An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials

Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, sc...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 44; pp. e2303586 - n/a
Main Authors Jin, Cheng‐Chao, Liu, Dai‐Ming, Zhang, Ling‐Xia
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small‐molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis. 2D piezoelectric materials constitute a promising alternative for piezocatalysis due to their inherent advantages, such as high flexibility, large surface area, and abundant active sites. In this review, the state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are summarized. The overall goal is to inspire and accelerate the practical deployment of 2D piezoelectric materials for piezocatalytic applications.
AbstractList Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small‐molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis. 2D piezoelectric materials constitute a promising alternative for piezocatalysis due to their inherent advantages, such as high flexibility, large surface area, and abundant active sites. In this review, the state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are summarized. The overall goal is to inspire and accelerate the practical deployment of 2D piezoelectric materials for piezocatalytic applications.
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
Author Liu, Dai‐Ming
Jin, Cheng‐Chao
Zhang, Ling‐Xia
Author_xml – sequence: 1
  givenname: Cheng‐Chao
  orcidid: 0000-0002-1988-5975
  surname: Jin
  fullname: Jin, Cheng‐Chao
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Dai‐Ming
  surname: Liu
  fullname: Liu, Dai‐Ming
  organization: Qingdao University of Science & Technology
– sequence: 3
  givenname: Ling‐Xia
  orcidid: 0000-0002-5012-7283
  surname: Zhang
  fullname: Zhang, Ling‐Xia
  email: zhlingxia@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37386814$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLw0AUhQep2IduXUrAjZvUeWWSuLLUVoUUBXUdJpNJmTJJ6kyCxF_vlNQKgrg6l8t37j2cMRhUdSUBOEdwiiDE17bUeoohJpAEETsCI8QQ8VmE48FhRnAIxtZuICQI0_AEDElIIrenI3A7q7xFKc1aVWtvyUulO68uvGclP2vBG64729gbD9_1K6mlaIwS3oo30iiu7Sk4LpzIs71OwNty8Tp_8JOn-8f5LPGFe8Z85DJmLmQc5JxSinDIYiQoKTDLgrCIOQpzigmDIWSoIDkhjssYFZFkJBMFmYCr_u7W1O-ttE1aKiuk1rySdWtTHBEchCFxOgGXv9BN3ZrKpXNURAPCopg56mJPtVkp83RrVMlNl35344BpDwhTW2tkcUAQTHflp7vy00P5zkB_GYRqeKPqqjFc6b9tcW_7UFp2_zxJX1ZJ8uP9ArePlkA
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_161704
crossref_primary_10_1016_j_jece_2025_115600
crossref_primary_10_1016_j_nanoen_2024_110115
crossref_primary_10_1088_1361_665X_ada83b
crossref_primary_10_1016_j_matdes_2024_112942
crossref_primary_10_1016_j_matlet_2024_136620
crossref_primary_10_1063_5_0222794
crossref_primary_10_1016_j_apsusc_2024_160694
crossref_primary_10_1039_D4QM00848K
crossref_primary_10_1016_j_jwpe_2023_104312
crossref_primary_10_1103_PhysRevB_109_195429
crossref_primary_10_1016_j_ccr_2024_216234
crossref_primary_10_1002_smll_202412815
crossref_primary_10_1021_acs_nanolett_3c04959
crossref_primary_10_1021_acsami_3c16678
crossref_primary_10_1016_j_jallcom_2025_179669
crossref_primary_10_1016_j_nanoen_2023_109206
crossref_primary_10_1021_acs_inorgchem_4c05548
crossref_primary_10_1002_adfm_202314079
crossref_primary_10_1007_s10854_025_14444_4
crossref_primary_10_1557_s43577_024_00838_y
crossref_primary_10_1016_j_cej_2024_158410
crossref_primary_10_1002_apj_70013
crossref_primary_10_1039_D4TA02531H
crossref_primary_10_1002_smll_202408628
crossref_primary_10_1016_j_cej_2024_155823
crossref_primary_10_1021_acssuschemeng_3c06572
crossref_primary_10_1021_acssuschemeng_4c10017
crossref_primary_10_1016_j_greenca_2025_01_005
crossref_primary_10_1021_jacs_4c04385
crossref_primary_10_1016_j_surfin_2024_104380
crossref_primary_10_1039_D3EY00313B
crossref_primary_10_1016_j_cej_2025_161443
crossref_primary_10_1039_D3DT02077K
crossref_primary_10_1016_j_apcatb_2025_125224
crossref_primary_10_1039_D4NJ02540G
crossref_primary_10_1038_s41545_024_00382_x
crossref_primary_10_1016_j_ijbiomac_2024_130526
crossref_primary_10_1002_adma_202405363
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_3390_molecules30010179
crossref_primary_10_1016_j_ensm_2024_103678
crossref_primary_10_1039_D3CC05550G
crossref_primary_10_1557_s43578_024_01361_1
crossref_primary_10_3390_catal15020105
crossref_primary_10_1002_adfm_202413217
crossref_primary_10_1007_s11814_024_00155_9
crossref_primary_10_1016_j_cej_2024_149885
crossref_primary_10_1002_adma_202403228
crossref_primary_10_1021_acs_biomac_4c00659
crossref_primary_10_1016_j_hazadv_2024_100546
crossref_primary_10_1088_1402_4896_ad7cdc
crossref_primary_10_1016_j_nanoen_2024_110442
crossref_primary_10_1002_sus2_232
crossref_primary_10_3390_jfb16040114
crossref_primary_10_1002_smll_202500268
crossref_primary_10_1016_j_surfin_2024_105730
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_26599_NRE_2024_9120137
crossref_primary_10_1016_j_jcis_2023_12_101
crossref_primary_10_1016_j_jcis_2024_12_002
crossref_primary_10_1016_j_cej_2025_161704
crossref_primary_10_1039_D4TA00332B
crossref_primary_10_3390_s23208506
crossref_primary_10_1016_j_nanoen_2024_109732
crossref_primary_10_1021_acsanm_4c00339
Cites_doi 10.1007/s12274-022-4771-y
10.1016/j.apcatb.2022.122007
10.1021/jp072001k
10.1063/1.2745247
10.1007/s13738-022-02562-3
10.1111/jace.12715
10.1002/smsc.202000011
10.1016/j.apcatb.2019.118084
10.1016/j.apsusc.2021.151851
10.1016/j.nanoen.2018.11.073
10.1016/j.nanoen.2022.106993
10.1016/j.nanoen.2022.108024
10.1016/j.cej.2021.133930
10.1002/pssr.201600412
10.1021/jacs.8b07844
10.1002/aenm.201701503
10.1021/acsami.0c16039
10.1103/PhysRevLett.103.257602
10.1002/adfm.201907619
10.1016/j.materresbull.2015.02.044
10.1039/D0EN00284D
10.1021/acsnano.6b05914
10.1126/science.246.4936.1400
10.1016/j.jhazmat.2021.127440
10.1016/j.ceramint.2018.06.204
10.1016/j.apt.2020.01.031
10.3390/electronicmat3030020
10.1016/j.ultsonch.2021.105729
10.1016/j.nanoen.2017.08.042
10.1007/s12274-015-0959-8
10.1016/j.jallcom.2018.07.187
10.1021/acs.nanolett.6b05229
10.1039/C8EN00944A
10.1111/j.1551-2916.2009.03344.x
10.1039/c3ta10792b
10.1126/scirobotics.aax1594
10.1039/C6NR00972G
10.1039/C9NR07544E
10.3390/en15031162
10.1038/srep02160
10.1021/acs.chemrev.6b00558
10.1016/j.isci.2020.101095
10.1021/ar4002312
10.1063/1.2405408
10.1016/j.ceramint.2021.10.151
10.1021/acssuschemeng.1c07875
10.1002/adma.202200397
10.1038/nature13792
10.1016/j.nanoen.2022.107032
10.1016/j.jcis.2023.02.075
10.1103/PhysRevB.84.024102
10.1002/adma.202212172
10.1016/j.cclet.2020.12.019
10.1016/j.jssc.2013.07.004
10.1021/acsaem.2c01917
10.1002/aenm.202200253
10.1016/j.nanoen.2019.02.047
10.1016/j.nanoen.2021.106036
10.1126/science.271.5245.53
10.1002/pssa.2210930106
10.1021/nl404610c
10.1016/j.jclepro.2022.135002
10.1038/nature03028
10.1002/adfm.202202180
10.1016/j.apcatb.2022.121471
10.1088/1361-6641/aa660c
10.1021/acsami.1c01314
10.1002/adfm.202209365
10.1016/j.jpcs.2017.09.017
10.1002/adma.202202558
10.1039/D1NJ05579H
10.1021/acsami.1c23282
10.1002/adma.201706347
10.1021/acs.nanolett.8b03655
10.1016/j.gee.2022.10.004
10.1007/s10832-004-5130-y
10.1002/adma.201500033
10.1063/1.1391225
10.1016/j.mssp.2022.106950
10.1016/j.apcatb.2021.120929
10.1016/j.ultsonch.2019.104819
10.1016/j.apcatb.2018.02.006
10.1002/anie.202116048
10.1021/acs.langmuir.7b00935
10.1038/s41598-021-86252-9
10.1016/j.nanoen.2017.08.058
10.1016/j.ssc.2010.02.011
10.1038/s41699-018-0063-5
10.1002/adma.202101751
10.1016/j.nanoen.2019.104083
10.1016/j.apcatb.2019.03.010
10.1088/2053-1591/aaed70
10.1016/j.jhazmat.2021.126696
10.1126/science.1092508
10.1016/j.nanoen.2019.104366
10.1016/j.jallcom.2012.10.147
10.1021/acsnano.7b01908
10.1111/jace.16502
10.1016/j.apsusc.2013.06.114
10.1016/j.jeurceramsoc.2007.09.005
10.1016/j.cplett.2017.01.046
10.1039/C6EE00526H
10.1016/j.cej.2022.135173
10.1002/cssc.201702405
10.1038/ncomms5284
10.1002/adma.202300437
10.1002/adma.201905795
10.1038/s41467-020-15015-3
10.1080/00150193.2020.1791657
10.1016/j.apsusc.2022.156147
10.1063/1.123889
10.1002/cctc.202201316
10.1039/C4CS00102H
10.1039/D1NA00013F
10.1016/j.matdes.2018.02.008
10.1021/acsanm.0c02513
10.1016/j.jechem.2022.07.015
10.1021/jz3012436
10.1039/D1CS00844G
10.1016/j.pcrysgrow.2021.100522
10.1016/j.apsusc.2020.145328
10.1126/science.220.4602.1115
10.1016/j.apcatb.2020.119340
10.1038/s41467-020-20517-1
10.1021/acs.est.7b01466
10.1021/acsnano.0c06750
10.1016/j.jcis.2021.03.040
10.1016/j.nanoen.2021.106886
10.1016/j.mtphys.2017.07.001
10.1016/j.nanoen.2021.106635
10.1016/j.apmt.2019.07.015
10.1038/s41467-019-10034-1
10.1038/s41467-021-23921-3
10.1016/j.materresbull.2014.07.032
10.1016/j.nanoen.2022.107682
10.1038/s41467-019-09650-8
10.1016/j.nanoen.2021.105743
10.1016/j.jallcom.2019.152063
10.1016/j.apcatb.2020.119586
10.1021/jp200953k
10.1109/TUFFC.2006.169
10.1016/j.jcis.2023.05.040
10.1016/j.nanoen.2016.12.013
10.1016/j.mtnano.2022.100184
10.1016/j.biomaterials.2022.121816
10.1039/C6NR00546B
10.1021/acsami.0c00962
10.1016/j.apsusc.2016.07.030
10.1002/adfm.202102540
10.1039/D0QM00179A
10.1016/j.cej.2021.129000
10.1016/j.nanoen.2021.106028
10.1016/j.nanoen.2021.106527
10.1021/nl401561r
10.1021/acs.jpcc.5b02950
10.1039/C9TA06251C
10.1016/j.ces.2021.116707
10.1002/anie.201907695
10.1016/j.ceramint.2013.11.066
10.1007/s12274-015-0878-8
10.1002/adma.201505785
10.1016/j.dyepig.2022.110678
10.1002/aelm.202101131
10.1016/j.nanoen.2020.104879
10.1021/acs.jpcc.0c04700
10.1002/smll.202202507
10.1002/anie.201906181
10.1002/anie.202212397
10.1021/acsnano.5b03394
10.1016/j.mattod.2018.01.031
10.1002/adfm.202208128
10.1016/j.nanoen.2018.02.010
10.1016/j.jpcs.2020.109896
10.1126/science.1226419
10.1038/nmat1134
10.1002/cnma.202100105
10.1016/j.nanoen.2020.105305
10.1021/jp504674k
10.1016/j.cap.2016.12.012
10.1016/j.nanoen.2018.12.006
10.1016/j.apcatb.2020.119250
10.1039/C8TA03208D
10.1016/j.catcom.2019.03.023
10.1016/j.nanoen.2022.106975
10.1126/science.1141483
10.1126/science.1124005
10.1002/adma.202002875
10.1016/S1872-5805(21)60080-X
10.1002/celc.202200124
10.1016/j.ijleo.2018.08.027
10.1039/D1MA00106J
10.1021/acsnano.1c04774
10.1016/j.matchemphys.2010.08.033
10.1103/PhysRevB.83.115328
10.1039/C8EE02758G
10.1039/D1EN00022E
10.1002/ange.202014556
10.1021/jz100027t
10.1016/j.apcatb.2022.121717
10.1016/j.ceramint.2020.11.112
10.1080/09506608.2021.1915935
10.1002/anie.202103112
10.1073/pnas.2218813120
10.1016/S1872-2067(20)63769-X
10.1016/j.nanoen.2017.12.034
10.1039/D1CS00858G
10.1126/science.1102896
10.1021/acsanm.8b01206
10.1016/j.nanoen.2022.107429
10.1016/j.jclepro.2020.121125
10.1002/aelm.202201239
10.1002/aenm.201600671
10.1002/pssb.201900733
10.1021/ct200880m
10.1002/adma.201103241
10.1038/nnano.2014.309
10.1016/j.jece.2022.107838
10.1021/acsestengg.1c00296
10.1039/C8CS00254A
10.1039/C7TA07570G
10.1007/s10853-020-05053-z
10.1039/C7TA08061A
10.1016/j.nanoen.2019.04.098
10.1021/acsami.9b23351
10.1016/j.nanoen.2018.02.008
10.1039/C6CC09952A
10.1016/j.apcatb.2023.122520
10.1111/j.1551-2916.2009.03043.x
10.1039/C39920001386
10.1021/acsami.1c01407
10.1016/j.mssp.2020.105173
10.1016/j.apcatb.2020.119353
10.1039/D0EN01028F
10.1039/D3TA00715D
10.1016/j.mser.2018.08.001
10.1016/j.ijhydene.2012.04.138
10.1016/j.nanoen.2020.105351
10.1103/PhysRevB.80.224301
10.1021/acsami.9b07857
10.1016/j.nanoen.2022.107573
10.1039/C4CE00836G
10.1016/j.cej.2022.134624
10.1016/j.cap.2020.10.004
10.1021/acs.jpclett.9b03769
10.1016/j.cplett.2022.139748
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202303586
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37386814
10_1002_smll_202303586
SMLL202303586
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12004087
– fundername: National Natural Science Foundation of China
  grantid: 12004087
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
A00
AEUQT
AFPWT
NPM
P4E
RWI
WYJ
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3736-1202b30395da444127691c43f26b57f9a17d423607061f3d33da4b64c8e63bcf3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:43:27 EDT 2025
Fri Jul 25 12:17:38 EDT 2025
Wed Feb 19 02:22:55 EST 2025
Tue Jul 01 02:54:36 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords biomedicines
piezocatalysis
small-molecule catalysis
piezoelectricity
2D piezoelectric materials
environmental remediations
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3736-1202b30395da444127691c43f26b57f9a17d423607061f3d33da4b64c8e63bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1988-5975
0000-0002-5012-7283
PMID 37386814
PQID 2884536896
PQPubID 1046358
PageCount 26
ParticipantIDs proquest_miscellaneous_2832577328
proquest_journals_2884536896
pubmed_primary_37386814
crossref_primary_10_1002_smll_202303586
crossref_citationtrail_10_1002_smll_202303586
wiley_primary_10_1002_smll_202303586_SMLL202303586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2013; 1
2021; 67
2019; 11
2019; 10
2021 2020; 86 279
2022 2022 2018 2018; 93 51 144 44
2019; 17
2023; 105
2020; 569
2021; 282
2020; 12
2020; 11
2018; 45
2018 2018 2011; 8 229 115
2018 2014; 21 5
2018; 46
2022; 576
2016 2022 2021; 9 61 15
2015 2017 2015 2017; 27 672 66 11
2018; 6
1992 2022; 19 34
2018; 2
2018 2022; 18 95
2010; 1
2018; 5
2021; 78
2009; 92
2020 2019; 1 259
2018; 1
2022; 34
1986
2021; 151
2022 2018; 10 173
2022; 32
2023; 614
2022 2017; 19 391
2012; 24
2021; 85
2022; 206
2021; 47
2019; 7
2004; 303
2021; 42
1986; 93
2006; 53
2013 2014 2015; 13 514 10
2020; 261
2023; 320
2011; 84
2012 2007; 37 111
2019 2021 2022; 61 90 48
2020; 32
2004; 306
2021 2001 2007 1999 2018 2017 2020; 21 79 90 74 767 32 509
2022; 101
2017; 53
2007; 317
2004; 432
2022 2022 2018 2016; 74 15 30 6
2020; 31
2020; 30
2019 2018; 10 11
2022; 5
1989; 246
2019 1996; 249 271
2022; 8
2018; 112
2021 2022 2022; 3 95 12
2022; 9
2021; 415
2022; 14
2022; 15
2019 2023; 102 646
2015; 119
1983 2019; 220 4
2020; 277
2020; 23
2022; 10
2014 2016 2013; 43 8 340
2023 2022 2020; 15 290 11
2021; 133
2022; 99
2021; 60
2018; 11
2009; 103
2016; 8
2016; 9
2022; 102
2022; 18
2017; 40
2017; 5
2020 2021; 117 13
2023; 35
2023; 37
2020; 61
2019; 57
2019; 56
2023; 9
2019 2020 2020; 58 12 55
2019; 59
2019; 58
2019; 125
2013; 283
2020; 124
2013 2013; 550 205
2022 2017; 61 11
2014 2009 2010; 40 92 124
2021; 36
2014 2021 2010 2020; 118 7 150 78
2020; 7
2020; 4
2021; 32
2020; 3
2021; 33
2022 2021 2021; 303 83 31
2021; 596
2019; 66
2017 2014; 2 14
2017; 33
2008 2022; 28 3
2020 2022 2023; 279 95 11
2013; 96
2014; 59
2022 2022; 18 431
2011 2009; 83 80
2017 2014 2014; 51 47 16
2020; 257
2022; 801
2022; 247
2021; 8
2018; 140
2022; 150
2021; 2
2016 2017 2017 2019 2021; 28 31 40 811 13
2023; 120
2022; 51
2022; 46
2004 2012; 3 8
2022; 317
2015; 9
2015; 8
2022; 436
2022; 313
2021; 90
2022; 435
2006; 312
2021; 15
2012; 3
2021; 12
2022; 380
2021; 11
2006; 89
2020; 75
2022
2017; 17
2017; 11
2004; 13
2019; 135
2020; 68
2019 2020; 11 77
2022 2023; 32 328
2023; 639
2022; 424
2018 2017; 47 117
2022; 421
e_1_2_8_26_3
e_1_2_8_49_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_9_3
e_1_2_8_9_2
e_1_2_8_9_4
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_170_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_170_3
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_76_7
e_1_2_8_76_6
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_76_5
e_1_2_8_76_4
e_1_2_8_91_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_30_3
e_1_2_8_76_3
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_76_1
e_1_2_8_128_3
e_1_2_8_128_2
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_52_4
e_1_2_8_106_1
e_1_2_8_52_2
e_1_2_8_106_2
e_1_2_8_52_3
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_43_3
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_43_2
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
Junger M. C. (e_1_2_8_122_1) 1986
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_2
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_112_3
e_1_2_8_135_1
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_39_3
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_146_2
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_5_3
e_1_2_8_151_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_60_1
e_1_2_8_83_1
Yan C. W. (e_1_2_8_53_1) 2023; 37
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_101_2
e_1_2_8_72_1
e_1_2_8_101_3
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_47_3
e_1_2_8_24_4
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_130_2
e_1_2_8_62_3
e_1_2_8_138_1
e_1_2_8_62_4
e_1_2_8_85_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_13_5
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_13_4
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_74_3
e_1_2_8_149_1
e_1_2_8_74_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_116_2
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_50_2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 1413
  year: 2021
  publication-title: Chinese J. Catal.
– volume: 46
  start-page: 4666
  year: 2022
  publication-title: New J. Chem.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 118 7 150 78
  start-page: 684 836
  year: 2014 2021 2010 2020
  publication-title: J. Phys. Chem. C ChemNanoMat Solid State Commun. Nano Energy
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 56
  start-page: 512
  year: 2019
  publication-title: Nano Energy
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47 117
  start-page: 6224 6225
  year: 2018 2017
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 45
  start-page: 44
  year: 2018
  publication-title: Nano Energy
– volume: 303 83 31
  year: 2022 2021 2021
  publication-title: Appl Catal B Nano Energy Adv. Funct. Mater.
– volume: 67
  start-page: 65
  year: 2021
  publication-title: Int. Mater. Rev.
– volume: 1
  start-page: 7332
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 9885
  year: 2015
  publication-title: ACS Nano
– volume: 421
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 99
  year: 2022
  publication-title: Nano Energy
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 303
  start-page: 488
  year: 2004
  publication-title: Science
– year: 1986
– volume: 12
  start-page: 3508
  year: 2021
  publication-title: Nat. Commun.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 801
  year: 2022
  publication-title: Chem. Phys. Lett.
– volume: 58
  year: 2019
  publication-title: Angew. Chem Int. Edit.
– volume: 261
  year: 2020
  publication-title: J Clean Prod
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 432
  start-page: 84
  year: 2004
  publication-title: Nature
– volume: 8
  start-page: 7343
  year: 2016
  publication-title: Nanoscale
– volume: 15
  start-page: 1162
  year: 2022
  publication-title: Energies
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 133
  start-page: 2
  year: 2021
  publication-title: Angew. Chem Int. Edit.
– volume: 40 92 124
  start-page: 6143 1607 1065
  year: 2014 2009 2010
  publication-title: Ceram. Int. J. Am. Ceram. Soc. Mater. Chem. Phys.
– volume: 93
  start-page: 57
  year: 1986
  publication-title: Phys. Status Solidi A
– volume: 11
  start-page: 527
  year: 2018
  publication-title: ChemSusChem
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 436
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 19 391
  start-page: 3649 72
  year: 2022 2017
  publication-title: J. Iran. Chem. Soc. Appl. Surf. Sci.
– volume: 60
  year: 2021
  publication-title: Angew. Chem Int. Edit.
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 282
  year: 2021
  publication-title: Appl Catal B
– volume: 51 47 16
  start-page: 8229 1067 8064
  year: 2017 2014 2014
  publication-title: Environ. Sci. Technol. Acc. Chem. Res. CrystEngComm
– volume: 7
  start-page: 1704
  year: 2020
  publication-title: Environ. Sci.: Nano
– volume: 9 61 15
  start-page: 800 2532
  year: 2016 2022 2021
  publication-title: Nano Res. Angew. Chem Int. Edit. ACS Nano
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 1
  year: 2019
  publication-title: Mater Sci Eng R Rep
– volume: 32 328
  year: 2022 2023
  publication-title: Adv. Funct. Mater. Appl Catal B
– volume: 15 290 11
  start-page: 1228
  year: 2023 2022 2020
  publication-title: ChemCatChem Biomaterials J. Phys. Chem. Lett.
– volume: 61
  year: 2020
  publication-title: Ultrason. Sonochem.
– volume: 10
  start-page: 3276
  year: 2022
  publication-title: ACS Sustainable Chem. Eng.
– volume: 17
  start-page: 1915
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  year: 2018
  publication-title: Mater. Res. Express
– volume: 10
  start-page: 2001
  year: 2019
  publication-title: Nat. Commun.
– volume: 24
  start-page: 210
  year: 2012
  publication-title: Adv. Mater.
– volume: 639
  start-page: 343
  year: 2023
  publication-title: J. Colloid Interf. Sci.
– volume: 101
  year: 2022
  publication-title: Nano Energy
– volume: 43 8 340
  start-page: 6537 6904 1420
  year: 2014 2016 2013
  publication-title: Chem. Soc. Rev. Nanoscale Science
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  start-page: 267
  year: 2014
  publication-title: Mater. Res. Bull.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 247
  year: 2022
  publication-title: Chem. Eng. Sci.
– volume: 37
  year: 2023
  publication-title: Etoiles Compos. Chim. Anorm. Debut Sequence Princ., Commun. Colloq. Int. Astrophys., 23rd
– volume: 105
  year: 2023
  publication-title: Nano Energy
– volume: 3
  start-page: 2160
  year: 2013
  publication-title: Sci. Rep.
– volume: 5
  start-page: 2876
  year: 2018
  publication-title: Environ. Sci.: Nano
– volume: 18 431
  year: 2022 2022
  publication-title: Small Chem. Eng. J.
– volume: 3 8
  start-page: 404 1360
  year: 2004 2012
  publication-title: Nat. Mater. J. Chem. Theory Comput.
– volume: 9
  start-page: 2463
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 569
  start-page: 122
  year: 2020
  publication-title: Ferroelectrics
– volume: 3
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– year: 2022
  publication-title: Green Energy Environ.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1376
  year: 2021
  publication-title: Environ. Sci.: Nano
– volume: 614
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 112
  start-page: 137
  year: 2018
  publication-title: J. Phys. Chem. Solids
– volume: 220 4
  start-page: 1115
  year: 1983 2019
  publication-title: Science Sci Robot
– volume: 46
  start-page: 372
  year: 2018
  publication-title: Nano Energy
– volume: 18
  year: 2022
  publication-title: Mater. Today Nano
– volume: 317
  year: 2022
  publication-title: Appl Catal B
– volume: 312
  start-page: 242
  year: 2006
  publication-title: Science
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 1 259
  year: 2020 2019
  publication-title: Small Sci. Appl Catal B
– volume: 313
  year: 2022
  publication-title: Appl Catal B
– volume: 96
  start-page: 3677
  year: 2013
  publication-title: J. Am. Ceram. Soc.
– volume: 86 279
  year: 2021 2020
  publication-title: Nano Energy Appl Catal B
– volume: 46
  start-page: 338
  year: 2018
  publication-title: Nano Energy
– volume: 53
  start-page: 3054
  year: 2017
  publication-title: Chem. Commun.
– volume: 117 13
  year: 2020 2021
  publication-title: Mat. Sci. Semicon. Proc. ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1398
  year: 2021
  publication-title: Environ. Sci.: Nano
– volume: 150
  year: 2022
  publication-title: Mat. Sci. Semicon. Proc.
– volume: 277
  year: 2020
  publication-title: Appl Catal B
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 8 229 115
  start-page: 41 7355
  year: 2018 2018 2011
  publication-title: Adv. Energy Mater. Appl Catal B J. Phys. Chem. C
– volume: 28 31 40 811 13
  start-page: 3718 575 369
  year: 2016 2017 2017 2019 2021
  publication-title: Adv. Mater. Nano Energy Nano Energy J. Alloy. Compd. ACS Appl. Mater. Interfaces
– volume: 2 14
  start-page: 6 3033
  year: 2017 2014
  publication-title: Mater. Today Phys. Nano Lett.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 33
  start-page: 6269
  year: 2017
  publication-title: Langmuir
– volume: 21 79 90 74 767 32 509
  start-page: 72 812 2534 1003
  year: 2021 2001 2007 1999 2018 2017 2020
  publication-title: Curr. Appl. Phys. Appl. Phys. Lett. Appl. Phys. Lett. Appl. Phys. Lett. J. Alloy. Compd. Semicond. Sci. Tech. Appl. Surf. Sci.
– volume: 125
  start-page: 61
  year: 2019
  publication-title: Catal. Commun.
– volume: 246
  start-page: 1400
  year: 1989
  publication-title: Science
– volume: 102 646
  start-page: 5807 159
  year: 2019 2023
  publication-title: J. Am. Ceram. Soc. J. Colloid Interf. Sci.
– volume: 2
  start-page: 101
  year: 2021
  publication-title: ACS ES&T Eng.
– volume: 279 95 11
  year: 2020 2022 2023
  publication-title: Appl Catal B Nano Energy J. Mater. Chem. A
– volume: 19 34
  start-page: 1386
  year: 1992 2022
  publication-title: J Chem Soc Chem Commun Adv. Mater.
– volume: 2
  start-page: 2649
  year: 2021
  publication-title: Mater. Adv.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 57
  start-page: 14
  year: 2019
  publication-title: Nano Energy
– volume: 257
  year: 2020
  publication-title: Phys. Status Solidi B
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 83 80
  year: 2011 2009
  publication-title: Phys. Rev. B Phys. Rev. B
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3 95 12
  start-page: 1362
  year: 2021 2022 2022
  publication-title: Nanoscale Adv Nano Energy Adv. Energy Mater.
– volume: 53
  start-page: 2226
  year: 2006
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 36
  start-page: 810
  year: 2021
  publication-title: New Carbon Mater
– volume: 1
  start-page: 5119
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 11
  start-page: 1328
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2871
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 318
  year: 2021
  publication-title: Nat. Commun.
– volume: 102
  year: 2022
  publication-title: Nano Energy
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 51
  start-page: 650
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: 372
  year: 2019
  publication-title: Nano Energy
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 596
  start-page: 288
  year: 2021
  publication-title: J. Colloid Interf. Sci.
– volume: 1
  start-page: 997
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 67
  year: 2021
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 550 205
  start-page: 335 165
  year: 2013 2013
  publication-title: J. Alloy. Compd. J. Solid State Chem.
– volume: 61 90 48
  start-page: 550 3695
  year: 2019 2021 2022
  publication-title: Nano Energy Nano Energy Ceram. Int.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 206
  year: 2022
  publication-title: Dyes Pigments
– volume: 320
  year: 2023
  publication-title: Appl Catal B
– volume: 21 5
  start-page: 611 4284
  year: 2018 2014
  publication-title: Mater. Today Nat. Commun.
– volume: 58 12 55
  year: 2019 2020 2020
  publication-title: Angew. Chem Int. Edit. ACS Appl. Mater. Interfaces J. Mater. Sci.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 380
  year: 2022
  publication-title: J Clean Prod
– volume: 13
  start-page: 385
  year: 2004
  publication-title: J Electroceram
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 8
  start-page: 3796
  year: 2015
  publication-title: Nano Res.
– volume: 151
  year: 2021
  publication-title: J. Phys. Chem. Solids
– volume: 17
  start-page: 183
  year: 2019
  publication-title: Applied Mater. Today
– volume: 4
  start-page: 2096
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 249 271
  start-page: 275 53
  year: 2019 1996
  publication-title: Appl Catal B Science
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 10 173
  start-page: 227
  year: 2022 2018
  publication-title: J. Environ. Chem. Eng. Optik
– volume: 17
  start-page: 661
  year: 2017
  publication-title: Curr. Appl. Phys.
– volume: 18 95
  start-page: 7372
  year: 2018 2022
  publication-title: Nano Lett. Nano Energy
– volume: 27 672 66 11
  start-page: 2150 26 156 6004
  year: 2015 2017 2015 2017
  publication-title: Adv. Mater. Chem. Phys. Lett. Mater. Res. Bull. ACS Nano
– volume: 283
  start-page: 348
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 32
  start-page: 2317
  year: 2021
  publication-title: Chinese Chem. Lett.
– volume: 13 514 10
  start-page: 3329 470 151
  year: 2013 2014 2015
  publication-title: Nano Lett. Nature Nat. Nanotechnol.
– volume: 424
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 10 11
  start-page: 1661 3531
  year: 2019 2018
  publication-title: Nat. Commun. Energy Environ. Sci.
– volume: 40
  start-page: 481
  year: 2017
  publication-title: Nano Energy
– volume: 11
  year: 2017
  publication-title: Phys. Status Solidi RRL
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 28 3
  start-page: 1105 235
  year: 2008 2022
  publication-title: J. Eur. Ceram. Soc. Electron. Mater.
– volume: 78
  year: 2021
  publication-title: Ultrason. Sonochem.
– volume: 576
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 92
  start-page: 3108
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 11
  start-page: 7066
  year: 2021
  publication-title: Sci. Rep.
– volume: 11 77
  year: 2019 2020
  publication-title: ACS Appl. Mater. Interfaces Nano Energy
– volume: 47
  start-page: 7692
  year: 2021
  publication-title: Ceram. Int.
– volume: 74 15 30 6
  start-page: 149 8897
  year: 2022 2022 2018 2016
  publication-title: J Energy Chem Nano Res. Adv. Mater. Adv. Energy Mater.
– volume: 37 111
  year: 2012 2007
  publication-title: Int. J. Hydrogen Energy J. Phys. Chem. B
– volume: 31
  start-page: 1771
  year: 2020
  publication-title: Adv. Powder Technol.
– volume: 2
  start-page: 18
  year: 2018
  publication-title: npj 2D Mater. Appl.
– volume: 61 11
  start-page: 347
  year: 2022 2017
  publication-title: Angew. Chem Int. Edit. ACS Nano
– volume: 93 51 144 44
  start-page: 3380 55
  year: 2022 2022 2018 2018
  publication-title: Nano Energy Chem. Soc. Rev. Mater. Des. Ceram. Int.
– ident: e_1_2_8_24_2
  doi: 10.1007/s12274-022-4771-y
– ident: e_1_2_8_15_1
  doi: 10.1016/j.apcatb.2022.122007
– ident: e_1_2_8_50_2
  doi: 10.1021/jp072001k
– ident: e_1_2_8_76_3
  doi: 10.1063/1.2745247
– ident: e_1_2_8_49_1
  doi: 10.1007/s13738-022-02562-3
– ident: e_1_2_8_3_1
  doi: 10.1111/jace.12715
– ident: e_1_2_8_105_1
  doi: 10.1002/smsc.202000011
– ident: e_1_2_8_105_2
  doi: 10.1016/j.apcatb.2019.118084
– ident: e_1_2_8_161_1
  doi: 10.1016/j.apsusc.2021.151851
– ident: e_1_2_8_40_1
  doi: 10.1016/j.nanoen.2018.11.073
– ident: e_1_2_8_113_2
  doi: 10.1016/j.nanoen.2022.106993
– ident: e_1_2_8_93_1
  doi: 10.1016/j.nanoen.2022.108024
– ident: e_1_2_8_22_2
  doi: 10.1016/j.cej.2021.133930
– ident: e_1_2_8_88_1
  doi: 10.1002/pssr.201600412
– ident: e_1_2_8_2_1
  doi: 10.1021/jacs.8b07844
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.201701503
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.0c16039
– ident: e_1_2_8_7_1
  doi: 10.1103/PhysRevLett.103.257602
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.201907619
– ident: e_1_2_8_52_3
  doi: 10.1016/j.materresbull.2015.02.044
– ident: e_1_2_8_137_1
  doi: 10.1039/D0EN00284D
– ident: e_1_2_8_51_2
  doi: 10.1021/acsnano.6b05914
– ident: e_1_2_8_64_1
  doi: 10.1126/science.246.4936.1400
– ident: e_1_2_8_117_1
  doi: 10.1016/j.jhazmat.2021.127440
– ident: e_1_2_8_9_4
  doi: 10.1016/j.ceramint.2018.06.204
– ident: e_1_2_8_107_1
  doi: 10.1016/j.apt.2020.01.031
– ident: e_1_2_8_55_2
  doi: 10.3390/electronicmat3030020
– ident: e_1_2_8_153_1
  doi: 10.1016/j.ultsonch.2021.105729
– ident: e_1_2_8_13_3
  doi: 10.1016/j.nanoen.2017.08.042
– volume: 37
  year: 2023
  ident: e_1_2_8_53_1
  publication-title: Etoiles Compos. Chim. Anorm. Debut Sequence Princ., Commun. Colloq. Int. Astrophys., 23rd
– ident: e_1_2_8_39_1
  doi: 10.1007/s12274-015-0959-8
– ident: e_1_2_8_76_5
  doi: 10.1016/j.jallcom.2018.07.187
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.nanolett.6b05229
– ident: e_1_2_8_145_1
  doi: 10.1039/C8EN00944A
– ident: e_1_2_8_68_1
  doi: 10.1111/j.1551-2916.2009.03344.x
– ident: e_1_2_8_10_1
  doi: 10.1039/c3ta10792b
– ident: e_1_2_8_85_2
  doi: 10.1126/scirobotics.aax1594
– ident: e_1_2_8_109_1
  doi: 10.1039/C6NR00972G
– ident: e_1_2_8_140_1
  doi: 10.1039/C9NR07544E
– ident: e_1_2_8_57_1
  doi: 10.3390/en15031162
– ident: e_1_2_8_126_1
  doi: 10.1038/srep02160
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_8_135_1
  doi: 10.1016/j.isci.2020.101095
– ident: e_1_2_8_27_2
  doi: 10.1021/ar4002312
– ident: e_1_2_8_66_1
  doi: 10.1063/1.2405408
– ident: e_1_2_8_128_3
  doi: 10.1016/j.ceramint.2021.10.151
– ident: e_1_2_8_11_1
  doi: 10.1021/acssuschemeng.1c07875
– ident: e_1_2_8_42_2
  doi: 10.1002/adma.202200397
– ident: e_1_2_8_43_2
  doi: 10.1038/nature13792
– ident: e_1_2_8_170_2
  doi: 10.1016/j.nanoen.2022.107032
– ident: e_1_2_8_174_1
  doi: 10.1016/j.jcis.2023.02.075
– ident: e_1_2_8_133_1
  doi: 10.1103/PhysRevB.84.024102
– ident: e_1_2_8_156_1
  doi: 10.1002/adma.202212172
– ident: e_1_2_8_143_1
  doi: 10.1016/j.cclet.2020.12.019
– ident: e_1_2_8_60_2
  doi: 10.1016/j.jssc.2013.07.004
– ident: e_1_2_8_63_1
  doi: 10.1021/acsaem.2c01917
– ident: e_1_2_8_170_3
  doi: 10.1002/aenm.202200253
– ident: e_1_2_8_121_1
  doi: 10.1016/j.nanoen.2019.02.047
– ident: e_1_2_8_106_1
  doi: 10.1016/j.nanoen.2021.106036
– ident: e_1_2_8_46_2
  doi: 10.1126/science.271.5245.53
– ident: e_1_2_8_67_1
  doi: 10.1002/pssa.2210930106
– ident: e_1_2_8_29_2
  doi: 10.1021/nl404610c
– ident: e_1_2_8_115_1
  doi: 10.1016/j.jclepro.2022.135002
– ident: e_1_2_8_6_1
  doi: 10.1038/nature03028
– ident: e_1_2_8_80_1
  doi: 10.1002/adfm.202202180
– ident: e_1_2_8_131_1
  doi: 10.1016/j.apcatb.2022.121471
– ident: e_1_2_8_76_6
  doi: 10.1088/1361-6641/aa660c
– ident: e_1_2_8_86_2
  doi: 10.1021/acsami.1c01314
– ident: e_1_2_8_116_1
  doi: 10.1002/adfm.202209365
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jpcs.2017.09.017
– ident: e_1_2_8_89_1
  doi: 10.1002/adma.202202558
– ident: e_1_2_8_138_1
  doi: 10.1039/D1NJ05579H
– ident: e_1_2_8_141_1
  doi: 10.1021/acsami.1c23282
– ident: e_1_2_8_24_3
  doi: 10.1002/adma.201706347
– ident: e_1_2_8_113_1
  doi: 10.1021/acs.nanolett.8b03655
– ident: e_1_2_8_172_1
  doi: 10.1016/j.gee.2022.10.004
– ident: e_1_2_8_1_1
  doi: 10.1007/s10832-004-5130-y
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.201500033
– ident: e_1_2_8_76_2
  doi: 10.1063/1.1391225
– ident: e_1_2_8_129_1
  doi: 10.1016/j.mssp.2022.106950
– ident: e_1_2_8_47_1
  doi: 10.1016/j.apcatb.2021.120929
– ident: e_1_2_8_125_1
  doi: 10.1016/j.ultsonch.2019.104819
– ident: e_1_2_8_30_2
  doi: 10.1016/j.apcatb.2018.02.006
– ident: e_1_2_8_39_2
  doi: 10.1002/anie.202116048
– ident: e_1_2_8_75_1
  doi: 10.1021/acs.langmuir.7b00935
– ident: e_1_2_8_99_1
  doi: 10.1038/s41598-021-86252-9
– ident: e_1_2_8_16_1
  doi: 10.1016/j.nanoen.2017.08.058
– ident: e_1_2_8_62_3
  doi: 10.1016/j.ssc.2010.02.011
– ident: e_1_2_8_82_1
  doi: 10.1038/s41699-018-0063-5
– ident: e_1_2_8_160_1
  doi: 10.1002/adma.202101751
– ident: e_1_2_8_45_1
  doi: 10.1016/j.nanoen.2019.104083
– ident: e_1_2_8_46_1
  doi: 10.1016/j.apcatb.2019.03.010
– ident: e_1_2_8_142_1
  doi: 10.1088/2053-1591/aaed70
– ident: e_1_2_8_95_1
  doi: 10.1016/j.jhazmat.2021.126696
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1092508
– ident: e_1_2_8_151_1
  doi: 10.1016/j.nanoen.2019.104366
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jallcom.2012.10.147
– ident: e_1_2_8_52_4
  doi: 10.1021/acsnano.7b01908
– ident: e_1_2_8_130_1
  doi: 10.1111/jace.16502
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apsusc.2013.06.114
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jeurceramsoc.2007.09.005
– ident: e_1_2_8_52_2
  doi: 10.1016/j.cplett.2017.01.046
– ident: e_1_2_8_124_1
  doi: 10.1039/C6EE00526H
– ident: e_1_2_8_158_1
  doi: 10.1016/j.cej.2022.135173
– ident: e_1_2_8_173_1
  doi: 10.1002/cssc.201702405
– ident: e_1_2_8_48_2
  doi: 10.1038/ncomms5284
– ident: e_1_2_8_175_1
  doi: 10.1002/adma.202300437
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201905795
– ident: e_1_2_8_108_1
  doi: 10.1038/s41467-020-15015-3
– ident: e_1_2_8_61_1
  doi: 10.1080/00150193.2020.1791657
– ident: e_1_2_8_167_1
  doi: 10.1016/j.apsusc.2022.156147
– ident: e_1_2_8_76_4
  doi: 10.1063/1.123889
– ident: e_1_2_8_101_1
  doi: 10.1002/cctc.202201316
– ident: e_1_2_8_26_1
  doi: 10.1039/C4CS00102H
– ident: e_1_2_8_170_1
  doi: 10.1039/D1NA00013F
– ident: e_1_2_8_9_3
  doi: 10.1016/j.matdes.2018.02.008
– ident: e_1_2_8_166_1
  doi: 10.1021/acsanm.0c02513
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jechem.2022.07.015
– ident: e_1_2_8_38_1
  doi: 10.1021/jz3012436
– ident: e_1_2_8_34_1
  doi: 10.1039/D1CS00844G
– ident: e_1_2_8_56_1
  doi: 10.1016/j.pcrysgrow.2021.100522
– ident: e_1_2_8_76_7
  doi: 10.1016/j.apsusc.2020.145328
– ident: e_1_2_8_85_1
  doi: 10.1126/science.220.4602.1115
– ident: e_1_2_8_112_1
  doi: 10.1016/j.apcatb.2020.119340
– ident: e_1_2_8_169_1
  doi: 10.1038/s41467-020-20517-1
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.est.7b01466
– ident: e_1_2_8_39_3
  doi: 10.1021/acsnano.0c06750
– ident: e_1_2_8_84_1
  doi: 10.1016/j.jcis.2021.03.040
– ident: e_1_2_8_9_1
  doi: 10.1016/j.nanoen.2021.106886
– ident: e_1_2_8_29_1
  doi: 10.1016/j.mtphys.2017.07.001
– ident: e_1_2_8_128_2
  doi: 10.1016/j.nanoen.2021.106635
– ident: e_1_2_8_127_1
  doi: 10.1016/j.apmt.2019.07.015
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-019-10034-1
– ident: e_1_2_8_73_1
  doi: 10.1038/s41467-021-23921-3
– volume-title: Sound, structures, and their interaction
  year: 1986
  ident: e_1_2_8_122_1
– ident: e_1_2_8_77_1
  doi: 10.1016/j.materresbull.2014.07.032
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2022.107682
– ident: e_1_2_8_91_1
  doi: 10.1038/s41467-019-09650-8
– ident: e_1_2_8_47_2
  doi: 10.1016/j.nanoen.2021.105743
– ident: e_1_2_8_13_4
  doi: 10.1016/j.jallcom.2019.152063
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apcatb.2020.119586
– ident: e_1_2_8_30_3
  doi: 10.1021/jp200953k
– ident: e_1_2_8_90_1
  doi: 10.1109/TUFFC.2006.169
– ident: e_1_2_8_130_2
  doi: 10.1016/j.jcis.2023.05.040
– ident: e_1_2_8_13_2
  doi: 10.1016/j.nanoen.2016.12.013
– ident: e_1_2_8_79_1
  doi: 10.1016/j.mtnano.2022.100184
– ident: e_1_2_8_101_2
  doi: 10.1016/j.biomaterials.2022.121816
– ident: e_1_2_8_26_2
  doi: 10.1039/C6NR00546B
– ident: e_1_2_8_74_2
  doi: 10.1021/acsami.0c00962
– ident: e_1_2_8_49_2
  doi: 10.1016/j.apsusc.2016.07.030
– ident: e_1_2_8_47_3
  doi: 10.1002/adfm.202102540
– ident: e_1_2_8_139_1
  doi: 10.1039/D0QM00179A
– ident: e_1_2_8_147_1
  doi: 10.1016/j.cej.2021.129000
– ident: e_1_2_8_134_1
  doi: 10.1016/j.nanoen.2021.106028
– ident: e_1_2_8_144_1
  doi: 10.1016/j.nanoen.2021.106527
– ident: e_1_2_8_43_1
  doi: 10.1021/nl401561r
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jpcc.5b02950
– ident: e_1_2_8_92_1
  doi: 10.1039/C9TA06251C
– ident: e_1_2_8_118_1
  doi: 10.1016/j.ces.2021.116707
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.201907695
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ceramint.2013.11.066
– ident: e_1_2_8_72_1
  doi: 10.1007/s12274-015-0878-8
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201505785
– ident: e_1_2_8_148_1
  doi: 10.1016/j.dyepig.2022.110678
– ident: e_1_2_8_44_1
  doi: 10.1002/aelm.202101131
– ident: e_1_2_8_97_1
  doi: 10.1016/j.nanoen.2020.104879
– ident: e_1_2_8_18_1
  doi: 10.1021/acs.jpcc.0c04700
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.202202507
– ident: e_1_2_8_74_1
  doi: 10.1002/anie.201906181
– ident: e_1_2_8_51_1
  doi: 10.1002/anie.202212397
– ident: e_1_2_8_36_1
  doi: 10.1021/acsnano.5b03394
– ident: e_1_2_8_48_1
  doi: 10.1016/j.mattod.2018.01.031
– ident: e_1_2_8_176_1
  doi: 10.1002/adfm.202208128
– ident: e_1_2_8_114_1
  doi: 10.1016/j.nanoen.2018.02.010
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jpcs.2020.109896
– ident: e_1_2_8_26_3
  doi: 10.1126/science.1226419
– ident: e_1_2_8_58_1
  doi: 10.1038/nmat1134
– ident: e_1_2_8_62_2
  doi: 10.1002/cnma.202100105
– ident: e_1_2_8_146_2
  doi: 10.1016/j.nanoen.2020.105305
– ident: e_1_2_8_62_1
  doi: 10.1021/jp504674k
– ident: e_1_2_8_100_1
  doi: 10.1016/j.cap.2016.12.012
– ident: e_1_2_8_178_1
  doi: 10.1016/j.nanoen.2018.12.006
– ident: e_1_2_8_171_1
  doi: 10.1016/j.apcatb.2020.119250
– ident: e_1_2_8_165_1
  doi: 10.1039/C8TA03208D
– ident: e_1_2_8_159_1
  doi: 10.1016/j.catcom.2019.03.023
– ident: e_1_2_8_112_2
  doi: 10.1016/j.nanoen.2022.106975
– ident: e_1_2_8_164_1
  doi: 10.1126/science.1141483
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1124005
– ident: e_1_2_8_162_1
  doi: 10.1002/adma.202002875
– ident: e_1_2_8_28_1
  doi: 10.1016/S1872-5805(21)60080-X
– ident: e_1_2_8_136_1
  doi: 10.1002/celc.202200124
– ident: e_1_2_8_69_2
  doi: 10.1016/j.ijleo.2018.08.027
– ident: e_1_2_8_154_1
  doi: 10.1039/D1MA00106J
– ident: e_1_2_8_163_1
  doi: 10.1021/acsnano.1c04774
– ident: e_1_2_8_5_3
  doi: 10.1016/j.matchemphys.2010.08.033
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevB.83.115328
– ident: e_1_2_8_91_2
  doi: 10.1039/C8EE02758G
– ident: e_1_2_8_111_1
  doi: 10.1039/D1EN00022E
– ident: e_1_2_8_103_1
  doi: 10.1002/ange.202014556
– ident: e_1_2_8_102_1
  doi: 10.1021/jz100027t
– ident: e_1_2_8_149_1
  doi: 10.1016/j.apcatb.2022.121717
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ceramint.2020.11.112
– ident: e_1_2_8_35_1
  doi: 10.1080/09506608.2021.1915935
– ident: e_1_2_8_110_1
  doi: 10.1002/anie.202103112
– ident: e_1_2_8_168_1
  doi: 10.1073/pnas.2218813120
– ident: e_1_2_8_65_1
  doi: 10.1016/S1872-2067(20)63769-X
– ident: e_1_2_8_104_1
  doi: 10.1016/j.nanoen.2017.12.034
– ident: e_1_2_8_9_2
  doi: 10.1039/D1CS00858G
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_132_1
  doi: 10.1021/acsanm.8b01206
– ident: e_1_2_8_94_1
  doi: 10.1016/j.nanoen.2022.107429
– ident: e_1_2_8_150_1
  doi: 10.1016/j.jclepro.2020.121125
– ident: e_1_2_8_81_1
  doi: 10.1002/aelm.202201239
– ident: e_1_2_8_24_4
  doi: 10.1002/aenm.201600671
– ident: e_1_2_8_59_1
  doi: 10.1002/pssb.201900733
– ident: e_1_2_8_58_2
  doi: 10.1021/ct200880m
– ident: e_1_2_8_83_1
  doi: 10.1002/adma.201103241
– ident: e_1_2_8_43_3
  doi: 10.1038/nnano.2014.309
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jece.2022.107838
– ident: e_1_2_8_157_1
  doi: 10.1021/acsestengg.1c00296
– ident: e_1_2_8_23_1
  doi: 10.1039/C8CS00254A
– ident: e_1_2_8_96_1
  doi: 10.1039/C7TA07570G
– ident: e_1_2_8_74_3
  doi: 10.1007/s10853-020-05053-z
– ident: e_1_2_8_123_1
  doi: 10.1039/C7TA08061A
– ident: e_1_2_8_128_1
  doi: 10.1016/j.nanoen.2019.04.098
– ident: e_1_2_8_120_1
  doi: 10.1021/acsami.9b23351
– ident: e_1_2_8_177_1
  doi: 10.1016/j.nanoen.2018.02.008
– ident: e_1_2_8_41_1
  doi: 10.1039/C6CC09952A
– ident: e_1_2_8_116_2
  doi: 10.1016/j.apcatb.2023.122520
– ident: e_1_2_8_5_2
  doi: 10.1111/j.1551-2916.2009.03043.x
– ident: e_1_2_8_42_1
  doi: 10.1039/C39920001386
– ident: e_1_2_8_13_5
  doi: 10.1021/acsami.1c01407
– ident: e_1_2_8_86_1
  doi: 10.1016/j.mssp.2020.105173
– ident: e_1_2_8_106_2
  doi: 10.1016/j.apcatb.2020.119353
– ident: e_1_2_8_155_1
  doi: 10.1039/D0EN01028F
– ident: e_1_2_8_112_3
  doi: 10.1039/D3TA00715D
– ident: e_1_2_8_78_1
  doi: 10.1016/j.mser.2018.08.001
– ident: e_1_2_8_50_1
  doi: 10.1016/j.ijhydene.2012.04.138
– ident: e_1_2_8_62_4
  doi: 10.1016/j.nanoen.2020.105351
– ident: e_1_2_8_37_2
  doi: 10.1103/PhysRevB.80.224301
– ident: e_1_2_8_146_1
  doi: 10.1021/acsami.9b07857
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2022.107573
– ident: e_1_2_8_27_3
  doi: 10.1039/C4CE00836G
– ident: e_1_2_8_119_1
  doi: 10.1016/j.cej.2022.134624
– ident: e_1_2_8_76_1
  doi: 10.1016/j.cap.2020.10.004
– ident: e_1_2_8_101_3
  doi: 10.1021/acs.jpclett.9b03769
– ident: e_1_2_8_152_1
  doi: 10.1016/j.cplett.2022.139748
SSID ssj0031247
Score 2.6436653
SecondaryResourceType review_article
Snippet Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2303586
SubjectTerms 2D piezoelectric materials
biomedicines
Charged particles
environmental remediations
Nanoparticles
Nanotechnology
piezocatalysis
Piezoelectricity
small‐molecule catalysis
Water flow
Wind power
Title An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303586
https://www.ncbi.nlm.nih.gov/pubmed/37386814
https://www.proquest.com/docview/2884536896
https://www.proquest.com/docview/2832577328
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD41G3Nba1PDnUM2UTUwd5KkqYwnJ3Y7sH9enOarm6KCPrWNqc0Tc7J-cjl-xA60yZp8kApl2lJXSqBAzISzI1iLXwWSBnk8m39O94d0NshGy6c4rf8EOWEG0RGPl5DgAuZNj5JQ9OXMSwdGAhNmA-c27BhC1DRQ8kfRUzyytVVTM5ygXhrztrYxI3l15ez0jeouYxc89TT2UBiXmm74-S5Ps1kXc2-8Dn-56820XqBS522daQttKKTbbS2wFa4gy7biQNzWCBr5FjBDGcSO_cjPZvks0DvaZZeOPjaPrICOyPl9EVm3XwXDTo3T1ddtxBgcBVpEdDnaWJpahKwSFCDm3CLB56iJMZcslYcCK8VGTjGzbDBvZhEhBg7yanyNSdSxWQPVZJJog-QY4YOn0iN40h7VLAo8DWLNQW6wmZENKkid94BoSrYyUEkYxxaXmUcQsuEZctU0Xlp_2p5OX60rM37MyziMw2x71NGuB-Y4tOy2EQWLJeIRE-mYEPMeAZkRlW0b_2g_BTwQRmHolWE8978pQ7hY7_XK-8O__LSEVqFa3sMsoYq2dtUHxs8lMmT3Oc_ADNM_4Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1IoECQkTqGttyacQCwq0CIErcQtih1HqoAU0fRAvx5P3AQKQkhwjD1WHHvGMxnb7wHsa-M0ha-Uy7VkLpOIARmF3I1iHXrcl9LP6NtaN6LRYVcPPD9NiHdhLD5EkXBDy8jWazRwTEhXPlBD-89PuHdgYmjKPTEJ00jrnf1V3RUIUtS4r4xfxXgtF6G3ctzGKqmMtx_3S9-CzfHYNXM-Fwsg827bMyePh4NUHqrhF0THf33XIsyPQlPnxOrSEkzoZBnmPgEWrsDxSeJgGguZjRzLmeH0Yue2q4e9LBH01k_7Rw45s0WWY6ernFaYWk1fhc7Fefu04Y44GFxF6xQpeqpEmp74PAqZCZ1IXfg1xWhMhOT12A9r9chEZMKsHKIW04hSIycFU54WVKqYrsFU0kv0Bjhm9fCo1CSOdI2FPPI9zWPNELGwGlFNS-DmMxCoEUA58mQ8BRZamQQ4MkExMiU4KORfLDTHj5LlfEKDkYn2A-J5jFPh-aZ6r6g2xoU7JmGiewOUoWZJQzyjEqxbRShehZBQRqNYCUg2nb_0IbhvNZvF0-ZfGu3CTKPdagbNy5vrLZjFcnsrsgxT6etAb5vwKJU7mQG8AziGA7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5iQBoNh2EbmLIGaSROoa23OpxAlIqlRWgAiVsUbxKCSdE0PcCvxy9uAx2EkIZj7GfFsd-m5_j7AH5ZHzRFonXMrWIxU4gBaTIeG2czyROlkpK-rXcujq_Z6Q2_eXWLP-BDVAU3tIzSX6OBPxhXfwENHfy5x6MDn0JTLsUXmGGiIVGv278rACnqo1dJr-KDVozIW2PYxgapT46fDEtvcs3J1LWMPZ05yMazDr-c3O0OC7Wrn_4BdPzMZ83D91FiGh0ETVqAKZsvwuwruMIl2D_IIyxiIa9RFBgzor6LLm7tU78sAz0OisFeRNqhKTDs3OqolxVBz3_Adefo6vA4HjEwxJq2KBL0NIjyM0m4yZhPnEhLJE3NqCNC8ZZLsmbL-HxMeL8hmo4aSr2cEkxLK6jSji7DdN7P7U-IvO-QVFnijG2yjJtEWu4sQ7zChqGW1iAeb0CqR_DkyJJxnwZgZZLiyqTVytRgp5J_CMAc70quj_czHRnoICVSMk6FTHz3dtXtTQvPS7Lc9ocoQ71DQzSjGqwEPahehYBQXqFYDUi5mx_MIb3sdbvV0-r_DNqCrxftTto9OT9bg2_YHK5ErsN08XdoN3xuVKjNUv2fATmcAmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Emerging+Family+of+Piezocatalysts%3A+2D+Piezoelectric+Materials&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Cheng%E2%80%90Chao&rft.au=Liu%2C+Dai%E2%80%90Ming&rft.au=Zhang%2C+Ling%E2%80%90Xia&rft.date=2023-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=44&rft_id=info:doi/10.1002%2Fsmll.202303586&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202303586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon