Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium‐Metal Batteries
The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to co...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 29; pp. e202204776 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
18.07.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries.
Design principles of fluorinated molecules were proposed to construct a fluorinated solid electrolyte interphase for practical lithium‐metal batteries. |
---|---|
AbstractList | The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries. The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries. Design principles of fluorinated molecules were proposed to construct a fluorinated solid electrolyte interphase for practical lithium‐metal batteries. The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2CF2-) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on beta-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li-S pouch cell of 360 Wh kg(-1) delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries. The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li‐metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF 2 CF 2 −) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β‐sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3‐tetrafluorobutane‐1,4‐diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li‐metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO 3 . Furthermore, a Li−S pouch cell of 360 Wh kg −1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li‐metal batteries. The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF CF -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO . Furthermore, a Li-S pouch cell of 360 Wh kg delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries. The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2 CF2 -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3 . Furthermore, a Li-S pouch cell of 360 Wh kg-1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (-CF2 CF2 -) is selected as an enriched F reservoir and the defluorination of the C-F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li-sulfur (Li-S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3 . Furthermore, a Li-S pouch cell of 360 Wh kg-1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries. |
ArticleNumber | 202204776 |
Author | Huang, Jia‐Qi Zhang, Qiang Hou, Li‐Peng Li, Bo‐Quan Peng, Hong‐Jie Xie, Jin Sun, Shu‐Yu Zhang, Xue‐Qiang Chen, Xiang |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0002-4235-7441 surname: Xie fullname: Xie, Jin organization: Tsinghua University – sequence: 2 givenname: Shu‐Yu orcidid: 0000-0002-9942-8618 surname: Sun fullname: Sun, Shu‐Yu organization: Tsinghua University – sequence: 3 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 4 givenname: Li‐Peng orcidid: 0000-0002-9147-525X surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 5 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 6 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 8 givenname: Xue‐Qiang orcidid: 0000-0003-2856-1881 surname: Zhang fullname: Zhang, Xue‐Qiang email: zhangxq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35575049$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URNvAliUaiQ1SNcEejz2eZQkpREoBcVmPPJ7jxpVjp7ZHKLs-As_Ik-CQtEiVEKx8rPP9_7nonKIj5x0g9JzgKcG4ei2dgWmFqwrXTcMfoRPCKlLSpqFHOa4pLRvByDE6jfE680Jg_gQdU8Yahuv2BIULO_pgnEzGXRVpBcUXb81QzC2oFLzdJigWLkHYrGSEot8WnzPqnbTFpc_MaGUo3kI0V67QPhSfglTJqJxemrQy4_rn7Y9LSPn_RqZsYyA-RY-1tBGeHd4J-nYx_zp7Xy4_vlvMzpelog3lJelpqzXGgrWc0l5Irauaa9YOQrFBgKjrmjcDrVstcMUxHnTNe6IAM8mwFHSCXu19N8HfjBBTtzZRgbXSgR9jV3HOCKnabD9BLx-g134MecgdJRrecCx2hi8O1NivYeg2waxl2HZ328zA2R74Dr3XURlwCu4xnGfBuWdS5QiTTIv_p2cm_d77zI8uZWm9l6rgYwygO3XIpyCN7QjudtfR7a6ju7-OLJs-kN1V-6ugPbRoLGz_QXfnHxbzP9pf03PLIQ |
CitedBy_id | crossref_primary_10_1002_adma_202405384 crossref_primary_10_1039_D2MH00469K crossref_primary_10_1002_aenm_202300084 crossref_primary_10_1007_s40820_024_01354_z crossref_primary_10_1360_nso_20230039 crossref_primary_10_1002_anie_202407075 crossref_primary_10_1002_anie_202319600 crossref_primary_10_1016_j_jechem_2022_11_042 crossref_primary_10_1021_acsaem_3c00896 crossref_primary_10_1021_acsnano_4c16906 crossref_primary_10_1002_anie_202218229 crossref_primary_10_1002_smll_202301433 crossref_primary_10_1038_s41578_023_00623_4 crossref_primary_10_1002_aenm_202400365 crossref_primary_10_1039_D3EE00664F crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1021_acsnano_4c08349 crossref_primary_10_1016_j_cej_2024_153444 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1016_j_gee_2023_02_006 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1021_acsaem_4c00375 crossref_primary_10_1002_anie_202303363 crossref_primary_10_1016_j_est_2024_113708 crossref_primary_10_1016_j_jes_2023_03_017 crossref_primary_10_1021_acs_iecr_3c04375 crossref_primary_10_1021_jacs_3c01955 crossref_primary_10_1016_j_ensm_2023_102782 crossref_primary_10_1016_j_jallcom_2022_168066 crossref_primary_10_1002_batt_202200394 crossref_primary_10_1002_batt_202400636 crossref_primary_10_1002_adma_202311687 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1002_ange_202316790 crossref_primary_10_1016_j_seppur_2024_130283 crossref_primary_10_1002_metm_6 crossref_primary_10_1002_adfm_202212000 crossref_primary_10_1021_acs_energyfuels_4c01525 crossref_primary_10_20517_cs_2024_66 crossref_primary_10_1002_ange_202218229 crossref_primary_10_1016_j_jpowsour_2023_233237 crossref_primary_10_1039_D2CS00873D crossref_primary_10_1016_j_jechem_2022_11_013 crossref_primary_10_1016_j_cej_2024_158438 crossref_primary_10_1002_adfm_202304568 crossref_primary_10_1016_j_mtener_2024_101734 crossref_primary_10_1039_D3EE00161J crossref_primary_10_1002_ange_202309613 crossref_primary_10_1016_j_jechem_2022_11_017 crossref_primary_10_1002_aenm_202402506 crossref_primary_10_1002_aenm_202204002 crossref_primary_10_1002_batt_202200457 crossref_primary_10_1016_j_ensm_2023_04_004 crossref_primary_10_1002_ange_202303363 crossref_primary_10_1016_j_jpowsour_2022_232557 crossref_primary_10_1002_anie_202309613 crossref_primary_10_1016_j_electacta_2023_142482 crossref_primary_10_1016_j_xcrp_2023_101379 crossref_primary_10_1039_D4TA01164C crossref_primary_10_1002_adfm_202300502 crossref_primary_10_1007_s40820_024_01637_5 crossref_primary_10_1016_j_electacta_2022_141530 crossref_primary_10_1002_ange_202407075 crossref_primary_10_1002_adfm_202214886 crossref_primary_10_1016_j_ensm_2024_103481 crossref_primary_10_1002_adfm_202304541 crossref_primary_10_1002_cey2_283 crossref_primary_10_1039_D4IM00082J crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1016_j_cej_2024_153762 crossref_primary_10_1002_anie_202316790 crossref_primary_10_1021_acs_energyfuels_4c02287 crossref_primary_10_1002_aenm_202303336 crossref_primary_10_1002_aenm_202401324 crossref_primary_10_1021_jacs_3c05715 crossref_primary_10_1039_D2TA07516D crossref_primary_10_1039_D2TA04974K crossref_primary_10_1039_D3EE02705H crossref_primary_10_1007_s10118_023_2913_7 crossref_primary_10_1007_s12274_023_5761_4 crossref_primary_10_1002_adma_202307370 crossref_primary_10_1021_acssuschemeng_3c05371 crossref_primary_10_1002_smll_202301737 crossref_primary_10_1021_acsenergylett_4c01215 crossref_primary_10_1002_smll_202301572 crossref_primary_10_1021_acsaem_2c03018 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1021_acsenergylett_2c02339 crossref_primary_10_1002_adfm_202401462 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1016_j_cej_2024_154031 crossref_primary_10_1016_j_ensm_2023_103166 crossref_primary_10_1002_ange_202319600 crossref_primary_10_1021_acsaem_3c02937 crossref_primary_10_1016_j_ensm_2023_103043 crossref_primary_10_1126_sciadv_ado7348 crossref_primary_10_1016_j_jechem_2024_03_037 crossref_primary_10_1021_acs_jpcc_4c04828 crossref_primary_10_1002_adfm_202303718 crossref_primary_10_1039_D3SC06650A |
Cites_doi | 10.1038/s42004-019-0234-0 10.1038/s41560-018-0237-6 10.1016/j.joule.2020.02.006 10.1002/aenm.201903843 10.1038/s41560-019-0351-0 10.1002/ange.202103303 10.1038/s41560-020-0601-1 10.1039/D0CP06310J 10.1002/anie.202003663 10.1021/acsenergylett.7b00300 10.1021/jacs.1c08425 10.1149/2.0051706jes 10.1002/anie.201712907 10.1038/ncomms7362 10.1021/ar7002573 10.1149/1.3148721 10.1016/j.nanoen.2019.103881 10.1016/j.ensm.2018.09.022 10.1016/j.mattod.2020.10.021 10.1002/adma.202102134 10.1002/cphc.200800699 10.1016/j.ensm.2016.09.003 10.1021/acsenergylett.8b00935 10.1002/anie.202103470 10.1002/aenm.202002297 10.1002/cber.19971300203 10.1038/nmat3191 10.1002/adfm.201801188 10.1016/j.chempr.2021.02.025 10.1038/nenergy.2016.114 10.1002/adma.201906427 10.1016/j.chempr.2017.12.012 10.1038/s41560-020-0634-5 10.1016/j.joule.2019.09.022 10.1016/j.electacta.2015.07.100 10.1038/s41467-020-16114-x 10.1016/j.trechm.2019.06.007 10.1016/j.joule.2019.07.027 10.1002/adfm.201901730 10.1039/D0EE02088E 10.1021/jacs.1c09107 10.1016/j.jechem.2019.05.010 10.1149/2.0861503jes 10.1002/ange.202003663 10.1039/C9CS00838A 10.1149/2.1441707jes 10.1002/advs.202101111 10.1002/adfm.202105253 10.1016/j.electacta.2010.05.072 10.1002/ange.201712907 10.1007/s12274-020-3181-2 10.1021/acs.jpcc.9b00436 10.1073/pnas.1911017116 10.1038/s41565-020-00797-w 10.1149/1945-7111/ab7183 10.1002/adma.202102034 10.1021/ic020650z 10.1021/acsami.0c06930 10.1039/C6EE02326F 10.1021/cr500003w 10.1039/C5CS00410A 10.1016/j.joule.2018.03.008 10.1038/s41565-019-0371-8 10.1002/adfm.202102228 10.1016/j.jpowsour.2011.08.027 10.1002/anie.202103303 10.1038/s41560-019-0338-x 10.1021/jacs.1c08606 10.1038/s41467-021-25612-5 10.1021/acs.accounts.0c00412 10.1021/acsami.1c07883 10.1038/nmat2460 10.1007/s12274-020-2625-z 10.1002/adma.201405115 10.1021/acs.jpclett.1c01522 10.1002/ange.202103470 10.1002/adma.202007298 10.1002/aenm.201700260 10.1002/adma.201700007 10.1039/D1TA06499A 10.1002/aenm.202100046 10.1039/d0ee02088e 10.1039/c5cs00410a 10.1039/c9cs00838a 10.1038/NMAT2460 10.1039/d0cp06310j 10.1039/c6ee02326f 10.1039/d1ta06499a 10.1021/acsaem.8b01256 10.1038/NENERGY.2016.114 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202204776 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Web of Science CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35575049 000804461200001 10_1002_anie_202204776 ANIE202204776 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: National Natural Science Foundation of China funderid: U1801257, 22109007, and 22109086 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: U1801257; 22109007; 22109086 – fundername: China Postdoctoral Science Foundation grantid: 2021M700404; 2021TQ0161; 2021M691709 – fundername: Seed Fund of Shanxi Research Institute for Clean Energy, Tsinghua University Initiative Scientific Research Program – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars – fundername: National Key Research and Development Program; National Key Research & Development Program of China grantid: 2021YFB2500300 – fundername: Scientific and Technological Key Project of Shanxi Province grantid: 20191102003 – fundername: National Natural Science Foundation of China grantid: U1801257, 22109007, and 22109086 – fundername: National Key Research and Development Program grantid: 2021YFB2500300 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3736-1b39ff00859633b8aff246f59d8c5d8e844467d349f802600df46b1ce05a50a83 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 118 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000804461200001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:15:53 EDT 2025 Sun Jul 13 05:00:07 EDT 2025 Wed Feb 19 02:26:11 EST 2025 Fri Aug 29 16:07:54 EDT 2025 Wed Jul 09 18:45:53 EDT 2025 Tue Jul 01 01:18:22 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Wed Jan 22 16:25:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Pouch Cells CATHODES Fluorinated Solid Electrolyte Interphase SULFUR BATTERIES PERFORMANCE Fluorinated Electrolytes LIF Lithium-Metal Batteries HIGH-ENERGY-DENSITY Molecular Design RECHARGEABLE LITHIUM CHALLENGES SOLVENTS PROGRESS ANODE |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3736-1b39ff00859633b8aff246f59d8c5d8e844467d349f802600df46b1ce05a50a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9544-5795 0000-0002-7686-6308 0000-0002-9147-525X 0000-0001-7394-9186 0000-0002-9942-8618 0000-0002-3929-1541 0000-0002-4235-7441 0000-0002-4183-703X 0000-0003-2856-1881 |
PMID | 35575049 |
PQID | 2687676088 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_35575049 webofscience_primary_000804461200001 crossref_citationtrail_10_1002_anie_202204776 proquest_journals_2687676088 webofscience_primary_000804461200001CitationCount proquest_miscellaneous_2665112996 crossref_primary_10_1002_anie_202204776 wiley_primary_10_1002_anie_202204776_ANIE202204776 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 18, 2022 |
PublicationDateYYYYMMDD | 2022-07-18 |
PublicationDate_xml | – month: 07 year: 2022 text: July 18, 2022 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2010; 55 2017; 6 2017; 7 2015; 180 2017; 2 2021; 23 2019; 14 2020 2020; 59 132 2019; 16 2009; 156 2020; 13 2020; 167 2020; 12 2020; 11 2020; 10 2011; 196 2012; 11 2019; 123 2020; 5 2018; 3 2020; 4 2018; 2 2021; 31 2009; 10 2021; 33 2018; 4 2019; 64 2020; 53 2018; 1 2018 2018; 57 130 2020; 49 2019; 29 2017; 164 2003; 42 2016; 45 2015; 162 2021; 9 2021; 8 2021; 7 2018; 28 2015; 6 2019; 4 2019; 3 2021; 45 2020; 41 2019; 2 2019; 1 1997; 130 2017; 29 2021; 143 2020; 32 2014; 114 2022; 144 2021; 14 2021; 13 2021; 16 2016; 1 2015; 27 2021; 12 2021; 11 2017; 10 2021 2021; 60 133 2020; 117 2009; 8 2008; 41 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_2 e_1_2_7_15_2 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_41_2 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_94_2 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_2 e_1_2_7_29_3 e_1_2_7_93_2 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_24_2 e_1_2_7_74_1 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_36_3 e_1_2_7_5_1 e_1_2_7_9_2 e_1_2_7_17_1 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_89_3 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 Grissa R. (e_1_2_7_71_1) 2018; 1 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_35_1 e_1_2_7_77_2 e_1_2_7_58_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_72_1 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_76_3 e_1_2_7_38_2 Tan, SJ (WOS:000682724400001) 2021; 31 Aurbach, D (WOS:000267798500011) 2009; 156 Chen, X (WOS:000572833000026) 2020; 53 Dörfler, S (WOS:000520874200007) 2020; 4 Liang, X (WOS:000295602400100) 2011; 196 Liu, W (WOS:000575455200001) 2020; 10 Kim, MS (WOS:000446724600020) 2018; 3 Xu, K (WOS:000346323200004) 2014; 114 Manthiram, A (WOS:000351681300001) 2015; 27 Smeu, M (WOS:000617431500002) 2021; 23 CHEN J (WOS:000804461200001.59) 2020; 5 Wang, QY (WOS:000668526600001) 2021; 8 Zhao, M (WOS:000617880400001) 2021; 33 Liu, J (WOS:000461124600009) 2019; 4 Chen, M (WOS:000665088600001) 2021; 31 Hou, TZ (WOS:000487931500063) 2019; 64 Guo, YP (WOS:000406677900005) 2017; 29 Markevich, E (WOS:000403303500010) 2017; 2 Zhang, X (WOS:000537849300003) 2020; 49 Zhu, ZQ (WOS:000428350100019) 2018; 57 Li, T (WOS:000484251200010) 2019; 29 Cao, YL (WOS:000460300900010) 2019; 14 Cui, CY (WOS:000513285600001) 2020; 32 Bruce, PG (WOS:000298406500015) 2012; 11 Xu, SM (WOS:000507801500005) 2020; 13 Liu, T (WOS:000680279600001) 2021; 33 Hou, LP (WOS:000660079700003) 2021; 45 Yu, Z (WOS:000542060100001) 2020; 5 Fan, FY (WOS:000400958600052) 2017; 164 Wu, FX (WOS:000395679100003) 2017; 10 Rosenman, A (WOS:000349823700033) 2015; 162 Zhang, YM (WOS:000668352300026) 2021; 12 Liu, B (WOS:000435093800011) 2018; 2 Xiang, JW (WOS:000490703300011) 2019; 3 Tikekar, MD (WOS:000394784700001) 2016; 1 Zhao, C (WOS:000592027200003) 2021; 16 Liu, T (WOS:000664792600001) 2021; 60 Lehnig, M (WOS:000184093400011) 2003; 42 Han, ZL (WOS:000713410500001) 2021; 9 Zheng, XY (WOS:000695415900009) 2021; 7 Ramasubramanian, A (WOS:000466053600007) 2019; 123 Liang, JY (WOS:000709467900052) 2021; 143 (000804461200001.30) 2020; 132 Qian, JF (WOS:000350295600001) 2015; 6 He, MF (WOS:000506001200018) 2020; 117 Hope, MA (WOS:000558811200002) 2020; 11 Chen, SJ (WOS:000542925300106) 2020; 12 Grissa, R (WOS:000458706600064) 2018; 1 Golozar, M (WOS:000496750600001) 2019; 2 Yu, L (WOS:000445052900006) 2018; 3 Wang, ZX (WOS:000513651100001) 2020; 10 Jiang, JC (WOS:000667982100063) 2021; 13 Cheng, XB (WOS:000399336600004) 2017; 6 Yan, C (WOS:000521130200007) 2019; 1 Tan, KS (WOS:000363345100076) 2015; 180 Tan, J (WOS:000627075000001) 2021; 11 Tan, YH (WOS:000692485000001) 2021; 33 Ye, YF (WOS:000451571200045) 2019; 16 (000804461200001.76) 2021; 133 Verma, P (WOS:000281501100002) 2010; 55 Shi, P (WOS:000731151600001) 2022; 144 Uneyama, K (WOS:000257665400004) 2008; 41 Shi, LL (WOS:000579868500026) 2020; 13 Huang, YY (WOS:000695492800019) 2021; 12 Li, T (WOS:000497987900011) 2019; 3 Peng, HJ (WOS:000418382500007) 2017; 7 Chung, SH (WOS:000437829800019) 2018; 28 Zhang, XQ (WOS:000657810700001) 2021; 60 Peled, E (WOS:000404397300047) 2017; 164 Li, GR (WOS:000425276100001) 2018; 4 Yoo, DJ (WOS:000540503100001) 2020; 59 Glaser, R (WOS:000538495400001) 2020; 167 Xue, WJ (WOS:000467965700010) 2019; 4 Wang, XW (WOS:000495924600022) 2020; 41 Zhao, CX (WOS:000750622600022) 2021; 143 Kraka, E (WOS:000264513000013) 2009; 10 Ji, XL (WOS:000266208700022) 2009; 8 Burdeniuc, J (WOS:A1997WK02100001) 1997; 130 (000804461200001.24) 2018; 130 (000804461200001.65) 2021; 133 Seh, ZW (WOS:000385181300006) 2016; 45 Wang, L (WOS:000604828900007) 2021; 14 |
References_xml | – volume: 164 start-page: A917 year: 2017 end-page: A922 publication-title: J. Electrochem. Soc. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 59 132 start-page: 14869 14979 year: 2020 2020 end-page: 14876 14986 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1321 year: 2017 end-page: 1326 publication-title: ACS Energy Lett. – volume: 10 start-page: 686 year: 2009 end-page: 698 publication-title: ChemPhysChem – volume: 49 start-page: 3040 year: 2020 end-page: 3071 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 6332 year: 2010 end-page: 6341 publication-title: Electrochim. Acta – volume: 53 start-page: 1992 year: 2020 end-page: 2002 publication-title: Acc. Chem. Res. – volume: 60 133 start-page: 17547 17688 year: 2021 2021 end-page: 17555 17696 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 889 year: 2018 end-page: 898 publication-title: Nat. Energy – volume: 144 start-page: 212 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 5694 year: 2018 end-page: 5702 publication-title: ACS Appl. Energy Mater. – volume: 11 start-page: 2224 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 18 year: 2017 end-page: 25 publication-title: Energy Storage Mater. – volume: 23 start-page: 3214 year: 2021 end-page: 3218 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 5375 year: 2021 publication-title: Nat. Commun. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 435 year: 2017 end-page: 459 publication-title: Energy Environ. Sci. – volume: 8 start-page: 500 year: 2009 end-page: 506 publication-title: Nat. Mater. – volume: 2 start-page: 131 year: 2019 publication-title: Commun. Chem. – volume: 4 start-page: 374 year: 2019 end-page: 382 publication-title: Nat. Energy – volume: 5 start-page: 526 year: 2020 end-page: 533 publication-title: Nat. Energy – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 24215 year: 2021 end-page: 24240 publication-title: J. Mater. Chem. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 41 start-page: 149 year: 2020 end-page: 170 publication-title: J. Energy Chem. – volume: 57 130 start-page: 3656 3718 year: 2018 2018 end-page: 3660 3722 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 5821 year: 2021 end-page: 5828 publication-title: J. Phys. Chem. Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 386 year: 2020 end-page: 397 publication-title: Nat. Energy – volume: 2 start-page: 833 year: 2018 end-page: 845 publication-title: Joule – volume: 164 start-page: A1703 year: 2017 end-page: A1719 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 693 year: 2019 end-page: 704 publication-title: Trends Chem. – volume: 130 start-page: 145 year: 1997 end-page: 154 publication-title: Chem. Ber. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: 2312 year: 2021 end-page: 2346 publication-title: Chem – volume: 162 start-page: A470 year: 2015 end-page: A473 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 2334 year: 2019 end-page: 2363 publication-title: Joule – volume: 180 start-page: 629 year: 2015 end-page: 635 publication-title: Electrochim. Acta – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 498 year: 2019 end-page: 504 publication-title: Energy Storage Mater. – volume: 12 start-page: 27794 year: 2020 end-page: 27802 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3 year: 2018 end-page: 7 publication-title: Chem – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 3 start-page: 2059 year: 2018 end-page: 2067 publication-title: ACS Energy Lett. – volume: 11 start-page: 19 year: 2012 end-page: 29 publication-title: Nat. Mater. – volume: 16 start-page: 166 year: 2021 end-page: 173 publication-title: Nat. Nanotechnol. – volume: 143 start-page: 19865 year: 2021 end-page: 19872 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 5605 year: 2016 end-page: 5634 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 430 year: 2020 end-page: 436 publication-title: Nano Res. – volume: 45 start-page: 62 year: 2021 end-page: 76 publication-title: Mater. Today – volume: 3 start-page: 2647 year: 2019 end-page: 2661 publication-title: Joule – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 41 start-page: 817 year: 2008 end-page: 829 publication-title: Acc. Chem. Res. – volume: 42 start-page: 4275 year: 2003 end-page: 4287 publication-title: Inorg. Chem. – volume: 14 start-page: 1355 year: 2021 end-page: 1363 publication-title: Nano Res. – volume: 117 start-page: 73 year: 2020 end-page: 79 publication-title: Proc. Natl. Acad. Sci. USA – volume: 143 start-page: 16768 year: 2021 end-page: 16776 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 13 start-page: 28405 year: 2021 end-page: 28414 publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 14 start-page: 200 year: 2019 end-page: 207 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 16114 year: 2016 publication-title: Nat. Energy – volume: 196 start-page: 9839 year: 2011 end-page: 9843 publication-title: J. Power Sources – volume: 27 start-page: 1980 year: 2015 end-page: 2006 publication-title: Adv. Mater. – volume: 60 133 start-page: 15503 15631 year: 2021 2021 end-page: 15509 15637 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 123 start-page: 10237 year: 2019 end-page: 10245 publication-title: J. Phys. Chem. C – volume: 13 start-page: 3620 year: 2020 end-page: 3632 publication-title: Energy Environ. Sci. – volume: 4 start-page: 539 year: 2020 end-page: 554 publication-title: Joule – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_20_2 doi: 10.1038/s42004-019-0234-0 – ident: e_1_2_7_5_1 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_7_11_1 – ident: e_1_2_7_87_1 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_7_26_2 doi: 10.1002/aenm.201903843 – ident: e_1_2_7_75_2 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_7_74_1 – ident: e_1_2_7_89_3 doi: 10.1002/ange.202103303 – ident: e_1_2_7_70_1 doi: 10.1038/s41560-020-0601-1 – ident: e_1_2_7_60_1 – ident: e_1_2_7_73_1 doi: 10.1039/D0CP06310J – ident: e_1_2_7_36_2 doi: 10.1002/anie.202003663 – ident: e_1_2_7_45_2 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_7_17_1 doi: 10.1021/jacs.1c08425 – ident: e_1_2_7_65_1 doi: 10.1149/2.0051706jes – ident: e_1_2_7_29_2 doi: 10.1002/anie.201712907 – ident: e_1_2_7_47_2 doi: 10.1038/ncomms7362 – ident: e_1_2_7_51_1 doi: 10.1021/ar7002573 – ident: e_1_2_7_27_1 – ident: e_1_2_7_79_2 doi: 10.1149/1.3148721 – ident: e_1_2_7_41_2 doi: 10.1016/j.nanoen.2019.103881 – ident: e_1_2_7_67_1 doi: 10.1016/j.ensm.2018.09.022 – ident: e_1_2_7_77_2 doi: 10.1016/j.mattod.2020.10.021 – ident: e_1_2_7_32_2 doi: 10.1002/adma.202102134 – ident: e_1_2_7_49_2 doi: 10.1002/cphc.200800699 – ident: e_1_2_7_62_2 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_7_42_2 doi: 10.1021/acsenergylett.8b00935 – ident: e_1_2_7_76_2 doi: 10.1002/anie.202103470 – ident: e_1_2_7_12_2 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_50_2 doi: 10.1002/cber.19971300203 – ident: e_1_2_7_3_2 doi: 10.1038/nmat3191 – ident: e_1_2_7_4_2 doi: 10.1002/adfm.201801188 – ident: e_1_2_7_22_2 doi: 10.1016/j.chempr.2021.02.025 – ident: e_1_2_7_2_2 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_7_19_2 doi: 10.1002/adma.201906427 – ident: e_1_2_7_78_2 doi: 10.1016/j.chempr.2017.12.012 – ident: e_1_2_7_58_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_7_28_2 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_7_57_1 doi: 10.1016/j.electacta.2015.07.100 – ident: e_1_2_7_16_2 doi: 10.1038/s41467-020-16114-x – ident: e_1_2_7_39_2 doi: 10.1016/j.trechm.2019.06.007 – ident: e_1_2_7_30_2 doi: 10.1016/j.joule.2019.07.027 – ident: e_1_2_7_80_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_56_2 doi: 10.1002/adfm.201901730 – ident: e_1_2_7_86_2 doi: 10.1039/D0EE02088E – ident: e_1_2_7_95_2 doi: 10.1021/jacs.1c09107 – ident: e_1_2_7_64_1 doi: 10.1016/j.jechem.2019.05.010 – ident: e_1_2_7_54_2 doi: 10.1149/2.0861503jes – ident: e_1_2_7_36_3 doi: 10.1002/ange.202003663 – ident: e_1_2_7_9_2 doi: 10.1039/C9CS00838A – ident: e_1_2_7_23_1 – ident: e_1_2_7_14_2 doi: 10.1149/2.1441707jes – ident: e_1_2_7_33_2 doi: 10.1002/advs.202101111 – ident: e_1_2_7_10_2 doi: 10.1002/adfm.202105253 – ident: e_1_2_7_13_2 doi: 10.1016/j.electacta.2010.05.072 – ident: e_1_2_7_29_3 doi: 10.1002/ange.201712907 – ident: e_1_2_7_92_2 doi: 10.1007/s12274-020-3181-2 – ident: e_1_2_7_48_1 – ident: e_1_2_7_24_2 doi: 10.1021/acs.jpcc.9b00436 – ident: e_1_2_7_59_1 doi: 10.1073/pnas.1911017116 – ident: e_1_2_7_91_2 doi: 10.1038/s41565-020-00797-w – ident: e_1_2_7_37_2 doi: 10.1149/1945-7111/ab7183 – ident: e_1_2_7_94_2 doi: 10.1002/adma.202102034 – ident: e_1_2_7_68_1 doi: 10.1021/ic020650z – ident: e_1_2_7_46_2 doi: 10.1021/acsami.0c06930 – ident: e_1_2_7_61_2 doi: 10.1039/C6EE02326F – ident: e_1_2_7_15_2 doi: 10.1021/cr500003w – ident: e_1_2_7_82_2 doi: 10.1039/C5CS00410A – ident: e_1_2_7_52_1 – ident: e_1_2_7_7_2 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_83_2 doi: 10.1038/s41565-019-0371-8 – ident: e_1_2_7_72_1 doi: 10.1002/adfm.202102228 – ident: e_1_2_7_35_1 – ident: e_1_2_7_53_2 doi: 10.1016/j.jpowsour.2011.08.027 – ident: e_1_2_7_89_2 doi: 10.1002/anie.202103303 – ident: e_1_2_7_85_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_84_1 – ident: e_1_2_7_8_2 doi: 10.1021/jacs.1c08606 – volume: 1 start-page: 5694 year: 2018 ident: e_1_2_7_71_1 publication-title: ACS Appl. Energy Mater. – ident: e_1_2_7_93_2 doi: 10.1038/s41467-021-25612-5 – ident: e_1_2_7_69_1 doi: 10.1021/acs.accounts.0c00412 – ident: e_1_2_7_40_1 – ident: e_1_2_7_38_2 doi: 10.1021/acsami.1c07883 – ident: e_1_2_7_66_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_21_2 doi: 10.1007/s12274-020-2625-z – ident: e_1_2_7_55_2 doi: 10.1002/adma.201405115 – ident: e_1_2_7_1_1 – ident: e_1_2_7_44_1 – ident: e_1_2_7_43_2 doi: 10.1021/acs.jpclett.1c01522 – ident: e_1_2_7_76_3 doi: 10.1002/ange.202103470 – ident: e_1_2_7_90_2 doi: 10.1002/adma.202007298 – ident: e_1_2_7_81_2 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_88_1 – ident: e_1_2_7_18_1 – ident: e_1_2_7_34_2 doi: 10.1002/adma.201700007 – ident: e_1_2_7_63_2 doi: 10.1039/D1TA06499A – ident: e_1_2_7_31_1 – ident: e_1_2_7_25_2 doi: 10.1002/aenm.202100046 – volume: 4 start-page: 180 year: 2019 ident: WOS:000461124600009 article-title: Pathways for practical high-energy long-cycling lithium metal batteries publication-title: NATURE ENERGY doi: 10.1038/s41560-019-0338-x – volume: 13 start-page: 3620 year: 2020 ident: WOS:000579868500026 article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/d0ee02088e – volume: 45 start-page: 5605 year: 2016 ident: WOS:000385181300006 article-title: Designing high-energy lithium-sulfur batteries publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00410a – volume: 4 start-page: 374 year: 2019 ident: WOS:000467965700010 article-title: Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities publication-title: NATURE ENERGY doi: 10.1038/s41560-019-0351-0 – volume: 6 start-page: ARTN 6362 year: 2015 ident: WOS:000350295600001 article-title: High rate and stable cycling of lithium metal anode publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms7362 – volume: 130 start-page: 3718 year: 2018 ident: 000804461200001.24 publication-title: Angew. Chem – volume: 45 start-page: 62 year: 2021 ident: WOS:000660079700003 article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries publication-title: MATERIALS TODAY doi: 10.1016/j.mattod.2020.10.021 – volume: 10 start-page: 686 year: 2009 ident: WOS:000264513000013 article-title: Characterization of CF Bonds with Multiple-Bond Character: Bond Lengths, Stretching Force Constants, and Bond Dissociation Energies publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.200800699 – volume: 41 start-page: 149 year: 2020 ident: WOS:000495924600022 article-title: Recent progress in fluorinated electrolytes for improving the performance of Li-S batteries publication-title: JOURNAL OF ENERGY CHEMISTRY doi: 10.1016/j.jechem.2019.05.010 – volume: 49 start-page: 3040 year: 2020 ident: WOS:000537849300003 article-title: Towards practical lithium-metal anodes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00838a – volume: 8 start-page: 500 year: 2009 ident: WOS:000266208700022 article-title: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries publication-title: NATURE MATERIALS doi: 10.1038/NMAT2460 – volume: 164 start-page: A917 year: 2017 ident: WOS:000400958600052 article-title: Electrodeposition Kinetics in Li-S Batteries: Effects of Low Electrolyte/Sulfur Ratios and Deposition Surface Composition publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/2.0051706jes – volume: 4 start-page: 539 year: 2020 ident: WOS:000520874200007 article-title: Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level publication-title: JOULE doi: 10.1016/j.joule.2020.02.006 – volume: 143 start-page: 16768 year: 2021 ident: WOS:000709467900052 article-title: Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode-Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c08425 – volume: 23 start-page: 3214 year: 2021 ident: WOS:000617431500002 article-title: Electron leakage through heterogeneous LiF on lithium-metal battery anodes publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/d0cp06310j – volume: 114 start-page: 11503 year: 2014 ident: WOS:000346323200004 article-title: Electrolytes and Interphases in Li-Ion Batteries and Beyond publication-title: CHEMICAL REVIEWS doi: 10.1021/cr500003w – volume: 10 start-page: 435 year: 2017 ident: WOS:000395679100003 article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c6ee02326f – volume: 196 start-page: 9839 year: 2011 ident: WOS:000295602400100 article-title: Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte publication-title: JOURNAL OF POWER SOURCES doi: 10.1016/j.jpowsour.2011.08.027 – volume: 123 start-page: 10237 year: 2019 ident: WOS:000466053600007 article-title: Lithium Diffusion Mechanism through Solid-Electrolyte Interphase in Rechargeable Lithium Batteries publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.9b00436 – volume: 156 start-page: A694 year: 2009 ident: WOS:000267798500011 article-title: On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/1.3148721 – volume: 31 start-page: ARTN 2102228 year: 2021 ident: WOS:000665088600001 article-title: Marrying Ester Group with Lithium Salt: Cellulose-Acetate-Enabled LiF-Enriched Interface for Stable Lithium Metal Anodes publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202102228 – volume: 133 start-page: 17688 year: 2021 ident: 000804461200001.76 publication-title: Angew. Chem – volume: 9 start-page: 24215 year: 2021 ident: WOS:000713410500001 article-title: Challenges and key parameters in exploring the cyclability limitation of practical lithium-sulfur batteries publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/d1ta06499a – volume: 133 start-page: 15631 year: 2021 ident: 000804461200001.65 publication-title: Angew. Chem – volume: 144 start-page: 212 year: 2022 ident: WOS:000731151600001 article-title: A Successive Conversion-Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c08606 – volume: 60 start-page: 15503 year: 2021 ident: WOS:000657810700001 article-title: Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium-Sulfur Batteries publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202103470 – volume: 12 start-page: 5821 year: 2021 ident: WOS:000668352300026 article-title: Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.1c01522 – volume: 5 start-page: 386 year: 2020 ident: WOS:000804461200001.59 publication-title: NAT ENERGY – volume: 16 start-page: 498 year: 2019 ident: WOS:000451571200045 article-title: Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell publication-title: ENERGY STORAGE MATERIALS doi: 10.1016/j.ensm.2018.09.022 – volume: 29 start-page: ARTN 1901730 year: 2019 ident: WOS:000484251200010 article-title: A Comprehensive Understanding of Lithium-Sulfur Battery Technology publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201901730 – volume: 7 start-page: 2312 year: 2021 ident: WOS:000695415900009 article-title: Critical effects of electrolyte recipes for Li and Na metal batteries publication-title: CHEM doi: 10.1016/j.chempr.2021.02.025 – volume: 55 start-page: 6332 year: 2010 ident: WOS:000281501100002 article-title: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries publication-title: ELECTROCHIMICA ACTA doi: 10.1016/j.electacta.2010.05.072 – volume: 13 start-page: 430 year: 2020 ident: WOS:000507801500005 article-title: In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes publication-title: NANO RESEARCH doi: 10.1007/s12274-020-2625-z – volume: 33 start-page: ARTN 2102034 year: 2021 ident: WOS:000680279600001 article-title: Low-Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium-Sulfur Batteries' Lifetime publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202102034 – volume: 29 start-page: ARTN 1700007 year: 2017 ident: WOS:000406677900005 article-title: Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201700007 – volume: 2 start-page: 833 year: 2018 ident: WOS:000435093800011 article-title: Advancing Lithium Metal Batteries publication-title: JOULE doi: 10.1016/j.joule.2018.03.008 – volume: 10 start-page: ARTN 2002297 year: 2020 ident: WOS:000575455200001 article-title: Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202002297 – volume: 10 start-page: ARTN 1903843 year: 2020 ident: WOS:000513651100001 article-title: An Anion-Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201903843 – volume: 16 start-page: 166 year: 2021 ident: WOS:000592027200003 article-title: A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/s41565-020-00797-w – volume: 33 start-page: ARTN 2102134 year: 2021 ident: WOS:000692485000001 article-title: Lithium Fluoride in Electrolyte for Stable and Safe Lithium-Metal Batteries publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202102134 – volume: 33 start-page: ARTN 2007298 year: 2021 ident: WOS:000617880400001 article-title: An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries publication-title: ADVANCED MATERIALS doi: 10.1002/adma.202007298 – volume: 1 start-page: 5694 year: 2018 ident: WOS:000458706600064 article-title: XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries publication-title: ACS APPLIED ENERGY MATERIALS doi: 10.1021/acsaem.8b01256 – volume: 167 start-page: ARTN 100512 year: 2020 ident: WOS:000538495400001 article-title: Tuning Low Concentration Electrolytes for High Rate Performance in Lithium-Sulfur Batteries publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/1945-7111/ab7183 – volume: 12 start-page: ARTN 5375 year: 2021 ident: WOS:000695492800019 article-title: A saccharide-based binder for efficient polysulfide regulations in Li-S batteries publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-25612-5 – volume: 1 start-page: 693 year: 2019 ident: WOS:000521130200007 article-title: Lithium-Anode Protection in Lithium-Sulfur Batteries publication-title: TRENDS IN CHEMISTRY doi: 10.1016/j.trechm.2019.06.007 – volume: 5 start-page: 526 year: 2020 ident: WOS:000542060100001 article-title: Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries publication-title: NATURE ENERGY doi: 10.1038/s41560-020-0634-5 – volume: 60 start-page: 17547 year: 2021 ident: WOS:000664792600001 article-title: Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202103303 – volume: 3 start-page: 889 year: 2018 ident: WOS:000446724600020 article-title: Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries publication-title: NATURE ENERGY doi: 10.1038/s41560-018-0237-6 – volume: 162 start-page: A470 year: 2015 ident: WOS:000349823700033 article-title: The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/2.0861503jes – volume: 3 start-page: 2059 year: 2018 ident: WOS:000445052900006 article-title: A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.8b00935 – volume: 12 start-page: 27794 year: 2020 ident: WOS:000542925300106 article-title: High-Efficiency Lithium Metal Anode Enabled by a Concentrated/ Fluorinated Ester Electrolyte publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c06930 – volume: 14 start-page: 200 year: 2019 ident: WOS:000460300900010 article-title: Bridging the academic and industrial metrics for next-generation practical batteries publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/s41565-019-0371-8 – volume: 6 start-page: 18 year: 2017 ident: WOS:000399336600004 article-title: The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection publication-title: ENERGY STORAGE MATERIALS doi: 10.1016/j.ensm.2016.09.003 – volume: 32 start-page: ARTN 1906427 year: 2020 ident: WOS:000513285600001 article-title: A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201906427 – volume: 31 start-page: ARTN 2105253 year: 2021 ident: WOS:000682724400001 article-title: Advanced Electrolytes Enabling Safe and Stable Rechargeable Li-Metal Batteries: Progress and Prospects publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202105253 – volume: 180 start-page: 629 year: 2015 ident: WOS:000363345100076 article-title: Physical-Chemical and Electrochemical Studies of the Lithium Naphthalenide Anolyte publication-title: ELECTROCHIMICA ACTA doi: 10.1016/j.electacta.2015.07.100 – volume: 7 start-page: ARTN 1700260 year: 2017 ident: WOS:000418382500007 article-title: Review on High-Loading and High-Energy Lithium-Sulfur Batteries publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201700260 – volume: 117 start-page: 73 year: 2020 ident: WOS:000506001200018 article-title: The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1911017116 – volume: 132 start-page: 14979 year: 2020 ident: 000804461200001.30 publication-title: Angew. Chem – volume: 164 start-page: A1703 year: 2017 ident: WOS:000404397300047 article-title: Review-SEI: Past, Present and Future publication-title: JOURNAL OF THE ELECTROCHEMICAL SOCIETY doi: 10.1149/2.1441707jes – volume: 2 start-page: 1321 year: 2017 ident: WOS:000403303500010 article-title: Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution publication-title: ACS ENERGY LETTERS doi: 10.1021/acsenergylett.7b00300 – volume: 11 start-page: 19 year: 2012 ident: WOS:000298406500015 article-title: Li-O2 and Li-S batteries with high energy storage publication-title: NATURE MATERIALS doi: 10.1038/nmat3191 – volume: 28 start-page: ARTN 1801188 year: 2018 ident: WOS:000437829800019 article-title: Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201801188 – volume: 59 start-page: 14869 year: 2020 ident: WOS:000540503100001 article-title: Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202003663 – volume: 64 start-page: ARTN 103881 year: 2019 ident: WOS:000487931500063 article-title: The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation publication-title: NANO ENERGY doi: 10.1016/j.nanoen.2019.103881 – volume: 53 start-page: 1992 year: 2020 ident: WOS:000572833000026 article-title: Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00412 – volume: 57 start-page: 3656 year: 2018 ident: WOS:000428350100019 article-title: Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS2 Anode for Lithium-Ion Storage publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201712907 – volume: 130 start-page: 145 year: 1997 ident: WOS:A1997WK02100001 article-title: Recent advances in C-F bond activation publication-title: CHEMISCHE BERICHTE-RECUEIL – volume: 11 start-page: ARTN 2224 year: 2020 ident: WOS:000558811200002 article-title: Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-16114-x – volume: 13 start-page: 28405 year: 2021 ident: WOS:000667982100063 article-title: Understanding the Effects of the Low-Concentration Electrolyte on the Performance of High-Energy-Density Li-S Batteries publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.1c07883 – volume: 143 start-page: 19865 year: 2021 ident: WOS:000750622600022 article-title: Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c09107 – volume: 11 start-page: ARTN 2100046 year: 2021 ident: WOS:000627075000001 article-title: A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.202100046 – volume: 3 start-page: 2647 year: 2019 ident: WOS:000497987900011 article-title: Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries publication-title: JOULE doi: 10.1016/j.joule.2019.09.022 – volume: 8 start-page: ARTN 2101111 year: 2021 ident: WOS:000668526600001 article-title: Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries publication-title: ADVANCED SCIENCE doi: 10.1002/advs.202101111 – volume: 3 start-page: 2334 year: 2019 ident: WOS:000490703300011 article-title: Alkali-Metal Anodes: From Lab to Market publication-title: JOULE doi: 10.1016/j.joule.2019.07.027 – volume: 42 start-page: 4275 year: 2003 ident: WOS:000184093400011 article-title: 15N CIDNP study of formation and decay of peroxynitric acid:: Evidence for formation of hydroxyl radicals publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic020650z – volume: 4 start-page: 3 year: 2018 ident: WOS:000425276100001 article-title: Lithium-Sulfur Batteries for Commercial Applications publication-title: CHEM doi: 10.1016/j.chempr.2017.12.012 – volume: 2 start-page: ARTN 131 year: 2019 ident: WOS:000496750600001 article-title: In situ observation of solid electrolyte interphase evolution in a lithium metal battery publication-title: COMMUNICATIONS CHEMISTRY doi: 10.1038/s42004-019-0234-0 – volume: 27 start-page: 1980 year: 2015 ident: WOS:000351681300001 article-title: Lithium-Sulfur Batteries: Progress and Prospects publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201405115 – volume: 14 start-page: 1355 year: 2021 ident: WOS:000604828900007 article-title: Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells publication-title: NANO RESEARCH doi: 10.1007/s12274-020-3181-2 – volume: 1 start-page: 1 year: 2016 ident: WOS:000394784700001 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: NATURE ENERGY doi: 10.1038/NENERGY.2016.114 – volume: 41 start-page: 817 year: 2008 ident: WOS:000257665400004 article-title: α-Trifluoromethylated carbanion synthons publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar7002573 |
SSID | ssj0028806 |
Score | 2.6606452 |
Snippet | The lifespan of practical lithium (Li)‐metal batteries is severely hindered by the instability of Li‐metal anodes. Fluorinated solid electrolyte interphase... The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202204776 |
SubjectTerms | Anodes Chemistry Chemistry, Multidisciplinary Defluorination Design Electrolytes Fluorinated Electrolytes Fluorinated Solid Electrolyte Interphase Fluorination Interphase Life span Lithium Lithium-Metal Batteries Metals Molecular Design Physical Sciences Pouch Cells Principles Science & Technology Solid electrolytes Sulfur |
Title | Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202204776 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000804461200001 https://www.ncbi.nlm.nih.gov/pubmed/35575049 https://www.proquest.com/docview/2687676088 https://www.proquest.com/docview/2665112996 |
Volume | 61 |
WOS | 000804461200001 |
WOSCitedRecordID | wos000804461200001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hXuDCT0sh0FauVIlT2sR2nORYLbsqiO2htFJvkZ3Y6oplF7XJoZx4BJ6RJ2EmTtJuUVUEt0S2E9me8Xy2Z74B2MMdRia1UGGVGBfK0row55EJtVYUsie0cBQ7PD1WR2fy43lyfiuK3_NDDAdupBntek0Krs3VwQ1pKEVg4_6O80imKXFuk8MWoaKTgT-Ko3D68CIhQspC37M2RvxgtfmqVfoDat6xSqtAtrVEk2eg-z54B5Qv-01t9svvd-gd_6eTz-FpB1PZoZerF_DILtbh8ajPDrcBl5N5Q757mtymGaJI9nk5n1Vs7NPqzK9ry7xD4wXaSWau2Ul37MimfUZe9r51H2GIm5nnTUKBYZ9m9cWs-frrx8-pxZ0B8wyguKF_CWeT8enoKOzyN4SlSHH6YyNy5wjUoZYLk2nnuFQuyausTKrMZhIlJa2EzF1G1GZR5aQycWmjRCeRzsQmrC2WC_samLKpdCKV2kkurYyMQ6gjrY55Kas0NgGE_fwVZUduTjk25oWnZeYFjWQxjGQA74b63zytx701t3pxKDr1viq4QiOSKlyhA9gdinEG6LZFL-yyoTqqBbM5fuKVF6PhVwjyiFY_D2DvtlwN5S2Qx8GJeXv7EkD8N9VGXceJzaAOgLeC9UD3isPjD-Ph7c2_NHoLT-iZDrzjbAvW6svGbiNSq81Oq42_AcybNIA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASMVcUqb2M7rwKHah3Zpdw-llXoLTmKrK5Zd1M0KLSd-An-Fv8JP4JcwEyeBLUIgpB44JnEetmc83zgz3wDsoIcRSyVCtwgy48pcGzfhXuYqFVLKnlDCUO7waBwOTuSr0-B0A740uTCWH6LdcCPNqNZrUnDakN77wRpKKdjo4HHuySgK67jKA736gF7b4uWwi1P8nPN-77gzcOvCAm4uIvwuPxOJMYQ2UPxEFitjuAxNkBRxHhSxjiV2ISqETExMnFteYWSY-bn2AhV4Khb43CtwlcqIE11_96hlrOKoDjahSQiX6t43PJEe31v_3nU7-Au4vWAH16FzZfv6N-BrM2o25OXt7rLMdvOPFwgl_6thvQnXayTO9q3q3IINPbsNW52mAN4dOO9PlxSeqCgynCFQZq_n00nBerZy0HRVamZjNs8QCrBsxY7qnVU2aooOs24VIcPQNWCWGgp1gh1OyrPJ8t23T59HGp0fZklOJ3pxF04upcv3YHM2n-kHwEIdSSMiqYzkUksvM4jmpFY-z2UR-ZkDbiMwaV7zt1MZkWlqmad5SjOXtjPnwIu2_XvLXPLbltuN_KX1CrZIeYh2MgrRCDnwrL2MM0A_lNRMz5fUJqzweoKPuG_ltn0V4liqHJA4sPOzILfXK18FB8fn1Q8mB_y_adapO06EDaUDvJLkP3Qv3R8Pe-3Rw3-56SlsDY5Hh-nhcHzwCK7Redrf9-Nt2CzPl_oxAtMye1ItBQzeXLaSfAf45ZBM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYxUxCltYjtOcuBQ7Y-6tLtChUq9pXZiqyuW3aqbFVpOPAKPwqvwCjwJ4zgJbBECIfXAMYnzY3vG840z8w3AJnoYCZdM-EWkjM9zbfyUBsqXUtiUPSaZsbnDw5HYPeSvjqKjNfjS5MI4foh2w81qRrVeWwU_Lcz2D9JQm4GN_h2lAY9jUYdV7unlB3Ta5i8HXZzh55T2e287u35dV8DPWYyfFSqWGmPBBkofU4k0hnJhorRI8qhIdMKxB3HBeGoSS7kVFIYLFeY6iGQUyIThcy_BZS6C1BaL6B60hFUUtcHlMzHm27L3DU1kQLdXv3fVDP6Cbc-ZwVXkXJm-_g342gyai3h5t7Uo1Vb-8Ryf5P80qjfheo3DyY5TnFuwpqe34WqnKX93B876k4UNTpQ2LpwgTCZvZpNxQXqubtBkWWriIjZPEAgQtSQH9b4qGTYlh0m3io8h6BgQRwyFGkH2x-XJePH-26fPQ42uD3EUp2M9vwuHF9Lle7A-nU31AyBCx9ywmEvDKdc8UAaxHNcypDkv4lB54DfykuU1e7stIjLJHO80zezMZe3MefCibX_qeEt-23KjEb-sXr_mGRVoJWOBJsiDZ-1lnAH7O0lO9Wxh24gKraf4iPtObNtXIYq1dQNSDzZ_luP2euWp4OCEtPq95EH4N806dcctXUPpAa0E-Q_dy3ZGg1579PBfbnoKV153-9n-YLT3CK7Z03ZzP0w2YL08W-jHiEpL9aRaCAgcX7SOfAeXtY77 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorinating+the+Solid+Electrolyte+Interphase+by+Rational+Molecular+Design+for+Practical+Lithium%E2%80%90Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xie%2C+Jin&rft.au=Shu%E2%80%90Yu+Sun&rft.au=Chen%2C+Xiang&rft.au=Li%E2%80%90Peng+Hou&rft.date=2022-07-18&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202204776&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |