan‐Hao
  organization: Soochow University
– sequence: 7
  givenname: Chen‐Chao
  surname: Huang
  fullname: Huang, Chen‐Chao
  organization: Soochow University
– sequence: 8
  givenname: Zi‐Qi
  surname: Feng
  fullname: Feng, Zi‐Qi
  organization: Soochow University
– sequence: 9
  givenname: Jian
  surname: Fan
  fullname: Fan, Jian
  organization: Soochow University
– sequence: 10
  givenname: Chihaya
  surname: Adachi
  fullname: Adachi, Chihaya
  organization: Kyushu University
– sequence: 11
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  organization: Macau University of Science and Technology
– sequence: 12
  givenname: Zuo‐Quan
  orcidid: 0000-0003-4447-2408
  surname: Jiang
  fullname: Jiang, Zuo‐Quan
  email: zqjiang@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35293091$$D View this record in MEDLINE/PubMed
BookMark eNqNkctrGzEQh0VJaB7ttcci6KUQ1tFrV9pjMG4SyAPq5rxotaNWYS25kpbi_75y7boQKO1p5vB9M8P8ztCRDx4QekfJjBLCLrV3MGOEMUKVal6hU1ozWnEp-VHpBeeVVDU9QWcpPRdeKdK8Rie8Zi0nLT1FT8sM0Rl8H4Zp1NkFj4PFy7WLAS9znEyeImAbIr5xX7-NG7yw1hkHPuP7acxuPQL-DCl47Q3gxcrlMi-9QcdWjwne7us5evq0-DK_qe4er2_nV3eV4ZI3VU16oW3faGJ7aoah6VtWC8aZMY3mqpZWCssG3g5aguhb6Ilqe80aW3quLT9HH3dz1zF8nyDlbuWSgXHUHsKUOtYIQoTijBX0wwv0OUzRl-sK1QhZC87qQr3fU1O_gqFbR7fScdP9flgB1A74AX2wafsJAweMECJlTSkr2RBC5y7_euk8TD4X9eL_1ULPdrSJIaUI9kBS0m2j77bRd4foiyBeCGa_Pkftxr9r7f4qN8LmH0u6q4fbxR_3J6hgwLk
CitedBy_id crossref_primary_10_1039_D3TC00676J
crossref_primary_10_1002_adma_202409746
crossref_primary_10_1002_ange_202310943
crossref_primary_10_1021_acsami_2c22266
crossref_primary_10_1016_j_cej_2024_155350
crossref_primary_10_1039_D3CC01235B
crossref_primary_10_1002_smll_202409328
crossref_primary_10_1039_D4SC03705G
crossref_primary_10_1002_anie_202408712
crossref_primary_10_1002_ange_202216473
crossref_primary_10_1002_jccs_202300315
crossref_primary_10_1016_j_jorganchem_2022_122564
crossref_primary_10_1002_adom_202402464
crossref_primary_10_1002_agt2_585
crossref_primary_10_1002_adom_202203002
crossref_primary_10_1002_adfm_202316355
crossref_primary_10_1002_adma_202307725
crossref_primary_10_1002_adom_202202950
crossref_primary_10_1002_anie_202401120
crossref_primary_10_1002_ange_202316479
crossref_primary_10_1002_anie_202300934
crossref_primary_10_1039_D2TC04952J
crossref_primary_10_1039_D3TC01321A
crossref_primary_10_1093_nsr_nwae115
crossref_primary_10_1002_ange_202415607
crossref_primary_10_1002_flm2_15
crossref_primary_10_1016_j_cej_2024_155864
crossref_primary_10_1016_j_dyepig_2023_111520
crossref_primary_10_1002_anie_202301988
crossref_primary_10_1055_a_2213_1732
crossref_primary_10_1007_s11426_024_2057_7
crossref_primary_10_1002_adpr_202200201
crossref_primary_10_1002_anie_202415113
crossref_primary_10_1016_j_cjsc_2024_100451
crossref_primary_10_1002_adma_202209396
crossref_primary_10_1039_D4TC05428H
crossref_primary_10_1002_anie_202316479
crossref_primary_10_1002_adom_202302987
crossref_primary_10_1021_acs_jpcc_4c04343
crossref_primary_10_1021_acsmaterialslett_4c00178
crossref_primary_10_1002_anie_202212861
crossref_primary_10_1002_adfm_202313726
crossref_primary_10_1002_anie_202213157
crossref_primary_10_1021_acsmaterialslett_4c00210
crossref_primary_10_1002_adom_202403139
crossref_primary_10_1002_adom_202401754
crossref_primary_10_1002_adom_202402960
crossref_primary_10_1002_anie_202310943
crossref_primary_10_1016_j_cej_2023_144664
crossref_primary_10_1002_anie_202415400
crossref_primary_10_1021_jacs_2c10946
crossref_primary_10_1021_jacs_3c02873
crossref_primary_10_3389_fchem_2023_1198404
crossref_primary_10_1002_adfm_202213056
crossref_primary_10_1039_D3TC00065F
crossref_primary_10_1002_ange_202312451
crossref_primary_10_1016_j_chempr_2024_10_020
crossref_primary_10_1002_adom_202203065
crossref_primary_10_1039_D3CS00871A
crossref_primary_10_70401_smd_2025_0001
crossref_primary_10_1002_adom_202201714
crossref_primary_10_1088_2058_8585_acf326
crossref_primary_10_1002_cjoc_202200356
crossref_primary_10_1002_anie_202420489
crossref_primary_10_3390_molecules27228099
crossref_primary_10_1002_ange_202318742
crossref_primary_10_1002_smll_202407220
crossref_primary_10_6023_cjoc202304027
crossref_primary_10_1002_anie_202312451
crossref_primary_10_1002_asia_202401640
crossref_primary_10_1038_s41467_024_50370_5
crossref_primary_10_1038_s41528_022_00212_5
crossref_primary_10_1002_ange_202301988
crossref_primary_10_1002_ange_202300934
crossref_primary_10_1039_D3TC04771G
crossref_primary_10_6023_cjoc202212037
crossref_primary_10_1021_acsaenm_4c00196
crossref_primary_10_1002_adom_202300195
crossref_primary_10_1038_s41467_024_50815_x
crossref_primary_10_1002_ange_202415113
crossref_primary_10_1016_j_cej_2024_151517
crossref_primary_10_1039_D3CS00837A
crossref_primary_10_1002_anie_202411268
crossref_primary_10_1126_sciadv_adh8296
crossref_primary_10_1002_adfm_202404278
crossref_primary_10_1016_j_cej_2024_150785
crossref_primary_10_1016_j_dyepig_2024_111981
crossref_primary_10_1016_j_cej_2023_142900
crossref_primary_10_1038_s41467_024_44981_1
crossref_primary_10_1002_adma_202205166
crossref_primary_10_1002_anie_202423002
crossref_primary_10_1002_ange_202401120
crossref_primary_10_1002_adfm_202211893
crossref_primary_10_1002_ange_202316710
crossref_primary_10_1002_ange_202408712
crossref_primary_10_1002_ange_202213157
crossref_primary_10_1002_anie_202212575
crossref_primary_10_1002_ange_202212861
crossref_primary_10_1016_j_cjph_2025_02_031
crossref_primary_10_1016_j_orgel_2024_107084
crossref_primary_10_1038_s41563_024_01812_4
crossref_primary_10_1002_agt2_391
crossref_primary_10_1002_adom_202303295
crossref_primary_10_1002_ange_202415400
crossref_primary_10_1039_D4TC00429A
crossref_primary_10_1039_D3SC06470K
crossref_primary_10_1039_D3SC00246B
crossref_primary_10_1039_D4SC05383D
crossref_primary_10_1002_anie_202216473
crossref_primary_10_1002_ange_202423002
crossref_primary_10_1002_anie_202316710
crossref_primary_10_1007_s11426_022_1382_5
crossref_primary_10_1002_adom_202301217
crossref_primary_10_1039_D4MH00634H
crossref_primary_10_1002_ange_202212575
crossref_primary_10_1002_adma_202400158
crossref_primary_10_1021_acsami_3c14514
crossref_primary_10_1039_D3TC02708B
crossref_primary_10_1016_j_orgel_2024_107072
crossref_primary_10_1002_adom_202302791
crossref_primary_10_1002_ange_202306413
crossref_primary_10_1016_j_cej_2024_148794
crossref_primary_10_1002_adom_202403459
crossref_primary_10_1002_anie_202301930
crossref_primary_10_1002_adom_202401033
crossref_primary_10_1039_D3TC02902F
crossref_primary_10_1002_ange_202420489
crossref_primary_10_1039_D4SC07503J
crossref_primary_10_1039_D4SC08708A
crossref_primary_10_1002_anie_202415607
crossref_primary_10_1039_D4SC04835K
crossref_primary_10_1007_s11426_023_1669_9
crossref_primary_10_1016_j_cej_2023_142848
crossref_primary_10_1039_D3QM00498H
crossref_primary_10_1002_anie_202318742
crossref_primary_10_1002_adom_202301732
crossref_primary_10_1002_cphc_202400955
crossref_primary_10_1002_ange_202301930
crossref_primary_10_1002_ange_202411268
crossref_primary_10_1002_anie_202306413
Cites_doi 10.1002/ange.202109335
10.1038/nature11687
10.1021/cr0501341
10.1002/ange.202011384
10.1002/adfm.201908677
10.1002/adfm.202104980
10.1002/anie.202007210
10.1016/S0009-2614(97)01466-8
10.1002/anie.202106315
10.1002/anie.202109335
10.1002/anie.202113206
10.1021/acsami.1c11399
10.1002/adom.202000922
10.1021/jacs.7b10578
10.1002/anie.202011384
10.1021/accountsmr.1c00208
10.1002/ange.201813604
10.1002/adom.202100825
10.1038/s41566-021-00763-5
10.1002/adma.202104125
10.1002/ange.202007210
10.1021/acsami.0c20619
10.1002/adom.201801536
10.1002/ange.202106315
10.1038/s41563-020-0710-z
10.1002/adma.201401476
10.1002/adom.201901627
10.1038/s41566-020-00745-z
10.1016/j.cclet.2020.08.045
10.1002/chem.201700570
10.1038/s41566-020-0667-0
10.1039/b508541a
10.1002/adom.201902142
10.1063/1.5089637
10.1002/anie.201911266
10.1002/anie.201813604
10.1038/s41566-019-0476-5
10.1002/ange.202107848
10.1039/C9CC07169E
10.1039/C7CP02110K
10.1021/acs.chemrev.5b00263
10.1021/om100106e
10.1021/acs.orglett.0c04159
10.1038/s41467-019-08495-5
10.1021/jacs.0c10081
10.1038/natrevmats.2018.20
10.1002/adma.202004072
10.1021/acs.jpcc.9b02507
10.1002/adma.201505491
10.1039/C5MH00258C
10.1002/adma.202105080
10.1002/anie.202107848
10.1002/ange.201911266
10.1038/s41566-021-00870-3
10.1002/ange.202113206
10.31635/ccschem.021.202101033
10.1002/adma.201908355
10.1063/1.110582
10.1039/b810189b
10.1002/adma.202000193
10.1002/adma.202008029
10.1039/c5mh00258c
10.1039/c7cp02110k
10.1016/j.mtener.2021.100792
10.1002/anie.202116854
10.1039/c9cc07169e
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202201886
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35293091
000775112100001
10_1002_anie_202201886
ANIE202201886
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51873139; 61961160731; 62175171; 22175124
– fundername: Suzhou Science and Technology Plan Project
  funderid: SYG202010
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 51873139; 61961160731; 62175171; 22175124
– fundername: Suzhou Science and Technology Plan Project
  grantid: SYG202010
– fundername: Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Centre of Suzhou Nano Science & Technology (Nano-CIC)
– fundername: "111" Project; Ministry of Education, China - 111 Project
– fundername: National Natural Science Foundation of China
  grantid: 22175124
– fundername: National Natural Science Foundation of China
  grantid: 61961160731
– fundername: National Natural Science Foundation of China
  grantid: 62175171
– fundername: National Natural Science Foundation of China
  grantid: 51873139
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3736-50b4afb6a0fb1cdd6b9254232cc6a3857f74f2d39da7e4b9eb089ba26fb9e3af3
IEDL.DBID DR2
ISICitedReferencesCount 139
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000775112100001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 23:51:03 EDT 2025
Fri Jul 25 10:25:01 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Fri Aug 29 16:11:44 EDT 2025
Mon Jul 21 06:55:32 EDT 2025
Tue Jul 01 01:18:18 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Wed Jan 22 16:25:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Spiro Compounds
Steric Effects
Fluorescence
OLEDs
DIODES
Multiple Resonance Thermally Activated Delayed Fluorescence
EMISSION
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3736-50b4afb6a0fb1cdd6b9254232cc6a3857f74f2d39da7e4b9eb089ba26fb9e3af3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4447-2408
0000-0003-0241-308X
0000-0002-2645-6212
0000-0003-3385-1613
0000-0001-6117-9604
0000-0001-6209-2578
PMID 35293091
PQID 2664754325
PQPubID 946352
PageCount 8
ParticipantIDs crossref_primary_10_1002_anie_202201886
wiley_primary_10_1002_anie_202201886_ANIE202201886
webofscience_primary_000775112100001CitationCount
crossref_citationtrail_10_1002_anie_202201886
proquest_journals_2664754325
webofscience_primary_000775112100001
proquest_miscellaneous_2640048322
pubmed_primary_35293091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 23, 2022
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: May 23, 2022
  day: 23
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2021; 21
2007; 107
2018; 140
2021; 3
2021; 23
2021; 2
2020; 142
2019; 55
2019; 10
2019; 13
1993; 63
2017; 23
2020 2020; 59 132
2014; 26
2020; 14
2008; 10
2020; 32
2019 2019; 58 131
2019; 123
2020; 19
2020; 8
2021; 13
2012; 492
2021; 15
2022 2022; 61 134
2021; 32
2018; 3
2021; 31
2021; 33
2016; 3
2015; 115
2020; 30
2010; 29
2022; 34
2021 2021; 60 133
2005; 7
2017; 19
2016; 28
1998; 286
2019; 150
e_1_2_7_5_2
e_1_2_7_3_2
Park I. S. (e_1_2_7_22_2) 2021; 33
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_60_3
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_62_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_49_2
e_1_2_7_25_3
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_54_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_37_2
e_1_2_7_39_2
Jiang P. (e_1_2_7_19_2) 2021; 33
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
(e_1_2_7_18_3) 2022; 134
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_61_3
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_32_1
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
Kim J. H. (e_1_2_7_21_2) 2021; 21
e_1_2_7_36_2
e_1_2_7_59_3
e_1_2_7_38_2
e_1_2_7_59_2
Yang, ML (WOS:000696247200001) 2021; 60
Chan, CY (WOS:000604898500001) 2021; 15
Xu, YC (WOS:000810728900024) 2022; 4
Mei, J (WOS:000364727100004) 2015; 115
Lefebvre, C (WOS:000405424100045) 2017; 19
Liu, YC (WOS:000430173500006) 2018; 3
Kothavale, SS (WOS:000570191000001) 2020; 8
Dutta, AK (WOS:000466698700028) 2019; 150
Zhang, YW (WOS:000492218500001) 2019; 58
Kondo, Y (WOS:000487333400005) 2019; 13
Stavrou, K (WOS:000623228500075) 2021; 13
Poriel, C (WOS:000681585200001) 2021; 31
Qu, YK (WOS:000736496600013) 2021; 2
Kim, JH (WOS:000701824000002) 2021; 21
Hall, D (WOS:000500297000001) 2020; 8
Sicard, L (WOS:000402799200016) 2017; 23
Saragi, TPI (WOS:000245600000004) 2007; 107
Wada, Y (WOS:000555386900002) 2020; 14
Hatakeyama, T (WOS:000373839600014) 2016; 28
Park, J (WOS:000703995900066) 2021; 13
(000775112100001.55) 2021; 133
Jeon, SO (WOS:000618183700001) 2021; 15
Jiang, P. (000775112100001.18) 2021; 33
Luo, YY (WOS:000674246500001) 2021; 60
Suresh, SM (WOS:000535648400001) 2020; 30
Yang, ML (WOS:000592911000007) 2020; 142
Matsui, K (WOS:000424313000002) 2018; 140
Wang, XQ (WOS:000606866600001) 2021; 60
Li, HC (WOS:000642400700007) 2021; 32
Fulmer, GR (WOS:000277212300025) 2010; 29
Xu, YC (WOS:000555866800001) 2020; 59
Ren, YM (WOS:000530300000008) 2020; 32
TAKADA, N (WOS:A1993MA97700007) 1993; 63
Yuan, Y (WOS:000466383600003) 2019; 7
Uoyama, H (WOS:000312259300038) 2012; 492
Lodge, MS (WOS:000643150200001) 2021; 33
Ikeda, N (WOS:000564015100001) 2020; 32
Benedict, LX (WOS:000073568400021) 1998; 286
Zhang, YW (WOS:000723906400001) 2022; 61
Zhang, YW (WOS:000678178400001) 2021; 60
Poriel, C (WOS:000500001300001) 2019; 55
Zhang, DD (WOS:000340500700023) 2014; 26
Li, W (WOS:000753670600001) 2022; 61
Wu, XG (WOS:000710320800001) 2022; 34
Weigend, F (WOS:000231618300007) 2005; 7
Chai, JD (WOS:000260775400004) 2008; 10
(000775112100001.16) 2020; 132
Pershin, A (WOS:000457749000006) 2019; 10
Sicard, LJ (WOS:000462680700028) 2019; 58
Jiang, PC (WOS:000686175100001) 2021; 9
Park, I.S. (000775112100001.21) 2021; 33
Zhang, DD (WOS:000371611800007) 2016; 3
Wu, XG (WOS:000701197600014) 2021; 15
Sicard, L (WOS:000480502300035) 2019; 123
Zou, SN (WOS:000629001700062) 2021; 23
Tang, X (WOS:000540412500004) 2020; 19
Xu, YC (WOS:000531416200016) 2020; 8
References_xml – volume: 21
  year: 2021
  publication-title: Mater. Today
– volume: 13
  start-page: 678
  year: 2019
  end-page: 682
  publication-title: Nat. Photonics
– volume: 286
  start-page: 490
  year: 1998
  end-page: 496
  publication-title: Chem. Phys. Lett.
– volume: 107
  start-page: 1011
  year: 2007
  end-page: 1065
  publication-title: Chem. Rev.
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 19
  start-page: 17928
  year: 2017
  end-page: 17936
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 208
  year: 2021
  end-page: 215
  publication-title: Nat. Photonics
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 13
  start-page: 8643
  year: 2021
  end-page: 8655
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63
  start-page: 2032
  year: 1993
  end-page: 2034
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 1332
  year: 2020
  end-page: 1338
  publication-title: Nat. Mater.
– volume: 142
  start-page: 19468
  year: 2020
  end-page: 19472
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  start-page: 2176
  year: 2010
  end-page: 2179
  publication-title: Organometallics
– volume: 10
  start-page: 6615
  year: 2008
  end-page: 6620
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 643
  year: 2020
  end-page: 649
  publication-title: Nat. Photonics
– volume: 28
  start-page: 2777
  year: 2016
  end-page: 2781
  publication-title: Adv. Mater.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 780
  year: 2021
  end-page: 786
  publication-title: Nat. Photonics
– volume: 13
  start-page: 45798
  year: 2021
  end-page: 45805
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 5050
  year: 2014
  end-page: 5055
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 58 131
  start-page: 3848 3888
  year: 2019 2019
  end-page: 3853 3893
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 203
  year: 2021
  end-page: 207
  publication-title: Nat. Photonics
– volume: 32
  start-page: 1245
  year: 2021
  end-page: 1248
  publication-title: Chin. Chem. Lett.
– volume: 140
  start-page: 1195
  year: 2018
  end-page: 1198
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 60 133
  start-page: 20498 20661
  year: 2021 2021
  end-page: 20503 20666
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 18852 19000
  year: 2021 2021
  end-page: 18859 19007
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 145
  year: 2016
  end-page: 151
  publication-title: Mater. Horiz.
– volume: 3
  start-page: 18020
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 123
  start-page: 19094
  year: 2019
  end-page: 19104
  publication-title: J. Phys. Chem. C
– volume: 150
  year: 2019
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 1261
  year: 2021
  end-page: 1271
  publication-title: Acc. Mater. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 23142 23326
  year: 2021 2021
  end-page: 23147 23331
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 7719
  year: 2017
  end-page: 7727
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 597
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2077
  year: 2021
  end-page: 2091
  publication-title: CCS Chem.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 23
  start-page: 958
  year: 2021
  end-page: 962
  publication-title: Org. Lett.
– volume: 55
  start-page: 14238
  year: 2019
  end-page: 14254
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 16912 17068
  year: 2019 2019
  end-page: 16917 17073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 17442 17595
  year: 2020 2020
  end-page: 17446 17599
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 492
  start-page: 234
  year: 2012
  end-page: 238
  publication-title: Nature
– volume: 60 133
  start-page: 5213 5273
  year: 2021 2021
  end-page: 5219 5279
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.202109335
– ident: e_1_2_7_46_2
  doi: 10.1038/nature11687
– ident: e_1_2_7_33_2
  doi: 10.1021/cr0501341
– ident: e_1_2_7_61_3
  doi: 10.1002/ange.202011384
– ident: e_1_2_7_11_2
  doi: 10.1002/adfm.201908677
– ident: e_1_2_7_35_2
  doi: 10.1002/adfm.202104980
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.202007210
– ident: e_1_2_7_47_1
– ident: e_1_2_7_43_1
  doi: 10.1016/S0009-2614(97)01466-8
– ident: e_1_2_7_52_1
– ident: e_1_2_7_59_2
  doi: 10.1002/anie.202106315
– ident: e_1_2_7_10_1
– volume: 33
  year: 2021
  ident: e_1_2_7_22_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202109335
– ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202113206
– ident: e_1_2_7_8_2
  doi: 10.1021/acsami.1c11399
– ident: e_1_2_7_12_2
  doi: 10.1002/adom.202000922
– ident: e_1_2_7_14_2
  doi: 10.1021/jacs.7b10578
– ident: e_1_2_7_32_1
– ident: e_1_2_7_61_2
  doi: 10.1002/anie.202011384
– ident: e_1_2_7_36_2
  doi: 10.1021/accountsmr.1c00208
– ident: e_1_2_7_60_3
  doi: 10.1002/ange.201813604
– ident: e_1_2_7_20_2
  doi: 10.1002/adom.202100825
– ident: e_1_2_7_56_2
  doi: 10.1038/s41566-021-00763-5
– ident: e_1_2_7_62_2
  doi: 10.1002/adma.202104125
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.202007210
– ident: e_1_2_7_29_2
  doi: 10.1021/acsami.0c20619
– ident: e_1_2_7_5_2
  doi: 10.1002/adom.201801536
– ident: e_1_2_7_59_3
  doi: 10.1002/ange.202106315
– ident: e_1_2_7_37_2
  doi: 10.1038/s41563-020-0710-z
– ident: e_1_2_7_53_2
  doi: 10.1002/adma.201401476
– ident: e_1_2_7_30_2
  doi: 10.1002/adom.201901627
– ident: e_1_2_7_55_2
  doi: 10.1038/s41566-020-00745-z
– ident: e_1_2_7_40_2
  doi: 10.1016/j.cclet.2020.08.045
– ident: e_1_2_7_34_2
  doi: 10.1002/chem.201700570
– ident: e_1_2_7_63_1
  doi: 10.1038/s41566-020-0667-0
– ident: e_1_2_7_49_2
  doi: 10.1039/b508541a
– ident: e_1_2_7_16_2
  doi: 10.1002/adom.201902142
– ident: e_1_2_7_51_1
  doi: 10.1063/1.5089637
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201911266
– ident: e_1_2_7_60_2
  doi: 10.1002/anie.201813604
– ident: e_1_2_7_4_2
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_7_25_3
  doi: 10.1002/ange.202107848
– ident: e_1_2_7_28_1
– ident: e_1_2_7_39_2
  doi: 10.1039/C9CC07169E
– ident: e_1_2_7_41_1
  doi: 10.1039/C7CP02110K
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_7_42_1
  doi: 10.1021/om100106e
– ident: e_1_2_7_26_2
  doi: 10.1021/acs.orglett.0c04159
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-019-08495-5
– ident: e_1_2_7_7_2
  doi: 10.1021/jacs.0c10081
– ident: e_1_2_7_45_2
  doi: 10.1038/natrevmats.2018.20
– volume: 33
  year: 2021
  ident: e_1_2_7_19_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_44_1
– ident: e_1_2_7_15_2
  doi: 10.1002/adma.202004072
– ident: e_1_2_7_38_2
  doi: 10.1021/acs.jpcc.9b02507
– ident: e_1_2_7_58_1
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.201505491
– ident: e_1_2_7_57_1
  doi: 10.1039/C5MH00258C
– ident: e_1_2_7_27_2
  doi: 10.1002/adma.202105080
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.202107848
– ident: e_1_2_7_6_3
  doi: 10.1002/ange.201911266
– ident: e_1_2_7_9_2
  doi: 10.1038/s41566-021-00870-3
– volume: 134
  year: 2022
  ident: e_1_2_7_18_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113206
– ident: e_1_2_7_23_2
  doi: 10.31635/ccschem.021.202101033
– ident: e_1_2_7_54_2
  doi: 10.1002/adma.201908355
– ident: e_1_2_7_1_1
  doi: 10.1063/1.110582
– volume: 21
  year: 2021
  ident: e_1_2_7_21_2
  publication-title: Mater. Today
– ident: e_1_2_7_48_2
  doi: 10.1039/b810189b
– volume: 133
  start-page: 5273
  year: 2021
  ident: 000775112100001.55
  publication-title: Angew. Chem
– volume: 132
  start-page: 17595
  year: 2020
  ident: 000775112100001.16
  publication-title: Angew. Chem
– volume: 15
  start-page: 780
  year: 2021
  ident: WOS:000701197600014
  article-title: The role of host-guest interactions in organic emitters employing MR-TADF
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-021-00870-3
– volume: 59
  start-page: 17442
  year: 2020
  ident: WOS:000555866800001
  article-title: Constructing Charge-Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007210
– volume: 286
  start-page: 490
  year: 1998
  ident: WOS:000073568400021
  article-title: Microscopic determination of the interlayer binding energy in graphite
  publication-title: CHEMICAL PHYSICS LETTERS
– volume: 14
  start-page: 643
  year: 2020
  ident: WOS:000555386900002
  article-title: Organic light emitters exhibiting very fast reverse intersystem crossing
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-020-0667-0
– volume: 23
  start-page: 7719
  year: 2017
  ident: WOS:000402799200016
  article-title: Spirobifluorene Regioisomerism: A Structure-Property Relationship Study
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201700570
– volume: 31
  start-page: ARTN 2104980
  year: 2021
  ident: WOS:000681585200001
  article-title: Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202104980
– volume: 58
  start-page: 16912
  year: 2019
  ident: WOS:000492218500001
  article-title: Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911266
– volume: 32
  start-page: ARTN 2000193
  year: 2020
  ident: WOS:000530300000008
  article-title: A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202000193
– volume: 60
  start-page: 20498
  year: 2021
  ident: WOS:000678178400001
  article-title: Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202107848
– volume: 28
  start-page: 2777
  year: 2016
  ident: WOS:000373839600014
  article-title: Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201505491
– volume: 30
  start-page: ARTN 1908677
  year: 2020
  ident: WOS:000535648400001
  article-title: Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201908677
– volume: 60
  start-page: 18852
  year: 2021
  ident: WOS:000674246500001
  article-title: Iridium(III)-Catalyzed Diarylation/Annulation of Benzoic Acids: Facile Access to Multi-Aryl Spirobifluorenes as Pure Hydrocarbon Hosts for High-Performance OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202106315
– volume: 60
  start-page: 23142
  year: 2021
  ident: WOS:000696247200001
  article-title: Wide-Range Color Tuning of Narrowband Emission in Multi-resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202109335
– volume: 9
  start-page: ARTN 2100825
  year: 2021
  ident: WOS:000686175100001
  article-title: Simple Acridan-Based Multi-Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202100825
– volume: 7
  start-page: ARTN 1801536
  year: 2019
  ident: WOS:000466383600003
  article-title: The Design of Fused Amine/Carbonyl System for Efficient Thermally Activated Delayed Fluorescence: Novel Multiple Resonance Core and Electron Acceptor
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201801536
– volume: 107
  start-page: 1011
  year: 2007
  ident: WOS:000245600000004
  article-title: Spiro compounds for organic optoelectronics
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0501341
– volume: 34
  start-page: ARTN 2105080
  year: 2022
  ident: WOS:000710320800001
  article-title: Fabrication of Circularly Polarized MR-TADF Emitters with Asymmetrical Peripheral-Lock Enhancing Helical B/N-Doped Nanographenes
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202105080
– volume: 23
  start-page: 958
  year: 2021
  ident: WOS:000629001700062
  article-title: Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.0c04159
– volume: 32
  start-page: 1245
  year: 2021
  ident: WOS:000642400700007
  article-title: Spatial donor/acceptor architecture for intramolecular charge-transfer emitter
  publication-title: CHINESE CHEMICAL LETTERS
  doi: 10.1016/j.cclet.2020.08.045
– volume: 8
  start-page: ARTN 1901627
  year: 2020
  ident: WOS:000500297000001
  article-title: Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201901627
– volume: 10
  start-page: 6615
  year: 2008
  ident: WOS:000260775400004
  article-title: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/b810189b
– volume: 15
  start-page: 208
  year: 2021
  ident: WOS:000618183700001
  article-title: High-efficiency, long-lifetime deep-blue organic light-emitting diodes
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-021-00763-5
– volume: 33
  year: 2021
  ident: 000775112100001.18
  publication-title: Adv. Mater
– volume: 13
  start-page: 678
  year: 2019
  ident: WOS:000487333400005
  article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-019-0476-5
– volume: 492
  start-page: 234
  year: 2012
  ident: WOS:000312259300038
  article-title: Highly efficient organic light-emitting diodes from delayed fluorescence
  publication-title: NATURE
  doi: 10.1038/nature11687
– volume: 140
  start-page: 1195
  year: 2018
  ident: WOS:000424313000002
  article-title: One-Shot Multiple Borylation toward BN-Doped Nanographenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b10578
– volume: 33
  start-page: ARTN 2008029
  year: 2021
  ident: WOS:000643150200001
  article-title: Atomically Thin Quantum Spin Hall Insulators
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202008029
– volume: 13
  start-page: 45798
  year: 2021
  ident: WOS:000703995900066
  article-title: Asymmetric Blue Multiresonance TADF Emitters with a Narrow Emission Band
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.1c11399
– volume: 29
  start-page: 2176
  year: 2010
  ident: WOS:000277212300025
  article-title: NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om100106e
– volume: 3
  start-page: 145
  year: 2016
  ident: WOS:000371611800007
  article-title: Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability
  publication-title: MATERIALS HORIZONS
  doi: 10.1039/c5mh00258c
– volume: 123
  start-page: 19094
  year: 2019
  ident: WOS:000480502300035
  article-title: 1-Carbazolyl Spirobifluorene: Synthesis, Structural, Electrochemical, and Photophysical Properties
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.9b02507
– volume: 19
  start-page: 17928
  year: 2017
  ident: WOS:000405424100045
  article-title: Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/c7cp02110k
– volume: 15
  start-page: 203
  year: 2021
  ident: WOS:000604898500001
  article-title: Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-020-00745-z
– volume: 150
  start-page: ARTN 164123
  year: 2019
  ident: WOS:000466698700028
  article-title: A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.5089637
– volume: 32
  start-page: ARTN 2004072
  year: 2020
  ident: WOS:000564015100001
  article-title: Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202004072
– volume: 58
  start-page: 3848
  year: 2019
  ident: WOS:000462680700028
  article-title: C1-Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for High-Performance Blue Phosphorescent OLEDs
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201813604
– volume: 7
  start-page: 3297
  year: 2005
  ident: WOS:000231618300007
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
– volume: 61
  start-page: ARTN e202113206
  year: 2022
  ident: WOS:000723906400001
  article-title: Sterically Wrapped Multiple Resonance Fluorophors for Suppression of Concentration Quenching and Spectrum Broadening
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202113206
– volume: 115
  start-page: 11718
  year: 2015
  ident: WOS:000364727100004
  article-title: Aggregation-Induced Emission: Together We Shine, United We Soar!
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00263
– volume: 2
  start-page: 1261
  year: 2021
  ident: WOS:000736496600013
  article-title: Spiro Compounds for Organic Light-Emitting Diodes
  publication-title: ACCOUNTS OF MATERIALS RESEARCH
  doi: 10.1021/accountsmr.1c00208
– volume: 21
  start-page: ARTN 100792
  year: 2021
  ident: WOS:000701824000002
  article-title: Concentration quenching-resistant multiresonance thermally activated delayed fluorescence emitters
  publication-title: MATERIALS TODAY ENERGY
  doi: 10.1016/j.mtener.2021.100792
– volume: 8
  start-page: ARTN 1902142
  year: 2020
  ident: WOS:000531416200016
  article-title: Molecular-Structure and Device-Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201902142
– volume: 61
  start-page: ARTN e202116854
  year: 2022
  ident: WOS:000753670600001
  article-title: A Metallofullertube of Ce2@C100 with a Carbon Nanotube Segment: Synthesis, Single-Molecule Conductance and Supramolecular Assembly
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202116854
– volume: 4
  start-page: 2065
  year: 2022
  ident: WOS:000810728900024
  article-title: Highly Efficient Electroluminescent Materials with High Color Purity Based on Strong Acceptor Attachment onto B-N-Containing Multiple Resonance Frameworks
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.021.202101033
– volume: 8
  start-page: ARTN 2000922
  year: 2020
  ident: WOS:000570191000001
  article-title: Three- and Four-Coordinate, Boron-Based, Thermally Activated Delayed Fluorescent Emitters
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.202000922
– volume: 55
  start-page: 14238
  year: 2019
  ident: WOS:000500001300001
  article-title: New generations of spirobifluorene regioisomers for organic electronics: tuning electronic properties with the substitution pattern
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c9cc07169e
– volume: 19
  start-page: 1332
  year: 2020
  ident: WOS:000540412500004
  article-title: Highly efficient luminescence from space-confined charge-transfer emitters
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-020-0710-z
– volume: 33
  year: 2021
  ident: 000775112100001.21
  publication-title: Adv. Mater
– volume: 60
  start-page: 5213
  year: 2021
  ident: WOS:000606866600001
  article-title: Multi-Layer π-Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011384
– volume: 10
  start-page: ARTN 597
  year: 2019
  ident: WOS:000457749000006
  article-title: Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-08495-5
– volume: 142
  start-page: 19468
  year: 2020
  ident: WOS:000592911000007
  article-title: Full-Color, Narrowband, and High-Efficiency Electroluminescence from Boron and Carbazole Embedded Polycyclic Heteroaromatics
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10081
– volume: 63
  start-page: 2032
  year: 1993
  ident: WOS:A1993MA97700007
  article-title: CONTROL OF EMISSION CHARACTERISTICS IN ORGANIC THIN-FILM ELECTROLUMINESCENT DIODES USING AN OPTICAL-MICROCAVITY STRUCTURE
  publication-title: APPLIED PHYSICS LETTERS
– volume: 3
  start-page: ARTN 18020
  year: 2018
  ident: WOS:000430173500006
  article-title: All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes
  publication-title: NATURE REVIEWS MATERIALS
  doi: 10.1038/natrevmats.2018.20
– volume: 26
  start-page: 5050
  year: 2014
  ident: WOS:000340500700023
  article-title: High-Efficiency Fluorescent Organic Light-Emitting Devices Using Sensitizing Hosts with a Small Singlet-Triplet Exchange Energy
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201401476
– volume: 13
  start-page: 8643
  year: 2021
  ident: WOS:000623228500075
  article-title: Hot Vibrational States in a High-Performance Multiple Resonance Emitter and the Effect of Excimer Quenching on Organic Light-Emitting Diodes
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c20619
SSID ssj0028806
Score 2.6629477
Snippet A multiple resonance thermally activated delayed fluorescence (MR‐TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios,...
A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios,...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202201886
SubjectTerms Chemistry
Chemistry, Multidisciplinary
Doping
Electroluminescence
Emitters
Fluorescence
Modulation
Multiple Resonance Thermally Activated Delayed Fluorescence
OLEDs
Physical Sciences
Resonance
Science & Technology
Spiro Compounds
Steric Effects
Substitutes
Title Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202201886
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000775112100001
https://www.ncbi.nlm.nih.gov/pubmed/35293091
https://www.proquest.com/docview/2664754325
https://www.proquest.com/docview/2640048322
Volume 61
WOS 000775112100001
WOSCitedRecordID wos000775112100001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LT9wwEIdHiEu5tFD6CNDKSEg9Gby28zqi1SJaaTmwrMQtsmNbQqUbBLsH-td3xnmUpapatbesMlFkZ8bzy2b8DcCRcxhBIXiuTeG4dsJzo4LgRZpakTrlspz2Dk8vsvO5_nKdXj_Zxd_yIYY_3Cgy4npNAW7sw8lPaCjtwMb3O4kZrCiIuU0FW6SKLgd-lETnbLcXKcWpC31PbRTyZP3y9az0i9R8lpXWhWzMRGevwPRjaAtQvh6vlva4_v4M7_g_g9yGl51MZaetX-3Ahl-8hhfjvjvcLsxnBHmu2bRxXQMw1gQ2u7u5b9gsMmlX956hImZUSXL7yCaRVYEpjk27GkZGnw6I9-HZ5NtNxHy-gfnZ5Gp8zrsWDbxWucp4Kqw2wWZGBDuqnctsiW-cqNLqOjOqSPOQ6yCdKp3Jvbalt6IorZFZwGNlgnoLm4tm4d8DU9aJwnrt8oyQP7iQ1EZZWQS0N6hbE-D9I6rqjl9ObTRuq5a8LCuarGqYrAQ-DfZ3Lbnjt5YH_ROvugh-qFC46DzVSuKND4fTOMn0QcUsfLMim7gC4pqYwLvWU4ZbobAtFYqxBI6eus5wXkT44Ij4baSzExj9jdm4GzgBC5YJyOg7fxhedXrxeTL82vuXi_Zhi46pakKqA9hEN_IfUIwt7ccYcD8AwU0qfw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJEqcXKbtR0nOVarrbbQ3QPblbhFdmxLVcumKrsH-PXMOA_YIgSCWxKPFdme8Xy2x98A7DuHFhSC58oUjiuXem5kSHmRZTbNnHQ6p7vDs7meLtX7T1kfTUh3YVp-iGHDjSwjztdk4LQhffiDNZSuYOMCT6ALKwp9G-5QWu-4qvo4MEgJVM_2gpGUnPLQ97yNqTjcrr_tl34Bmzf80jaUjb7o-D7YvhVtCMrFwWZtD-pvNwge_6uZD-Beh1TZUataD-GWXz2C3XGfIO4xLBfE81yzWeO6HGCsCWxxdX7dsEWkpd1ce4agmFEwyeVXNol0Fejl2KwLY2R0ekCUH55NPp9Hps8nsDyenI2nvMvSwGuZS82z1CoTrDZpsKPaOW1LXHQiUKtrbWSR5SFXQThZOpN7ZUtv06K0RuiAz9IE-RR2Vs3KPwcmrUsL65XLNbH-4FxSG2lFEVDeIHRNgPdjVNUdhTll0risWvJlUVFnVUNnJfBukL9qyTt-K7nXD3nVGfGXCrGLyjMlBf747VCMnUxnKmblmw3JxEkQp8UEnrWqMvwKsW0pEY8lsP-z7gzlaeQfHBGFG0HtBEZ_IzbuGk6cBesERFSePzSvOpqfTIa3F_9S6Q3sTs9mp9XpyfzDS7hL3ymIQsg92EGV8q8Qm63t62h93wFb5S6a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMCTghd8_AgOMNImnbK7tOOnj1LXagFaIUmlvkR3b0sRoqtE-wF_PnfODdQiB4C1NLops3_m-aezPAew5hxEUgk-VKVyqHPepkYGnRZZZnjnpdE57h6czfbxQb0-z00u7-Bs-RP-HG0VGnK8pwFcuHPyEhtIObHy_E5jBikJfhxtK84L8-uhjD5AS6J3N_iIpUypD32EbuTjYvn87Lf2iNa-kpW0lG1PR5C6YrhHNCpTP-5u13a--X-E7_k8r78GdVqeyw8ax7sM1v3wAt0ZdebiHsJgT5bli09q1FcBYHdh8dXZRs3mE0m4uPENJzGgpyfk3No6wCsxxbNouYmT07YCAH56Nv5xFzucjWEzGn0bHaVujIa1kLnWacatMsNrwYAeVc9oO8ZUTZVpVaSOLLA-5CsLJoTO5V3boLQ6SNUIHPJYmyMews6yX_ikwaR0vrFcu18T8wZmkMtKKIqC9QeGaQNoNUVm1AHOqo3FeNuhlUVJnlX1nJfCmt1816I7fWu52I162Ify1ROWi8kxJgQ9-3V_GTqYvKmbp6w3ZxCkQJ8UEnjSe0j8Kle1QohpLYO-y6_TXeaQPDgjgRkI7gcHfmI3ahhOxYJ2AiL7zh-aVh7OTcf_r2b_c9ApufjialO9PZu-ew206TSsohNyFHfQo_wKF2dq-jLH3A8DzLVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Steric+Modulation+of+Spiro+Structure+for+Highly+Efficient+Multiple+Resonance+Emitters&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qu%2C+Yang%E2%80%90Kun&rft.au=Zhou%2C+Dong%E2%80%90Ying&rft.au=Kong%2C+Fan%E2%80%90Cheng&rft.au=Zheng%2C+Qi&rft.date=2022-05-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=22&rft_id=info:doi/10.1002%2Fanie.202201886&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202201886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon