A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo

Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroredu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 7; pp. e202107076 - n/a
Main Authors Zhang, Shuping, Chen, Hua, Wang, Liping, Qin, Xue, Jiang, Bang‐Ping, Ji, Shi‐Chen, Shen, Xing‐Can, Liang, Hong
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 07.02.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers. We have described a general energy balance approach by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized platform, the first dual‐ratio NIRF/PA response probe AS‐Cy‐NO2 was designed for quantitatively and precisely monitoring of tumor hypoxia levels in vivo.
AbstractList Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I /I ) and 2.4-fold ratiometric PA enhancement (PA /PA ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers.
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers. We have described a general energy balance approach by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized platform, the first dual‐ratio NIRF/PA response probe AS‐Cy‐NO2 was designed for quantitatively and precisely monitoring of tumor hypoxia levels in vivo.
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO 2 , which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO 2 , composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I 773 /I 733 ) and 2.4‐fold ratiometric PA enhancement (PA 730 /PA 670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers.
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2, composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I-773/I-733) and 2.4-fold ratiometric PA enhancement (PA(730)/PA(670)) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.
ArticleNumber 202107076
Author Qin, Xue
Ji, Shi‐Chen
Liang, Hong
Wang, Liping
Shen, Xing‐Can
Chen, Hua
Zhang, Shuping
Jiang, Bang‐Ping
Author_xml – sequence: 1
  givenname: Shuping
  surname: Zhang
  fullname: Zhang, Shuping
  organization: Guangxi Normal University
– sequence: 2
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
  email: xcshen@mailbox.gxnu.edu.cn
  organization: Guangxi Normal University
– sequence: 3
  givenname: Liping
  surname: Wang
  fullname: Wang, Liping
  organization: Guangxi Normal University
– sequence: 4
  givenname: Xue
  surname: Qin
  fullname: Qin, Xue
  organization: Guangxi Normal University
– sequence: 5
  givenname: Bang‐Ping
  surname: Jiang
  fullname: Jiang, Bang‐Ping
  organization: Guangxi Normal University
– sequence: 6
  givenname: Shi‐Chen
  surname: Ji
  fullname: Ji, Shi‐Chen
  organization: Guangxi Normal University
– sequence: 7
  givenname: Xing‐Can
  orcidid: 0000-0002-7116-6919
  surname: Shen
  fullname: Shen, Xing‐Can
  email: chenhuagnu@gxnu.edu.cn
  organization: Guangxi Normal University
– sequence: 8
  givenname: Hong
  surname: Liang
  fullname: Liang, Hong
  organization: Guangxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34227715$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEQgFeoiD7gyhFZ4oKEEvzYXXuPUfqKFEFBpVfL68y2rjZ2sL2FcOLCnd_IL2FK0iJVQnDyaPx9Y89o9osdHzwUxXNGx4xS_sZ4B2NOOaOSyvpRsccqzkZCSrGDcSnESKqK7Rb7KV0jrxStnxS7ouRcSlbtFT8m5AQ8RNOTyWoVg7FXJAdyCMldenI4YP6DyS4sIUdnyXE_hAjJgs_E-AU5uwoZnTCkjLdnMbSQSBcieT8Yn11G9Qb6NblwCUu5r85fkvNhicDpehW-OEPmgEAiM__z2_cLdxOeFo870yd4tj0Pio_HR-fT09H83clsOpmPrJCiHpXcGEtLyiujalOpllK1YF0rDGtt07RlLTpqZFtyoayipsZk1UgQkkHLm04cFK82dbHpTwOkrJcO--p74wHb0bwqVUMr3ghEXz5Ar8MQPf5O85qXtKmZqJF6saWGdgkLvYpuaeJa380agdcb4DO0oUvWgbdwj1FKpSjrplIYUYa0-n96-nvSwU_D4DOq5Ua1MaQUodN2e5-jcb1mVN_ujr7dHX2_O6iNH2h3r_1VaLZfdD2s_0HrydvZ0R_3F02R1lI
CitedBy_id crossref_primary_10_1016_j_saa_2023_122791
crossref_primary_10_1002_ange_202201541
crossref_primary_10_3788_CJL230615
crossref_primary_10_1039_D3QI00441D
crossref_primary_10_3389_fchem_2022_859948
crossref_primary_10_1002_anie_202410645
crossref_primary_10_1021_acs_analchem_2c03436
crossref_primary_10_1039_D3BM01514A
crossref_primary_10_1039_D3SC03972B
crossref_primary_10_1088_1361_6528_ace633
crossref_primary_10_1016_j_saa_2022_121778
crossref_primary_10_1002_ange_202405636
crossref_primary_10_1021_acssensors_2c00058
crossref_primary_10_1039_D2NJ03226K
crossref_primary_10_1002_adma_202415189
crossref_primary_10_1002_ange_202305744
crossref_primary_10_1021_acs_chemrev_1c00875
crossref_primary_10_1002_anie_202418378
crossref_primary_10_1002_anie_202307797
crossref_primary_10_1002_adfm_202400597
crossref_primary_10_1039_D3NJ04270G
crossref_primary_10_1002_smll_202201179
crossref_primary_10_1016_j_foodchem_2024_140779
crossref_primary_10_1002_adhm_202203080
crossref_primary_10_1021_acs_analchem_2c01048
crossref_primary_10_1039_D1TB02282B
crossref_primary_10_1016_j_saa_2024_124180
crossref_primary_10_1002_anie_202315217
crossref_primary_10_1021_jacs_2c13315
crossref_primary_10_6023_A23040138
crossref_primary_10_1002_anie_202405636
crossref_primary_10_1016_j_microc_2024_111368
crossref_primary_10_1021_acs_analchem_2c01372
crossref_primary_10_1111_php_13715
crossref_primary_10_1016_j_jhazmat_2022_130374
crossref_primary_10_1021_acs_analchem_2c04764
crossref_primary_10_1002_adhm_202400593
crossref_primary_10_1039_D2CC05033A
crossref_primary_10_1007_s10895_024_03857_9
crossref_primary_10_1002_anie_202305744
crossref_primary_10_1039_D3SC06058F
crossref_primary_10_1002_ange_202418378
crossref_primary_10_1002_ange_202315217
crossref_primary_10_1002_anie_202117433
crossref_primary_10_3389_fbioe_2022_1062781
crossref_primary_10_1016_j_saa_2023_122775
crossref_primary_10_1002_asia_202401067
crossref_primary_10_3390_molecules28052229
crossref_primary_10_1039_D4TB01656D
crossref_primary_10_1002_chem_202402019
crossref_primary_10_1016_j_bioorg_2024_107505
crossref_primary_10_1021_acsnano_3c10659
crossref_primary_10_1002_anie_202302629
crossref_primary_10_1021_acsnano_3c12238
crossref_primary_10_1002_ange_202410645
crossref_primary_10_1039_D1AY01821C
crossref_primary_10_1016_j_snb_2022_132358
crossref_primary_10_1021_acssensors_2c02610
crossref_primary_10_1021_acs_analchem_4c00922
crossref_primary_10_3788_LOP232137
crossref_primary_10_1021_acs_analchem_1c05235
crossref_primary_10_1088_1748_605X_ac4147
crossref_primary_10_1021_acsmaterialslett_3c00933
crossref_primary_10_1002_ange_202117433
crossref_primary_10_1021_acs_nanolett_2c04084
crossref_primary_10_1039_D1CS00307K
crossref_primary_10_1002_adhm_202303472
crossref_primary_10_1002_anie_202201541
crossref_primary_10_1039_D2TB00937D
crossref_primary_10_1016_j_actbio_2022_08_020
crossref_primary_10_1021_acs_analchem_2c05476
crossref_primary_10_1039_D4AN00188E
crossref_primary_10_1002_smll_202408527
crossref_primary_10_1016_j_tetlet_2022_153996
crossref_primary_10_3390_mi13081328
crossref_primary_10_1002_ange_202302629
crossref_primary_10_1039_D2NJ04316E
crossref_primary_10_1007_s00604_024_06291_7
crossref_primary_10_1016_j_bioorg_2024_107531
crossref_primary_10_1016_j_saa_2022_121884
crossref_primary_10_1021_acs_analchem_2c04587
crossref_primary_10_3390_molecules28041898
crossref_primary_10_1021_acsami_2c19927
crossref_primary_10_1021_acssuschemeng_3c00298
crossref_primary_10_1002_adma_202415891
crossref_primary_10_1039_D2CC04112J
crossref_primary_10_1002_ange_202307797
Cites_doi 10.1038/s41467-020-14985-8
10.1021/acs.chemmater.7b03924
10.1038/s41563-019-0378-4
10.1039/D0NR03047C
10.1038/s41566-018-0221-5
10.1016/j.bios.2011.01.036
10.1039/C4CS00086B
10.1002/ange.201913149
10.1038/nmeth.1483
10.1002/anie.201800293
10.1039/C7CS00612H
10.1259/bjr.20130676
10.1002/anie.201915040
10.1002/anie.201904700
10.1021/jacs.7b11036
10.1002/ange.202002391
10.1002/anie.201914120
10.3389/fonc.2016.00066
10.1016/j.ccr.2020.213460
10.1021/jacs.9b09220
10.1039/C6SC02500E
10.1002/anie.201803321
10.1038/s41551-016-0010
10.1038/s42255-019-0045-8
10.1002/anie.202001783
10.1039/D0CC01621G
10.1002/anie.202015116
10.1002/ange.201915040
10.1002/ange.201904700
10.1038/nmeth.3929
10.1002/ange.201914120
10.1002/anie.202002391
10.1038/bjc.2016.79
10.1002/anie.202105905
10.1021/jacs.8b13628
10.1021/jacs.5b04097
10.1126/science.1216210
10.1021/jacs.9b09181
10.1002/anie.202010228
10.1038/ncomms10432
10.1259/bjr.20190640
10.1002/ange.201803321
10.1039/D0CS00671H
10.1002/anie.202013531
10.1021/acs.analchem.8b01879
10.1002/ange.202001783
10.1002/ange.202015116
10.1021/jacs.9b06694
10.1021/jacs.8b09374
10.1002/adma.201704367
10.1039/c3cc42610f
10.1021/jacs.0c00659
10.1038/nchem.2648
10.1002/ange.202105905
10.1021/jacs.8b02350
10.1002/ange.202010228
10.1038/nrc3064
10.1021/acs.chemrev.7b00258
10.1038/nbt1220
10.1039/C5SC04986E
10.1021/acsnano.0c05215
10.1021/jacs.9b05901
10.1021/jacs.9b12629
10.1002/ange.202013531
10.1002/ange.201800293
10.1007/s00330-020-07067-2
10.1002/anie.201913149
10.7150/thno.26607
10.1038/s42254-019-0143-2
10.1039/D0TB02674C
10.1021/jacs.1c02112
10.1002/adma.201907855
10.1039/d0cc01621g
10.1039/c5sc04986e
10.1039/d0cs00671h
10.1039/c7cs00612h
10.1039/d0tb02674c
10.1039/d0nr03047c
10.1039/c4cs00086b
10.1038/NMETH.3929
10.1038/NCHEM.2648
10.1039/c6sc02500e
10.1038/NMETH.1483
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202107076
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
Web of Science
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34227715
000734695800001
10_1002_anie_202107076
ANIE202107076
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the startup fund of the Guangxi Normal University
  funderid: A-0208-00-00017,17A4
– fundername: National Natural Science Foundation of China
  funderid: 21807016, 21977022,22167004
– fundername: Natural Science Foundation of Guangxi
  funderid: 2017GXNSFGA198004, 2018GXNSFBA138040, AD19110015, AD17129007
– fundername: Natural National Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21807016; 21977022; 22167004
– fundername: Guangxi Normal University
  grantid: A-0208-00-00017K; 17A4
– fundername: Natural Science Foundation of Guangxi; National Natural Science Foundation of Guangxi Province
  grantid: 2017GXNSFGA198004; 2018GXNSFBA138040; AD19110015; AD17129007
– fundername: the startup fund of the Guangxi Normal University
  grantid: A-0208-00-00017,17A4
– fundername: Natural Science Foundation of Guangxi
  grantid: 2017GXNSFGA198004, 2018GXNSFBA138040, AD19110015, AD17129007
– fundername: National Natural Science Foundation of China
  grantid: 21807016, 21977022,22167004
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3736-42aac04025a86a58b008d1fb3a1bc99b463f0a7b4238c80a6c99597e371eb29f3
IEDL.DBID DR2
ISICitedReferencesCount 137
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000734695800001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:12:08 EDT 2025
Sun Jul 13 05:43:17 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Wed Jul 09 18:14:04 EDT 2025
Fri Aug 29 16:08:02 EDT 2025
Tue Jul 01 01:18:05 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 16:25:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dual ratiometric platform
NANOPARTICLES
Nitroreductase
Tumor hypoxia
AGENTS
MICROSCOPY
Quantitative detection
In vivo imaging
NEAR-INFRARED FLUORESCENCE
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3736-42aac04025a86a58b008d1fb3a1bc99b463f0a7b4238c80a6c99597e371eb29f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7116-6919
PMID 34227715
PQID 2624096136
PQPubID 946352
PageCount 9
ParticipantIDs wiley_primary_10_1002_anie_202107076_ANIE202107076
proquest_journals_2624096136
proquest_miscellaneous_2548905293
crossref_citationtrail_10_1002_anie_202107076
webofscience_primary_000734695800001
crossref_primary_10_1002_anie_202107076
webofscience_primary_000734695800001CitationCount
pubmed_primary_34227715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 7, 2022
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 02
  year: 2022
  text: February 7, 2022
  day: 07
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 9
2017; 1
2018; 140
2013; 49
2020; 142
2019; 1
1991; 51
2020 2020; 59 132
2011; 11
2019; 18
2020; 14
2020; 12
2020; 56
2020; 11
2021; 143
2020; 32
2020; 421
2019; 141
2017; 9
2019 2019; 58 131
2016; 13
2014; 87
2014; 43
2017; 117
2018; 47
2016; 6
2016; 7
2018; 8
2021; 31
2020; 2
2015; 137
2006; 24
2020; 93
2018 2018; 57 130
2021 2021; 60 133
2020; 49
2018; 90
2018; 30
2011; 26
2016; 114
2018; 12
2012; 335
2010; 7
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
Vaupel P. (e_1_2_6_60_1) 1991; 51
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
(e_1_2_6_16_2) 2019; 131
e_1_2_6_50_1
e_1_2_6_58_2
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_2
e_1_2_6_27_1
e_1_2_6_46_1
(000734695800001.31) 2021; 133
Fan, WP (WOS:000416500700003) 2017; 117
(000734695800001.49) 2020; 132
Dong, ZL (WOS:000425475300033) 2018; 140
Waller, J. (000734695800001.5) 2020; 93
Huang, JG (WOS:000522756500001) 2020; 59
Li, MH (WOS:000419999400003) 2018; 30
(000734695800001.33) 2020; 132
Weber, J (WOS:000385188700018) 2016; 13
Mantri, Y (WOS:000566341000012) 2020; 14
(000734695800001.66) 2020; 132
(000734695800001.11) 2018; 130
Zlitni, A (WOS:000549162600027) 2020; 11
Brennecke, B (WOS:000526155300001) 2020; 59
Li, YH (WOS:000355053100044) 2015; 137
Zhang, Y (WOS:000613292900001) 2021; 60
Zhang, SP (WOS:000614998200019) 2021; 9
Zhang, HF (WOS:000239025100036) 2006; 24
Ntziachristos, V (WOS:000280500000020) 2010; 7
Umezawa, K (WOS:000394542500015) 2017; 9
He, SS (WOS:000526300600035) 2020; 142
Ouyang, J (WOS:000500295400001) 2020; 59
(000734695800001.62) 2021; 133
Nguyen, VN (WOS:000491220300011) 2019; 141
(000734695800001.21) 2020; 132
Huang, XL (WOS:000430708600012) 2018; 47
Huang, JS (WOS:000600445500001) 2021; 60
(000734695800001.70) 2018; 130
Koch, M (WOS:000443022200009) 2018; 12
Chen, ZY (WOS:000498281600004) 2019; 141
Huang, JG (WOS:000486618800024) 2019; 18
Ni, DL (WOS:000449887800057) 2018; 140
Meng, XQ (WOS:000451946500017) 2018; 8
Zha, ML (WOS:000578727000001) 2020; 59
VAUPEL, P (WOS:A1991FQ96700037) 1991; 51
Jeevarathinam, AS (WOS:000508989700001) 2020; 59
Usama, SM (WOS:000643591600015) 2021; 143
Teng, LL (WOS:000484082700036) 2019; 141
Ai, XZ (WOS:000369022600015) 2016; 7
Feng, GX (WOS:000590395000010) 2020; 49
Yang, YT (WOS:000509425600059) 2020; 142
McKeown, SR (WOS:000334291600009) 2014; 87
Gardner, SH (WOS:000668599200001) 2021; 60
Wang, LHV (WOS:000301837000036) 2012; 335
He, XW (WOS:000434895200029) 2018; 140
Jiao, Y (WOS:000514691800001) 2020; 59
Liu, HW (WOS:000550563800020) 2020; 56
Zhen, X (WOS:000435766800039) 2018; 57
Ren, TB (WOS:000434949200034) 2018; 57
Li, Z (WOS:000319905100015) 2013; 49
Yin, L (WOS:000459642000061) 2019; 141
Anees, P (WOS:000378715000019) 2016; 7
Hunter, FW (WOS:000376430800009) 2016; 114
Wilson, WR (WOS:000290908800012) 2011; 11
Zhou, EY (WOS:000495769300020) 2019; 141
Zhou, J (WOS:000384311700002) 2016; 7
(000734695800001.17) 2020; 132
Goel, S (WOS:000424485100016) 2018; 30
Xi, DM (WOS:000511035300001) 2020; 32
Horsman, MR (WOS:000373758600001) 2016; 6
Yoon, S (WOS:000542199700008) 2020; 2
Zhang, JJ (WOS:000441476600076) 2018; 90
Mantri, Y (WOS:000537113200043) 2020; 12
(000734695800001.57) 2021; 133
Thiel, Z (WOS:000478735900051) 2019; 58
Ye, YQ (WOS:000500737300005) 2019; 1
Carmona-Bozo, JC (WOS:000554035800004) 2021; 31
(000734695800001.35) 2020; 132
(000734695800001.19) 2019; 131
Huang, HC (WOS:000289863900020) 2011; 26
Qi, YL (WOS:000551655800012) 2020; 421
Hong, GS (WOS:000418850600010) 2017; 1
Nie, LM (WOS:000342880000012) 2014; 43
References_xml – volume: 59 132
  start-page: 8512 8590
  year: 2020 2020
  end-page: 8516 8594
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 4110
  year: 2016
  end-page: 4116
  publication-title: Chem. Sci.
– volume: 335
  start-page: 1458
  year: 2012
  end-page: 1462
  publication-title: Science
– volume: 43
  start-page: 7132
  year: 2014
  end-page: 7170
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 3999 4045
  year: 2021 2021
  end-page: 4003 4049
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 22
  publication-title: Nat. Biomed. Eng.
– volume: 59 132
  start-page: 10111 10197
  year: 2020 2020
  end-page: 10121 10207
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1250
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  start-page: 141
  year: 2020
  end-page: 158
  publication-title: Nat. Rev. Phys.
– volume: 140
  start-page: 2165
  year: 2018
  end-page: 2178
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 6025
  year: 2018
  end-page: 3034
  publication-title: Theranostics
– volume: 87
  year: 2014
  publication-title: Br. J. Radiol.
– volume: 30
  start-page: 25
  year: 2018
  end-page: 53
  publication-title: Chem. Mater.
– volume: 141
  start-page: 3265
  year: 2019
  end-page: 3273
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 848
  year: 2006
  end-page: 851
  publication-title: Nat. Biotechnol.
– volume: 59 132
  start-page: 23268 23468
  year: 2020 2020
  end-page: 23276 23476
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 93
  year: 2020
  publication-title: Br. J. Radiol.
– volume: 114
  start-page: 1071
  year: 2016
  end-page: 1077
  publication-title: Br. J. Cancer
– volume: 13
  start-page: 639
  year: 2016
  end-page: 651
  publication-title: Nat. Methods
– volume: 12
  start-page: 505
  year: 2018
  end-page: 515
  publication-title: Nat. Photonics
– volume: 141
  start-page: 17973
  year: 2019
  end-page: 17977
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 8103
  year: 2020
  end-page: 8106
  publication-title: Chem. Commun.
– volume: 51
  start-page: 3316
  year: 1991
  end-page: 3322
  publication-title: Cancer Res.
– volume: 60 133
  start-page: 5921 5986
  year: 2021 2021
  end-page: 5927 5992
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 431
  year: 2019
  end-page: 444
  publication-title: Nat. Metab.
– volume: 7
  start-page: 6309
  year: 2016
  end-page: 6315
  publication-title: Chem. Sci.
– volume: 6
  start-page: 66
  year: 2016
  publication-title: Front. Oncol.
– volume: 26
  start-page: 3511
  year: 2011
  end-page: 3516
  publication-title: Biosens. Bioelectron.
– volume: 90
  start-page: 9301
  year: 2018
  end-page: 9307
  publication-title: Anal. Chem.
– volume: 140
  start-page: 6904
  year: 2018
  end-page: 6911
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2873
  year: 2018
  end-page: 2920
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 603
  year: 2010
  end-page: 614
  publication-title: Nat. Methods
– volume: 7
  start-page: 10432
  year: 2016
  publication-title: Nat. Commun.
– volume: 140
  start-page: 14971
  year: 2018
  end-page: 14979
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 393
  year: 2011
  end-page: 410
  publication-title: Nat. Rev. Cancer
– volume: 59 132
  start-page: 4678 4708
  year: 2020 2020
  end-page: 4683 4713
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 9408
  year: 2020
  end-page: 9422
  publication-title: ACS Nano
– volume: 141
  start-page: 13572
  year: 2019
  end-page: 13581
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1133
  year: 2019
  end-page: 1143
  publication-title: Nat. Mater.
– volume: 142
  start-page: 7075
  year: 2020
  end-page: 7082
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 333
  year: 2021
  end-page: 344
  publication-title: Eur. Radiol.
– volume: 421
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 279
  year: 2017
  end-page: 286
  publication-title: Nat. Chem.
– volume: 137
  start-page: 6407
  year: 2015
  end-page: 6416
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 1614
  year: 2020
  end-page: 1620
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8179
  year: 2020
  end-page: 8234
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 13566
  year: 2017
  end-page: 13638
  publication-title: Chem. Rev.
– volume: 12
  start-page: 10511
  year: 2020
  end-page: 10520
  publication-title: Nanoscale
– volume: 60 133
  start-page: 18860 19008
  year: 2021 2021
  end-page: 18866 19014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 16243
  year: 2019
  end-page: 16248
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 11474 11597
  year: 2019 2019
  end-page: 11478 11602
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 7473 7595
  year: 2018 2018
  end-page: 7477 7599
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 5859
  year: 2013
  end-page: 5861
  publication-title: Chem. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 141
  start-page: 17601
  year: 2019
  end-page: 17609
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11717 11813
  year: 2020 2020
  end-page: 11731 11827
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 7804 7930
  year: 2018 2018
  end-page: 7808 7934
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1089
  year: 2021
  end-page: 1095
  publication-title: J. Mater. Chem. B
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 143
  start-page: 5674
  year: 2021
  end-page: 5679
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 6021 6077
  year: 2020 2020
  end-page: 6027 6083
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_32_1
  doi: 10.1038/s41467-020-14985-8
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.chemmater.7b03924
– volume: 51
  start-page: 3316
  year: 1991
  ident: e_1_2_6_60_1
  publication-title: Cancer Res.
– ident: e_1_2_6_19_1
  doi: 10.1038/s41563-019-0378-4
– ident: e_1_2_6_29_1
  doi: 10.1039/D0NR03047C
– ident: e_1_2_6_12_1
  doi: 10.1038/s41566-018-0221-5
– ident: e_1_2_6_18_1
  doi: 10.1016/j.bios.2011.01.036
– ident: e_1_2_6_22_1
  doi: 10.1039/C4CS00086B
– ident: e_1_2_6_41_2
  doi: 10.1002/ange.201913149
– ident: e_1_2_6_25_1
  doi: 10.1038/nmeth.1483
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.201800293
– ident: e_1_2_6_43_1
  doi: 10.1039/C7CS00612H
– ident: e_1_2_6_2_1
  doi: 10.1259/bjr.20130676
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.201915040
– ident: e_1_2_6_16_1
  doi: 10.1002/anie.201904700
– ident: e_1_2_6_35_1
  doi: 10.1021/jacs.7b11036
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.202002391
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.201914120
– ident: e_1_2_6_1_1
  doi: 10.3389/fonc.2016.00066
– ident: e_1_2_6_59_1
  doi: 10.1016/j.ccr.2020.213460
– ident: e_1_2_6_51_1
  doi: 10.1021/jacs.9b09220
– ident: e_1_2_6_45_1
  doi: 10.1039/C6SC02500E
– ident: e_1_2_6_58_1
  doi: 10.1002/anie.201803321
– ident: e_1_2_6_9_1
  doi: 10.1038/s41551-016-0010
– ident: e_1_2_6_4_1
  doi: 10.1038/s42255-019-0045-8
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.202001783
– ident: e_1_2_6_31_1
  doi: 10.1039/D0CC01621G
– ident: e_1_2_6_26_1
  doi: 10.1002/anie.202015116
– ident: e_1_2_6_15_2
  doi: 10.1002/ange.201915040
– volume: 131
  start-page: 11597
  year: 2019
  ident: e_1_2_6_16_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201904700
– ident: e_1_2_6_24_1
  doi: 10.1038/nmeth.3929
– ident: e_1_2_6_28_2
  doi: 10.1002/ange.201914120
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.202002391
– ident: e_1_2_6_3_1
  doi: 10.1038/bjc.2016.79
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.202105905
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.8b13628
– ident: e_1_2_6_13_1
  doi: 10.1021/jacs.5b04097
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1216210
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.9b09181
– ident: e_1_2_6_55_1
  doi: 10.1002/anie.202010228
– ident: e_1_2_6_37_1
  doi: 10.1038/ncomms10432
– ident: e_1_2_6_5_1
  doi: 10.1259/bjr.20190640
– ident: e_1_2_6_58_2
  doi: 10.1002/ange.201803321
– ident: e_1_2_6_49_1
  doi: 10.1039/D0CS00671H
– ident: e_1_2_6_52_1
  doi: 10.1002/anie.202013531
– ident: e_1_2_6_42_1
  doi: 10.1021/acs.analchem.8b01879
– ident: e_1_2_6_27_2
  doi: 10.1002/ange.202001783
– ident: e_1_2_6_26_2
  doi: 10.1002/ange.202015116
– ident: e_1_2_6_53_1
  doi: 10.1021/jacs.9b06694
– ident: e_1_2_6_39_1
  doi: 10.1021/jacs.8b09374
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.201704367
– ident: e_1_2_6_50_1
  doi: 10.1039/c3cc42610f
– ident: e_1_2_6_20_1
  doi: 10.1021/jacs.0c00659
– ident: e_1_2_6_7_1
  doi: 10.1038/nchem.2648
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.202105905
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.8b02350
– ident: e_1_2_6_55_2
  doi: 10.1002/ange.202010228
– ident: e_1_2_6_61_1
  doi: 10.1038/nrc3064
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.chemrev.7b00258
– ident: e_1_2_6_23_1
  doi: 10.1038/nbt1220
– ident: e_1_2_6_30_1
  doi: 10.1039/C5SC04986E
– ident: e_1_2_6_56_1
  doi: 10.1021/acsnano.0c05215
– ident: e_1_2_6_46_1
  doi: 10.1021/jacs.9b05901
– ident: e_1_2_6_8_1
  doi: 10.1021/jacs.9b12629
– ident: e_1_2_6_52_2
  doi: 10.1002/ange.202013531
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.201800293
– ident: e_1_2_6_6_1
  doi: 10.1007/s00330-020-07067-2
– ident: e_1_2_6_41_1
  doi: 10.1002/anie.201913149
– ident: e_1_2_6_40_1
  doi: 10.7150/thno.26607
– ident: e_1_2_6_11_1
  doi: 10.1038/s42254-019-0143-2
– ident: e_1_2_6_54_1
  doi: 10.1039/D0TB02674C
– ident: e_1_2_6_14_1
  doi: 10.1021/jacs.1c02112
– ident: e_1_2_6_57_1
  doi: 10.1002/adma.201907855
– volume: 59
  start-page: 4678
  year: 2020
  ident: WOS:000508989700001
  article-title: Photoacoustic Imaging Quantifies Drug Release from Nanocarriers via Redox Chemistry of Dye-Labeled Cargo
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201914120
– volume: 131
  start-page: 11597
  year: 2019
  ident: 000734695800001.19
  publication-title: Angew. Chem.
– volume: 58
  start-page: 11474
  year: 2019
  ident: WOS:000478735900051
  article-title: Single-Molecule Imaging of Active Mitochondrial Nitroreductases Using a Photo-Crosslinking Fluorescent Sensor
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201904700
– volume: 132
  start-page: 8590
  year: 2020
  ident: 000734695800001.21
  publication-title: Angew. Chem.
– volume: 141
  start-page: 17973
  year: 2019
  ident: WOS:000498281600004
  article-title: An Optical/Photoacoustic Dual-Modality Probe: Ratiometric in/ex Vivo Imaging for Stimulated H2S Upregulation in Mice
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b09181
– volume: 133
  start-page: 4045
  year: 2021
  ident: 000734695800001.62
  publication-title: Angew. Chem.
– volume: 132
  start-page: 10197
  year: 2020
  ident: 000734695800001.49
  publication-title: Angew. Chem.
– volume: 59
  start-page: 8512
  year: 2020
  ident: WOS:000526155300001
  article-title: An Activatable Lanthanide Luminescent Probe for Time-Gated Detection of Nitroreductase in Live Bacteria
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202002391
– volume: 141
  start-page: 3265
  year: 2019
  ident: WOS:000459642000061
  article-title: Quantitatively Visualizing Tumor-Related Protease Activity in Vivo Using a Ratiometric Photoacoustic Probe
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b13628
– volume: 56
  start-page: 8103
  year: 2020
  ident: WOS:000550563800020
  article-title: Imaging of peroxynitrite in drug-induced acute kidney injury with a near-infrared fluorescence and photoacoustic dual-modal molecular probe
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc01621g
– volume: 143
  start-page: 5674
  year: 2021
  ident: WOS:000643591600015
  article-title: Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c02112
– volume: 142
  start-page: 1614
  year: 2020
  ident: WOS:000509425600059
  article-title: Thiol-Chromene "Click" Reaction Triggered Self-Immolative for MR Visualization of Thiol Flux in Physiology and Pathology of Living Cells and Mice
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b12629
– volume: 1
  start-page: ARTN 0010
  year: 2017
  ident: WOS:000418850600010
  article-title: Near-infrared fluorophores for biomedical imaging
  publication-title: NATURE BIOMEDICAL ENGINEERING
  doi: 10.1038/s41551-016-0010
– volume: 12
  start-page: 505
  year: 2018
  ident: WOS:000443022200009
  article-title: Tackling standardization in fluorescence molecular imaging
  publication-title: NATURE PHOTONICS
  doi: 10.1038/s41566-018-0221-5
– volume: 18
  start-page: 1133
  year: 2019
  ident: WOS:000486618800024
  article-title: Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury
  publication-title: NATURE MATERIALS
  doi: 10.1038/s41563-019-0378-4
– volume: 117
  start-page: 13566
  year: 2017
  ident: WOS:000416500700003
  article-title: Nanotechnology for Multimodal Synergistic Cancer Therapy
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.7b00258
– volume: 59
  start-page: 11717
  year: 2020
  ident: WOS:000522756500001
  article-title: Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202001783
– volume: 130
  start-page: 7930
  year: 2018
  ident: 000734695800001.70
  publication-title: Angew. Chem
– volume: 132
  start-page: 11813
  year: 2020
  ident: 000734695800001.33
  publication-title: Angew. Chem
– volume: 11
  start-page: ARTN 1250
  year: 2020
  ident: WOS:000549162600027
  article-title: Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-14985-8
– volume: 421
  start-page: ARTN 213460
  year: 2020
  ident: WOS:000551655800012
  article-title: Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2020.213460
– volume: 51
  start-page: 3316
  year: 1991
  ident: WOS:A1991FQ96700037
  article-title: OXYGENATION OF HUMAN TUMORS - EVALUATION OF TISSUE OXYGEN DISTRIBUTION IN BREAST CANCERS BY COMPUTERIZED O2 TENSION MEASUREMENTS
  publication-title: CANCER RESEARCH
– volume: 87
  start-page: ARTN 20130676
  year: 2014
  ident: WOS:000334291600009
  article-title: Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response
  publication-title: BRITISH JOURNAL OF RADIOLOGY
  doi: 10.1259/bjr.20130676
– volume: 59
  start-page: 6021
  year: 2020
  ident: WOS:000514691800001
  article-title: A Cofactor-Substrate-Based Supramolecular Fluorescent Probe for the Ultrafast Detection of Nitroreductase under Hypoxic Conditions
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915040
– volume: 6
  start-page: ARTN 66
  year: 2016
  ident: WOS:000373758600001
  article-title: Pathophysiological Basis for the Formation of the Tumor Microenvironment
  publication-title: FRONTIERS IN ONCOLOGY
  doi: 10.3389/fonc.2016.00066
– volume: 7
  start-page: 4110
  year: 2016
  ident: WOS:000378715000019
  article-title: Real time monitoring of aminothiol level in blood using a near-infrared dye assisted deep tissue fluorescence and photoacoustic bimodal imaging
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c5sc04986e
– volume: 60
  start-page: 3999
  year: 2021
  ident: WOS:000600445500001
  article-title: Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202013531
– volume: 49
  start-page: 8179
  year: 2020
  ident: WOS:000590395000010
  article-title: Design of superior phototheranostic agents guided by Jablonski diagrams
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00671h
– volume: 57
  start-page: 7473
  year: 2018
  ident: WOS:000434949200034
  article-title: Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201800293
– volume: 132
  start-page: 6077
  year: 2020
  ident: 000734695800001.17
  publication-title: Angew. Chem.
– volume: 141
  start-page: 16243
  year: 2019
  ident: WOS:000491220300011
  article-title: An Emerging Molecular Design Approach to Heavy-Atom-Free Photosensitizers for Enhanced Photodynamic Therapy under Hypoxia
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b09220
– volume: 141
  start-page: 13572
  year: 2019
  ident: WOS:000484082700036
  article-title: Nitric Oxide-Activated "Dual-Key-One-Lock" Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b05901
– volume: 32
  start-page: ARTN 1907855
  year: 2020
  ident: WOS:000511035300001
  article-title: NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201907855
– volume: 47
  start-page: 2873
  year: 2018
  ident: WOS:000430708600012
  article-title: Ratiometric optical nanoprobes enable accurate molecular detection and imaging
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c7cs00612h
– volume: 9
  start-page: 1089
  year: 2021
  ident: WOS:000614998200019
  article-title: A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy
  publication-title: JOURNAL OF MATERIALS CHEMISTRY B
  doi: 10.1039/d0tb02674c
– volume: 137
  start-page: 6407
  year: 2015
  ident: WOS:000355053100044
  article-title: Ultrasensitive Near-Infrared Fluorescence-Enhanced Probe for in Vivo Nitroreductase Imaging
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b04097
– volume: 133
  start-page: 5986
  year: 2021
  ident: 000734695800001.31
  publication-title: Angew. Chem.
– volume: 7
  start-page: ARTN 10432
  year: 2016
  ident: WOS:000369022600015
  article-title: In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms10432
– volume: 1
  start-page: 431
  year: 2019
  ident: WOS:000500737300005
  article-title: Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy
  publication-title: NATURE METABOLISM
  doi: 10.1038/s42255-019-0045-8
– volume: 60
  start-page: 18860
  year: 2021
  ident: WOS:000668599200001
  article-title: A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202105905
– volume: 12
  start-page: 10511
  year: 2020
  ident: WOS:000537113200043
  article-title: Iodide-doped precious metal nanoparticles: measuring oxidative stress in vivo via photoacoustic imaging
  publication-title: NANOSCALE
  doi: 10.1039/d0nr03047c
– volume: 59
  start-page: 23268
  year: 2020
  ident: WOS:000578727000001
  article-title: An Ester-Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR-II Photoacoustic Performance for Monitoring of Tumor Growth
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202010228
– volume: 142
  start-page: 7075
  year: 2020
  ident: WOS:000526300600035
  article-title: Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c00659
– volume: 30
  start-page: 25
  year: 2018
  ident: WOS:000419999400003
  article-title: Self-Assembled Hybrid Nanostructures: Versatile Multifunctional Nanoplatforms for Cancer Diagnosis and Therapy
  publication-title: CHEMISTRY OF MATERIALS
  doi: 10.1021/acs.chemmater.7b03924
– volume: 43
  start-page: 7132
  year: 2014
  ident: WOS:000342880000012
  article-title: Structural and functional photoacoustic molecular tomography aided by emerging contrast agents
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c4cs00086b
– volume: 31
  start-page: 333
  year: 2021
  ident: WOS:000554035800004
  article-title: Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging
  publication-title: EUROPEAN RADIOLOGY
  doi: 10.1007/s00330-020-07067-2
– volume: 140
  start-page: 6904
  year: 2018
  ident: WOS:000434895200029
  article-title: Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b02350
– volume: 13
  start-page: 639
  year: 2016
  ident: WOS:000385188700018
  article-title: Contrast agents for molecular photoacoustic imaging
  publication-title: NATURE METHODS
  doi: 10.1038/NMETH.3929
– volume: 93
  year: 2020
  ident: 000734695800001.5
  publication-title: Br. J. Radiol
– volume: 9
  start-page: 279
  year: 2017
  ident: WOS:000394542500015
  article-title: Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.2648
– volume: 49
  start-page: 5859
  year: 2013
  ident: WOS:000319905100015
  article-title: 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc42610f
– volume: 141
  start-page: 17601
  year: 2019
  ident: WOS:000495769300020
  article-title: A Conformationally Restricted Aza-BODIPY Platform for Stimulus-Responsive Probes with Enhanced Photoacoustic Properties
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b06694
– volume: 57
  start-page: 7804
  year: 2018
  ident: WOS:000435766800039
  article-title: Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201803321
– volume: 60
  start-page: 5921
  year: 2021
  ident: WOS:000613292900001
  article-title: Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202015116
– volume: 140
  start-page: 2165
  year: 2018
  ident: WOS:000425475300033
  article-title: Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b11036
– volume: 59
  start-page: 10111
  year: 2020
  ident: WOS:000500295400001
  article-title: Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation-Induced NIR-I/II Fluorescence Imaging
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913149
– volume: 24
  start-page: 848
  year: 2006
  ident: WOS:000239025100036
  article-title: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging
  publication-title: NATURE BIOTECHNOLOGY
  doi: 10.1038/nbt1220
– volume: 133
  start-page: 19008
  year: 2021
  ident: 000734695800001.57
  publication-title: Angew. Chem.
– volume: 26
  start-page: 3511
  year: 2011
  ident: WOS:000289863900020
  article-title: Development of a sensitive long-wavelength fluorogenic probe for nitroreductase: A new fluorimetric indictor for analyte determination by dehydrogenase-coupled biosensors
  publication-title: BIOSENSORS & BIOELECTRONICS
  doi: 10.1016/j.bios.2011.01.036
– volume: 8
  start-page: 6025
  year: 2018
  ident: WOS:000451946500017
  article-title: Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy
  publication-title: THERANOSTICS
  doi: 10.7150/thno.26607
– volume: 132
  start-page: 23468
  year: 2020
  ident: 000734695800001.66
  publication-title: Angew. Chem.
– volume: 335
  start-page: 1458
  year: 2012
  ident: WOS:000301837000036
  article-title: Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs
  publication-title: SCIENCE
  doi: 10.1126/science.1216210
– volume: 7
  start-page: 6309
  year: 2016
  ident: WOS:000384311700002
  article-title: Design principles of spectroscopic probes for biological applications
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c6sc02500e
– volume: 11
  start-page: 393
  year: 2011
  ident: WOS:000290908800012
  article-title: Targeting hypoxia in cancer therapy
  publication-title: NATURE REVIEWS CANCER
  doi: 10.1038/nrc3064
– volume: 7
  start-page: 603
  year: 2010
  ident: WOS:000280500000020
  article-title: Going deeper than microscopy: the optical imaging frontier in biology
  publication-title: NATURE METHODS
  doi: 10.1038/NMETH.1483
– volume: 2
  start-page: 141
  year: 2020
  ident: WOS:000542199700008
  article-title: Deep optical imaging within complex scattering media
  publication-title: NATURE REVIEWS PHYSICS
  doi: 10.1038/s42254-019-0143-2
– volume: 140
  start-page: 14971
  year: 2018
  ident: WOS:000449887800057
  article-title: Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b09374
– volume: 114
  start-page: 1071
  year: 2016
  ident: WOS:000376430800009
  article-title: Hypoxia-activated prodrugs: paths forward in the era of personalised medicine
  publication-title: BRITISH JOURNAL OF CANCER
  doi: 10.1038/bjc.2016.79
– volume: 132
  start-page: 4708
  year: 2020
  ident: 000734695800001.35
  publication-title: Angew. Chem
– volume: 90
  start-page: 9301
  year: 2018
  ident: WOS:000441476600076
  article-title: A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite
  publication-title: ANALYTICAL CHEMISTRY
  doi: 10.1021/acs.analchem.8b01879
– volume: 30
  start-page: ARTN 1704367
  year: 2018
  ident: WOS:000424485100016
  article-title: Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201704367
– volume: 14
  start-page: 9408
  year: 2020
  ident: WOS:000566341000012
  article-title: Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging
  publication-title: ACS NANO
  doi: 10.1021/acsnano.0c05215
– volume: 130
  start-page: 7595
  year: 2018
  ident: 000734695800001.11
  publication-title: Angew. Chem.
SSID ssj0028806
Score 2.6568146
Snippet Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202107076
SubjectTerms Animals
Biomarkers
Breast cancer
Carbocyanines - chemical synthesis
Carbocyanines - chemistry
Cell Line, Tumor
Chemistry
Chemistry, Multidisciplinary
Drug Design
Dual ratiometric platform
Energy balance
Fluorescence
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Fluorescent indicators
Hypoxia
In vivo imaging
Mammary Neoplasms, Experimental - diagnostic imaging
Medical imaging
Mice
Mice, Nude
Molecular Structure
Nitrobenzene
Nitrogen dioxide
Nitroreductase
Optical Imaging
Photoacoustic effect
Photoacoustic Techniques
Physical Sciences
Quantitative detection
Scaffolds
Science & Technology
Solid tumors
Sulfur
Thioxanthene
Tumor Hypoxia
Tumors
Xenografts
Xenotransplantation
Title A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107076
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000734695800001
https://www.ncbi.nlm.nih.gov/pubmed/34227715
https://www.proquest.com/docview/2624096136
https://www.proquest.com/docview/2548905293
Volume 61
WOS 000734695800001
WOSCitedRecordID wos000734695800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2l70daqIyE1FNgYye2c1wtrJaKIooAcYtsxxGrLgkiSVU49dJ7f2N_CTN5laWqWrXHje2sbM8zM_MNIRugRrnKMMIqXAQOijK-CjLhc-PCVEkHAhGLkz_si9lx-P40Or1Vxd_iQwwf3JAzGnmNDK5NufUTNBQrsMG_A5dFgi8OQhgTttAqOhzwoxgQZ1texLmPXeh71MYR21pevqyVfjE172ilZUO20UTTR0T3e2gTUD5t1pXZtNd34B3_Z5OPycPOTKXjlq6ekHsuf0ruT_rucM_I9zHtEKvpuIMlp1VBt5uEELpdw_NDvPRz7Nhl6XRRF5ctchTVeUoPzooK1hRNLzF6gDVJJQX7mX6sdd7UvYEUXlzRk3mJVZ_XoGDpUX0OE2ZXF8WXuaZ7mO1U0t38x9dvJ_PPxXNyPN05msz8rruDb7nkwg-Z1hZECIu0EjpSwP8qDTLDdWBsHJtQ8GykpQF7T1k10sIiNJp0XAbOsDjjL8hKXuTuFaE2tGkYwzsCEYeKZzoSzqpMpjGP0iBVHvH7201sB32OHTgWSQvazBI852Q4Z4-8G-ZftKAfv5252hNL0jF_mTABZlIMdhIMrw_DcD8Yi9G5g7NNwC9XMUZZuUdetkQ2_BUPGZMyiDyycZvqhvEmvBqKOFJNbMYjwd9Mm3QbR6yDyiOsIbs_bC8Z7-_uDL9e_8uiN-QBw4oRTHSXq2SluqzdGthxlXnb8OoN4u0_HQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF9yPQFiNV4pR2Yye2c1xtu9qF7apU24pb5DiOWLFNqm6CaE9cuPc39pcwkxdsEQLBMbGdyPZ4Hp6ZbwjZBjHKVYoeVmEDMFBU7CovFS6PrZ8oaYEhYnLywVSMjv23H4I2mhBzYWp8iO7CDU9Gxa_xgOOF9O4P1FBMwQYDD2wWCcb4bXIHy3pXVtVRhyDFgDzrBCPOXaxD3-I29tju6vhVufSLsnlDLq2qspUsGt4ncTuLOgTl005ZxDvm8gbA439N8wG512iqtF-T1kNyy2aPyPqgLRD3mFz1aQNaTfsNMjktcrpXxYTQvRLeH-G-n2LRLkOHizI_r8GjqM4SevgxL2BMXpUTo4eYlrSkoELT96XOqtQ3YMSLC3oyX2Li5yXIWDorT6HD6OIs_zLXdIIBT0s6zq6_fjuZf86fkOPh_mwwcpsCD67hkgvXZ1ob4CIs0EroQAELUImXxlx7sQnD2Bc87WkZg8qnjOppYRAdTVouPRuzMOVPyVqWZ_Y5ocY3iR_CNzwR-oqnOhDWqFQmIQ8SL1EOcdvtjUyDfo5FOBZRjdvMIlznqFtnh7zp-p_VuB-_7bnRUkvUnP9lxARoSiGoStD8umuG_UF3jM4srG0EprkK0dHKHfKsprLuV9xnTEovcMj2z2TXtVceVl-EgarcMw7x_qbboJk4wh0UDmEV3f1helF_Ot7vnl78y6BXZH00O5hEk_H03Utyl2ECCca9yw2yVpyXdhPUuiLeqg7ud7gaQzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CIQEXvgeBAUaaxClbYye2c6zaVS2MqkzbtFvkOI6o6JJqTRDbiQt3_kb-Ep7zxTqEQHBsbKd69vvM8_s9gG00o0ymNsPKTYABioxd6aXcZbHxEykMKkRbnPxuysdH_puT4ORSFX-ND9F9cLOSUelrK-DLJN39CRpqK7AxvsOQRWAsfh1u-LwnLV8PDzoAKYrcWdcXMebaNvQtbGOP7q6vXzdLv_iaV8zSuidbmaLRXVAtEfUNlI87ZRHv6Isr-I7_Q-U9uNP4qaRfM9Z9uGayB3Br0LaHewjf-qSBrCb9BpecFDkZVjdCyLDE5wf21E9tyy5NRosyP6uho4jKEjL7kBe4Jq-aiZGZLUpaEXSgyftSZVXhG6rhxTk5nq9s2ecFWlhyWJ7ihPH5Mv88V2TfXndakUn2_cvX4_mn_BEcjfYOB2O3ae_gaiYYd32qlEYdQgMluQokKgCZeGnMlBfrMIx9ztKeEjE6fFLLnuLaYqMJw4RnYhqmbBM2sjwzT4BoXyd-iO_weOhLlqqAGy1TkYQsSLxEOuC2pxvpBvvctuBYRDVqM43sPkfdPjvwupu_rFE_fjtzq2WWqJH-VUQ5-kkhOko4_KobxvOxyRiVGdzbCANzGdo0K3Pgcc1k3V8xn1IhvMCB7ctc141X-VWfh4GskjMOeH8zbdAQbsEOCgdoxXZ_IC_qTyd73a-n_7LoJdycDUfR_mT69hncprZ6xF56F1uwUZyV5jn6dEX8ohLbH9RLQfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Approach+to+Design+Dual+Ratiometric+Fluorescent+and+Photoacoustic+Probes+for+Quantitatively+Visualizing+Tumor+Hypoxia+Levels+In+Vivo&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Shuping&rft.au=Chen%2C+Hua&rft.au=Wang%2C+Liping&rft.au=Qin%2C+Xue&rft.date=2022-02-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=7&rft_id=info:doi/10.1002%2Fanie.202107076&rft_id=info%3Apmid%2F34227715&rft.externalDBID=n%2Fa&rft.externalDocID=000734695800001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon