A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroredu...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 7; pp. e202107076 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
07.02.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers.
We have described a general energy balance approach by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized platform, the first dual‐ratio NIRF/PA response probe AS‐Cy‐NO2 was designed for quantitatively and precisely monitoring of tumor hypoxia levels in vivo. |
---|---|
AbstractList | Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO
, which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO
, composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I
/I
) and 2.4-fold ratiometric PA enhancement (PA
/PA
) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers. Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers. Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers. Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO2, composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I773/I733) and 2.4‐fold ratiometric PA enhancement (PA730/PA670) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers. We have described a general energy balance approach by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized platform, the first dual‐ratio NIRF/PA response probe AS‐Cy‐NO2 was designed for quantitatively and precisely monitoring of tumor hypoxia levels in vivo. Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual‐ratio response of nitroreductase probe AS‐Cy‐NO 2 , which allows quantitative visualization of tumor hypoxia in vivo. AS‐Cy‐NO 2 , composed of a new NIRF/PA scaffold thioxanthene‐hemicyanine (AS‐Cy‐1) and a 4‐nitrobenzene moiety, showed a 10‐fold ratiometric NIRF enhancement (I 773 /I 733 ) and 2.4‐fold ratiometric PA enhancement (PA 730 /PA 670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease‐relevant biomarkers. Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2, which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2, composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I-773/I-733) and 2.4-fold ratiometric PA enhancement (PA(730)/PA(670)) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers. |
ArticleNumber | 202107076 |
Author | Qin, Xue Ji, Shi‐Chen Liang, Hong Wang, Liping Shen, Xing‐Can Chen, Hua Zhang, Shuping Jiang, Bang‐Ping |
Author_xml | – sequence: 1 givenname: Shuping surname: Zhang fullname: Zhang, Shuping organization: Guangxi Normal University – sequence: 2 givenname: Hua surname: Chen fullname: Chen, Hua email: xcshen@mailbox.gxnu.edu.cn organization: Guangxi Normal University – sequence: 3 givenname: Liping surname: Wang fullname: Wang, Liping organization: Guangxi Normal University – sequence: 4 givenname: Xue surname: Qin fullname: Qin, Xue organization: Guangxi Normal University – sequence: 5 givenname: Bang‐Ping surname: Jiang fullname: Jiang, Bang‐Ping organization: Guangxi Normal University – sequence: 6 givenname: Shi‐Chen surname: Ji fullname: Ji, Shi‐Chen organization: Guangxi Normal University – sequence: 7 givenname: Xing‐Can orcidid: 0000-0002-7116-6919 surname: Shen fullname: Shen, Xing‐Can email: chenhuagnu@gxnu.edu.cn organization: Guangxi Normal University – sequence: 8 givenname: Hong surname: Liang fullname: Liang, Hong organization: Guangxi Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34227715$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEQgFeoiD7gyhFZ4oKEEvzYXXuPUfqKFEFBpVfL68y2rjZ2sL2FcOLCnd_IL2FK0iJVQnDyaPx9Y89o9osdHzwUxXNGx4xS_sZ4B2NOOaOSyvpRsccqzkZCSrGDcSnESKqK7Rb7KV0jrxStnxS7ouRcSlbtFT8m5AQ8RNOTyWoVg7FXJAdyCMldenI4YP6DyS4sIUdnyXE_hAjJgs_E-AU5uwoZnTCkjLdnMbSQSBcieT8Yn11G9Qb6NblwCUu5r85fkvNhicDpehW-OEPmgEAiM__z2_cLdxOeFo870yd4tj0Pio_HR-fT09H83clsOpmPrJCiHpXcGEtLyiujalOpllK1YF0rDGtt07RlLTpqZFtyoayipsZk1UgQkkHLm04cFK82dbHpTwOkrJcO--p74wHb0bwqVUMr3ghEXz5Ar8MQPf5O85qXtKmZqJF6saWGdgkLvYpuaeJa380agdcb4DO0oUvWgbdwj1FKpSjrplIYUYa0-n96-nvSwU_D4DOq5Ua1MaQUodN2e5-jcb1mVN_ujr7dHX2_O6iNH2h3r_1VaLZfdD2s_0HrydvZ0R_3F02R1lI |
CitedBy_id | crossref_primary_10_1016_j_saa_2023_122791 crossref_primary_10_1002_ange_202201541 crossref_primary_10_3788_CJL230615 crossref_primary_10_1039_D3QI00441D crossref_primary_10_3389_fchem_2022_859948 crossref_primary_10_1002_anie_202410645 crossref_primary_10_1021_acs_analchem_2c03436 crossref_primary_10_1039_D3BM01514A crossref_primary_10_1039_D3SC03972B crossref_primary_10_1088_1361_6528_ace633 crossref_primary_10_1016_j_saa_2022_121778 crossref_primary_10_1002_ange_202405636 crossref_primary_10_1021_acssensors_2c00058 crossref_primary_10_1039_D2NJ03226K crossref_primary_10_1002_adma_202415189 crossref_primary_10_1002_ange_202305744 crossref_primary_10_1021_acs_chemrev_1c00875 crossref_primary_10_1002_anie_202418378 crossref_primary_10_1002_anie_202307797 crossref_primary_10_1002_adfm_202400597 crossref_primary_10_1039_D3NJ04270G crossref_primary_10_1002_smll_202201179 crossref_primary_10_1016_j_foodchem_2024_140779 crossref_primary_10_1002_adhm_202203080 crossref_primary_10_1021_acs_analchem_2c01048 crossref_primary_10_1039_D1TB02282B crossref_primary_10_1016_j_saa_2024_124180 crossref_primary_10_1002_anie_202315217 crossref_primary_10_1021_jacs_2c13315 crossref_primary_10_6023_A23040138 crossref_primary_10_1002_anie_202405636 crossref_primary_10_1016_j_microc_2024_111368 crossref_primary_10_1021_acs_analchem_2c01372 crossref_primary_10_1111_php_13715 crossref_primary_10_1016_j_jhazmat_2022_130374 crossref_primary_10_1021_acs_analchem_2c04764 crossref_primary_10_1002_adhm_202400593 crossref_primary_10_1039_D2CC05033A crossref_primary_10_1007_s10895_024_03857_9 crossref_primary_10_1002_anie_202305744 crossref_primary_10_1039_D3SC06058F crossref_primary_10_1002_ange_202418378 crossref_primary_10_1002_ange_202315217 crossref_primary_10_1002_anie_202117433 crossref_primary_10_3389_fbioe_2022_1062781 crossref_primary_10_1016_j_saa_2023_122775 crossref_primary_10_1002_asia_202401067 crossref_primary_10_3390_molecules28052229 crossref_primary_10_1039_D4TB01656D crossref_primary_10_1002_chem_202402019 crossref_primary_10_1016_j_bioorg_2024_107505 crossref_primary_10_1021_acsnano_3c10659 crossref_primary_10_1002_anie_202302629 crossref_primary_10_1021_acsnano_3c12238 crossref_primary_10_1002_ange_202410645 crossref_primary_10_1039_D1AY01821C crossref_primary_10_1016_j_snb_2022_132358 crossref_primary_10_1021_acssensors_2c02610 crossref_primary_10_1021_acs_analchem_4c00922 crossref_primary_10_3788_LOP232137 crossref_primary_10_1021_acs_analchem_1c05235 crossref_primary_10_1088_1748_605X_ac4147 crossref_primary_10_1021_acsmaterialslett_3c00933 crossref_primary_10_1002_ange_202117433 crossref_primary_10_1021_acs_nanolett_2c04084 crossref_primary_10_1039_D1CS00307K crossref_primary_10_1002_adhm_202303472 crossref_primary_10_1002_anie_202201541 crossref_primary_10_1039_D2TB00937D crossref_primary_10_1016_j_actbio_2022_08_020 crossref_primary_10_1021_acs_analchem_2c05476 crossref_primary_10_1039_D4AN00188E crossref_primary_10_1002_smll_202408527 crossref_primary_10_1016_j_tetlet_2022_153996 crossref_primary_10_3390_mi13081328 crossref_primary_10_1002_ange_202302629 crossref_primary_10_1039_D2NJ04316E crossref_primary_10_1007_s00604_024_06291_7 crossref_primary_10_1016_j_bioorg_2024_107531 crossref_primary_10_1016_j_saa_2022_121884 crossref_primary_10_1021_acs_analchem_2c04587 crossref_primary_10_3390_molecules28041898 crossref_primary_10_1021_acsami_2c19927 crossref_primary_10_1021_acssuschemeng_3c00298 crossref_primary_10_1002_adma_202415891 crossref_primary_10_1039_D2CC04112J crossref_primary_10_1002_ange_202307797 |
Cites_doi | 10.1038/s41467-020-14985-8 10.1021/acs.chemmater.7b03924 10.1038/s41563-019-0378-4 10.1039/D0NR03047C 10.1038/s41566-018-0221-5 10.1016/j.bios.2011.01.036 10.1039/C4CS00086B 10.1002/ange.201913149 10.1038/nmeth.1483 10.1002/anie.201800293 10.1039/C7CS00612H 10.1259/bjr.20130676 10.1002/anie.201915040 10.1002/anie.201904700 10.1021/jacs.7b11036 10.1002/ange.202002391 10.1002/anie.201914120 10.3389/fonc.2016.00066 10.1016/j.ccr.2020.213460 10.1021/jacs.9b09220 10.1039/C6SC02500E 10.1002/anie.201803321 10.1038/s41551-016-0010 10.1038/s42255-019-0045-8 10.1002/anie.202001783 10.1039/D0CC01621G 10.1002/anie.202015116 10.1002/ange.201915040 10.1002/ange.201904700 10.1038/nmeth.3929 10.1002/ange.201914120 10.1002/anie.202002391 10.1038/bjc.2016.79 10.1002/anie.202105905 10.1021/jacs.8b13628 10.1021/jacs.5b04097 10.1126/science.1216210 10.1021/jacs.9b09181 10.1002/anie.202010228 10.1038/ncomms10432 10.1259/bjr.20190640 10.1002/ange.201803321 10.1039/D0CS00671H 10.1002/anie.202013531 10.1021/acs.analchem.8b01879 10.1002/ange.202001783 10.1002/ange.202015116 10.1021/jacs.9b06694 10.1021/jacs.8b09374 10.1002/adma.201704367 10.1039/c3cc42610f 10.1021/jacs.0c00659 10.1038/nchem.2648 10.1002/ange.202105905 10.1021/jacs.8b02350 10.1002/ange.202010228 10.1038/nrc3064 10.1021/acs.chemrev.7b00258 10.1038/nbt1220 10.1039/C5SC04986E 10.1021/acsnano.0c05215 10.1021/jacs.9b05901 10.1021/jacs.9b12629 10.1002/ange.202013531 10.1002/ange.201800293 10.1007/s00330-020-07067-2 10.1002/anie.201913149 10.7150/thno.26607 10.1038/s42254-019-0143-2 10.1039/D0TB02674C 10.1021/jacs.1c02112 10.1002/adma.201907855 10.1039/d0cc01621g 10.1039/c5sc04986e 10.1039/d0cs00671h 10.1039/c7cs00612h 10.1039/d0tb02674c 10.1039/d0nr03047c 10.1039/c4cs00086b 10.1038/NMETH.3929 10.1038/NCHEM.2648 10.1039/c6sc02500e 10.1038/NMETH.1483 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202107076 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34227715 000734695800001 10_1002_anie_202107076 ANIE202107076 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the startup fund of the Guangxi Normal University funderid: A-0208-00-00017,17A4 – fundername: National Natural Science Foundation of China funderid: 21807016, 21977022,22167004 – fundername: Natural Science Foundation of Guangxi funderid: 2017GXNSFGA198004, 2018GXNSFBA138040, AD19110015, AD17129007 – fundername: Natural National Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21807016; 21977022; 22167004 – fundername: Guangxi Normal University grantid: A-0208-00-00017K; 17A4 – fundername: Natural Science Foundation of Guangxi; National Natural Science Foundation of Guangxi Province grantid: 2017GXNSFGA198004; 2018GXNSFBA138040; AD19110015; AD17129007 – fundername: the startup fund of the Guangxi Normal University grantid: A-0208-00-00017,17A4 – fundername: Natural Science Foundation of Guangxi grantid: 2017GXNSFGA198004, 2018GXNSFBA138040, AD19110015, AD17129007 – fundername: National Natural Science Foundation of China grantid: 21807016, 21977022,22167004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3736-42aac04025a86a58b008d1fb3a1bc99b463f0a7b4238c80a6c99597e371eb29f3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 137 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000734695800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:12:08 EDT 2025 Sun Jul 13 05:43:17 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Wed Jul 09 18:14:04 EDT 2025 Fri Aug 29 16:08:02 EDT 2025 Tue Jul 01 01:18:05 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:25:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Dual ratiometric platform NANOPARTICLES Nitroreductase Tumor hypoxia AGENTS MICROSCOPY Quantitative detection In vivo imaging NEAR-INFRARED FLUORESCENCE |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3736-42aac04025a86a58b008d1fb3a1bc99b463f0a7b4238c80a6c99597e371eb29f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7116-6919 |
PMID | 34227715 |
PQID | 2624096136 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | wiley_primary_10_1002_anie_202107076_ANIE202107076 proquest_journals_2624096136 proquest_miscellaneous_2548905293 crossref_citationtrail_10_1002_anie_202107076 webofscience_primary_000734695800001 crossref_primary_10_1002_anie_202107076 webofscience_primary_000734695800001CitationCount pubmed_primary_34227715 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 7, 2022 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: February 7, 2022 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 9 2017; 1 2018; 140 2013; 49 2020; 142 2019; 1 1991; 51 2020 2020; 59 132 2011; 11 2019; 18 2020; 14 2020; 12 2020; 56 2020; 11 2021; 143 2020; 32 2020; 421 2019; 141 2017; 9 2019 2019; 58 131 2016; 13 2014; 87 2014; 43 2017; 117 2018; 47 2016; 6 2016; 7 2018; 8 2021; 31 2020; 2 2015; 137 2006; 24 2020; 93 2018 2018; 57 130 2021 2021; 60 133 2020; 49 2018; 90 2018; 30 2011; 26 2016; 114 2018; 12 2012; 335 2010; 7 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 Vaupel P. (e_1_2_6_60_1) 1991; 51 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_2 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 (e_1_2_6_16_2) 2019; 131 e_1_2_6_50_1 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_27_1 e_1_2_6_46_1 (000734695800001.31) 2021; 133 Fan, WP (WOS:000416500700003) 2017; 117 (000734695800001.49) 2020; 132 Dong, ZL (WOS:000425475300033) 2018; 140 Waller, J. (000734695800001.5) 2020; 93 Huang, JG (WOS:000522756500001) 2020; 59 Li, MH (WOS:000419999400003) 2018; 30 (000734695800001.33) 2020; 132 Weber, J (WOS:000385188700018) 2016; 13 Mantri, Y (WOS:000566341000012) 2020; 14 (000734695800001.66) 2020; 132 (000734695800001.11) 2018; 130 Zlitni, A (WOS:000549162600027) 2020; 11 Brennecke, B (WOS:000526155300001) 2020; 59 Li, YH (WOS:000355053100044) 2015; 137 Zhang, Y (WOS:000613292900001) 2021; 60 Zhang, SP (WOS:000614998200019) 2021; 9 Zhang, HF (WOS:000239025100036) 2006; 24 Ntziachristos, V (WOS:000280500000020) 2010; 7 Umezawa, K (WOS:000394542500015) 2017; 9 He, SS (WOS:000526300600035) 2020; 142 Ouyang, J (WOS:000500295400001) 2020; 59 (000734695800001.62) 2021; 133 Nguyen, VN (WOS:000491220300011) 2019; 141 (000734695800001.21) 2020; 132 Huang, XL (WOS:000430708600012) 2018; 47 Huang, JS (WOS:000600445500001) 2021; 60 (000734695800001.70) 2018; 130 Koch, M (WOS:000443022200009) 2018; 12 Chen, ZY (WOS:000498281600004) 2019; 141 Huang, JG (WOS:000486618800024) 2019; 18 Ni, DL (WOS:000449887800057) 2018; 140 Meng, XQ (WOS:000451946500017) 2018; 8 Zha, ML (WOS:000578727000001) 2020; 59 VAUPEL, P (WOS:A1991FQ96700037) 1991; 51 Jeevarathinam, AS (WOS:000508989700001) 2020; 59 Usama, SM (WOS:000643591600015) 2021; 143 Teng, LL (WOS:000484082700036) 2019; 141 Ai, XZ (WOS:000369022600015) 2016; 7 Feng, GX (WOS:000590395000010) 2020; 49 Yang, YT (WOS:000509425600059) 2020; 142 McKeown, SR (WOS:000334291600009) 2014; 87 Gardner, SH (WOS:000668599200001) 2021; 60 Wang, LHV (WOS:000301837000036) 2012; 335 He, XW (WOS:000434895200029) 2018; 140 Jiao, Y (WOS:000514691800001) 2020; 59 Liu, HW (WOS:000550563800020) 2020; 56 Zhen, X (WOS:000435766800039) 2018; 57 Ren, TB (WOS:000434949200034) 2018; 57 Li, Z (WOS:000319905100015) 2013; 49 Yin, L (WOS:000459642000061) 2019; 141 Anees, P (WOS:000378715000019) 2016; 7 Hunter, FW (WOS:000376430800009) 2016; 114 Wilson, WR (WOS:000290908800012) 2011; 11 Zhou, EY (WOS:000495769300020) 2019; 141 Zhou, J (WOS:000384311700002) 2016; 7 (000734695800001.17) 2020; 132 Goel, S (WOS:000424485100016) 2018; 30 Xi, DM (WOS:000511035300001) 2020; 32 Horsman, MR (WOS:000373758600001) 2016; 6 Yoon, S (WOS:000542199700008) 2020; 2 Zhang, JJ (WOS:000441476600076) 2018; 90 Mantri, Y (WOS:000537113200043) 2020; 12 (000734695800001.57) 2021; 133 Thiel, Z (WOS:000478735900051) 2019; 58 Ye, YQ (WOS:000500737300005) 2019; 1 Carmona-Bozo, JC (WOS:000554035800004) 2021; 31 (000734695800001.35) 2020; 132 (000734695800001.19) 2019; 131 Huang, HC (WOS:000289863900020) 2011; 26 Qi, YL (WOS:000551655800012) 2020; 421 Hong, GS (WOS:000418850600010) 2017; 1 Nie, LM (WOS:000342880000012) 2014; 43 |
References_xml | – volume: 59 132 start-page: 8512 8590 year: 2020 2020 end-page: 8516 8594 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 4110 year: 2016 end-page: 4116 publication-title: Chem. Sci. – volume: 335 start-page: 1458 year: 2012 end-page: 1462 publication-title: Science – volume: 43 start-page: 7132 year: 2014 end-page: 7170 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 3999 4045 year: 2021 2021 end-page: 4003 4049 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 1 year: 2017 end-page: 22 publication-title: Nat. Biomed. Eng. – volume: 59 132 start-page: 10111 10197 year: 2020 2020 end-page: 10121 10207 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1250 year: 2020 publication-title: Nat. Commun. – volume: 2 start-page: 141 year: 2020 end-page: 158 publication-title: Nat. Rev. Phys. – volume: 140 start-page: 2165 year: 2018 end-page: 2178 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 6025 year: 2018 end-page: 3034 publication-title: Theranostics – volume: 87 year: 2014 publication-title: Br. J. Radiol. – volume: 30 start-page: 25 year: 2018 end-page: 53 publication-title: Chem. Mater. – volume: 141 start-page: 3265 year: 2019 end-page: 3273 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 848 year: 2006 end-page: 851 publication-title: Nat. Biotechnol. – volume: 59 132 start-page: 23268 23468 year: 2020 2020 end-page: 23276 23476 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 93 year: 2020 publication-title: Br. J. Radiol. – volume: 114 start-page: 1071 year: 2016 end-page: 1077 publication-title: Br. J. Cancer – volume: 13 start-page: 639 year: 2016 end-page: 651 publication-title: Nat. Methods – volume: 12 start-page: 505 year: 2018 end-page: 515 publication-title: Nat. Photonics – volume: 141 start-page: 17973 year: 2019 end-page: 17977 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 8103 year: 2020 end-page: 8106 publication-title: Chem. Commun. – volume: 51 start-page: 3316 year: 1991 end-page: 3322 publication-title: Cancer Res. – volume: 60 133 start-page: 5921 5986 year: 2021 2021 end-page: 5927 5992 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 431 year: 2019 end-page: 444 publication-title: Nat. Metab. – volume: 7 start-page: 6309 year: 2016 end-page: 6315 publication-title: Chem. Sci. – volume: 6 start-page: 66 year: 2016 publication-title: Front. Oncol. – volume: 26 start-page: 3511 year: 2011 end-page: 3516 publication-title: Biosens. Bioelectron. – volume: 90 start-page: 9301 year: 2018 end-page: 9307 publication-title: Anal. Chem. – volume: 140 start-page: 6904 year: 2018 end-page: 6911 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2873 year: 2018 end-page: 2920 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 603 year: 2010 end-page: 614 publication-title: Nat. Methods – volume: 7 start-page: 10432 year: 2016 publication-title: Nat. Commun. – volume: 140 start-page: 14971 year: 2018 end-page: 14979 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 393 year: 2011 end-page: 410 publication-title: Nat. Rev. Cancer – volume: 59 132 start-page: 4678 4708 year: 2020 2020 end-page: 4683 4713 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 9408 year: 2020 end-page: 9422 publication-title: ACS Nano – volume: 141 start-page: 13572 year: 2019 end-page: 13581 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1133 year: 2019 end-page: 1143 publication-title: Nat. Mater. – volume: 142 start-page: 7075 year: 2020 end-page: 7082 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 333 year: 2021 end-page: 344 publication-title: Eur. Radiol. – volume: 421 year: 2020 publication-title: Coord. Chem. Rev. – volume: 9 start-page: 279 year: 2017 end-page: 286 publication-title: Nat. Chem. – volume: 137 start-page: 6407 year: 2015 end-page: 6416 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 1614 year: 2020 end-page: 1620 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8179 year: 2020 end-page: 8234 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 13566 year: 2017 end-page: 13638 publication-title: Chem. Rev. – volume: 12 start-page: 10511 year: 2020 end-page: 10520 publication-title: Nanoscale – volume: 60 133 start-page: 18860 19008 year: 2021 2021 end-page: 18866 19014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 16243 year: 2019 end-page: 16248 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 11474 11597 year: 2019 2019 end-page: 11478 11602 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 7473 7595 year: 2018 2018 end-page: 7477 7599 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 5859 year: 2013 end-page: 5861 publication-title: Chem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 141 start-page: 17601 year: 2019 end-page: 17609 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 11717 11813 year: 2020 2020 end-page: 11731 11827 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 7804 7930 year: 2018 2018 end-page: 7808 7934 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1089 year: 2021 end-page: 1095 publication-title: J. Mater. Chem. B – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 143 start-page: 5674 year: 2021 end-page: 5679 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 6021 6077 year: 2020 2020 end-page: 6027 6083 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_32_1 doi: 10.1038/s41467-020-14985-8 – ident: e_1_2_6_33_1 doi: 10.1021/acs.chemmater.7b03924 – volume: 51 start-page: 3316 year: 1991 ident: e_1_2_6_60_1 publication-title: Cancer Res. – ident: e_1_2_6_19_1 doi: 10.1038/s41563-019-0378-4 – ident: e_1_2_6_29_1 doi: 10.1039/D0NR03047C – ident: e_1_2_6_12_1 doi: 10.1038/s41566-018-0221-5 – ident: e_1_2_6_18_1 doi: 10.1016/j.bios.2011.01.036 – ident: e_1_2_6_22_1 doi: 10.1039/C4CS00086B – ident: e_1_2_6_41_2 doi: 10.1002/ange.201913149 – ident: e_1_2_6_25_1 doi: 10.1038/nmeth.1483 – ident: e_1_2_6_10_1 doi: 10.1002/anie.201800293 – ident: e_1_2_6_43_1 doi: 10.1039/C7CS00612H – ident: e_1_2_6_2_1 doi: 10.1259/bjr.20130676 – ident: e_1_2_6_15_1 doi: 10.1002/anie.201915040 – ident: e_1_2_6_16_1 doi: 10.1002/anie.201904700 – ident: e_1_2_6_35_1 doi: 10.1021/jacs.7b11036 – ident: e_1_2_6_17_2 doi: 10.1002/ange.202002391 – ident: e_1_2_6_28_1 doi: 10.1002/anie.201914120 – ident: e_1_2_6_1_1 doi: 10.3389/fonc.2016.00066 – ident: e_1_2_6_59_1 doi: 10.1016/j.ccr.2020.213460 – ident: e_1_2_6_51_1 doi: 10.1021/jacs.9b09220 – ident: e_1_2_6_45_1 doi: 10.1039/C6SC02500E – ident: e_1_2_6_58_1 doi: 10.1002/anie.201803321 – ident: e_1_2_6_9_1 doi: 10.1038/s41551-016-0010 – ident: e_1_2_6_4_1 doi: 10.1038/s42255-019-0045-8 – ident: e_1_2_6_27_1 doi: 10.1002/anie.202001783 – ident: e_1_2_6_31_1 doi: 10.1039/D0CC01621G – ident: e_1_2_6_26_1 doi: 10.1002/anie.202015116 – ident: e_1_2_6_15_2 doi: 10.1002/ange.201915040 – volume: 131 start-page: 11597 year: 2019 ident: e_1_2_6_16_2 publication-title: Angew. Chem. doi: 10.1002/ange.201904700 – ident: e_1_2_6_24_1 doi: 10.1038/nmeth.3929 – ident: e_1_2_6_28_2 doi: 10.1002/ange.201914120 – ident: e_1_2_6_17_1 doi: 10.1002/anie.202002391 – ident: e_1_2_6_3_1 doi: 10.1038/bjc.2016.79 – ident: e_1_2_6_48_1 doi: 10.1002/anie.202105905 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.8b13628 – ident: e_1_2_6_13_1 doi: 10.1021/jacs.5b04097 – ident: e_1_2_6_21_1 doi: 10.1126/science.1216210 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.9b09181 – ident: e_1_2_6_55_1 doi: 10.1002/anie.202010228 – ident: e_1_2_6_37_1 doi: 10.1038/ncomms10432 – ident: e_1_2_6_5_1 doi: 10.1259/bjr.20190640 – ident: e_1_2_6_58_2 doi: 10.1002/ange.201803321 – ident: e_1_2_6_49_1 doi: 10.1039/D0CS00671H – ident: e_1_2_6_52_1 doi: 10.1002/anie.202013531 – ident: e_1_2_6_42_1 doi: 10.1021/acs.analchem.8b01879 – ident: e_1_2_6_27_2 doi: 10.1002/ange.202001783 – ident: e_1_2_6_26_2 doi: 10.1002/ange.202015116 – ident: e_1_2_6_53_1 doi: 10.1021/jacs.9b06694 – ident: e_1_2_6_39_1 doi: 10.1021/jacs.8b09374 – ident: e_1_2_6_34_1 doi: 10.1002/adma.201704367 – ident: e_1_2_6_50_1 doi: 10.1039/c3cc42610f – ident: e_1_2_6_20_1 doi: 10.1021/jacs.0c00659 – ident: e_1_2_6_7_1 doi: 10.1038/nchem.2648 – ident: e_1_2_6_48_2 doi: 10.1002/ange.202105905 – ident: e_1_2_6_36_1 doi: 10.1021/jacs.8b02350 – ident: e_1_2_6_55_2 doi: 10.1002/ange.202010228 – ident: e_1_2_6_61_1 doi: 10.1038/nrc3064 – ident: e_1_2_6_38_1 doi: 10.1021/acs.chemrev.7b00258 – ident: e_1_2_6_23_1 doi: 10.1038/nbt1220 – ident: e_1_2_6_30_1 doi: 10.1039/C5SC04986E – ident: e_1_2_6_56_1 doi: 10.1021/acsnano.0c05215 – ident: e_1_2_6_46_1 doi: 10.1021/jacs.9b05901 – ident: e_1_2_6_8_1 doi: 10.1021/jacs.9b12629 – ident: e_1_2_6_52_2 doi: 10.1002/ange.202013531 – ident: e_1_2_6_10_2 doi: 10.1002/ange.201800293 – ident: e_1_2_6_6_1 doi: 10.1007/s00330-020-07067-2 – ident: e_1_2_6_41_1 doi: 10.1002/anie.201913149 – ident: e_1_2_6_40_1 doi: 10.7150/thno.26607 – ident: e_1_2_6_11_1 doi: 10.1038/s42254-019-0143-2 – ident: e_1_2_6_54_1 doi: 10.1039/D0TB02674C – ident: e_1_2_6_14_1 doi: 10.1021/jacs.1c02112 – ident: e_1_2_6_57_1 doi: 10.1002/adma.201907855 – volume: 59 start-page: 4678 year: 2020 ident: WOS:000508989700001 article-title: Photoacoustic Imaging Quantifies Drug Release from Nanocarriers via Redox Chemistry of Dye-Labeled Cargo publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201914120 – volume: 131 start-page: 11597 year: 2019 ident: 000734695800001.19 publication-title: Angew. Chem. – volume: 58 start-page: 11474 year: 2019 ident: WOS:000478735900051 article-title: Single-Molecule Imaging of Active Mitochondrial Nitroreductases Using a Photo-Crosslinking Fluorescent Sensor publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201904700 – volume: 132 start-page: 8590 year: 2020 ident: 000734695800001.21 publication-title: Angew. Chem. – volume: 141 start-page: 17973 year: 2019 ident: WOS:000498281600004 article-title: An Optical/Photoacoustic Dual-Modality Probe: Ratiometric in/ex Vivo Imaging for Stimulated H2S Upregulation in Mice publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b09181 – volume: 133 start-page: 4045 year: 2021 ident: 000734695800001.62 publication-title: Angew. Chem. – volume: 132 start-page: 10197 year: 2020 ident: 000734695800001.49 publication-title: Angew. Chem. – volume: 59 start-page: 8512 year: 2020 ident: WOS:000526155300001 article-title: An Activatable Lanthanide Luminescent Probe for Time-Gated Detection of Nitroreductase in Live Bacteria publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202002391 – volume: 141 start-page: 3265 year: 2019 ident: WOS:000459642000061 article-title: Quantitatively Visualizing Tumor-Related Protease Activity in Vivo Using a Ratiometric Photoacoustic Probe publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b13628 – volume: 56 start-page: 8103 year: 2020 ident: WOS:000550563800020 article-title: Imaging of peroxynitrite in drug-induced acute kidney injury with a near-infrared fluorescence and photoacoustic dual-modal molecular probe publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc01621g – volume: 143 start-page: 5674 year: 2021 ident: WOS:000643591600015 article-title: Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c02112 – volume: 142 start-page: 1614 year: 2020 ident: WOS:000509425600059 article-title: Thiol-Chromene "Click" Reaction Triggered Self-Immolative for MR Visualization of Thiol Flux in Physiology and Pathology of Living Cells and Mice publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b12629 – volume: 1 start-page: ARTN 0010 year: 2017 ident: WOS:000418850600010 article-title: Near-infrared fluorophores for biomedical imaging publication-title: NATURE BIOMEDICAL ENGINEERING doi: 10.1038/s41551-016-0010 – volume: 12 start-page: 505 year: 2018 ident: WOS:000443022200009 article-title: Tackling standardization in fluorescence molecular imaging publication-title: NATURE PHOTONICS doi: 10.1038/s41566-018-0221-5 – volume: 18 start-page: 1133 year: 2019 ident: WOS:000486618800024 article-title: Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury publication-title: NATURE MATERIALS doi: 10.1038/s41563-019-0378-4 – volume: 117 start-page: 13566 year: 2017 ident: WOS:000416500700003 article-title: Nanotechnology for Multimodal Synergistic Cancer Therapy publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.7b00258 – volume: 59 start-page: 11717 year: 2020 ident: WOS:000522756500001 article-title: Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202001783 – volume: 130 start-page: 7930 year: 2018 ident: 000734695800001.70 publication-title: Angew. Chem – volume: 132 start-page: 11813 year: 2020 ident: 000734695800001.33 publication-title: Angew. Chem – volume: 11 start-page: ARTN 1250 year: 2020 ident: WOS:000549162600027 article-title: Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-14985-8 – volume: 421 start-page: ARTN 213460 year: 2020 ident: WOS:000551655800012 article-title: Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2020.213460 – volume: 51 start-page: 3316 year: 1991 ident: WOS:A1991FQ96700037 article-title: OXYGENATION OF HUMAN TUMORS - EVALUATION OF TISSUE OXYGEN DISTRIBUTION IN BREAST CANCERS BY COMPUTERIZED O2 TENSION MEASUREMENTS publication-title: CANCER RESEARCH – volume: 87 start-page: ARTN 20130676 year: 2014 ident: WOS:000334291600009 article-title: Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response publication-title: BRITISH JOURNAL OF RADIOLOGY doi: 10.1259/bjr.20130676 – volume: 59 start-page: 6021 year: 2020 ident: WOS:000514691800001 article-title: A Cofactor-Substrate-Based Supramolecular Fluorescent Probe for the Ultrafast Detection of Nitroreductase under Hypoxic Conditions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915040 – volume: 6 start-page: ARTN 66 year: 2016 ident: WOS:000373758600001 article-title: Pathophysiological Basis for the Formation of the Tumor Microenvironment publication-title: FRONTIERS IN ONCOLOGY doi: 10.3389/fonc.2016.00066 – volume: 7 start-page: 4110 year: 2016 ident: WOS:000378715000019 article-title: Real time monitoring of aminothiol level in blood using a near-infrared dye assisted deep tissue fluorescence and photoacoustic bimodal imaging publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc04986e – volume: 60 start-page: 3999 year: 2021 ident: WOS:000600445500001 article-title: Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202013531 – volume: 49 start-page: 8179 year: 2020 ident: WOS:000590395000010 article-title: Design of superior phototheranostic agents guided by Jablonski diagrams publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00671h – volume: 57 start-page: 7473 year: 2018 ident: WOS:000434949200034 article-title: Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201800293 – volume: 132 start-page: 6077 year: 2020 ident: 000734695800001.17 publication-title: Angew. Chem. – volume: 141 start-page: 16243 year: 2019 ident: WOS:000491220300011 article-title: An Emerging Molecular Design Approach to Heavy-Atom-Free Photosensitizers for Enhanced Photodynamic Therapy under Hypoxia publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b09220 – volume: 141 start-page: 13572 year: 2019 ident: WOS:000484082700036 article-title: Nitric Oxide-Activated "Dual-Key-One-Lock" Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b05901 – volume: 32 start-page: ARTN 1907855 year: 2020 ident: WOS:000511035300001 article-title: NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201907855 – volume: 47 start-page: 2873 year: 2018 ident: WOS:000430708600012 article-title: Ratiometric optical nanoprobes enable accurate molecular detection and imaging publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00612h – volume: 9 start-page: 1089 year: 2021 ident: WOS:000614998200019 article-title: A simple strategy for simultaneously enhancing photostability and mitochondrial-targeting stability of near-infrared fluorophores for multimodal imaging-guided photothermal therapy publication-title: JOURNAL OF MATERIALS CHEMISTRY B doi: 10.1039/d0tb02674c – volume: 137 start-page: 6407 year: 2015 ident: WOS:000355053100044 article-title: Ultrasensitive Near-Infrared Fluorescence-Enhanced Probe for in Vivo Nitroreductase Imaging publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b04097 – volume: 133 start-page: 5986 year: 2021 ident: 000734695800001.31 publication-title: Angew. Chem. – volume: 7 start-page: ARTN 10432 year: 2016 ident: WOS:000369022600015 article-title: In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms10432 – volume: 1 start-page: 431 year: 2019 ident: WOS:000500737300005 article-title: Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy publication-title: NATURE METABOLISM doi: 10.1038/s42255-019-0045-8 – volume: 60 start-page: 18860 year: 2021 ident: WOS:000668599200001 article-title: A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202105905 – volume: 12 start-page: 10511 year: 2020 ident: WOS:000537113200043 article-title: Iodide-doped precious metal nanoparticles: measuring oxidative stress in vivo via photoacoustic imaging publication-title: NANOSCALE doi: 10.1039/d0nr03047c – volume: 59 start-page: 23268 year: 2020 ident: WOS:000578727000001 article-title: An Ester-Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR-II Photoacoustic Performance for Monitoring of Tumor Growth publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202010228 – volume: 142 start-page: 7075 year: 2020 ident: WOS:000526300600035 article-title: Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c00659 – volume: 30 start-page: 25 year: 2018 ident: WOS:000419999400003 article-title: Self-Assembled Hybrid Nanostructures: Versatile Multifunctional Nanoplatforms for Cancer Diagnosis and Therapy publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.7b03924 – volume: 43 start-page: 7132 year: 2014 ident: WOS:000342880000012 article-title: Structural and functional photoacoustic molecular tomography aided by emerging contrast agents publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00086b – volume: 31 start-page: 333 year: 2021 ident: WOS:000554035800004 article-title: Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging publication-title: EUROPEAN RADIOLOGY doi: 10.1007/s00330-020-07067-2 – volume: 140 start-page: 6904 year: 2018 ident: WOS:000434895200029 article-title: Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b02350 – volume: 13 start-page: 639 year: 2016 ident: WOS:000385188700018 article-title: Contrast agents for molecular photoacoustic imaging publication-title: NATURE METHODS doi: 10.1038/NMETH.3929 – volume: 93 year: 2020 ident: 000734695800001.5 publication-title: Br. J. Radiol – volume: 9 start-page: 279 year: 2017 ident: WOS:000394542500015 article-title: Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2648 – volume: 49 start-page: 5859 year: 2013 ident: WOS:000319905100015 article-title: 7-((5-Nitrothiophen-2-yl)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc42610f – volume: 141 start-page: 17601 year: 2019 ident: WOS:000495769300020 article-title: A Conformationally Restricted Aza-BODIPY Platform for Stimulus-Responsive Probes with Enhanced Photoacoustic Properties publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b06694 – volume: 57 start-page: 7804 year: 2018 ident: WOS:000435766800039 article-title: Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201803321 – volume: 60 start-page: 5921 year: 2021 ident: WOS:000613292900001 article-title: Activatable Polymeric Nanoprobe for Near-Infrared Fluorescence and Photoacoustic Imaging of T Lymphocytes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202015116 – volume: 140 start-page: 2165 year: 2018 ident: WOS:000425475300033 article-title: Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b11036 – volume: 59 start-page: 10111 year: 2020 ident: WOS:000500295400001 article-title: Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation-Induced NIR-I/II Fluorescence Imaging publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201913149 – volume: 24 start-page: 848 year: 2006 ident: WOS:000239025100036 article-title: Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging publication-title: NATURE BIOTECHNOLOGY doi: 10.1038/nbt1220 – volume: 133 start-page: 19008 year: 2021 ident: 000734695800001.57 publication-title: Angew. Chem. – volume: 26 start-page: 3511 year: 2011 ident: WOS:000289863900020 article-title: Development of a sensitive long-wavelength fluorogenic probe for nitroreductase: A new fluorimetric indictor for analyte determination by dehydrogenase-coupled biosensors publication-title: BIOSENSORS & BIOELECTRONICS doi: 10.1016/j.bios.2011.01.036 – volume: 8 start-page: 6025 year: 2018 ident: WOS:000451946500017 article-title: Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy publication-title: THERANOSTICS doi: 10.7150/thno.26607 – volume: 132 start-page: 23468 year: 2020 ident: 000734695800001.66 publication-title: Angew. Chem. – volume: 335 start-page: 1458 year: 2012 ident: WOS:000301837000036 article-title: Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs publication-title: SCIENCE doi: 10.1126/science.1216210 – volume: 7 start-page: 6309 year: 2016 ident: WOS:000384311700002 article-title: Design principles of spectroscopic probes for biological applications publication-title: CHEMICAL SCIENCE doi: 10.1039/c6sc02500e – volume: 11 start-page: 393 year: 2011 ident: WOS:000290908800012 article-title: Targeting hypoxia in cancer therapy publication-title: NATURE REVIEWS CANCER doi: 10.1038/nrc3064 – volume: 7 start-page: 603 year: 2010 ident: WOS:000280500000020 article-title: Going deeper than microscopy: the optical imaging frontier in biology publication-title: NATURE METHODS doi: 10.1038/NMETH.1483 – volume: 2 start-page: 141 year: 2020 ident: WOS:000542199700008 article-title: Deep optical imaging within complex scattering media publication-title: NATURE REVIEWS PHYSICS doi: 10.1038/s42254-019-0143-2 – volume: 140 start-page: 14971 year: 2018 ident: WOS:000449887800057 article-title: Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b09374 – volume: 114 start-page: 1071 year: 2016 ident: WOS:000376430800009 article-title: Hypoxia-activated prodrugs: paths forward in the era of personalised medicine publication-title: BRITISH JOURNAL OF CANCER doi: 10.1038/bjc.2016.79 – volume: 132 start-page: 4708 year: 2020 ident: 000734695800001.35 publication-title: Angew. Chem – volume: 90 start-page: 9301 year: 2018 ident: WOS:000441476600076 article-title: A Dual-Modal Molecular Probe for Near-Infrared Fluorescence and Photoacoustic Imaging of Peroxynitrite publication-title: ANALYTICAL CHEMISTRY doi: 10.1021/acs.analchem.8b01879 – volume: 30 start-page: ARTN 1704367 year: 2018 ident: WOS:000424485100016 article-title: Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201704367 – volume: 14 start-page: 9408 year: 2020 ident: WOS:000566341000012 article-title: Engineering Plasmonic Nanoparticles for Enhanced Photoacoustic Imaging publication-title: ACS NANO doi: 10.1021/acsnano.0c05215 – volume: 130 start-page: 7595 year: 2018 ident: 000734695800001.11 publication-title: Angew. Chem. |
SSID | ssj0028806 |
Score | 2.6568146 |
Snippet | Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202107076 |
SubjectTerms | Animals Biomarkers Breast cancer Carbocyanines - chemical synthesis Carbocyanines - chemistry Cell Line, Tumor Chemistry Chemistry, Multidisciplinary Drug Design Dual ratiometric platform Energy balance Fluorescence Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Fluorescent indicators Hypoxia In vivo imaging Mammary Neoplasms, Experimental - diagnostic imaging Medical imaging Mice Mice, Nude Molecular Structure Nitrobenzene Nitrogen dioxide Nitroreductase Optical Imaging Photoacoustic effect Photoacoustic Techniques Physical Sciences Quantitative detection Scaffolds Science & Technology Solid tumors Sulfur Thioxanthene Tumor Hypoxia Tumors Xenografts Xenotransplantation |
Title | A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202107076 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000734695800001 https://www.ncbi.nlm.nih.gov/pubmed/34227715 https://www.proquest.com/docview/2624096136 https://www.proquest.com/docview/2548905293 |
Volume | 61 |
WOS | 000734695800001 |
WOSCitedRecordID | wos000734695800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2l70daqIyE1FNgYye2c1wtrJaKIooAcYtsxxGrLgkiSVU49dJ7f2N_CTN5laWqWrXHje2sbM8zM_MNIRugRrnKMMIqXAQOijK-CjLhc-PCVEkHAhGLkz_si9lx-P40Or1Vxd_iQwwf3JAzGnmNDK5NufUTNBQrsMG_A5dFgi8OQhgTttAqOhzwoxgQZ1texLmPXeh71MYR21pevqyVfjE172ilZUO20UTTR0T3e2gTUD5t1pXZtNd34B3_Z5OPycPOTKXjlq6ekHsuf0ruT_rucM_I9zHtEKvpuIMlp1VBt5uEELpdw_NDvPRz7Nhl6XRRF5ctchTVeUoPzooK1hRNLzF6gDVJJQX7mX6sdd7UvYEUXlzRk3mJVZ_XoGDpUX0OE2ZXF8WXuaZ7mO1U0t38x9dvJ_PPxXNyPN05msz8rruDb7nkwg-Z1hZECIu0EjpSwP8qDTLDdWBsHJtQ8GykpQF7T1k10sIiNJp0XAbOsDjjL8hKXuTuFaE2tGkYwzsCEYeKZzoSzqpMpjGP0iBVHvH7201sB32OHTgWSQvazBI852Q4Z4-8G-ZftKAfv5252hNL0jF_mTABZlIMdhIMrw_DcD8Yi9G5g7NNwC9XMUZZuUdetkQ2_BUPGZMyiDyycZvqhvEmvBqKOFJNbMYjwd9Mm3QbR6yDyiOsIbs_bC8Z7-_uDL9e_8uiN-QBw4oRTHSXq2SluqzdGthxlXnb8OoN4u0_HQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF9yPQFiNV4pR2Yye2c1xtu9qF7apU24pb5DiOWLFNqm6CaE9cuPc39pcwkxdsEQLBMbGdyPZ4Hp6ZbwjZBjHKVYoeVmEDMFBU7CovFS6PrZ8oaYEhYnLywVSMjv23H4I2mhBzYWp8iO7CDU9Gxa_xgOOF9O4P1FBMwQYDD2wWCcb4bXIHy3pXVtVRhyDFgDzrBCPOXaxD3-I29tju6vhVufSLsnlDLq2qspUsGt4ncTuLOgTl005ZxDvm8gbA439N8wG512iqtF-T1kNyy2aPyPqgLRD3mFz1aQNaTfsNMjktcrpXxYTQvRLeH-G-n2LRLkOHizI_r8GjqM4SevgxL2BMXpUTo4eYlrSkoELT96XOqtQ3YMSLC3oyX2Li5yXIWDorT6HD6OIs_zLXdIIBT0s6zq6_fjuZf86fkOPh_mwwcpsCD67hkgvXZ1ob4CIs0EroQAELUImXxlx7sQnD2Bc87WkZg8qnjOppYRAdTVouPRuzMOVPyVqWZ_Y5ocY3iR_CNzwR-oqnOhDWqFQmIQ8SL1EOcdvtjUyDfo5FOBZRjdvMIlznqFtnh7zp-p_VuB-_7bnRUkvUnP9lxARoSiGoStD8umuG_UF3jM4srG0EprkK0dHKHfKsprLuV9xnTEovcMj2z2TXtVceVl-EgarcMw7x_qbboJk4wh0UDmEV3f1helF_Ot7vnl78y6BXZH00O5hEk_H03Utyl2ECCca9yw2yVpyXdhPUuiLeqg7ud7gaQzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CIQEXvgeBAUaaxClbYye2c6zaVS2MqkzbtFvkOI6o6JJqTRDbiQt3_kb-Ep7zxTqEQHBsbKd69vvM8_s9gG00o0ymNsPKTYABioxd6aXcZbHxEykMKkRbnPxuysdH_puT4ORSFX-ND9F9cLOSUelrK-DLJN39CRpqK7AxvsOQRWAsfh1u-LwnLV8PDzoAKYrcWdcXMebaNvQtbGOP7q6vXzdLv_iaV8zSuidbmaLRXVAtEfUNlI87ZRHv6Isr-I7_Q-U9uNP4qaRfM9Z9uGayB3Br0LaHewjf-qSBrCb9BpecFDkZVjdCyLDE5wf21E9tyy5NRosyP6uho4jKEjL7kBe4Jq-aiZGZLUpaEXSgyftSZVXhG6rhxTk5nq9s2ecFWlhyWJ7ihPH5Mv88V2TfXndakUn2_cvX4_mn_BEcjfYOB2O3ae_gaiYYd32qlEYdQgMluQokKgCZeGnMlBfrMIx9ztKeEjE6fFLLnuLaYqMJw4RnYhqmbBM2sjwzT4BoXyd-iO_weOhLlqqAGy1TkYQsSLxEOuC2pxvpBvvctuBYRDVqM43sPkfdPjvwupu_rFE_fjtzq2WWqJH-VUQ5-kkhOko4_KobxvOxyRiVGdzbCANzGdo0K3Pgcc1k3V8xn1IhvMCB7ctc141X-VWfh4GskjMOeH8zbdAQbsEOCgdoxXZ_IC_qTyd73a-n_7LoJdycDUfR_mT69hncprZ6xF56F1uwUZyV5jn6dEX8ohLbH9RLQfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Approach+to+Design+Dual+Ratiometric+Fluorescent+and+Photoacoustic+Probes+for+Quantitatively+Visualizing+Tumor+Hypoxia+Levels+In+Vivo&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Shuping&rft.au=Chen%2C+Hua&rft.au=Wang%2C+Liping&rft.au=Qin%2C+Xue&rft.date=2022-02-07&rft.pub=Wiley&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=7&rft_id=info:doi/10.1002%2Fanie.202107076&rft_id=info%3Apmid%2F34227715&rft.externalDBID=n%2Fa&rft.externalDocID=000734695800001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |