Preclinical Anticancer Activity of an Electron‐Deficient Organoruthenium(II) Complex
Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt‐resistance mechanisms. Electron‐deficient organoruthenium complexes are an understudied class of compounds that exhibit u...
Saved in:
Published in | ChemMedChem Vol. 15; no. 11; pp. 982 - 987 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt‐resistance mechanisms. Electron‐deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron‐deficient organoruthenium complex [(p‐cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53−/−), and non‐small cell lung H460 cancer cell lines. It shows no cross‐resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53‐independent. In vivo evaluation in the hollow‐fibre assay across a panel of cancer cell types and subcutaneous H460 non‐small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow‐up, this work is the first preclinical study of electron‐deficient half‐sandwich complexes and highlights their promise as anticancer drug candidates.
Anticancer evaluation: Although electron‐deficient, [(p‐cymene)Ru(maleonitriledithiolate)] does not interact with the biomolecules that poison a number of organometallic compounds. This half‐sandwich complex has remarkable antiproliferative properties, and is cytotoxic to cisplatin‐sensitive and ‐resistant cell lines tested in vitro. Furthermore, some in vivo activity is exhibited in mice. |
---|---|
AbstractList | Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt‐resistance mechanisms. Electron‐deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the
in vitro
and
in vivo
anticancer properties of the electron‐deficient organoruthenium complex [(
p
‐cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116
p53
+/+ and HCT116
p53
−/−), and non‐small cell lung H460 cancer cell lines. It shows no cross‐resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable
in vitro
antiproliferative activity of this compound appears to be
p53‐
independent.
In vivo
evaluation in the hollow‐fibre assay across a panel of cancer cell types and subcutaneous H460 non‐small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive
in vitro
data are not fully corroborated by the
in vivo
follow‐up, this work is the first preclinical study of electron‐deficient half‐sandwich complexes and highlights their promise as anticancer drug candidates. Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53-/-), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates. Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt‐resistance mechanisms. Electron‐deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron‐deficient organoruthenium complex [(p‐cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53−/−), and non‐small cell lung H460 cancer cell lines. It shows no cross‐resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53‐independent. In vivo evaluation in the hollow‐fibre assay across a panel of cancer cell types and subcutaneous H460 non‐small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow‐up, this work is the first preclinical study of electron‐deficient half‐sandwich complexes and highlights their promise as anticancer drug candidates. Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53-/-), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates.Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53-/-), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates. Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt‐resistance mechanisms. Electron‐deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron‐deficient organoruthenium complex [(p‐cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53−/−), and non‐small cell lung H460 cancer cell lines. It shows no cross‐resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53‐independent. In vivo evaluation in the hollow‐fibre assay across a panel of cancer cell types and subcutaneous H460 non‐small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow‐up, this work is the first preclinical study of electron‐deficient half‐sandwich complexes and highlights their promise as anticancer drug candidates. Anticancer evaluation: Although electron‐deficient, [(p‐cymene)Ru(maleonitriledithiolate)] does not interact with the biomolecules that poison a number of organometallic compounds. This half‐sandwich complex has remarkable antiproliferative properties, and is cytotoxic to cisplatin‐sensitive and ‐resistant cell lines tested in vitro. Furthermore, some in vivo activity is exhibited in mice. |
Author | Barry, Nicolas P. E. Azmanova, Maria Pitto‐Barry, Anaïs Shnyder, Steven D. Cooper, Patricia A. Soldevila‐Barreda, Joan J. |
Author_xml | – sequence: 1 givenname: Joan J. surname: Soldevila‐Barreda fullname: Soldevila‐Barreda, Joan J. organization: University of Bradford – sequence: 2 givenname: Maria surname: Azmanova fullname: Azmanova, Maria organization: University of Bradford – sequence: 3 givenname: Anaïs surname: Pitto‐Barry fullname: Pitto‐Barry, Anaïs organization: University of Bradford – sequence: 4 givenname: Patricia A. surname: Cooper fullname: Cooper, Patricia A. organization: University of Bradford – sequence: 5 givenname: Steven D. surname: Shnyder fullname: Shnyder, Steven D. organization: University of Bradford – sequence: 6 givenname: Nicolas P. E. orcidid: 0000-0002-0388-6295 surname: Barry fullname: Barry, Nicolas P. E. email: N.Barry@Bradford.ac.uk organization: University of Bradford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32237195$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PHDEQhq2IKHy2KdFKNKS4i7921y5PC0lOIoICaC2fb5wYee3D6wWuy0_Ib8wvidEBkZAipphx8Tyjkd9dtBViAIQ-EjwlGNPPpl-aKcUUl5LNO7RDRIMnLRHt1su7ldtodxhuMOZcEPEBbTNKWUtkvYOuLxIY74Iz2lezkMsMBlI1M9ndubyuoq10qE49mJxi-PPr9wlYZxyEXJ2nHzrENOafENzYH8_nn6ou9isPD_vovdV-gIOnuYeuvpxedt8mZ-df593sbGJYy5oJwU29XNgaSrOCc9pKq5mQtaxbThvg2sgF4UsqGQCvrRaLWjfUYqkpliDZHjre7F2leDvCkFXvBgPe6wBxHBRlom6xZKQp6NEr9CaOKZTrFOVYlkuYwIU6fKLGRQ9LtUqu12mtnn-sAHwDmBSHIYFVxmWdXQw5aecVweoxGPUYjHoJpmjTV9rz5v8KciPcOw_rN2jVfT_p_rl_ASFooAA |
CitedBy_id | crossref_primary_10_1021_acs_jmedchem_3c00704 crossref_primary_10_1002_cmdc_202000672 crossref_primary_10_1002_hlca_202300064 crossref_primary_10_1016_j_jorganchem_2024_123168 crossref_primary_10_1002_anie_202303958 crossref_primary_10_1002_ange_202303958 crossref_primary_10_1002_cbic_202100641 crossref_primary_10_1039_D4DT03219E crossref_primary_10_3390_molecules25194540 crossref_primary_10_1016_j_ica_2022_120824 crossref_primary_10_2147_DDDT_S275007 crossref_primary_10_1002_cbic_202200259 |
Cites_doi | 10.1021/cr960363a 10.1038/nchem.932 10.1039/C7CC07133G 10.1021/np800767a 10.1021/om2012425 10.1039/C9CC01974J 10.1016/j.jorganchem.2015.05.011 10.1039/c3cc41143e 10.1039/C3DT52090K 10.1002/cbic.201700168 10.1016/j.ejphar.2014.07.025 10.1021/acs.jmedchem.8b00958 10.1021/acs.chemrev.8b00493 10.1101/cshperspect.a000893 10.1021/acs.chemmater.5b01853 10.1038/ncomms14860 10.1002/chem.201303341 10.1016/j.jorganchem.2013.04.049 10.1016/S0277-5387(00)83329-X 10.1002/ange.201309576 10.3390/biom2040524 10.1021/om500528p 10.1021/acs.inorgchem.6b00038 10.1021/om960718g 10.1021/acsomega.8b02154 10.1039/C3DT52584H 10.1016/j.jinorgbio.2011.09.030 10.1002/ange.201805510 10.1016/j.jorganchem.2013.09.016 10.1021/acs.inorgchem.6b01861 10.1038/sj.onc.1210086 10.1016/j.jinorgbio.2011.08.011 10.1016/j.vascn.2011.04.006 10.1021/om100246j 10.1021/ja307288s 10.1039/C4FD00098F 10.1039/C2DT32650G 10.1002/ejic.201101057 10.1039/C5CC09564F 10.1021/jm050015d 10.1002/anie.201309576 10.1073/pnas.262589799 10.1016/j.inoche.2007.07.023 10.1039/C7DT02827J 10.1021/ar9502341 10.1021/ic301770f 10.1002/anie.201805510 10.1021/acsami.8b01776 10.1038/s41570-019-0088-0 10.1371/journal.pone.0068425 10.1098/rsos.170786 10.1016/S0022-328X(00)00345-4 10.1039/c0dt01816c 10.1038/sj.onc.1206678 10.1155/2010/430939 10.1021/ja805555a 10.1021/om401035y 10.1002/asia.201500617 10.1002/cbdv.200890195 10.1039/c0dt00034e 10.1038/ncomms4851 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/cmdc.202000096 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1860-7187 |
EndPage | 987 |
ExternalDocumentID | 32237195 10_1002_cmdc_202000096 CMDC202000096 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Academy of Medical Sciences – fundername: Royal Society funderid: UF150295 – fundername: Wellcome Trust – fundername: British Heart Foundation Springboard Award funderid: SBF003\1170 – fundername: Government Department of Business, Energy and Industrial Strategy – fundername: University of Bradford – fundername: British Heart Foundation grantid: SBF003\1170 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 53G 5GY 66C 6J9 77Q 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HBH HGLYW HHZ HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O9- OIG P2W P4E PQQKQ ROL RWI SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 YZZ ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3736-1065dbf5edbff844279fa3895957426e4ac9b14d293ee45fa8b5a62f09a209e93 |
IEDL.DBID | DR2 |
ISSN | 1860-7179 1860-7187 |
IngestDate | Fri Jul 11 04:34:29 EDT 2025 Fri Jul 25 12:25:56 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Tue Jul 01 00:20:22 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Wed Jan 22 16:35:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | in vivo evaluation half-sandwich complexes metallodrugs hollow fibre assay electron-deficient |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3736-1065dbf5edbff844279fa3895957426e4ac9b14d293ee45fa8b5a62f09a209e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0388-6295 |
PMID | 32237195 |
PQID | 2409065380 |
PQPubID | 986335 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2385709316 proquest_journals_2409065380 pubmed_primary_32237195 crossref_citationtrail_10_1002_cmdc_202000096 crossref_primary_10_1002_cmdc_202000096 wiley_primary_10_1002_cmdc_202000096_CMDC202000096 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 4, 2020 |
PublicationDateYYYYMMDD | 2020-06-04 |
PublicationDate_xml | – month: 06 year: 2020 text: June 4, 2020 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemMedChem |
PublicationTitleAlternate | ChemMedChem |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 8 2012; 2012 2017; 4 2019; 55 2017; 46 2002; 99 2008; 5 2013; 8 1992; 11 2014; 175 2012; 51 2013; 19 2000; 607 2018; 3 2014; 5 2012; 134 2010; 29 2018 2018; 57 130 1995; 22 2006; 26 2011; 64 1997; 16 2019; 119 2010; 2 1998; 98 2019; 3 2010; 2010 2013; 49 2010; 39 2011; 40 2013; 42 2013; 744 2015; 10 2016; 52 2018; 61 2005; 48 2011; 3 2007; 10 2012; 106 2012; 108 2012; 31 2014; 43 2016; 55 2014; 751 2017; 53 2012; 2 2015; 27 2015; 796 2009; 72 1997; 30 2017; 18 2018; 10 2008; 130 2014; 33 2003; 22 2014; 740 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_45_2 Alberts D. S. (e_1_2_6_58_1) 1995; 22 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_14_3 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_46_2 |
References_xml | – volume: 607 start-page: 203 year: 2000 end-page: 207 publication-title: J. Organomet. Chem. – volume: 33 start-page: 289 year: 2014 end-page: 301 publication-title: Organometallics – volume: 57 130 start-page: 9799 9947 year: 2018 2018 end-page: 9804 9952 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 106 start-page: 90 year: 2012 end-page: 99 publication-title: J. Inorg. Biochem. – volume: 10 start-page: 1881 year: 2015 end-page: 1883 publication-title: Chem. Asian J. – volume: 108 start-page: 91 year: 2012 end-page: 95 publication-title: J. Inorg. Biochem. – volume: 51 start-page: 11860 year: 2012 end-page: 11872 publication-title: Inorg. Chem. – volume: 39 start-page: 8177 year: 2010 end-page: 8182 publication-title: Dalton Trans. – volume: 10 start-page: 13693 year: 2018 end-page: 13701 publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 16660 year: 2002 end-page: 16665 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1222 year: 2007 end-page: 1225 publication-title: Inorg. Chem. Commun. – volume: 5 start-page: 2140 year: 2008 end-page: 2155 publication-title: Chem. Biodiversity – volume: 27 start-page: 5100 year: 2015 end-page: 5105 publication-title: Chem. Mater. – volume: 8 year: 2013 publication-title: PLoS One – volume: 61 start-page: 9246 year: 2018 end-page: 9255 publication-title: J. Med. Chem. – volume: 119 start-page: 829 year: 2019 end-page: 869 publication-title: Chem. Rev. – volume: 40 start-page: 7817 year: 2011 end-page: 7823 publication-title: Dalton Trans. – volume: 55 start-page: 3105 year: 2016 end-page: 3116 publication-title: Inorg. Chem. – volume: 22 start-page: 5784 year: 2003 end-page: 5791 publication-title: Oncogene – volume: 751 start-page: 251 year: 2014 end-page: 260 publication-title: J. Organomet. Chem. – volume: 53 126 start-page: 2960 3004 year: 2014 2014 end-page: 2963 3007 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 98 start-page: 1313 year: 1998 end-page: 1334 publication-title: Chem. Rev. – volume: 16 start-page: 3273 year: 1997 end-page: 3281 publication-title: Organometallics – volume: 130 start-page: 15764 year: 2008 end-page: 15765 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 226 year: 2011 end-page: 232 publication-title: J. Pharmacol. Toxicol. Methods – volume: 46 start-page: 15676 year: 2017 end-page: 15683 publication-title: Dalton Trans. – volume: 3 start-page: 146 year: 2011 publication-title: Nat. Chem. – volume: 2010 year: 2010 publication-title: Met.-Based Drugs – volume: 26 start-page: 2860 year: 2006 publication-title: Oncogene – volume: 53 start-page: 12898 year: 2017 end-page: 12901 publication-title: Chem. Commun. – volume: 4 year: 2017 publication-title: R. Soc. Open Sci. – volume: 134 start-page: 20376 year: 2012 end-page: 20387 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 4161 year: 2005 end-page: 4171 publication-title: J. Med. Chem. – volume: 3 start-page: 261 year: 2019 end-page: 282 publication-title: Nat. Chem. Rev. – volume: 11 start-page: 709 year: 1992 end-page: 710 publication-title: Polyhedron – volume: 740 start-page: 364 year: 2014 end-page: 378 publication-title: Eur. J. Pharmacol. – volume: 3 start-page: 15623 year: 2018 end-page: 15627 publication-title: ACS Omega – volume: 49 start-page: 5106 year: 2013 end-page: 5131 publication-title: Chem. Commun. – volume: 42 start-page: 2580 year: 2013 end-page: 2587 publication-title: Dalton Trans. – volume: 175 start-page: 229 year: 2014 end-page: 240 publication-title: Faraday Discuss. – volume: 2 start-page: 524 year: 2012 end-page: 548 publication-title: Biomolecules – volume: 2012 start-page: 1531 year: 2012 end-page: 1535 publication-title: Eur. J. Inorg. Chem. – volume: 31 start-page: 756 year: 2012 end-page: 767 publication-title: Organometallics – volume: 33 start-page: 5670 year: 2014 end-page: 5677 publication-title: Organometallics – volume: 52 start-page: 3895 year: 2016 end-page: 3898 publication-title: Chem. Commun. – volume: 55 start-page: 11770 year: 2016 end-page: 11781 publication-title: Inorg. Chem. – volume: 2 start-page: a000893 year: 2010 end-page: a000893 publication-title: Cold Spring Harbor Perspect. Biol. – volume: 18 start-page: 1083 year: 2017 end-page: 1086 publication-title: ChemBioChem – volume: 19 start-page: 14768 year: 2013 end-page: 14772 publication-title: Chem. Eur. J. – volume: 55 start-page: 6038 year: 2019 end-page: 6041 publication-title: Chem. Commun. – volume: 43 start-page: 513 year: 2014 end-page: 526 publication-title: Dalton Trans. – volume: 5 start-page: 3851 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 14860 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 2777 year: 2010 end-page: 2782 publication-title: Organometallics – volume: 43 start-page: 1443 year: 2014 end-page: 1448 publication-title: Dalton Trans. – volume: 72 start-page: 573 year: 2009 end-page: 580 publication-title: J. Nat. Prod. – volume: 30 start-page: 97 year: 1997 end-page: 102 publication-title: Acc. Chem. Res. – volume: 22 start-page: 88 year: 1995 end-page: 90 publication-title: Semin. Oncol. – volume: 796 start-page: 17 year: 2015 end-page: 25 publication-title: J. Organomet. Chem. – volume: 744 start-page: 41 year: 2013 end-page: 48 publication-title: J. Organomet. Chem. – ident: e_1_2_6_30_2 doi: 10.1021/cr960363a – ident: e_1_2_6_19_2 doi: 10.1038/nchem.932 – ident: e_1_2_6_45_2 doi: 10.1039/C7CC07133G – ident: e_1_2_6_64_1 doi: 10.1021/np800767a – ident: e_1_2_6_28_2 doi: 10.1021/om2012425 – ident: e_1_2_6_49_2 doi: 10.1039/C9CC01974J – ident: e_1_2_6_52_1 doi: 10.1016/j.jorganchem.2015.05.011 – ident: e_1_2_6_17_2 doi: 10.1039/c3cc41143e – ident: e_1_2_6_7_2 doi: 10.1039/C3DT52090K – ident: e_1_2_6_44_1 – ident: e_1_2_6_18_2 doi: 10.1002/cbic.201700168 – ident: e_1_2_6_1_1 doi: 10.1016/j.ejphar.2014.07.025 – ident: e_1_2_6_38_2 doi: 10.1021/acs.jmedchem.8b00958 – ident: e_1_2_6_20_1 doi: 10.1021/acs.chemrev.8b00493 – ident: e_1_2_6_57_1 doi: 10.1101/cshperspect.a000893 – ident: e_1_2_6_47_2 doi: 10.1021/acs.chemmater.5b01853 – ident: e_1_2_6_3_2 doi: 10.1038/ncomms14860 – ident: e_1_2_6_15_2 doi: 10.1002/chem.201303341 – ident: e_1_2_6_16_2 doi: 10.1016/j.jorganchem.2013.04.049 – ident: e_1_2_6_32_2 doi: 10.1016/S0277-5387(00)83329-X – ident: e_1_2_6_14_3 doi: 10.1002/ange.201309576 – ident: e_1_2_6_60_1 doi: 10.3390/biom2040524 – ident: e_1_2_6_34_2 doi: 10.1021/om500528p – ident: e_1_2_6_36_2 doi: 10.1021/acs.inorgchem.6b00038 – ident: e_1_2_6_31_2 doi: 10.1021/om960718g – ident: e_1_2_6_43_2 doi: 10.1021/acsomega.8b02154 – ident: e_1_2_6_6_2 doi: 10.1039/C3DT52584H – ident: e_1_2_6_10_2 doi: 10.1016/j.jinorgbio.2011.09.030 – ident: e_1_2_6_56_2 doi: 10.1002/ange.201805510 – ident: e_1_2_6_5_2 doi: 10.1016/j.jorganchem.2013.09.016 – ident: e_1_2_6_4_2 doi: 10.1021/acs.inorgchem.6b01861 – ident: e_1_2_6_62_1 doi: 10.1038/sj.onc.1210086 – ident: e_1_2_6_8_2 doi: 10.1016/j.jinorgbio.2011.08.011 – ident: e_1_2_6_65_1 doi: 10.1016/j.vascn.2011.04.006 – ident: e_1_2_6_29_2 doi: 10.1021/om100246j – ident: e_1_2_6_23_2 doi: 10.1021/ja307288s – ident: e_1_2_6_26_1 – ident: e_1_2_6_50_1 doi: 10.1039/C4FD00098F – ident: e_1_2_6_39_1 doi: 10.1039/C2DT32650G – ident: e_1_2_6_55_1 doi: 10.1002/ejic.201101057 – ident: e_1_2_6_46_2 doi: 10.1039/C5CC09564F – ident: e_1_2_6_12_2 doi: 10.1021/jm050015d – ident: e_1_2_6_14_2 doi: 10.1002/anie.201309576 – ident: e_1_2_6_59_1 doi: 10.1073/pnas.262589799 – ident: e_1_2_6_53_1 doi: 10.1016/j.inoche.2007.07.023 – ident: e_1_2_6_40_1 doi: 10.1039/C7DT02827J – ident: e_1_2_6_27_2 doi: 10.1021/ar9502341 – ident: e_1_2_6_35_2 doi: 10.1021/ic301770f – ident: e_1_2_6_56_1 doi: 10.1002/anie.201805510 – ident: e_1_2_6_41_1 – ident: e_1_2_6_42_2 doi: 10.1021/acsami.8b01776 – ident: e_1_2_6_2_1 – ident: e_1_2_6_13_2 doi: 10.1038/s41570-019-0088-0 – ident: e_1_2_6_63_1 doi: 10.1371/journal.pone.0068425 – volume: 22 start-page: 88 year: 1995 ident: e_1_2_6_58_1 publication-title: Semin. Oncol. – ident: e_1_2_6_51_1 doi: 10.1098/rsos.170786 – ident: e_1_2_6_21_1 – ident: e_1_2_6_25_1 doi: 10.1016/S0022-328X(00)00345-4 – ident: e_1_2_6_11_2 doi: 10.1039/c0dt01816c – ident: e_1_2_6_61_1 doi: 10.1038/sj.onc.1206678 – ident: e_1_2_6_54_1 doi: 10.1155/2010/430939 – ident: e_1_2_6_24_1 doi: 10.1021/ja805555a – ident: e_1_2_6_33_2 doi: 10.1021/om401035y – ident: e_1_2_6_37_2 doi: 10.1002/asia.201500617 – ident: e_1_2_6_9_2 doi: 10.1002/cbdv.200890195 – ident: e_1_2_6_22_2 doi: 10.1039/c0dt00034e – ident: e_1_2_6_48_2 doi: 10.1038/ncomms4851 |
SSID | ssj0044818 |
Score | 2.317908 |
Snippet | Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 982 |
SubjectTerms | Animals Anticancer properties Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antitumor activity Apoptosis - drug effects Biotechnology Cancer Cell Line, Tumor Cell Proliferation - drug effects Cell Survival - drug effects Cisplatin Colon Coordination Complexes - chemical synthesis Coordination Complexes - chemistry Coordination Complexes - pharmacology Cymene Cytotoxicity Dose-Response Relationship, Drug Drug development Drug Screening Assays, Antitumor electron-deficient Electrons half-sandwich complexes hollow fibre assay Humans In vivo methods and tests in vivo evaluation Lung cancer metallodrugs Mice Molecular Structure Neoplasms, Experimental - drug therapy Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology Non-small cell lung carcinoma Organoruthenium complexes p53 Protein Platinum Reactive Oxygen Species - metabolism Ruthenium Ruthenium - chemistry Ruthenium - pharmacology Ruthenium compounds Structure-Activity Relationship Tumor cell lines Xenografts Xenotransplantation |
Title | Preclinical Anticancer Activity of an Electron‐Deficient Organoruthenium(II) Complex |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202000096 https://www.ncbi.nlm.nih.gov/pubmed/32237195 https://www.proquest.com/docview/2409065380 https://www.proquest.com/docview/2385709316 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA7iky_ex3oRQTzAao-kbR6XXUUFZREV30qSTUBcu7IHuD75E_yN_hJn2m7XVUTQl9LSpE2TzMw3aeYbQrY9qcCuKet4mkmHgXvtiMgyR1tlmrGRyvUwUPjiMjy9Yed3_O5TFH_OD1EuuKFkZPoaBVyq7tGINFQ_NpGC0M9QDnJu44YtREVXJX8UuB7ZAp8Xh64DfosYsja6_tF49XGr9A1qjiPXzPSczBA5bHS-4-ThsN9Th_rlC5_jf75qlkwXuJRW84k0RyZMOk92Gjmx9eCAXo_itLoHdIc2RpTXgwVy2wDFWcRY0mqK6-MwmTq0qvPkFLRtqUzpcZFz5_31rW6QugIsHs2iQdsd3Gmf3vcf987O9ilqqZZ5XiQ3J8fXtVOnyNjg6CAKQtDpIW8qyw0cbMyYHwkrARJxwcEFDw2TWiiPNQFjGMO4lbHiMvStK6TvCiOCJTKZtlOzQmgUMwV2E7wzFiJroPSjmGsWq4gjJZqqEGc4Yoku6Mwxq0YryYmY_QS7Mim7skJ2y_JPOZHHjyXXhxMgKQS6mwDwEUjjG7sVslXeBlHE_ysyNe0-lAkwW4AIPHjEcj5xyleB3gwiT_AK8bPh_6UNSe2iXiuvVv9SaY1M4Xm2rY2tk8lep282AED11GYmJB9EdBE8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C8QAvY9xG2QAjoQHSsuViJ_Fj1W1qYZ0q1CHeItu1JbQtRV0rsT3xE_iN-yWc41yqghASvERKYieO7XPNOd8BeB0pjXJNuyAyXAUczetAZo4Hxmk7ya3SYUSJwsOTtH_K338WTTQh5cJU-BCtw40ow_NrInBySO8vUUPNxYQwCGOv5qS34Q6V9fZW1ccWQQqND-_ii_I0DNBykQ1uYxjvr_ZflUu_KZuruqsXPkf3QTfDrmJOzvYWc71nrn9BdPyv79qA9Vo1Zd1qLz2AW7Z8CDujCtv6apeNl6lal7tsh42WqNdXj-DTCHlnnWbJuiW5yHE_zVjXVPUp2NQxVbLDuuzOzfcfB5bQK1DoMZ8QOp1RsH35ZXHxdjB4x4hRndtvj-H06HDc6wd10YbAJFmSIltPxUQ7YfHgcs7jTDqFWpGQAq3w1HJlpI74BNUMa7lwKtdCpbELpYpDaWXyBNbKaWmfAstyrlF0ooHGUwIOVHGWC8NznQlCRdMdCJolK0yNaE6FNc6LCos5Lmgqi3YqO_Cmbf-1wvL4Y8vtZgcUNU1fFqj7SELyzcMOvGpvIzXSLxZV2ukC2yRUMEAmET5is9o57auQdSZZJEUHYr_-fxlD0Rse9NqzZ__S6SXc7Y-Hx8Xx4OTDFtyj6z7KjW_D2ny2sM9Rn5rrF55ifgJX_hVX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7amDTthd1ZN7YZCbFNIpCL7diPVUtFualCMPEW2Y4tTUCKSisNnvgJ_EZ-yY6TNF2HpknjJVISOzefy3ccn-8ArEZKo1_TLogMVQHF8DqQqaOBcdrmwiodRj5ReP-Abx_TnRN28lsWf8UP0Uy4ec0o7bVX8Ivcbc5IQ8157ikI4xLl8MfwhPJQeLnuHjYEUhh7lDN8keBhgIGLnNI2hvHmfP95t3QPa85D19L39J6Dmj51teTkdGMy1hvm-g9Cx4e81gtYrIEpaVeS9BIe2eIVrA0qZuurdXI0S9S6XCdrZDDjvL56Dd8HaDnrJEvSLvwEOUrTiLRNVZ2CDB1RBdmqi-7c3dx2reeuQJdHynTQ4cgvtS9-TM6_9vvfiDdTZ_bnGzjubR11toO6ZENgkjThaNQ5y7VjFjdOUBqn0inEREwyjMG5pcpIHdEcQYa1lDklNFM8dqFUcSitTN7CQjEs7DsgqaAaHSeGZ5R72kAVp4IZKnTKPCeabkEwHbHM1HzmvqzGWVYxMceZ_5RZ8ylb8KVpf1Exefy15fJUALJaoy8zRD7S8_iKsAUrzWnURf-DRRV2OME2iS8XIJMIL7FUCU5zKzScSRpJ1oK4HP5_PEPW2e92mr33_9PpMzwddHvZXv9g9wM884fLJW50GRbGo4n9iGBqrD-V-vILGhYUDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preclinical+Anticancer+Activity+of+an+Electron%E2%80%90Deficient+Organoruthenium%28II%29+Complex&rft.jtitle=ChemMedChem&rft.au=Soldevila%E2%80%90Barreda%2C+Joan+J.&rft.au=Azmanova%2C+Maria&rft.au=Pitto%E2%80%90Barry%2C+Ana%C3%AFs&rft.au=Cooper%2C+Patricia+A.&rft.date=2020-06-04&rft.issn=1860-7179&rft.eissn=1860-7187&rft.volume=15&rft.issue=11&rft.spage=982&rft.epage=987&rft_id=info:doi/10.1002%2Fcmdc.202000096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cmdc_202000096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon |