An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, sc...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 44; pp. e2303586 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small‐molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
2D piezoelectric materials constitute a promising alternative for piezocatalysis due to their inherent advantages, such as high flexibility, large surface area, and abundant active sites. In this review, the state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are summarized. The overall goal is to inspire and accelerate the practical deployment of 2D piezoelectric materials for piezocatalytic applications. |
---|---|
AbstractList | Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small‐molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
2D piezoelectric materials constitute a promising alternative for piezocatalysis due to their inherent advantages, such as high flexibility, large surface area, and abundant active sites. In this review, the state‐of‐the‐art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are summarized. The overall goal is to inspire and accelerate the practical deployment of 2D piezoelectric materials for piezocatalytic applications. Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis. Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis. |
Author | Liu, Dai‐Ming Jin, Cheng‐Chao Zhang, Ling‐Xia |
Author_xml | – sequence: 1 givenname: Cheng‐Chao orcidid: 0000-0002-1988-5975 surname: Jin fullname: Jin, Cheng‐Chao organization: Chinese Academy of Sciences – sequence: 2 givenname: Dai‐Ming surname: Liu fullname: Liu, Dai‐Ming organization: Qingdao University of Science & Technology – sequence: 3 givenname: Ling‐Xia orcidid: 0000-0002-5012-7283 surname: Zhang fullname: Zhang, Ling‐Xia email: zhlingxia@mail.sic.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37386814$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLw0AUhQep2IduXUrAjZvUeWWSuLLUVoUUBXUdJpNJmTJJ6kyCxF_vlNQKgrg6l8t37j2cMRhUdSUBOEdwiiDE17bUeoohJpAEETsCI8QQ8VmE48FhRnAIxtZuICQI0_AEDElIIrenI3A7q7xFKc1aVWtvyUulO68uvGclP2vBG64729gbD9_1K6mlaIwS3oo30iiu7Sk4LpzIs71OwNty8Tp_8JOn-8f5LPGFe8Z85DJmLmQc5JxSinDIYiQoKTDLgrCIOQpzigmDIWSoIDkhjssYFZFkJBMFmYCr_u7W1O-ttE1aKiuk1rySdWtTHBEchCFxOgGXv9BN3ZrKpXNURAPCopg56mJPtVkp83RrVMlNl35344BpDwhTW2tkcUAQTHflp7vy00P5zkB_GYRqeKPqqjFc6b9tcW_7UFp2_zxJX1ZJ8uP9ArePlkA |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_161704 crossref_primary_10_1016_j_jece_2025_115600 crossref_primary_10_1016_j_nanoen_2024_110115 crossref_primary_10_1088_1361_665X_ada83b crossref_primary_10_1016_j_matdes_2024_112942 crossref_primary_10_1016_j_matlet_2024_136620 crossref_primary_10_1063_5_0222794 crossref_primary_10_1016_j_apsusc_2024_160694 crossref_primary_10_1039_D4QM00848K crossref_primary_10_1016_j_jwpe_2023_104312 crossref_primary_10_1103_PhysRevB_109_195429 crossref_primary_10_1016_j_ccr_2024_216234 crossref_primary_10_1002_smll_202412815 crossref_primary_10_1021_acs_nanolett_3c04959 crossref_primary_10_1021_acsami_3c16678 crossref_primary_10_1016_j_jallcom_2025_179669 crossref_primary_10_1016_j_nanoen_2023_109206 crossref_primary_10_1021_acs_inorgchem_4c05548 crossref_primary_10_1002_adfm_202314079 crossref_primary_10_1007_s10854_025_14444_4 crossref_primary_10_1557_s43577_024_00838_y crossref_primary_10_1016_j_cej_2024_158410 crossref_primary_10_1002_apj_70013 crossref_primary_10_1039_D4TA02531H crossref_primary_10_1002_smll_202408628 crossref_primary_10_1016_j_cej_2024_155823 crossref_primary_10_1021_acssuschemeng_3c06572 crossref_primary_10_1021_acssuschemeng_4c10017 crossref_primary_10_1016_j_greenca_2025_01_005 crossref_primary_10_1021_jacs_4c04385 crossref_primary_10_1016_j_surfin_2024_104380 crossref_primary_10_1039_D3EY00313B crossref_primary_10_1016_j_cej_2025_161443 crossref_primary_10_1039_D3DT02077K crossref_primary_10_1016_j_apcatb_2025_125224 crossref_primary_10_1039_D4NJ02540G crossref_primary_10_1038_s41545_024_00382_x crossref_primary_10_1016_j_ijbiomac_2024_130526 crossref_primary_10_1002_adma_202405363 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_3390_molecules30010179 crossref_primary_10_1016_j_ensm_2024_103678 crossref_primary_10_1039_D3CC05550G crossref_primary_10_1557_s43578_024_01361_1 crossref_primary_10_3390_catal15020105 crossref_primary_10_1002_adfm_202413217 crossref_primary_10_1007_s11814_024_00155_9 crossref_primary_10_1016_j_cej_2024_149885 crossref_primary_10_1002_adma_202403228 crossref_primary_10_1021_acs_biomac_4c00659 crossref_primary_10_1016_j_hazadv_2024_100546 crossref_primary_10_1088_1402_4896_ad7cdc crossref_primary_10_1016_j_nanoen_2024_110442 crossref_primary_10_1002_sus2_232 crossref_primary_10_3390_jfb16040114 crossref_primary_10_1002_smll_202500268 crossref_primary_10_1016_j_surfin_2024_105730 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_26599_NRE_2024_9120137 crossref_primary_10_1016_j_jcis_2023_12_101 crossref_primary_10_1016_j_jcis_2024_12_002 crossref_primary_10_1016_j_cej_2025_161704 crossref_primary_10_1039_D4TA00332B crossref_primary_10_3390_s23208506 crossref_primary_10_1016_j_nanoen_2024_109732 crossref_primary_10_1021_acsanm_4c00339 |
Cites_doi | 10.1007/s12274-022-4771-y 10.1016/j.apcatb.2022.122007 10.1021/jp072001k 10.1063/1.2745247 10.1007/s13738-022-02562-3 10.1111/jace.12715 10.1002/smsc.202000011 10.1016/j.apcatb.2019.118084 10.1016/j.apsusc.2021.151851 10.1016/j.nanoen.2018.11.073 10.1016/j.nanoen.2022.106993 10.1016/j.nanoen.2022.108024 10.1016/j.cej.2021.133930 10.1002/pssr.201600412 10.1021/jacs.8b07844 10.1002/aenm.201701503 10.1021/acsami.0c16039 10.1103/PhysRevLett.103.257602 10.1002/adfm.201907619 10.1016/j.materresbull.2015.02.044 10.1039/D0EN00284D 10.1021/acsnano.6b05914 10.1126/science.246.4936.1400 10.1016/j.jhazmat.2021.127440 10.1016/j.ceramint.2018.06.204 10.1016/j.apt.2020.01.031 10.3390/electronicmat3030020 10.1016/j.ultsonch.2021.105729 10.1016/j.nanoen.2017.08.042 10.1007/s12274-015-0959-8 10.1016/j.jallcom.2018.07.187 10.1021/acs.nanolett.6b05229 10.1039/C8EN00944A 10.1111/j.1551-2916.2009.03344.x 10.1039/c3ta10792b 10.1126/scirobotics.aax1594 10.1039/C6NR00972G 10.1039/C9NR07544E 10.3390/en15031162 10.1038/srep02160 10.1021/acs.chemrev.6b00558 10.1016/j.isci.2020.101095 10.1021/ar4002312 10.1063/1.2405408 10.1016/j.ceramint.2021.10.151 10.1021/acssuschemeng.1c07875 10.1002/adma.202200397 10.1038/nature13792 10.1016/j.nanoen.2022.107032 10.1016/j.jcis.2023.02.075 10.1103/PhysRevB.84.024102 10.1002/adma.202212172 10.1016/j.cclet.2020.12.019 10.1016/j.jssc.2013.07.004 10.1021/acsaem.2c01917 10.1002/aenm.202200253 10.1016/j.nanoen.2019.02.047 10.1016/j.nanoen.2021.106036 10.1126/science.271.5245.53 10.1002/pssa.2210930106 10.1021/nl404610c 10.1016/j.jclepro.2022.135002 10.1038/nature03028 10.1002/adfm.202202180 10.1016/j.apcatb.2022.121471 10.1088/1361-6641/aa660c 10.1021/acsami.1c01314 10.1002/adfm.202209365 10.1016/j.jpcs.2017.09.017 10.1002/adma.202202558 10.1039/D1NJ05579H 10.1021/acsami.1c23282 10.1002/adma.201706347 10.1021/acs.nanolett.8b03655 10.1016/j.gee.2022.10.004 10.1007/s10832-004-5130-y 10.1002/adma.201500033 10.1063/1.1391225 10.1016/j.mssp.2022.106950 10.1016/j.apcatb.2021.120929 10.1016/j.ultsonch.2019.104819 10.1016/j.apcatb.2018.02.006 10.1002/anie.202116048 10.1021/acs.langmuir.7b00935 10.1038/s41598-021-86252-9 10.1016/j.nanoen.2017.08.058 10.1016/j.ssc.2010.02.011 10.1038/s41699-018-0063-5 10.1002/adma.202101751 10.1016/j.nanoen.2019.104083 10.1016/j.apcatb.2019.03.010 10.1088/2053-1591/aaed70 10.1016/j.jhazmat.2021.126696 10.1126/science.1092508 10.1016/j.nanoen.2019.104366 10.1016/j.jallcom.2012.10.147 10.1021/acsnano.7b01908 10.1111/jace.16502 10.1016/j.apsusc.2013.06.114 10.1016/j.jeurceramsoc.2007.09.005 10.1016/j.cplett.2017.01.046 10.1039/C6EE00526H 10.1016/j.cej.2022.135173 10.1002/cssc.201702405 10.1038/ncomms5284 10.1002/adma.202300437 10.1002/adma.201905795 10.1038/s41467-020-15015-3 10.1080/00150193.2020.1791657 10.1016/j.apsusc.2022.156147 10.1063/1.123889 10.1002/cctc.202201316 10.1039/C4CS00102H 10.1039/D1NA00013F 10.1016/j.matdes.2018.02.008 10.1021/acsanm.0c02513 10.1016/j.jechem.2022.07.015 10.1021/jz3012436 10.1039/D1CS00844G 10.1016/j.pcrysgrow.2021.100522 10.1016/j.apsusc.2020.145328 10.1126/science.220.4602.1115 10.1016/j.apcatb.2020.119340 10.1038/s41467-020-20517-1 10.1021/acs.est.7b01466 10.1021/acsnano.0c06750 10.1016/j.jcis.2021.03.040 10.1016/j.nanoen.2021.106886 10.1016/j.mtphys.2017.07.001 10.1016/j.nanoen.2021.106635 10.1016/j.apmt.2019.07.015 10.1038/s41467-019-10034-1 10.1038/s41467-021-23921-3 10.1016/j.materresbull.2014.07.032 10.1016/j.nanoen.2022.107682 10.1038/s41467-019-09650-8 10.1016/j.nanoen.2021.105743 10.1016/j.jallcom.2019.152063 10.1016/j.apcatb.2020.119586 10.1021/jp200953k 10.1109/TUFFC.2006.169 10.1016/j.jcis.2023.05.040 10.1016/j.nanoen.2016.12.013 10.1016/j.mtnano.2022.100184 10.1016/j.biomaterials.2022.121816 10.1039/C6NR00546B 10.1021/acsami.0c00962 10.1016/j.apsusc.2016.07.030 10.1002/adfm.202102540 10.1039/D0QM00179A 10.1016/j.cej.2021.129000 10.1016/j.nanoen.2021.106028 10.1016/j.nanoen.2021.106527 10.1021/nl401561r 10.1021/acs.jpcc.5b02950 10.1039/C9TA06251C 10.1016/j.ces.2021.116707 10.1002/anie.201907695 10.1016/j.ceramint.2013.11.066 10.1007/s12274-015-0878-8 10.1002/adma.201505785 10.1016/j.dyepig.2022.110678 10.1002/aelm.202101131 10.1016/j.nanoen.2020.104879 10.1021/acs.jpcc.0c04700 10.1002/smll.202202507 10.1002/anie.201906181 10.1002/anie.202212397 10.1021/acsnano.5b03394 10.1016/j.mattod.2018.01.031 10.1002/adfm.202208128 10.1016/j.nanoen.2018.02.010 10.1016/j.jpcs.2020.109896 10.1126/science.1226419 10.1038/nmat1134 10.1002/cnma.202100105 10.1016/j.nanoen.2020.105305 10.1021/jp504674k 10.1016/j.cap.2016.12.012 10.1016/j.nanoen.2018.12.006 10.1016/j.apcatb.2020.119250 10.1039/C8TA03208D 10.1016/j.catcom.2019.03.023 10.1016/j.nanoen.2022.106975 10.1126/science.1141483 10.1126/science.1124005 10.1002/adma.202002875 10.1016/S1872-5805(21)60080-X 10.1002/celc.202200124 10.1016/j.ijleo.2018.08.027 10.1039/D1MA00106J 10.1021/acsnano.1c04774 10.1016/j.matchemphys.2010.08.033 10.1103/PhysRevB.83.115328 10.1039/C8EE02758G 10.1039/D1EN00022E 10.1002/ange.202014556 10.1021/jz100027t 10.1016/j.apcatb.2022.121717 10.1016/j.ceramint.2020.11.112 10.1080/09506608.2021.1915935 10.1002/anie.202103112 10.1073/pnas.2218813120 10.1016/S1872-2067(20)63769-X 10.1016/j.nanoen.2017.12.034 10.1039/D1CS00858G 10.1126/science.1102896 10.1021/acsanm.8b01206 10.1016/j.nanoen.2022.107429 10.1016/j.jclepro.2020.121125 10.1002/aelm.202201239 10.1002/aenm.201600671 10.1002/pssb.201900733 10.1021/ct200880m 10.1002/adma.201103241 10.1038/nnano.2014.309 10.1016/j.jece.2022.107838 10.1021/acsestengg.1c00296 10.1039/C8CS00254A 10.1039/C7TA07570G 10.1007/s10853-020-05053-z 10.1039/C7TA08061A 10.1016/j.nanoen.2019.04.098 10.1021/acsami.9b23351 10.1016/j.nanoen.2018.02.008 10.1039/C6CC09952A 10.1016/j.apcatb.2023.122520 10.1111/j.1551-2916.2009.03043.x 10.1039/C39920001386 10.1021/acsami.1c01407 10.1016/j.mssp.2020.105173 10.1016/j.apcatb.2020.119353 10.1039/D0EN01028F 10.1039/D3TA00715D 10.1016/j.mser.2018.08.001 10.1016/j.ijhydene.2012.04.138 10.1016/j.nanoen.2020.105351 10.1103/PhysRevB.80.224301 10.1021/acsami.9b07857 10.1016/j.nanoen.2022.107573 10.1039/C4CE00836G 10.1016/j.cej.2022.134624 10.1016/j.cap.2020.10.004 10.1021/acs.jpclett.9b03769 10.1016/j.cplett.2022.139748 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202303586 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37386814 10_1002_smll_202303586 SMLL202303586 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12004087 – fundername: National Natural Science Foundation of China grantid: 12004087 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF A00 AEUQT AFPWT NPM P4E RWI WYJ 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3736-1202b30395da444127691c43f26b57f9a17d423607061f3d33da4b64c8e63bcf3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:43:27 EDT 2025 Fri Jul 25 12:17:38 EDT 2025 Wed Feb 19 02:22:55 EST 2025 Tue Jul 01 02:54:36 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | biomedicines piezocatalysis small-molecule catalysis piezoelectricity 2D piezoelectric materials environmental remediations |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-1202b30395da444127691c43f26b57f9a17d423607061f3d33da4b64c8e63bcf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1988-5975 0000-0002-5012-7283 |
PMID | 37386814 |
PQID | 2884536896 |
PQPubID | 1046358 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2832577328 proquest_journals_2884536896 pubmed_primary_37386814 crossref_primary_10_1002_smll_202303586 crossref_citationtrail_10_1002_smll_202303586 wiley_primary_10_1002_smll_202303586_SMLL202303586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 1, 2023 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2013; 1 2021; 67 2019; 11 2019; 10 2021 2020; 86 279 2022 2022 2018 2018; 93 51 144 44 2019; 17 2023; 105 2020; 569 2021; 282 2020; 12 2020; 11 2018; 45 2018 2018 2011; 8 229 115 2018 2014; 21 5 2018; 46 2022; 576 2016 2022 2021; 9 61 15 2015 2017 2015 2017; 27 672 66 11 2018; 6 1992 2022; 19 34 2018; 2 2018 2022; 18 95 2010; 1 2018; 5 2021; 78 2009; 92 2020 2019; 1 259 2018; 1 2022; 34 1986 2021; 151 2022 2018; 10 173 2022; 32 2023; 614 2022 2017; 19 391 2012; 24 2021; 85 2022; 206 2021; 47 2019; 7 2004; 303 2021; 42 1986; 93 2006; 53 2013 2014 2015; 13 514 10 2020; 261 2023; 320 2011; 84 2012 2007; 37 111 2019 2021 2022; 61 90 48 2020; 32 2004; 306 2021 2001 2007 1999 2018 2017 2020; 21 79 90 74 767 32 509 2022; 101 2017; 53 2007; 317 2004; 432 2022 2022 2018 2016; 74 15 30 6 2020; 31 2020; 30 2019 2018; 10 11 2022; 5 1989; 246 2019 1996; 249 271 2022; 8 2018; 112 2021 2022 2022; 3 95 12 2022; 9 2021; 415 2022; 14 2022; 15 2019 2023; 102 646 2015; 119 1983 2019; 220 4 2020; 277 2020; 23 2022; 10 2014 2016 2013; 43 8 340 2023 2022 2020; 15 290 11 2021; 133 2022; 99 2021; 60 2018; 11 2009; 103 2016; 8 2016; 9 2022; 102 2022; 18 2017; 40 2017; 5 2020 2021; 117 13 2023; 35 2023; 37 2020; 61 2019; 57 2019; 56 2023; 9 2019 2020 2020; 58 12 55 2019; 59 2019; 58 2019; 125 2013; 283 2020; 124 2013 2013; 550 205 2022 2017; 61 11 2014 2009 2010; 40 92 124 2021; 36 2014 2021 2010 2020; 118 7 150 78 2020; 7 2020; 4 2021; 32 2020; 3 2021; 33 2022 2021 2021; 303 83 31 2021; 596 2019; 66 2017 2014; 2 14 2017; 33 2008 2022; 28 3 2020 2022 2023; 279 95 11 2013; 96 2014; 59 2022 2022; 18 431 2011 2009; 83 80 2017 2014 2014; 51 47 16 2020; 257 2022; 801 2022; 247 2021; 8 2018; 140 2022; 150 2021; 2 2016 2017 2017 2019 2021; 28 31 40 811 13 2023; 120 2022; 51 2022; 46 2004 2012; 3 8 2022; 317 2015; 9 2015; 8 2022; 436 2022; 313 2021; 90 2022; 435 2006; 312 2021; 15 2012; 3 2021; 12 2022; 380 2021; 11 2006; 89 2020; 75 2022 2017; 17 2017; 11 2004; 13 2019; 135 2020; 68 2019 2020; 11 77 2022 2023; 32 328 2023; 639 2022; 424 2018 2017; 47 117 2022; 421 e_1_2_8_26_3 e_1_2_8_49_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_4 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_170_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_170_3 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_76_7 e_1_2_8_76_6 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_76_5 e_1_2_8_76_4 e_1_2_8_91_2 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_30_3 e_1_2_8_76_3 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_76_1 e_1_2_8_128_3 e_1_2_8_128_2 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_52_4 e_1_2_8_106_1 e_1_2_8_52_2 e_1_2_8_106_2 e_1_2_8_52_3 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_43_3 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_43_2 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 Junger M. C. (e_1_2_8_122_1) 1986 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_2 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_112_3 e_1_2_8_135_1 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_39_3 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_146_2 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_5_3 e_1_2_8_151_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_60_1 e_1_2_8_83_1 Yan C. W. (e_1_2_8_53_1) 2023; 37 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_101_2 e_1_2_8_72_1 e_1_2_8_101_3 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_47_3 e_1_2_8_24_4 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_130_2 e_1_2_8_62_3 e_1_2_8_138_1 e_1_2_8_62_4 e_1_2_8_85_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_13_5 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_13_4 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_74_3 e_1_2_8_149_1 e_1_2_8_74_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_116_2 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_50_2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 1413 year: 2021 publication-title: Chinese J. Catal. – volume: 46 start-page: 4666 year: 2022 publication-title: New J. Chem. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 118 7 150 78 start-page: 684 836 year: 2014 2021 2010 2020 publication-title: J. Phys. Chem. C ChemNanoMat Solid State Commun. Nano Energy – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 56 start-page: 512 year: 2019 publication-title: Nano Energy – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 47 117 start-page: 6224 6225 year: 2018 2017 publication-title: Chem. Soc. Rev. Chem. Rev. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 45 start-page: 44 year: 2018 publication-title: Nano Energy – volume: 303 83 31 year: 2022 2021 2021 publication-title: Appl Catal B Nano Energy Adv. Funct. Mater. – volume: 67 start-page: 65 year: 2021 publication-title: Int. Mater. Rev. – volume: 1 start-page: 7332 year: 2013 publication-title: J. Mater. Chem. A – volume: 9 start-page: 9885 year: 2015 publication-title: ACS Nano – volume: 421 year: 2022 publication-title: J. Hazard. Mater. – volume: 99 year: 2022 publication-title: Nano Energy – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 303 start-page: 488 year: 2004 publication-title: Science – year: 1986 – volume: 12 start-page: 3508 year: 2021 publication-title: Nat. Commun. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 801 year: 2022 publication-title: Chem. Phys. Lett. – volume: 58 year: 2019 publication-title: Angew. Chem Int. Edit. – volume: 261 year: 2020 publication-title: J Clean Prod – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 432 start-page: 84 year: 2004 publication-title: Nature – volume: 8 start-page: 7343 year: 2016 publication-title: Nanoscale – volume: 15 start-page: 1162 year: 2022 publication-title: Energies – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 133 start-page: 2 year: 2021 publication-title: Angew. Chem Int. Edit. – volume: 40 92 124 start-page: 6143 1607 1065 year: 2014 2009 2010 publication-title: Ceram. Int. J. Am. Ceram. Soc. Mater. Chem. Phys. – volume: 93 start-page: 57 year: 1986 publication-title: Phys. Status Solidi A – volume: 11 start-page: 527 year: 2018 publication-title: ChemSusChem – volume: 11 year: 2019 publication-title: Nanoscale – volume: 436 year: 2022 publication-title: Chem. Eng. J. – volume: 19 391 start-page: 3649 72 year: 2022 2017 publication-title: J. Iran. Chem. Soc. Appl. Surf. Sci. – volume: 60 year: 2021 publication-title: Angew. Chem Int. Edit. – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 282 year: 2021 publication-title: Appl Catal B – volume: 51 47 16 start-page: 8229 1067 8064 year: 2017 2014 2014 publication-title: Environ. Sci. Technol. Acc. Chem. Res. CrystEngComm – volume: 7 start-page: 1704 year: 2020 publication-title: Environ. Sci.: Nano – volume: 9 61 15 start-page: 800 2532 year: 2016 2022 2021 publication-title: Nano Res. Angew. Chem Int. Edit. ACS Nano – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 135 start-page: 1 year: 2019 publication-title: Mater Sci Eng R Rep – volume: 32 328 year: 2022 2023 publication-title: Adv. Funct. Mater. Appl Catal B – volume: 15 290 11 start-page: 1228 year: 2023 2022 2020 publication-title: ChemCatChem Biomaterials J. Phys. Chem. Lett. – volume: 61 year: 2020 publication-title: Ultrason. Sonochem. – volume: 10 start-page: 3276 year: 2022 publication-title: ACS Sustainable Chem. Eng. – volume: 17 start-page: 1915 year: 2017 publication-title: Nano Lett. – volume: 6 year: 2018 publication-title: Mater. Res. Express – volume: 10 start-page: 2001 year: 2019 publication-title: Nat. Commun. – volume: 24 start-page: 210 year: 2012 publication-title: Adv. Mater. – volume: 639 start-page: 343 year: 2023 publication-title: J. Colloid Interf. Sci. – volume: 101 year: 2022 publication-title: Nano Energy – volume: 43 8 340 start-page: 6537 6904 1420 year: 2014 2016 2013 publication-title: Chem. Soc. Rev. Nanoscale Science – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 start-page: 267 year: 2014 publication-title: Mater. Res. Bull. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 247 year: 2022 publication-title: Chem. Eng. Sci. – volume: 37 year: 2023 publication-title: Etoiles Compos. Chim. Anorm. Debut Sequence Princ., Commun. Colloq. Int. Astrophys., 23rd – volume: 105 year: 2023 publication-title: Nano Energy – volume: 3 start-page: 2160 year: 2013 publication-title: Sci. Rep. – volume: 5 start-page: 2876 year: 2018 publication-title: Environ. Sci.: Nano – volume: 18 431 year: 2022 2022 publication-title: Small Chem. Eng. J. – volume: 3 8 start-page: 404 1360 year: 2004 2012 publication-title: Nat. Mater. J. Chem. Theory Comput. – volume: 9 start-page: 2463 year: 2016 publication-title: Energy Environ. Sci. – volume: 569 start-page: 122 year: 2020 publication-title: Ferroelectrics – volume: 3 year: 2020 publication-title: ACS Appl. Nano Mater. – year: 2022 publication-title: Green Energy Environ. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 8 start-page: 1376 year: 2021 publication-title: Environ. Sci.: Nano – volume: 614 year: 2023 publication-title: Appl. Surf. Sci. – volume: 112 start-page: 137 year: 2018 publication-title: J. Phys. Chem. Solids – volume: 220 4 start-page: 1115 year: 1983 2019 publication-title: Science Sci Robot – volume: 46 start-page: 372 year: 2018 publication-title: Nano Energy – volume: 18 year: 2022 publication-title: Mater. Today Nano – volume: 317 year: 2022 publication-title: Appl Catal B – volume: 312 start-page: 242 year: 2006 publication-title: Science – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – volume: 1 259 year: 2020 2019 publication-title: Small Sci. Appl Catal B – volume: 313 year: 2022 publication-title: Appl Catal B – volume: 96 start-page: 3677 year: 2013 publication-title: J. Am. Ceram. Soc. – volume: 86 279 year: 2021 2020 publication-title: Nano Energy Appl Catal B – volume: 46 start-page: 338 year: 2018 publication-title: Nano Energy – volume: 53 start-page: 3054 year: 2017 publication-title: Chem. Commun. – volume: 117 13 year: 2020 2021 publication-title: Mat. Sci. Semicon. Proc. ACS Appl. Mater. Interfaces – volume: 8 start-page: 1398 year: 2021 publication-title: Environ. Sci.: Nano – volume: 150 year: 2022 publication-title: Mat. Sci. Semicon. Proc. – volume: 277 year: 2020 publication-title: Appl Catal B – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 8 229 115 start-page: 41 7355 year: 2018 2018 2011 publication-title: Adv. Energy Mater. Appl Catal B J. Phys. Chem. C – volume: 28 31 40 811 13 start-page: 3718 575 369 year: 2016 2017 2017 2019 2021 publication-title: Adv. Mater. Nano Energy Nano Energy J. Alloy. Compd. ACS Appl. Mater. Interfaces – volume: 2 14 start-page: 6 3033 year: 2017 2014 publication-title: Mater. Today Phys. Nano Lett. – volume: 85 year: 2021 publication-title: Nano Energy – volume: 33 start-page: 6269 year: 2017 publication-title: Langmuir – volume: 21 79 90 74 767 32 509 start-page: 72 812 2534 1003 year: 2021 2001 2007 1999 2018 2017 2020 publication-title: Curr. Appl. Phys. Appl. Phys. Lett. Appl. Phys. Lett. Appl. Phys. Lett. J. Alloy. Compd. Semicond. Sci. Tech. Appl. Surf. Sci. – volume: 125 start-page: 61 year: 2019 publication-title: Catal. Commun. – volume: 246 start-page: 1400 year: 1989 publication-title: Science – volume: 102 646 start-page: 5807 159 year: 2019 2023 publication-title: J. Am. Ceram. Soc. J. Colloid Interf. Sci. – volume: 2 start-page: 101 year: 2021 publication-title: ACS ES&T Eng. – volume: 279 95 11 year: 2020 2022 2023 publication-title: Appl Catal B Nano Energy J. Mater. Chem. A – volume: 19 34 start-page: 1386 year: 1992 2022 publication-title: J Chem Soc Chem Commun Adv. Mater. – volume: 2 start-page: 2649 year: 2021 publication-title: Mater. Adv. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 57 start-page: 14 year: 2019 publication-title: Nano Energy – volume: 257 year: 2020 publication-title: Phys. Status Solidi B – volume: 75 year: 2020 publication-title: Nano Energy – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 83 80 year: 2011 2009 publication-title: Phys. Rev. B Phys. Rev. B – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 3 95 12 start-page: 1362 year: 2021 2022 2022 publication-title: Nanoscale Adv Nano Energy Adv. Energy Mater. – volume: 53 start-page: 2226 year: 2006 publication-title: IEEE Trans Ultrason Ferroelectr Freq Control – volume: 36 start-page: 810 year: 2021 publication-title: New Carbon Mater – volume: 1 start-page: 5119 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 23 year: 2020 publication-title: iScience – volume: 11 start-page: 1328 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 2871 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 318 year: 2021 publication-title: Nat. Commun. – volume: 102 year: 2022 publication-title: Nano Energy – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 51 start-page: 650 year: 2022 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 372 year: 2019 publication-title: Nano Energy – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 596 start-page: 288 year: 2021 publication-title: J. Colloid Interf. Sci. – volume: 1 start-page: 997 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 67 year: 2021 publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 550 205 start-page: 335 165 year: 2013 2013 publication-title: J. Alloy. Compd. J. Solid State Chem. – volume: 61 90 48 start-page: 550 3695 year: 2019 2021 2022 publication-title: Nano Energy Nano Energy Ceram. Int. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 206 year: 2022 publication-title: Dyes Pigments – volume: 320 year: 2023 publication-title: Appl Catal B – volume: 21 5 start-page: 611 4284 year: 2018 2014 publication-title: Mater. Today Nat. Commun. – volume: 58 12 55 year: 2019 2020 2020 publication-title: Angew. Chem Int. Edit. ACS Appl. Mater. Interfaces J. Mater. Sci. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 380 year: 2022 publication-title: J Clean Prod – volume: 13 start-page: 385 year: 2004 publication-title: J Electroceram – volume: 15 year: 2021 publication-title: ACS Nano – volume: 8 start-page: 3796 year: 2015 publication-title: Nano Res. – volume: 151 year: 2021 publication-title: J. Phys. Chem. Solids – volume: 17 start-page: 183 year: 2019 publication-title: Applied Mater. Today – volume: 4 start-page: 2096 year: 2020 publication-title: Mater. Chem. Front. – volume: 249 271 start-page: 275 53 year: 2019 1996 publication-title: Appl Catal B Science – volume: 90 year: 2021 publication-title: Nano Energy – volume: 66 year: 2019 publication-title: Nano Energy – volume: 10 173 start-page: 227 year: 2022 2018 publication-title: J. Environ. Chem. Eng. Optik – volume: 17 start-page: 661 year: 2017 publication-title: Curr. Appl. Phys. – volume: 18 95 start-page: 7372 year: 2018 2022 publication-title: Nano Lett. Nano Energy – volume: 27 672 66 11 start-page: 2150 26 156 6004 year: 2015 2017 2015 2017 publication-title: Adv. Mater. Chem. Phys. Lett. Mater. Res. Bull. ACS Nano – volume: 283 start-page: 348 year: 2013 publication-title: Appl. Surf. Sci. – volume: 32 start-page: 2317 year: 2021 publication-title: Chinese Chem. Lett. – volume: 13 514 10 start-page: 3329 470 151 year: 2013 2014 2015 publication-title: Nano Lett. Nature Nat. Nanotechnol. – volume: 424 year: 2022 publication-title: J. Hazard. Mater. – volume: 10 11 start-page: 1661 3531 year: 2019 2018 publication-title: Nat. Commun. Energy Environ. Sci. – volume: 40 start-page: 481 year: 2017 publication-title: Nano Energy – volume: 11 year: 2017 publication-title: Phys. Status Solidi RRL – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 28 3 start-page: 1105 235 year: 2008 2022 publication-title: J. Eur. Ceram. Soc. Electron. Mater. – volume: 78 year: 2021 publication-title: Ultrason. Sonochem. – volume: 576 year: 2022 publication-title: Appl. Surf. Sci. – volume: 92 start-page: 3108 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 11 start-page: 7066 year: 2021 publication-title: Sci. Rep. – volume: 11 77 year: 2019 2020 publication-title: ACS Appl. Mater. Interfaces Nano Energy – volume: 47 start-page: 7692 year: 2021 publication-title: Ceram. Int. – volume: 74 15 30 6 start-page: 149 8897 year: 2022 2022 2018 2016 publication-title: J Energy Chem Nano Res. Adv. Mater. Adv. Energy Mater. – volume: 37 111 year: 2012 2007 publication-title: Int. J. Hydrogen Energy J. Phys. Chem. B – volume: 31 start-page: 1771 year: 2020 publication-title: Adv. Powder Technol. – volume: 2 start-page: 18 year: 2018 publication-title: npj 2D Mater. Appl. – volume: 61 11 start-page: 347 year: 2022 2017 publication-title: Angew. Chem Int. Edit. ACS Nano – volume: 93 51 144 44 start-page: 3380 55 year: 2022 2022 2018 2018 publication-title: Nano Energy Chem. Soc. Rev. Mater. Des. Ceram. Int. – ident: e_1_2_8_24_2 doi: 10.1007/s12274-022-4771-y – ident: e_1_2_8_15_1 doi: 10.1016/j.apcatb.2022.122007 – ident: e_1_2_8_50_2 doi: 10.1021/jp072001k – ident: e_1_2_8_76_3 doi: 10.1063/1.2745247 – ident: e_1_2_8_49_1 doi: 10.1007/s13738-022-02562-3 – ident: e_1_2_8_3_1 doi: 10.1111/jace.12715 – ident: e_1_2_8_105_1 doi: 10.1002/smsc.202000011 – ident: e_1_2_8_105_2 doi: 10.1016/j.apcatb.2019.118084 – ident: e_1_2_8_161_1 doi: 10.1016/j.apsusc.2021.151851 – ident: e_1_2_8_40_1 doi: 10.1016/j.nanoen.2018.11.073 – ident: e_1_2_8_113_2 doi: 10.1016/j.nanoen.2022.106993 – ident: e_1_2_8_93_1 doi: 10.1016/j.nanoen.2022.108024 – ident: e_1_2_8_22_2 doi: 10.1016/j.cej.2021.133930 – ident: e_1_2_8_88_1 doi: 10.1002/pssr.201600412 – ident: e_1_2_8_2_1 doi: 10.1021/jacs.8b07844 – ident: e_1_2_8_30_1 doi: 10.1002/aenm.201701503 – ident: e_1_2_8_98_1 doi: 10.1021/acsami.0c16039 – ident: e_1_2_8_7_1 doi: 10.1103/PhysRevLett.103.257602 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.201907619 – ident: e_1_2_8_52_3 doi: 10.1016/j.materresbull.2015.02.044 – ident: e_1_2_8_137_1 doi: 10.1039/D0EN00284D – ident: e_1_2_8_51_2 doi: 10.1021/acsnano.6b05914 – ident: e_1_2_8_64_1 doi: 10.1126/science.246.4936.1400 – ident: e_1_2_8_117_1 doi: 10.1016/j.jhazmat.2021.127440 – ident: e_1_2_8_9_4 doi: 10.1016/j.ceramint.2018.06.204 – ident: e_1_2_8_107_1 doi: 10.1016/j.apt.2020.01.031 – ident: e_1_2_8_55_2 doi: 10.3390/electronicmat3030020 – ident: e_1_2_8_153_1 doi: 10.1016/j.ultsonch.2021.105729 – ident: e_1_2_8_13_3 doi: 10.1016/j.nanoen.2017.08.042 – volume: 37 year: 2023 ident: e_1_2_8_53_1 publication-title: Etoiles Compos. Chim. Anorm. Debut Sequence Princ., Commun. Colloq. Int. Astrophys., 23rd – ident: e_1_2_8_39_1 doi: 10.1007/s12274-015-0959-8 – ident: e_1_2_8_76_5 doi: 10.1016/j.jallcom.2018.07.187 – ident: e_1_2_8_87_1 doi: 10.1021/acs.nanolett.6b05229 – ident: e_1_2_8_145_1 doi: 10.1039/C8EN00944A – ident: e_1_2_8_68_1 doi: 10.1111/j.1551-2916.2009.03344.x – ident: e_1_2_8_10_1 doi: 10.1039/c3ta10792b – ident: e_1_2_8_85_2 doi: 10.1126/scirobotics.aax1594 – ident: e_1_2_8_109_1 doi: 10.1039/C6NR00972G – ident: e_1_2_8_140_1 doi: 10.1039/C9NR07544E – ident: e_1_2_8_57_1 doi: 10.3390/en15031162 – ident: e_1_2_8_126_1 doi: 10.1038/srep02160 – ident: e_1_2_8_23_2 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_8_135_1 doi: 10.1016/j.isci.2020.101095 – ident: e_1_2_8_27_2 doi: 10.1021/ar4002312 – ident: e_1_2_8_66_1 doi: 10.1063/1.2405408 – ident: e_1_2_8_128_3 doi: 10.1016/j.ceramint.2021.10.151 – ident: e_1_2_8_11_1 doi: 10.1021/acssuschemeng.1c07875 – ident: e_1_2_8_42_2 doi: 10.1002/adma.202200397 – ident: e_1_2_8_43_2 doi: 10.1038/nature13792 – ident: e_1_2_8_170_2 doi: 10.1016/j.nanoen.2022.107032 – ident: e_1_2_8_174_1 doi: 10.1016/j.jcis.2023.02.075 – ident: e_1_2_8_133_1 doi: 10.1103/PhysRevB.84.024102 – ident: e_1_2_8_156_1 doi: 10.1002/adma.202212172 – ident: e_1_2_8_143_1 doi: 10.1016/j.cclet.2020.12.019 – ident: e_1_2_8_60_2 doi: 10.1016/j.jssc.2013.07.004 – ident: e_1_2_8_63_1 doi: 10.1021/acsaem.2c01917 – ident: e_1_2_8_170_3 doi: 10.1002/aenm.202200253 – ident: e_1_2_8_121_1 doi: 10.1016/j.nanoen.2019.02.047 – ident: e_1_2_8_106_1 doi: 10.1016/j.nanoen.2021.106036 – ident: e_1_2_8_46_2 doi: 10.1126/science.271.5245.53 – ident: e_1_2_8_67_1 doi: 10.1002/pssa.2210930106 – ident: e_1_2_8_29_2 doi: 10.1021/nl404610c – ident: e_1_2_8_115_1 doi: 10.1016/j.jclepro.2022.135002 – ident: e_1_2_8_6_1 doi: 10.1038/nature03028 – ident: e_1_2_8_80_1 doi: 10.1002/adfm.202202180 – ident: e_1_2_8_131_1 doi: 10.1016/j.apcatb.2022.121471 – ident: e_1_2_8_76_6 doi: 10.1088/1361-6641/aa660c – ident: e_1_2_8_86_2 doi: 10.1021/acsami.1c01314 – ident: e_1_2_8_116_1 doi: 10.1002/adfm.202209365 – ident: e_1_2_8_71_1 doi: 10.1016/j.jpcs.2017.09.017 – ident: e_1_2_8_89_1 doi: 10.1002/adma.202202558 – ident: e_1_2_8_138_1 doi: 10.1039/D1NJ05579H – ident: e_1_2_8_141_1 doi: 10.1021/acsami.1c23282 – ident: e_1_2_8_24_3 doi: 10.1002/adma.201706347 – ident: e_1_2_8_113_1 doi: 10.1021/acs.nanolett.8b03655 – ident: e_1_2_8_172_1 doi: 10.1016/j.gee.2022.10.004 – ident: e_1_2_8_1_1 doi: 10.1007/s10832-004-5130-y – ident: e_1_2_8_52_1 doi: 10.1002/adma.201500033 – ident: e_1_2_8_76_2 doi: 10.1063/1.1391225 – ident: e_1_2_8_129_1 doi: 10.1016/j.mssp.2022.106950 – ident: e_1_2_8_47_1 doi: 10.1016/j.apcatb.2021.120929 – ident: e_1_2_8_125_1 doi: 10.1016/j.ultsonch.2019.104819 – ident: e_1_2_8_30_2 doi: 10.1016/j.apcatb.2018.02.006 – ident: e_1_2_8_39_2 doi: 10.1002/anie.202116048 – ident: e_1_2_8_75_1 doi: 10.1021/acs.langmuir.7b00935 – ident: e_1_2_8_99_1 doi: 10.1038/s41598-021-86252-9 – ident: e_1_2_8_16_1 doi: 10.1016/j.nanoen.2017.08.058 – ident: e_1_2_8_62_3 doi: 10.1016/j.ssc.2010.02.011 – ident: e_1_2_8_82_1 doi: 10.1038/s41699-018-0063-5 – ident: e_1_2_8_160_1 doi: 10.1002/adma.202101751 – ident: e_1_2_8_45_1 doi: 10.1016/j.nanoen.2019.104083 – ident: e_1_2_8_46_1 doi: 10.1016/j.apcatb.2019.03.010 – ident: e_1_2_8_142_1 doi: 10.1088/2053-1591/aaed70 – ident: e_1_2_8_95_1 doi: 10.1016/j.jhazmat.2021.126696 – ident: e_1_2_8_33_1 doi: 10.1126/science.1092508 – ident: e_1_2_8_151_1 doi: 10.1016/j.nanoen.2019.104366 – ident: e_1_2_8_60_1 doi: 10.1016/j.jallcom.2012.10.147 – ident: e_1_2_8_52_4 doi: 10.1021/acsnano.7b01908 – ident: e_1_2_8_130_1 doi: 10.1111/jace.16502 – ident: e_1_2_8_4_1 doi: 10.1016/j.apsusc.2013.06.114 – ident: e_1_2_8_55_1 doi: 10.1016/j.jeurceramsoc.2007.09.005 – ident: e_1_2_8_52_2 doi: 10.1016/j.cplett.2017.01.046 – ident: e_1_2_8_124_1 doi: 10.1039/C6EE00526H – ident: e_1_2_8_158_1 doi: 10.1016/j.cej.2022.135173 – ident: e_1_2_8_173_1 doi: 10.1002/cssc.201702405 – ident: e_1_2_8_48_2 doi: 10.1038/ncomms5284 – ident: e_1_2_8_175_1 doi: 10.1002/adma.202300437 – ident: e_1_2_8_70_1 doi: 10.1002/adma.201905795 – ident: e_1_2_8_108_1 doi: 10.1038/s41467-020-15015-3 – ident: e_1_2_8_61_1 doi: 10.1080/00150193.2020.1791657 – ident: e_1_2_8_167_1 doi: 10.1016/j.apsusc.2022.156147 – ident: e_1_2_8_76_4 doi: 10.1063/1.123889 – ident: e_1_2_8_101_1 doi: 10.1002/cctc.202201316 – ident: e_1_2_8_26_1 doi: 10.1039/C4CS00102H – ident: e_1_2_8_170_1 doi: 10.1039/D1NA00013F – ident: e_1_2_8_9_3 doi: 10.1016/j.matdes.2018.02.008 – ident: e_1_2_8_166_1 doi: 10.1021/acsanm.0c02513 – ident: e_1_2_8_24_1 doi: 10.1016/j.jechem.2022.07.015 – ident: e_1_2_8_38_1 doi: 10.1021/jz3012436 – ident: e_1_2_8_34_1 doi: 10.1039/D1CS00844G – ident: e_1_2_8_56_1 doi: 10.1016/j.pcrysgrow.2021.100522 – ident: e_1_2_8_76_7 doi: 10.1016/j.apsusc.2020.145328 – ident: e_1_2_8_85_1 doi: 10.1126/science.220.4602.1115 – ident: e_1_2_8_112_1 doi: 10.1016/j.apcatb.2020.119340 – ident: e_1_2_8_169_1 doi: 10.1038/s41467-020-20517-1 – ident: e_1_2_8_27_1 doi: 10.1021/acs.est.7b01466 – ident: e_1_2_8_39_3 doi: 10.1021/acsnano.0c06750 – ident: e_1_2_8_84_1 doi: 10.1016/j.jcis.2021.03.040 – ident: e_1_2_8_9_1 doi: 10.1016/j.nanoen.2021.106886 – ident: e_1_2_8_29_1 doi: 10.1016/j.mtphys.2017.07.001 – ident: e_1_2_8_128_2 doi: 10.1016/j.nanoen.2021.106635 – ident: e_1_2_8_127_1 doi: 10.1016/j.apmt.2019.07.015 – ident: e_1_2_8_31_1 doi: 10.1038/s41467-019-10034-1 – ident: e_1_2_8_73_1 doi: 10.1038/s41467-021-23921-3 – volume-title: Sound, structures, and their interaction year: 1986 ident: e_1_2_8_122_1 – ident: e_1_2_8_77_1 doi: 10.1016/j.materresbull.2014.07.032 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2022.107682 – ident: e_1_2_8_91_1 doi: 10.1038/s41467-019-09650-8 – ident: e_1_2_8_47_2 doi: 10.1016/j.nanoen.2021.105743 – ident: e_1_2_8_13_4 doi: 10.1016/j.jallcom.2019.152063 – ident: e_1_2_8_19_1 doi: 10.1016/j.apcatb.2020.119586 – ident: e_1_2_8_30_3 doi: 10.1021/jp200953k – ident: e_1_2_8_90_1 doi: 10.1109/TUFFC.2006.169 – ident: e_1_2_8_130_2 doi: 10.1016/j.jcis.2023.05.040 – ident: e_1_2_8_13_2 doi: 10.1016/j.nanoen.2016.12.013 – ident: e_1_2_8_79_1 doi: 10.1016/j.mtnano.2022.100184 – ident: e_1_2_8_101_2 doi: 10.1016/j.biomaterials.2022.121816 – ident: e_1_2_8_26_2 doi: 10.1039/C6NR00546B – ident: e_1_2_8_74_2 doi: 10.1021/acsami.0c00962 – ident: e_1_2_8_49_2 doi: 10.1016/j.apsusc.2016.07.030 – ident: e_1_2_8_47_3 doi: 10.1002/adfm.202102540 – ident: e_1_2_8_139_1 doi: 10.1039/D0QM00179A – ident: e_1_2_8_147_1 doi: 10.1016/j.cej.2021.129000 – ident: e_1_2_8_134_1 doi: 10.1016/j.nanoen.2021.106028 – ident: e_1_2_8_144_1 doi: 10.1016/j.nanoen.2021.106527 – ident: e_1_2_8_43_1 doi: 10.1021/nl401561r – ident: e_1_2_8_32_1 doi: 10.1021/acs.jpcc.5b02950 – ident: e_1_2_8_92_1 doi: 10.1039/C9TA06251C – ident: e_1_2_8_118_1 doi: 10.1016/j.ces.2021.116707 – ident: e_1_2_8_17_1 doi: 10.1002/anie.201907695 – ident: e_1_2_8_5_1 doi: 10.1016/j.ceramint.2013.11.066 – ident: e_1_2_8_72_1 doi: 10.1007/s12274-015-0878-8 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201505785 – ident: e_1_2_8_148_1 doi: 10.1016/j.dyepig.2022.110678 – ident: e_1_2_8_44_1 doi: 10.1002/aelm.202101131 – ident: e_1_2_8_97_1 doi: 10.1016/j.nanoen.2020.104879 – ident: e_1_2_8_18_1 doi: 10.1021/acs.jpcc.0c04700 – ident: e_1_2_8_22_1 doi: 10.1002/smll.202202507 – ident: e_1_2_8_74_1 doi: 10.1002/anie.201906181 – ident: e_1_2_8_51_1 doi: 10.1002/anie.202212397 – ident: e_1_2_8_36_1 doi: 10.1021/acsnano.5b03394 – ident: e_1_2_8_48_1 doi: 10.1016/j.mattod.2018.01.031 – ident: e_1_2_8_176_1 doi: 10.1002/adfm.202208128 – ident: e_1_2_8_114_1 doi: 10.1016/j.nanoen.2018.02.010 – ident: e_1_2_8_54_1 doi: 10.1016/j.jpcs.2020.109896 – ident: e_1_2_8_26_3 doi: 10.1126/science.1226419 – ident: e_1_2_8_58_1 doi: 10.1038/nmat1134 – ident: e_1_2_8_62_2 doi: 10.1002/cnma.202100105 – ident: e_1_2_8_146_2 doi: 10.1016/j.nanoen.2020.105305 – ident: e_1_2_8_62_1 doi: 10.1021/jp504674k – ident: e_1_2_8_100_1 doi: 10.1016/j.cap.2016.12.012 – ident: e_1_2_8_178_1 doi: 10.1016/j.nanoen.2018.12.006 – ident: e_1_2_8_171_1 doi: 10.1016/j.apcatb.2020.119250 – ident: e_1_2_8_165_1 doi: 10.1039/C8TA03208D – ident: e_1_2_8_159_1 doi: 10.1016/j.catcom.2019.03.023 – ident: e_1_2_8_112_2 doi: 10.1016/j.nanoen.2022.106975 – ident: e_1_2_8_164_1 doi: 10.1126/science.1141483 – ident: e_1_2_8_8_1 doi: 10.1126/science.1124005 – ident: e_1_2_8_162_1 doi: 10.1002/adma.202002875 – ident: e_1_2_8_28_1 doi: 10.1016/S1872-5805(21)60080-X – ident: e_1_2_8_136_1 doi: 10.1002/celc.202200124 – ident: e_1_2_8_69_2 doi: 10.1016/j.ijleo.2018.08.027 – ident: e_1_2_8_154_1 doi: 10.1039/D1MA00106J – ident: e_1_2_8_163_1 doi: 10.1021/acsnano.1c04774 – ident: e_1_2_8_5_3 doi: 10.1016/j.matchemphys.2010.08.033 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevB.83.115328 – ident: e_1_2_8_91_2 doi: 10.1039/C8EE02758G – ident: e_1_2_8_111_1 doi: 10.1039/D1EN00022E – ident: e_1_2_8_103_1 doi: 10.1002/ange.202014556 – ident: e_1_2_8_102_1 doi: 10.1021/jz100027t – ident: e_1_2_8_149_1 doi: 10.1016/j.apcatb.2022.121717 – ident: e_1_2_8_21_1 doi: 10.1016/j.ceramint.2020.11.112 – ident: e_1_2_8_35_1 doi: 10.1080/09506608.2021.1915935 – ident: e_1_2_8_110_1 doi: 10.1002/anie.202103112 – ident: e_1_2_8_168_1 doi: 10.1073/pnas.2218813120 – ident: e_1_2_8_65_1 doi: 10.1016/S1872-2067(20)63769-X – ident: e_1_2_8_104_1 doi: 10.1016/j.nanoen.2017.12.034 – ident: e_1_2_8_9_2 doi: 10.1039/D1CS00858G – ident: e_1_2_8_25_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_132_1 doi: 10.1021/acsanm.8b01206 – ident: e_1_2_8_94_1 doi: 10.1016/j.nanoen.2022.107429 – ident: e_1_2_8_150_1 doi: 10.1016/j.jclepro.2020.121125 – ident: e_1_2_8_81_1 doi: 10.1002/aelm.202201239 – ident: e_1_2_8_24_4 doi: 10.1002/aenm.201600671 – ident: e_1_2_8_59_1 doi: 10.1002/pssb.201900733 – ident: e_1_2_8_58_2 doi: 10.1021/ct200880m – ident: e_1_2_8_83_1 doi: 10.1002/adma.201103241 – ident: e_1_2_8_43_3 doi: 10.1038/nnano.2014.309 – ident: e_1_2_8_69_1 doi: 10.1016/j.jece.2022.107838 – ident: e_1_2_8_157_1 doi: 10.1021/acsestengg.1c00296 – ident: e_1_2_8_23_1 doi: 10.1039/C8CS00254A – ident: e_1_2_8_96_1 doi: 10.1039/C7TA07570G – ident: e_1_2_8_74_3 doi: 10.1007/s10853-020-05053-z – ident: e_1_2_8_123_1 doi: 10.1039/C7TA08061A – ident: e_1_2_8_128_1 doi: 10.1016/j.nanoen.2019.04.098 – ident: e_1_2_8_120_1 doi: 10.1021/acsami.9b23351 – ident: e_1_2_8_177_1 doi: 10.1016/j.nanoen.2018.02.008 – ident: e_1_2_8_41_1 doi: 10.1039/C6CC09952A – ident: e_1_2_8_116_2 doi: 10.1016/j.apcatb.2023.122520 – ident: e_1_2_8_5_2 doi: 10.1111/j.1551-2916.2009.03043.x – ident: e_1_2_8_42_1 doi: 10.1039/C39920001386 – ident: e_1_2_8_13_5 doi: 10.1021/acsami.1c01407 – ident: e_1_2_8_86_1 doi: 10.1016/j.mssp.2020.105173 – ident: e_1_2_8_106_2 doi: 10.1016/j.apcatb.2020.119353 – ident: e_1_2_8_155_1 doi: 10.1039/D0EN01028F – ident: e_1_2_8_112_3 doi: 10.1039/D3TA00715D – ident: e_1_2_8_78_1 doi: 10.1016/j.mser.2018.08.001 – ident: e_1_2_8_50_1 doi: 10.1016/j.ijhydene.2012.04.138 – ident: e_1_2_8_62_4 doi: 10.1016/j.nanoen.2020.105351 – ident: e_1_2_8_37_2 doi: 10.1103/PhysRevB.80.224301 – ident: e_1_2_8_146_1 doi: 10.1021/acsami.9b07857 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2022.107573 – ident: e_1_2_8_27_3 doi: 10.1039/C4CE00836G – ident: e_1_2_8_119_1 doi: 10.1016/j.cej.2022.134624 – ident: e_1_2_8_76_1 doi: 10.1016/j.cap.2020.10.004 – ident: e_1_2_8_101_3 doi: 10.1021/acs.jpclett.9b03769 – ident: e_1_2_8_152_1 doi: 10.1016/j.cplett.2022.139748 |
SSID | ssj0031247 |
Score | 2.6436653 |
SecondaryResourceType | review_article |
Snippet | Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2303586 |
SubjectTerms | 2D piezoelectric materials biomedicines Charged particles environmental remediations Nanoparticles Nanotechnology piezocatalysis Piezoelectricity small‐molecule catalysis Water flow Wind power |
Title | An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202303586 https://www.ncbi.nlm.nih.gov/pubmed/37386814 https://www.proquest.com/docview/2884536896 https://www.proquest.com/docview/2832577328 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wfplOqSD41G3Nba1PDnUM2UTUwd5KkqYwnJ3Y7sH9enOarm6KCPrWNqc0Tc7J-cjl-xA60yZp8kApl2lJXSqBAzISzI1iLXwWSBnk8m39O94d0NshGy6c4rf8EOWEG0RGPl5DgAuZNj5JQ9OXMSwdGAhNmA-c27BhC1DRQ8kfRUzyytVVTM5ygXhrztrYxI3l15ez0jeouYxc89TT2UBiXmm74-S5Ps1kXc2-8Dn-56820XqBS522daQttKKTbbS2wFa4gy7biQNzWCBr5FjBDGcSO_cjPZvks0DvaZZeOPjaPrICOyPl9EVm3XwXDTo3T1ddtxBgcBVpEdDnaWJpahKwSFCDm3CLB56iJMZcslYcCK8VGTjGzbDBvZhEhBg7yanyNSdSxWQPVZJJog-QY4YOn0iN40h7VLAo8DWLNQW6wmZENKkid94BoSrYyUEkYxxaXmUcQsuEZctU0Xlp_2p5OX60rM37MyziMw2x71NGuB-Y4tOy2EQWLJeIRE-mYEPMeAZkRlW0b_2g_BTwQRmHolWE8978pQ7hY7_XK-8O__LSEVqFa3sMsoYq2dtUHxs8lMmT3Oc_ADNM_4Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIAD-1IoECQkTqGttyacQCwq0CIErcQtih1HqoAU0fRAvx5P3AQKQkhwjD1WHHvGMxnb7wHsa-M0ha-Uy7VkLpOIARmF3I1iHXrcl9LP6NtaN6LRYVcPPD9NiHdhLD5EkXBDy8jWazRwTEhXPlBD-89PuHdgYmjKPTEJ00jrnf1V3RUIUtS4r4xfxXgtF6G3ctzGKqmMtx_3S9-CzfHYNXM-Fwsg827bMyePh4NUHqrhF0THf33XIsyPQlPnxOrSEkzoZBnmPgEWrsDxSeJgGguZjRzLmeH0Yue2q4e9LBH01k_7Rw45s0WWY6ernFaYWk1fhc7Fefu04Y44GFxF6xQpeqpEmp74PAqZCZ1IXfg1xWhMhOT12A9r9chEZMKsHKIW04hSIycFU54WVKqYrsFU0kv0Bjhm9fCo1CSOdI2FPPI9zWPNELGwGlFNS-DmMxCoEUA58mQ8BRZamQQ4MkExMiU4KORfLDTHj5LlfEKDkYn2A-J5jFPh-aZ6r6g2xoU7JmGiewOUoWZJQzyjEqxbRShehZBQRqNYCUg2nb_0IbhvNZvF0-ZfGu3CTKPdagbNy5vrLZjFcnsrsgxT6etAb5vwKJU7mQG8AziGA7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5iQBoNh2EbmLIGaSROoa23OpxAlIqlRWgAiVsUbxKCSdE0PcCvxy9uAx2EkIZj7GfFsd-m5_j7AH5ZHzRFonXMrWIxU4gBaTIeG2czyROlkpK-rXcujq_Z6Q2_eXWLP-BDVAU3tIzSX6OBPxhXfwENHfy5x6MDn0JTLsUXmGGiIVGv278rACnqo1dJr-KDVozIW2PYxgapT46fDEtvcs3J1LWMPZ05yMazDr-c3O0OC7Wrn_4BdPzMZ83D91FiGh0ETVqAKZsvwuwruMIl2D_IIyxiIa9RFBgzor6LLm7tU78sAz0OisFeRNqhKTDs3OqolxVBz3_Adefo6vA4HjEwxJq2KBL0NIjyM0m4yZhPnEhLJE3NqCNC8ZZLsmbL-HxMeL8hmo4aSr2cEkxLK6jSji7DdN7P7U-IvO-QVFnijG2yjJtEWu4sQ7zChqGW1iAeb0CqR_DkyJJxnwZgZZLiyqTVytRgp5J_CMAc70quj_czHRnoICVSMk6FTHz3dtXtTQvPS7Lc9ocoQ71DQzSjGqwEPahehYBQXqFYDUi5mx_MIb3sdbvV0-r_DNqCrxftTto9OT9bg2_YHK5ErsN08XdoN3xuVKjNUv2fATmcAmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Emerging+Family+of+Piezocatalysts%3A+2D+Piezoelectric+Materials&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Jin%2C+Cheng%E2%80%90Chao&rft.au=Liu%2C+Dai%E2%80%90Ming&rft.au=Zhang%2C+Ling%E2%80%90Xia&rft.date=2023-11-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=44&rft_id=info:doi/10.1002%2Fsmll.202303586&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202303586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |