Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium‐Metal Batteries

The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to co...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 29; pp. e202204776 - n/a
Main Authors Xie, Jin, Sun, Shu‐Yu, Chen, Xiang, Hou, Li‐Peng, Li, Bo‐Quan, Peng, Hong‐Jie, Huang, Jia‐Qi, Zhang, Xue‐Qiang, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 18.07.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries. Design principles of fluorinated molecules were proposed to construct a fluorinated solid electrolyte interphase for practical lithium‐metal batteries.
AbstractList The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries.
The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries. Design principles of fluorinated molecules were proposed to construct a fluorinated solid electrolyte interphase for practical lithium‐metal batteries.
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2CF2-) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on beta-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li-S pouch cell of 360 Wh kg(-1) delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.
The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF 2 CF 2 −) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO 3 . Furthermore, a Li−S pouch cell of 360 Wh kg −1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries.
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF CF -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO . Furthermore, a Li-S pouch cell of 360 Wh kg delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2 CF2 -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3 . Furthermore, a Li-S pouch cell of 360 Wh kg-1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2 CF2 -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3 . Furthermore, a Li-S pouch cell of 360 Wh kg-1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.
ArticleNumber 202204776
Author Huang, Jia‐Qi
Zhang, Qiang
Hou, Li‐Peng
Li, Bo‐Quan
Peng, Hong‐Jie
Xie, Jin
Sun, Shu‐Yu
Zhang, Xue‐Qiang
Chen, Xiang
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0002-4235-7441
  surname: Xie
  fullname: Xie, Jin
  organization: Tsinghua University
– sequence: 2
  givenname: Shu‐Yu
  orcidid: 0000-0002-9942-8618
  surname: Sun
  fullname: Sun, Shu‐Yu
  organization: Tsinghua University
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 4
  givenname: Li‐Peng
  orcidid: 0000-0002-9147-525X
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 5
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Xue‐Qiang
  orcidid: 0000-0003-2856-1881
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  email: zhangxq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35575049$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNvAliUaiQ1SNcEejz2eZQkpREoBcVmPPJ7jxpVjp7ZHKLs-As_Ik-CQtEiVEKx8rPP9_7nonKIj5x0g9JzgKcG4ei2dgWmFqwrXTcMfoRPCKlLSpqFHOa4pLRvByDE6jfE680Jg_gQdU8Yahuv2BIULO_pgnEzGXRVpBcUXb81QzC2oFLzdJigWLkHYrGSEot8WnzPqnbTFpc_MaGUo3kI0V67QPhSfglTJqJxemrQy4_rn7Y9LSPn_RqZsYyA-RY-1tBGeHd4J-nYx_zp7Xy4_vlvMzpelog3lJelpqzXGgrWc0l5Irauaa9YOQrFBgKjrmjcDrVstcMUxHnTNe6IAM8mwFHSCXu19N8HfjBBTtzZRgbXSgR9jV3HOCKnabD9BLx-g134MecgdJRrecCx2hi8O1NivYeg2waxl2HZ328zA2R74Dr3XURlwCu4xnGfBuWdS5QiTTIv_p2cm_d77zI8uZWm9l6rgYwygO3XIpyCN7QjudtfR7a6ju7-OLJs-kN1V-6ugPbRoLGz_QXfnHxbzP9pf03PLIQ
CitedBy_id crossref_primary_10_1002_adma_202405384
crossref_primary_10_1039_D2MH00469K
crossref_primary_10_1002_aenm_202300084
crossref_primary_10_1007_s40820_024_01354_z
crossref_primary_10_1360_nso_20230039
crossref_primary_10_1002_anie_202407075
crossref_primary_10_1002_anie_202319600
crossref_primary_10_1016_j_jechem_2022_11_042
crossref_primary_10_1021_acsaem_3c00896
crossref_primary_10_1021_acsnano_4c16906
crossref_primary_10_1002_anie_202218229
crossref_primary_10_1002_smll_202301433
crossref_primary_10_1038_s41578_023_00623_4
crossref_primary_10_1002_aenm_202400365
crossref_primary_10_1039_D3EE00664F
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1021_acsnano_4c08349
crossref_primary_10_1016_j_cej_2024_153444
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1016_j_gee_2023_02_006
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1021_acsaem_4c00375
crossref_primary_10_1002_anie_202303363
crossref_primary_10_1016_j_est_2024_113708
crossref_primary_10_1016_j_jes_2023_03_017
crossref_primary_10_1021_acs_iecr_3c04375
crossref_primary_10_1021_jacs_3c01955
crossref_primary_10_1016_j_ensm_2023_102782
crossref_primary_10_1016_j_jallcom_2022_168066
crossref_primary_10_1002_batt_202200394
crossref_primary_10_1002_batt_202400636
crossref_primary_10_1002_adma_202311687
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1002_ange_202316790
crossref_primary_10_1016_j_seppur_2024_130283
crossref_primary_10_1002_metm_6
crossref_primary_10_1002_adfm_202212000
crossref_primary_10_1021_acs_energyfuels_4c01525
crossref_primary_10_20517_cs_2024_66
crossref_primary_10_1002_ange_202218229
crossref_primary_10_1016_j_jpowsour_2023_233237
crossref_primary_10_1039_D2CS00873D
crossref_primary_10_1016_j_jechem_2022_11_013
crossref_primary_10_1016_j_cej_2024_158438
crossref_primary_10_1002_adfm_202304568
crossref_primary_10_1016_j_mtener_2024_101734
crossref_primary_10_1039_D3EE00161J
crossref_primary_10_1002_ange_202309613
crossref_primary_10_1016_j_jechem_2022_11_017
crossref_primary_10_1002_aenm_202402506
crossref_primary_10_1002_aenm_202204002
crossref_primary_10_1002_batt_202200457
crossref_primary_10_1016_j_ensm_2023_04_004
crossref_primary_10_1002_ange_202303363
crossref_primary_10_1016_j_jpowsour_2022_232557
crossref_primary_10_1002_anie_202309613
crossref_primary_10_1016_j_electacta_2023_142482
crossref_primary_10_1016_j_xcrp_2023_101379
crossref_primary_10_1039_D4TA01164C
crossref_primary_10_1002_adfm_202300502
crossref_primary_10_1007_s40820_024_01637_5
crossref_primary_10_1016_j_electacta_2022_141530
crossref_primary_10_1002_ange_202407075
crossref_primary_10_1002_adfm_202214886
crossref_primary_10_1016_j_ensm_2024_103481
crossref_primary_10_1002_adfm_202304541
crossref_primary_10_1002_cey2_283
crossref_primary_10_1039_D4IM00082J
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1016_j_cej_2024_153762
crossref_primary_10_1002_anie_202316790
crossref_primary_10_1021_acs_energyfuels_4c02287
crossref_primary_10_1002_aenm_202303336
crossref_primary_10_1002_aenm_202401324
crossref_primary_10_1021_jacs_3c05715
crossref_primary_10_1039_D2TA07516D
crossref_primary_10_1039_D2TA04974K
crossref_primary_10_1039_D3EE02705H
crossref_primary_10_1007_s10118_023_2913_7
crossref_primary_10_1007_s12274_023_5761_4
crossref_primary_10_1002_adma_202307370
crossref_primary_10_1021_acssuschemeng_3c05371
crossref_primary_10_1002_smll_202301737
crossref_primary_10_1021_acsenergylett_4c01215
crossref_primary_10_1002_smll_202301572
crossref_primary_10_1021_acsaem_2c03018
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1021_acsenergylett_2c02339
crossref_primary_10_1002_adfm_202401462
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1016_j_cej_2024_154031
crossref_primary_10_1016_j_ensm_2023_103166
crossref_primary_10_1002_ange_202319600
crossref_primary_10_1021_acsaem_3c02937
crossref_primary_10_1016_j_ensm_2023_103043
crossref_primary_10_1126_sciadv_ado7348
crossref_primary_10_1016_j_jechem_2024_03_037
crossref_primary_10_1021_acs_jpcc_4c04828
crossref_primary_10_1002_adfm_202303718
crossref_primary_10_1039_D3SC06650A
Cites_doi 10.1038/s42004-019-0234-0
10.1038/s41560-018-0237-6
10.1016/j.joule.2020.02.006
10.1002/aenm.201903843
10.1038/s41560-019-0351-0
10.1002/ange.202103303
10.1038/s41560-020-0601-1
10.1039/D0CP06310J
10.1002/anie.202003663
10.1021/acsenergylett.7b00300
10.1021/jacs.1c08425
10.1149/2.0051706jes
10.1002/anie.201712907
10.1038/ncomms7362
10.1021/ar7002573
10.1149/1.3148721
10.1016/j.nanoen.2019.103881
10.1016/j.ensm.2018.09.022
10.1016/j.mattod.2020.10.021
10.1002/adma.202102134
10.1002/cphc.200800699
10.1016/j.ensm.2016.09.003
10.1021/acsenergylett.8b00935
10.1002/anie.202103470
10.1002/aenm.202002297
10.1002/cber.19971300203
10.1038/nmat3191
10.1002/adfm.201801188
10.1016/j.chempr.2021.02.025
10.1038/nenergy.2016.114
10.1002/adma.201906427
10.1016/j.chempr.2017.12.012
10.1038/s41560-020-0634-5
10.1016/j.joule.2019.09.022
10.1016/j.electacta.2015.07.100
10.1038/s41467-020-16114-x
10.1016/j.trechm.2019.06.007
10.1016/j.joule.2019.07.027
10.1002/adfm.201901730
10.1039/D0EE02088E
10.1021/jacs.1c09107
10.1016/j.jechem.2019.05.010
10.1149/2.0861503jes
10.1002/ange.202003663
10.1039/C9CS00838A
10.1149/2.1441707jes
10.1002/advs.202101111
10.1002/adfm.202105253
10.1016/j.electacta.2010.05.072
10.1002/ange.201712907
10.1007/s12274-020-3181-2
10.1021/acs.jpcc.9b00436
10.1073/pnas.1911017116
10.1038/s41565-020-00797-w
10.1149/1945-7111/ab7183
10.1002/adma.202102034
10.1021/ic020650z
10.1021/acsami.0c06930
10.1039/C6EE02326F
10.1021/cr500003w
10.1039/C5CS00410A
10.1016/j.joule.2018.03.008
10.1038/s41565-019-0371-8
10.1002/adfm.202102228
10.1016/j.jpowsour.2011.08.027
10.1002/anie.202103303
10.1038/s41560-019-0338-x
10.1021/jacs.1c08606
10.1038/s41467-021-25612-5
10.1021/acs.accounts.0c00412
10.1021/acsami.1c07883
10.1038/nmat2460
10.1007/s12274-020-2625-z
10.1002/adma.201405115
10.1021/acs.jpclett.1c01522
10.1002/ange.202103470
10.1002/adma.202007298
10.1002/aenm.201700260
10.1002/adma.201700007
10.1039/D1TA06499A
10.1002/aenm.202100046
10.1039/d0ee02088e
10.1039/c5cs00410a
10.1039/c9cs00838a
10.1038/NMAT2460
10.1039/d0cp06310j
10.1039/c6ee02326f
10.1039/d1ta06499a
10.1021/acsaem.8b01256
10.1038/NENERGY.2016.114
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202204776
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Web of Science
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35575049
000804461200001
10_1002_anie_202204776
ANIE202204776
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: National Natural Science Foundation of China
  funderid: U1801257, 22109007, and 22109086
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: U1801257; 22109007; 22109086
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M700404; 2021TQ0161; 2021M691709
– fundername: Seed Fund of Shanxi Research Institute for Clean Energy, Tsinghua University Initiative Scientific Research Program
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
– fundername: National Key Research and Development Program; National Key Research & Development Program of China
  grantid: 2021YFB2500300
– fundername: Scientific and Technological Key Project of Shanxi Province
  grantid: 20191102003
– fundername: National Natural Science Foundation of China
  grantid: U1801257, 22109007, and 22109086
– fundername: National Key Research and Development Program
  grantid: 2021YFB2500300
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3736-1b39ff00859633b8aff246f59d8c5d8e844467d349f802600df46b1ce05a50a83
IEDL.DBID DR2
ISICitedReferencesCount 118
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000804461200001
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:15:53 EDT 2025
Sun Jul 13 05:00:07 EDT 2025
Wed Feb 19 02:26:11 EST 2025
Fri Aug 29 16:07:54 EDT 2025
Wed Jul 09 18:45:53 EDT 2025
Tue Jul 01 01:18:22 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Jan 22 16:25:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Pouch Cells
CATHODES
Fluorinated Solid Electrolyte Interphase
SULFUR BATTERIES
PERFORMANCE
Fluorinated Electrolytes
LIF
Lithium-Metal Batteries
HIGH-ENERGY-DENSITY
Molecular Design
RECHARGEABLE LITHIUM
CHALLENGES
SOLVENTS
PROGRESS
ANODE
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3736-1b39ff00859633b8aff246f59d8c5d8e844467d349f802600df46b1ce05a50a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9544-5795
0000-0002-7686-6308
0000-0002-9147-525X
0000-0001-7394-9186
0000-0002-9942-8618
0000-0002-3929-1541
0000-0002-4235-7441
0000-0002-4183-703X
0000-0003-2856-1881
PMID 35575049
PQID 2687676088
PQPubID 946352
PageCount 8
ParticipantIDs pubmed_primary_35575049
webofscience_primary_000804461200001
crossref_citationtrail_10_1002_anie_202204776
proquest_journals_2687676088
webofscience_primary_000804461200001CitationCount
proquest_miscellaneous_2665112996
crossref_primary_10_1002_anie_202204776
wiley_primary_10_1002_anie_202204776_ANIE202204776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 18, 2022
PublicationDateYYYYMMDD 2022-07-18
PublicationDate_xml – month: 07
  year: 2022
  text: July 18, 2022
  day: 18
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2010; 55
2017; 6
2017; 7
2015; 180
2017; 2
2021; 23
2019; 14
2020 2020; 59 132
2019; 16
2009; 156
2020; 13
2020; 167
2020; 12
2020; 11
2020; 10
2011; 196
2012; 11
2019; 123
2020; 5
2018; 3
2020; 4
2018; 2
2021; 31
2009; 10
2021; 33
2018; 4
2019; 64
2020; 53
2018; 1
2018 2018; 57 130
2020; 49
2019; 29
2017; 164
2003; 42
2016; 45
2015; 162
2021; 9
2021; 8
2021; 7
2018; 28
2015; 6
2019; 4
2019; 3
2021; 45
2020; 41
2019; 2
2019; 1
1997; 130
2017; 29
2021; 143
2020; 32
2014; 114
2022; 144
2021; 14
2021; 13
2021; 16
2016; 1
2015; 27
2021; 12
2021; 11
2017; 10
2021 2021; 60 133
2020; 117
2009; 8
2008; 41
e_1_2_7_3_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_2
e_1_2_7_15_2
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_41_2
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_90_2
e_1_2_7_94_2
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_2
e_1_2_7_29_3
e_1_2_7_93_2
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_2
e_1_2_7_74_1
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_36_3
e_1_2_7_5_1
e_1_2_7_9_2
e_1_2_7_17_1
e_1_2_7_81_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_66_1
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_89_3
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
Grissa R. (e_1_2_7_71_1) 2018; 1
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_35_1
e_1_2_7_77_2
e_1_2_7_58_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_72_1
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_76_3
e_1_2_7_38_2
Tan, SJ (WOS:000682724400001) 2021; 31
Aurbach, D (WOS:000267798500011) 2009; 156
Chen, X (WOS:000572833000026) 2020; 53
Dörfler, S (WOS:000520874200007) 2020; 4
Liang, X (WOS:000295602400100) 2011; 196
Liu, W (WOS:000575455200001) 2020; 10
Kim, MS (WOS:000446724600020) 2018; 3
Xu, K (WOS:000346323200004) 2014; 114
Manthiram, A (WOS:000351681300001) 2015; 27
Smeu, M (WOS:000617431500002) 2021; 23
CHEN J (WOS:000804461200001.59) 2020; 5
Wang, QY (WOS:000668526600001) 2021; 8
Zhao, M (WOS:000617880400001) 2021; 33
Liu, J (WOS:000461124600009) 2019; 4
Chen, M (WOS:000665088600001) 2021; 31
Hou, TZ (WOS:000487931500063) 2019; 64
Guo, YP (WOS:000406677900005) 2017; 29
Markevich, E (WOS:000403303500010) 2017; 2
Zhang, X (WOS:000537849300003) 2020; 49
Zhu, ZQ (WOS:000428350100019) 2018; 57
Li, T (WOS:000484251200010) 2019; 29
Cao, YL (WOS:000460300900010) 2019; 14
Cui, CY (WOS:000513285600001) 2020; 32
Bruce, PG (WOS:000298406500015) 2012; 11
Xu, SM (WOS:000507801500005) 2020; 13
Liu, T (WOS:000680279600001) 2021; 33
Hou, LP (WOS:000660079700003) 2021; 45
Yu, Z (WOS:000542060100001) 2020; 5
Fan, FY (WOS:000400958600052) 2017; 164
Wu, FX (WOS:000395679100003) 2017; 10
Rosenman, A (WOS:000349823700033) 2015; 162
Zhang, YM (WOS:000668352300026) 2021; 12
Liu, B (WOS:000435093800011) 2018; 2
Xiang, JW (WOS:000490703300011) 2019; 3
Tikekar, MD (WOS:000394784700001) 2016; 1
Zhao, C (WOS:000592027200003) 2021; 16
Liu, T (WOS:000664792600001) 2021; 60
Lehnig, M (WOS:000184093400011) 2003; 42
Han, ZL (WOS:000713410500001) 2021; 9
Zheng, XY (WOS:000695415900009) 2021; 7
Ramasubramanian, A (WOS:000466053600007) 2019; 123
Liang, JY (WOS:000709467900052) 2021; 143
(000804461200001.30) 2020; 132
Qian, JF (WOS:000350295600001) 2015; 6
He, MF (WOS:000506001200018) 2020; 117
Hope, MA (WOS:000558811200002) 2020; 11
Chen, SJ (WOS:000542925300106) 2020; 12
Grissa, R (WOS:000458706600064) 2018; 1
Golozar, M (WOS:000496750600001) 2019; 2
Yu, L (WOS:000445052900006) 2018; 3
Wang, ZX (WOS:000513651100001) 2020; 10
Jiang, JC (WOS:000667982100063) 2021; 13
Cheng, XB (WOS:000399336600004) 2017; 6
Yan, C (WOS:000521130200007) 2019; 1
Tan, KS (WOS:000363345100076) 2015; 180
Tan, J (WOS:000627075000001) 2021; 11
Tan, YH (WOS:000692485000001) 2021; 33
Ye, YF (WOS:000451571200045) 2019; 16
(000804461200001.76) 2021; 133
Verma, P (WOS:000281501100002) 2010; 55
Shi, P (WOS:000731151600001) 2022; 144
Uneyama, K (WOS:000257665400004) 2008; 41
Shi, LL (WOS:000579868500026) 2020; 13
Huang, YY (WOS:000695492800019) 2021; 12
Li, T (WOS:000497987900011) 2019; 3
Peng, HJ (WOS:000418382500007) 2017; 7
Chung, SH (WOS:000437829800019) 2018; 28
Zhang, XQ (WOS:000657810700001) 2021; 60
Peled, E (WOS:000404397300047) 2017; 164
Li, GR (WOS:000425276100001) 2018; 4
Yoo, DJ (WOS:000540503100001) 2020; 59
Glaser, R (WOS:000538495400001) 2020; 167
Xue, WJ (WOS:000467965700010) 2019; 4
Wang, XW (WOS:000495924600022) 2020; 41
Zhao, CX (WOS:000750622600022) 2021; 143
Kraka, E (WOS:000264513000013) 2009; 10
Ji, XL (WOS:000266208700022) 2009; 8
Burdeniuc, J (WOS:A1997WK02100001) 1997; 130
(000804461200001.24) 2018; 130
(000804461200001.65) 2021; 133
Seh, ZW (WOS:000385181300006) 2016; 45
Wang, L (WOS:000604828900007) 2021; 14
References_xml – volume: 164
  start-page: A917
  year: 2017
  end-page: A922
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 59 132
  start-page: 14869 14979
  year: 2020 2020
  end-page: 14876 14986
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 1321
  year: 2017
  end-page: 1326
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 686
  year: 2009
  end-page: 698
  publication-title: ChemPhysChem
– volume: 49
  start-page: 3040
  year: 2020
  end-page: 3071
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 6332
  year: 2010
  end-page: 6341
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 1992
  year: 2020
  end-page: 2002
  publication-title: Acc. Chem. Res.
– volume: 60 133
  start-page: 17547 17688
  year: 2021 2021
  end-page: 17555 17696
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 889
  year: 2018
  end-page: 898
  publication-title: Nat. Energy
– volume: 144
  start-page: 212
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 5694
  year: 2018
  end-page: 5702
  publication-title: ACS Appl. Energy Mater.
– volume: 11
  start-page: 2224
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 18
  year: 2017
  end-page: 25
  publication-title: Energy Storage Mater.
– volume: 23
  start-page: 3214
  year: 2021
  end-page: 3218
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 5375
  year: 2021
  publication-title: Nat. Commun.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 435
  year: 2017
  end-page: 459
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  publication-title: Nat. Mater.
– volume: 2
  start-page: 131
  year: 2019
  publication-title: Commun. Chem.
– volume: 4
  start-page: 374
  year: 2019
  end-page: 382
  publication-title: Nat. Energy
– volume: 5
  start-page: 526
  year: 2020
  end-page: 533
  publication-title: Nat. Energy
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 24215
  year: 2021
  end-page: 24240
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 41
  start-page: 149
  year: 2020
  end-page: 170
  publication-title: J. Energy Chem.
– volume: 57 130
  start-page: 3656 3718
  year: 2018 2018
  end-page: 3660 3722
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 5821
  year: 2021
  end-page: 5828
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 386
  year: 2020
  end-page: 397
  publication-title: Nat. Energy
– volume: 2
  start-page: 833
  year: 2018
  end-page: 845
  publication-title: Joule
– volume: 164
  start-page: A1703
  year: 2017
  end-page: A1719
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 693
  year: 2019
  end-page: 704
  publication-title: Trends Chem.
– volume: 130
  start-page: 145
  year: 1997
  end-page: 154
  publication-title: Chem. Ber.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 2312
  year: 2021
  end-page: 2346
  publication-title: Chem
– volume: 162
  start-page: A470
  year: 2015
  end-page: A473
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 2334
  year: 2019
  end-page: 2363
  publication-title: Joule
– volume: 180
  start-page: 629
  year: 2015
  end-page: 635
  publication-title: Electrochim. Acta
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 498
  year: 2019
  end-page: 504
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 27794
  year: 2020
  end-page: 27802
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 3
  year: 2018
  end-page: 7
  publication-title: Chem
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 3
  start-page: 2059
  year: 2018
  end-page: 2067
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  publication-title: Nat. Mater.
– volume: 16
  start-page: 166
  year: 2021
  end-page: 173
  publication-title: Nat. Nanotechnol.
– volume: 143
  start-page: 19865
  year: 2021
  end-page: 19872
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 5605
  year: 2016
  end-page: 5634
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 430
  year: 2020
  end-page: 436
  publication-title: Nano Res.
– volume: 45
  start-page: 62
  year: 2021
  end-page: 76
  publication-title: Mater. Today
– volume: 3
  start-page: 2647
  year: 2019
  end-page: 2661
  publication-title: Joule
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 41
  start-page: 817
  year: 2008
  end-page: 829
  publication-title: Acc. Chem. Res.
– volume: 42
  start-page: 4275
  year: 2003
  end-page: 4287
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 1355
  year: 2021
  end-page: 1363
  publication-title: Nano Res.
– volume: 117
  start-page: 73
  year: 2020
  end-page: 79
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 143
  start-page: 16768
  year: 2021
  end-page: 16776
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 13
  start-page: 28405
  year: 2021
  end-page: 28414
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 14
  start-page: 200
  year: 2019
  end-page: 207
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 16114
  year: 2016
  publication-title: Nat. Energy
– volume: 196
  start-page: 9839
  year: 2011
  end-page: 9843
  publication-title: J. Power Sources
– volume: 27
  start-page: 1980
  year: 2015
  end-page: 2006
  publication-title: Adv. Mater.
– volume: 60 133
  start-page: 15503 15631
  year: 2021 2021
  end-page: 15509 15637
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 123
  start-page: 10237
  year: 2019
  end-page: 10245
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 3620
  year: 2020
  end-page: 3632
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 539
  year: 2020
  end-page: 554
  publication-title: Joule
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_20_2
  doi: 10.1038/s42004-019-0234-0
– ident: e_1_2_7_5_1
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_7_11_1
– ident: e_1_2_7_87_1
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_7_26_2
  doi: 10.1002/aenm.201903843
– ident: e_1_2_7_75_2
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_7_74_1
– ident: e_1_2_7_89_3
  doi: 10.1002/ange.202103303
– ident: e_1_2_7_70_1
  doi: 10.1038/s41560-020-0601-1
– ident: e_1_2_7_60_1
– ident: e_1_2_7_73_1
  doi: 10.1039/D0CP06310J
– ident: e_1_2_7_36_2
  doi: 10.1002/anie.202003663
– ident: e_1_2_7_45_2
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.1c08425
– ident: e_1_2_7_65_1
  doi: 10.1149/2.0051706jes
– ident: e_1_2_7_29_2
  doi: 10.1002/anie.201712907
– ident: e_1_2_7_47_2
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_51_1
  doi: 10.1021/ar7002573
– ident: e_1_2_7_27_1
– ident: e_1_2_7_79_2
  doi: 10.1149/1.3148721
– ident: e_1_2_7_41_2
  doi: 10.1016/j.nanoen.2019.103881
– ident: e_1_2_7_67_1
  doi: 10.1016/j.ensm.2018.09.022
– ident: e_1_2_7_77_2
  doi: 10.1016/j.mattod.2020.10.021
– ident: e_1_2_7_32_2
  doi: 10.1002/adma.202102134
– ident: e_1_2_7_49_2
  doi: 10.1002/cphc.200800699
– ident: e_1_2_7_62_2
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_7_42_2
  doi: 10.1021/acsenergylett.8b00935
– ident: e_1_2_7_76_2
  doi: 10.1002/anie.202103470
– ident: e_1_2_7_12_2
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_50_2
  doi: 10.1002/cber.19971300203
– ident: e_1_2_7_3_2
  doi: 10.1038/nmat3191
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.201801188
– ident: e_1_2_7_22_2
  doi: 10.1016/j.chempr.2021.02.025
– ident: e_1_2_7_2_2
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_7_19_2
  doi: 10.1002/adma.201906427
– ident: e_1_2_7_78_2
  doi: 10.1016/j.chempr.2017.12.012
– ident: e_1_2_7_58_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_7_28_2
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_7_57_1
  doi: 10.1016/j.electacta.2015.07.100
– ident: e_1_2_7_16_2
  doi: 10.1038/s41467-020-16114-x
– ident: e_1_2_7_39_2
  doi: 10.1016/j.trechm.2019.06.007
– ident: e_1_2_7_30_2
  doi: 10.1016/j.joule.2019.07.027
– ident: e_1_2_7_80_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_56_2
  doi: 10.1002/adfm.201901730
– ident: e_1_2_7_86_2
  doi: 10.1039/D0EE02088E
– ident: e_1_2_7_95_2
  doi: 10.1021/jacs.1c09107
– ident: e_1_2_7_64_1
  doi: 10.1016/j.jechem.2019.05.010
– ident: e_1_2_7_54_2
  doi: 10.1149/2.0861503jes
– ident: e_1_2_7_36_3
  doi: 10.1002/ange.202003663
– ident: e_1_2_7_9_2
  doi: 10.1039/C9CS00838A
– ident: e_1_2_7_23_1
– ident: e_1_2_7_14_2
  doi: 10.1149/2.1441707jes
– ident: e_1_2_7_33_2
  doi: 10.1002/advs.202101111
– ident: e_1_2_7_10_2
  doi: 10.1002/adfm.202105253
– ident: e_1_2_7_13_2
  doi: 10.1016/j.electacta.2010.05.072
– ident: e_1_2_7_29_3
  doi: 10.1002/ange.201712907
– ident: e_1_2_7_92_2
  doi: 10.1007/s12274-020-3181-2
– ident: e_1_2_7_48_1
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.jpcc.9b00436
– ident: e_1_2_7_59_1
  doi: 10.1073/pnas.1911017116
– ident: e_1_2_7_91_2
  doi: 10.1038/s41565-020-00797-w
– ident: e_1_2_7_37_2
  doi: 10.1149/1945-7111/ab7183
– ident: e_1_2_7_94_2
  doi: 10.1002/adma.202102034
– ident: e_1_2_7_68_1
  doi: 10.1021/ic020650z
– ident: e_1_2_7_46_2
  doi: 10.1021/acsami.0c06930
– ident: e_1_2_7_61_2
  doi: 10.1039/C6EE02326F
– ident: e_1_2_7_15_2
  doi: 10.1021/cr500003w
– ident: e_1_2_7_82_2
  doi: 10.1039/C5CS00410A
– ident: e_1_2_7_52_1
– ident: e_1_2_7_7_2
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_83_2
  doi: 10.1038/s41565-019-0371-8
– ident: e_1_2_7_72_1
  doi: 10.1002/adfm.202102228
– ident: e_1_2_7_35_1
– ident: e_1_2_7_53_2
  doi: 10.1016/j.jpowsour.2011.08.027
– ident: e_1_2_7_89_2
  doi: 10.1002/anie.202103303
– ident: e_1_2_7_85_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_84_1
– ident: e_1_2_7_8_2
  doi: 10.1021/jacs.1c08606
– volume: 1
  start-page: 5694
  year: 2018
  ident: e_1_2_7_71_1
  publication-title: ACS Appl. Energy Mater.
– ident: e_1_2_7_93_2
  doi: 10.1038/s41467-021-25612-5
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.accounts.0c00412
– ident: e_1_2_7_40_1
– ident: e_1_2_7_38_2
  doi: 10.1021/acsami.1c07883
– ident: e_1_2_7_66_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_21_2
  doi: 10.1007/s12274-020-2625-z
– ident: e_1_2_7_55_2
  doi: 10.1002/adma.201405115
– ident: e_1_2_7_1_1
– ident: e_1_2_7_44_1
– ident: e_1_2_7_43_2
  doi: 10.1021/acs.jpclett.1c01522
– ident: e_1_2_7_76_3
  doi: 10.1002/ange.202103470
– ident: e_1_2_7_90_2
  doi: 10.1002/adma.202007298
– ident: e_1_2_7_81_2
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_88_1
– ident: e_1_2_7_18_1
– ident: e_1_2_7_34_2
  doi: 10.1002/adma.201700007
– ident: e_1_2_7_63_2
  doi: 10.1039/D1TA06499A
– ident: e_1_2_7_31_1
– ident: e_1_2_7_25_2
  doi: 10.1002/aenm.202100046
– volume: 4
  start-page: 180
  year: 2019
  ident: WOS:000461124600009
  article-title: Pathways for practical high-energy long-cycling lithium metal batteries
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-019-0338-x
– volume: 13
  start-page: 3620
  year: 2020
  ident: WOS:000579868500026
  article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/d0ee02088e
– volume: 45
  start-page: 5605
  year: 2016
  ident: WOS:000385181300006
  article-title: Designing high-energy lithium-sulfur batteries
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c5cs00410a
– volume: 4
  start-page: 374
  year: 2019
  ident: WOS:000467965700010
  article-title: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-019-0351-0
– volume: 6
  start-page: ARTN 6362
  year: 2015
  ident: WOS:000350295600001
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms7362
– volume: 130
  start-page: 3718
  year: 2018
  ident: 000804461200001.24
  publication-title: Angew. Chem
– volume: 45
  start-page: 62
  year: 2021
  ident: WOS:000660079700003
  article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries
  publication-title: MATERIALS TODAY
  doi: 10.1016/j.mattod.2020.10.021
– volume: 10
  start-page: 686
  year: 2009
  ident: WOS:000264513000013
  article-title: Characterization of CF Bonds with Multiple-Bond Character: Bond Lengths, Stretching Force Constants, and Bond Dissociation Energies
  publication-title: CHEMPHYSCHEM
  doi: 10.1002/cphc.200800699
– volume: 41
  start-page: 149
  year: 2020
  ident: WOS:000495924600022
  article-title: Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries
  publication-title: JOURNAL OF ENERGY CHEMISTRY
  doi: 10.1016/j.jechem.2019.05.010
– volume: 49
  start-page: 3040
  year: 2020
  ident: WOS:000537849300003
  article-title: Towards practical lithium-metal anodes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00838a
– volume: 8
  start-page: 500
  year: 2009
  ident: WOS:000266208700022
  article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
  publication-title: NATURE MATERIALS
  doi: 10.1038/NMAT2460
– volume: 164
  start-page: A917
  year: 2017
  ident: WOS:000400958600052
  article-title: Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/2.0051706jes
– volume: 4
  start-page: 539
  year: 2020
  ident: WOS:000520874200007
  article-title: Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level
  publication-title: JOULE
  doi: 10.1016/j.joule.2020.02.006
– volume: 143
  start-page: 16768
  year: 2021
  ident: WOS:000709467900052
  article-title: Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c08425
– volume: 23
  start-page: 3214
  year: 2021
  ident: WOS:000617431500002
  article-title: Electron leakage through heterogeneous LiF on lithium-metal battery anodes
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  doi: 10.1039/d0cp06310j
– volume: 114
  start-page: 11503
  year: 2014
  ident: WOS:000346323200004
  article-title: Electrolytes and Interphases in Li-Ion Batteries and Beyond
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr500003w
– volume: 10
  start-page: 435
  year: 2017
  ident: WOS:000395679100003
  article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c6ee02326f
– volume: 196
  start-page: 9839
  year: 2011
  ident: WOS:000295602400100
  article-title: Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
  publication-title: JOURNAL OF POWER SOURCES
  doi: 10.1016/j.jpowsour.2011.08.027
– volume: 123
  start-page: 10237
  year: 2019
  ident: WOS:000466053600007
  article-title: Lithium Diffusion Mechanism through Solid-Electrolyte Interphase in Rechargeable Lithium Batteries
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY C
  doi: 10.1021/acs.jpcc.9b00436
– volume: 156
  start-page: A694
  year: 2009
  ident: WOS:000267798500011
  article-title: On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/1.3148721
– volume: 31
  start-page: ARTN 2102228
  year: 2021
  ident: WOS:000665088600001
  article-title: Marrying Ester Group with Lithium Salt: Cellulose-Acetate-Enabled LiF-Enriched Interface for Stable Lithium Metal Anodes
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202102228
– volume: 133
  start-page: 17688
  year: 2021
  ident: 000804461200001.76
  publication-title: Angew. Chem
– volume: 9
  start-page: 24215
  year: 2021
  ident: WOS:000713410500001
  article-title: Challenges and key parameters in exploring the cyclability limitation of practical lithium-sulfur batteries
  publication-title: JOURNAL OF MATERIALS CHEMISTRY A
  doi: 10.1039/d1ta06499a
– volume: 133
  start-page: 15631
  year: 2021
  ident: 000804461200001.65
  publication-title: Angew. Chem
– volume: 144
  start-page: 212
  year: 2022
  ident: WOS:000731151600001
  article-title: A Successive Conversion-Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c08606
– volume: 60
  start-page: 15503
  year: 2021
  ident: WOS:000657810700001
  article-title: Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium-Sulfur Batteries
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202103470
– volume: 12
  start-page: 5821
  year: 2021
  ident: WOS:000668352300026
  article-title: Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS
  doi: 10.1021/acs.jpclett.1c01522
– volume: 5
  start-page: 386
  year: 2020
  ident: WOS:000804461200001.59
  publication-title: NAT ENERGY
– volume: 16
  start-page: 498
  year: 2019
  ident: WOS:000451571200045
  article-title: Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell
  publication-title: ENERGY STORAGE MATERIALS
  doi: 10.1016/j.ensm.2018.09.022
– volume: 29
  start-page: ARTN 1901730
  year: 2019
  ident: WOS:000484251200010
  article-title: A Comprehensive Understanding of Lithium-Sulfur Battery Technology
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201901730
– volume: 7
  start-page: 2312
  year: 2021
  ident: WOS:000695415900009
  article-title: Critical effects of electrolyte recipes for Li and Na metal batteries
  publication-title: CHEM
  doi: 10.1016/j.chempr.2021.02.025
– volume: 55
  start-page: 6332
  year: 2010
  ident: WOS:000281501100002
  article-title: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
  publication-title: ELECTROCHIMICA ACTA
  doi: 10.1016/j.electacta.2010.05.072
– volume: 13
  start-page: 430
  year: 2020
  ident: WOS:000507801500005
  article-title: In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes
  publication-title: NANO RESEARCH
  doi: 10.1007/s12274-020-2625-z
– volume: 33
  start-page: ARTN 2102034
  year: 2021
  ident: WOS:000680279600001
  article-title: Low-Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium-Sulfur Batteries' Lifetime
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202102034
– volume: 29
  start-page: ARTN 1700007
  year: 2017
  ident: WOS:000406677900005
  article-title: Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201700007
– volume: 2
  start-page: 833
  year: 2018
  ident: WOS:000435093800011
  article-title: Advancing Lithium Metal Batteries
  publication-title: JOULE
  doi: 10.1016/j.joule.2018.03.008
– volume: 10
  start-page: ARTN 2002297
  year: 2020
  ident: WOS:000575455200001
  article-title: Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202002297
– volume: 10
  start-page: ARTN 1903843
  year: 2020
  ident: WOS:000513651100001
  article-title: An Anion-Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201903843
– volume: 16
  start-page: 166
  year: 2021
  ident: WOS:000592027200003
  article-title: A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/s41565-020-00797-w
– volume: 33
  start-page: ARTN 2102134
  year: 2021
  ident: WOS:000692485000001
  article-title: Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202102134
– volume: 33
  start-page: ARTN 2007298
  year: 2021
  ident: WOS:000617880400001
  article-title: An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.202007298
– volume: 1
  start-page: 5694
  year: 2018
  ident: WOS:000458706600064
  article-title: XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries
  publication-title: ACS APPLIED ENERGY MATERIALS
  doi: 10.1021/acsaem.8b01256
– volume: 167
  start-page: ARTN 100512
  year: 2020
  ident: WOS:000538495400001
  article-title: Tuning Low Concentration Electrolytes for High Rate Performance in Lithium-Sulfur Batteries
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/1945-7111/ab7183
– volume: 12
  start-page: ARTN 5375
  year: 2021
  ident: WOS:000695492800019
  article-title: A saccharide-based binder for efficient polysulfide regulations in Li-S batteries
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-25612-5
– volume: 1
  start-page: 693
  year: 2019
  ident: WOS:000521130200007
  article-title: Lithium-Anode Protection in Lithium-Sulfur Batteries
  publication-title: TRENDS IN CHEMISTRY
  doi: 10.1016/j.trechm.2019.06.007
– volume: 5
  start-page: 526
  year: 2020
  ident: WOS:000542060100001
  article-title: Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-020-0634-5
– volume: 60
  start-page: 17547
  year: 2021
  ident: WOS:000664792600001
  article-title: Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202103303
– volume: 3
  start-page: 889
  year: 2018
  ident: WOS:000446724600020
  article-title: Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
  publication-title: NATURE ENERGY
  doi: 10.1038/s41560-018-0237-6
– volume: 162
  start-page: A470
  year: 2015
  ident: WOS:000349823700033
  article-title: The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/2.0861503jes
– volume: 3
  start-page: 2059
  year: 2018
  ident: WOS:000445052900006
  article-title: A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.8b00935
– volume: 12
  start-page: 27794
  year: 2020
  ident: WOS:000542925300106
  article-title: High-Efficiency Lithium Metal Anode Enabled by a Concentrated/ Fluorinated Ester Electrolyte
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c06930
– volume: 14
  start-page: 200
  year: 2019
  ident: WOS:000460300900010
  article-title: Bridging the academic and industrial metrics for next-generation practical batteries
  publication-title: NATURE NANOTECHNOLOGY
  doi: 10.1038/s41565-019-0371-8
– volume: 6
  start-page: 18
  year: 2017
  ident: WOS:000399336600004
  article-title: The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection
  publication-title: ENERGY STORAGE MATERIALS
  doi: 10.1016/j.ensm.2016.09.003
– volume: 32
  start-page: ARTN 1906427
  year: 2020
  ident: WOS:000513285600001
  article-title: A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201906427
– volume: 31
  start-page: ARTN 2105253
  year: 2021
  ident: WOS:000682724400001
  article-title: Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202105253
– volume: 180
  start-page: 629
  year: 2015
  ident: WOS:000363345100076
  article-title: Physical-Chemical and Electrochemical Studies of the Lithium Naphthalenide Anolyte
  publication-title: ELECTROCHIMICA ACTA
  doi: 10.1016/j.electacta.2015.07.100
– volume: 7
  start-page: ARTN 1700260
  year: 2017
  ident: WOS:000418382500007
  article-title: Review on High-Loading and High-Energy Lithium-Sulfur Batteries
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.201700260
– volume: 117
  start-page: 73
  year: 2020
  ident: WOS:000506001200018
  article-title: The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1911017116
– volume: 132
  start-page: 14979
  year: 2020
  ident: 000804461200001.30
  publication-title: Angew. Chem
– volume: 164
  start-page: A1703
  year: 2017
  ident: WOS:000404397300047
  article-title: Review-SEI: Past, Present and Future
  publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  doi: 10.1149/2.1441707jes
– volume: 2
  start-page: 1321
  year: 2017
  ident: WOS:000403303500010
  article-title: Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
  publication-title: ACS ENERGY LETTERS
  doi: 10.1021/acsenergylett.7b00300
– volume: 11
  start-page: 19
  year: 2012
  ident: WOS:000298406500015
  article-title: Li-O2 and Li-S batteries with high energy storage
  publication-title: NATURE MATERIALS
  doi: 10.1038/nmat3191
– volume: 28
  start-page: ARTN 1801188
  year: 2018
  ident: WOS:000437829800019
  article-title: Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.201801188
– volume: 59
  start-page: 14869
  year: 2020
  ident: WOS:000540503100001
  article-title: Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202003663
– volume: 64
  start-page: ARTN 103881
  year: 2019
  ident: WOS:000487931500063
  article-title: The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation
  publication-title: NANO ENERGY
  doi: 10.1016/j.nanoen.2019.103881
– volume: 53
  start-page: 1992
  year: 2020
  ident: WOS:000572833000026
  article-title: Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00412
– volume: 57
  start-page: 3656
  year: 2018
  ident: WOS:000428350100019
  article-title: Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS2 Anode for Lithium-Ion Storage
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201712907
– volume: 130
  start-page: 145
  year: 1997
  ident: WOS:A1997WK02100001
  article-title: Recent advances in C-F bond activation
  publication-title: CHEMISCHE BERICHTE-RECUEIL
– volume: 11
  start-page: ARTN 2224
  year: 2020
  ident: WOS:000558811200002
  article-title: Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-020-16114-x
– volume: 13
  start-page: 28405
  year: 2021
  ident: WOS:000667982100063
  article-title: Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li-S Batteries
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.1c07883
– volume: 143
  start-page: 19865
  year: 2021
  ident: WOS:000750622600022
  article-title: Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c09107
– volume: 11
  start-page: ARTN 2100046
  year: 2021
  ident: WOS:000627075000001
  article-title: A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase
  publication-title: ADVANCED ENERGY MATERIALS
  doi: 10.1002/aenm.202100046
– volume: 3
  start-page: 2647
  year: 2019
  ident: WOS:000497987900011
  article-title: Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries
  publication-title: JOULE
  doi: 10.1016/j.joule.2019.09.022
– volume: 8
  start-page: ARTN 2101111
  year: 2021
  ident: WOS:000668526600001
  article-title: Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries
  publication-title: ADVANCED SCIENCE
  doi: 10.1002/advs.202101111
– volume: 3
  start-page: 2334
  year: 2019
  ident: WOS:000490703300011
  article-title: Alkali-Metal Anodes: From Lab to Market
  publication-title: JOULE
  doi: 10.1016/j.joule.2019.07.027
– volume: 42
  start-page: 4275
  year: 2003
  ident: WOS:000184093400011
  article-title: 15N CIDNP study of formation and decay of peroxynitric acid:: Evidence for formation of hydroxyl radicals
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic020650z
– volume: 4
  start-page: 3
  year: 2018
  ident: WOS:000425276100001
  article-title: Lithium-Sulfur Batteries for Commercial Applications
  publication-title: CHEM
  doi: 10.1016/j.chempr.2017.12.012
– volume: 2
  start-page: ARTN 131
  year: 2019
  ident: WOS:000496750600001
  article-title: In situ observation of solid electrolyte interphase evolution in a lithium metal battery
  publication-title: COMMUNICATIONS CHEMISTRY
  doi: 10.1038/s42004-019-0234-0
– volume: 27
  start-page: 1980
  year: 2015
  ident: WOS:000351681300001
  article-title: Lithium-Sulfur Batteries: Progress and Prospects
  publication-title: ADVANCED MATERIALS
  doi: 10.1002/adma.201405115
– volume: 14
  start-page: 1355
  year: 2021
  ident: WOS:000604828900007
  article-title: Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells
  publication-title: NANO RESEARCH
  doi: 10.1007/s12274-020-3181-2
– volume: 1
  start-page: 1
  year: 2016
  ident: WOS:000394784700001
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: NATURE ENERGY
  doi: 10.1038/NENERGY.2016.114
– volume: 41
  start-page: 817
  year: 2008
  ident: WOS:000257665400004
  article-title: α-Trifluoromethylated carbanion synthons
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar7002573
SSID ssj0028806
Score 2.6606452
Snippet The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase...
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202204776
SubjectTerms Anodes
Chemistry
Chemistry, Multidisciplinary
Defluorination
Design
Electrolytes
Fluorinated Electrolytes
Fluorinated Solid Electrolyte Interphase
Fluorination
Interphase
Life span
Lithium
Lithium-Metal Batteries
Metals
Molecular Design
Physical Sciences
Pouch Cells
Principles
Science & Technology
Solid electrolytes
Sulfur
Title Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204776
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000804461200001
https://www.ncbi.nlm.nih.gov/pubmed/35575049
https://www.proquest.com/docview/2687676088
https://www.proquest.com/docview/2665112996
Volume 61
WOS 000804461200001
WOSCitedRecordID wos000804461200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDCT0sh0FauVIlT2sR2nORYLbsqiO2htFJvkZ3Y6oplF7XJoZx4BJ6RJ2EmTtJuUVUEt0S2E9me8Xy2Z74B2MMdRia1UGGVGBfK0row55EJtVYUsie0cBQ7PD1WR2fy43lyfiuK3_NDDAdupBntek0Krs3VwQ1pKEVg4_6O80imKXFuk8MWoaKTgT-Ko3D68CIhQspC37M2RvxgtfmqVfoDat6xSqtAtrVEk2eg-z54B5Qv-01t9svvd-gd_6eTz-FpB1PZoZerF_DILtbh8ajPDrcBl5N5Q757mtymGaJI9nk5n1Vs7NPqzK9ry7xD4wXaSWau2Ul37MimfUZe9r51H2GIm5nnTUKBYZ9m9cWs-frrx8-pxZ0B8wyguKF_CWeT8enoKOzyN4SlSHH6YyNy5wjUoZYLk2nnuFQuyausTKrMZhIlJa2EzF1G1GZR5aQycWmjRCeRzsQmrC2WC_samLKpdCKV2kkurYyMQ6gjrY55Kas0NgGE_fwVZUduTjk25oWnZeYFjWQxjGQA74b63zytx701t3pxKDr1viq4QiOSKlyhA9gdinEG6LZFL-yyoTqqBbM5fuKVF6PhVwjyiFY_D2DvtlwN5S2Qx8GJeXv7EkD8N9VGXceJzaAOgLeC9UD3isPjD-Ph7c2_NHoLT-iZDrzjbAvW6svGbiNSq81Oq42_AcybNIA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASMVcUqb2M7rwKHah3Zpdw-llXoLTmKrK5Zd1M0KLSd-An-Fv8JP4JcwEyeBLUIgpB44JnEetmc83zgz3wDsoIcRSyVCtwgy48pcGzfhXuYqFVLKnlDCUO7waBwOTuSr0-B0A740uTCWH6LdcCPNqNZrUnDakN77wRpKKdjo4HHuySgK67jKA736gF7b4uWwi1P8nPN-77gzcOvCAm4uIvwuPxOJMYQ2UPxEFitjuAxNkBRxHhSxjiV2ISqETExMnFteYWSY-bn2AhV4Khb43CtwlcqIE11_96hlrOKoDjahSQiX6t43PJEe31v_3nU7-Au4vWAH16FzZfv6N-BrM2o25OXt7rLMdvOPFwgl_6thvQnXayTO9q3q3IINPbsNW52mAN4dOO9PlxSeqCgynCFQZq_n00nBerZy0HRVamZjNs8QCrBsxY7qnVU2aooOs24VIcPQNWCWGgp1gh1OyrPJ8t23T59HGp0fZklOJ3pxF04upcv3YHM2n-kHwEIdSSMiqYzkUksvM4jmpFY-z2UR-ZkDbiMwaV7zt1MZkWlqmad5SjOXtjPnwIu2_XvLXPLbltuN_KX1CrZIeYh2MgrRCDnwrL2MM0A_lNRMz5fUJqzweoKPuG_ltn0V4liqHJA4sPOzILfXK18FB8fn1Q8mB_y_adapO06EDaUDvJLkP3Qv3R8Pe-3Rw3-56SlsDY5Hh-nhcHzwCK7Redrf9-Nt2CzPl_oxAtMye1ItBQzeXLaSfAf45ZBM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYxUxCltYjtOcuBQ7Y-6tLtChUq9pXZiqyuW3aqbFVpOPAKPwqvwCjwJ4zgJbBECIfXAMYnzY3vG840z8w3AJnoYCZdM-EWkjM9zbfyUBsqXUtiUPSaZsbnDw5HYPeSvjqKjNfjS5MI4foh2w81qRrVeWwU_Lcz2D9JQm4GN_h2lAY9jUYdV7unlB3Ta5i8HXZzh55T2e287u35dV8DPWYyfFSqWGmPBBkofU4k0hnJhorRI8qhIdMKxB3HBeGoSS7kVFIYLFeY6iGQUyIThcy_BZS6C1BaL6B60hFUUtcHlMzHm27L3DU1kQLdXv3fVDP6Cbc-ZwVXkXJm-_g342gyai3h5t7Uo1Vb-8Ryf5P80qjfheo3DyY5TnFuwpqe34WqnKX93B876k4UNTpQ2LpwgTCZvZpNxQXqubtBkWWriIjZPEAgQtSQH9b4qGTYlh0m3io8h6BgQRwyFGkH2x-XJePH-26fPQ42uD3EUp2M9vwuHF9Lle7A-nU31AyBCx9ywmEvDKdc8UAaxHNcypDkv4lB54DfykuU1e7stIjLJHO80zezMZe3MefCibX_qeEt-23KjEb-sXr_mGRVoJWOBJsiDZ-1lnAH7O0lO9Wxh24gKraf4iPtObNtXIYq1dQNSDzZ_luP2euWp4OCEtPq95EH4N806dcctXUPpAa0E-Q_dy3ZGg1579PBfbnoKV153-9n-YLT3CK7Z03ZzP0w2YL08W-jHiEpL9aRaCAgcX7SOfAeXtY77
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorinating+the+Solid+Electrolyte+Interphase+by+Rational+Molecular+Design+for+Practical+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xie%2C+Jin&rft.au=Shu%E2%80%90Yu+Sun&rft.au=Chen%2C+Xiang&rft.au=Li%E2%80%90Peng+Hou&rft.date=2022-07-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202204776&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon