Modular Design of Highly Stable Semiconducting Porous Coordination Polymer for Efficient Electrosynthesis of Ammonia
Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge beca...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 21; pp. e202401005 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.05.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.
A semiconductive PCP with excellent chemical and thermal stability was constructed using the “modular design” approach. The Fe‐pyNDI exhibits a well‐defined structure and shows promise as a new platform for investigating electrocatalysts for superior catalytic performance in reducing nitrate to ammonia. In‐situ X‐ray absorption spectra analysis during the reaction revealed that some of the Fe3+ present in Fe‐pyNDI underwent reduction to Fe2+, which serves as a potential active species for the nitrate reduction reaction. |
---|---|
AbstractList | Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR. Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h-1 cm-2 (14677 μg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h-1 cm-2 (14677 μg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR. Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO RR) to ammonia with a superior ammonia yield of 339.2 μmol h cm (14677 μg h mg ) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe in Fe-pyNDI was reduced in situ to Fe , which serves as the potential active species for NO RR. Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO 3 RR) to ammonia with a superior ammonia yield of 339.2 μmol h −1 cm −2 (14677 μg h −1 mg cat. −1 ) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe 3+ in Fe‐pyNDI was reduced in situ to Fe 2+ , which serves as the potential active species for NO 3 RR. Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR. A semiconductive PCP with excellent chemical and thermal stability was constructed using the “modular design” approach. The Fe‐pyNDI exhibits a well‐defined structure and shows promise as a new platform for investigating electrocatalysts for superior catalytic performance in reducing nitrate to ammonia. In‐situ X‐ray absorption spectra analysis during the reaction revealed that some of the Fe3+ present in Fe‐pyNDI underwent reduction to Fe2+, which serves as a potential active species for the nitrate reduction reaction. |
Author | Nishiyama, Yusuke Zhang, Siquan Kajiwara, Takashi Yao, Ming‐Shui Aoyama, Yoshitaka Zheng, Jia‐Jia Xue, Ziqian Otake, Ken‐ichi Kitagawa, Susumu Horike, Satoshi |
Author_xml | – sequence: 1 givenname: Ziqian surname: Xue fullname: Xue, Ziqian organization: Sun Yat-Sen University – sequence: 2 givenname: Ming‐Shui surname: Yao fullname: Yao, Ming‐Shui organization: Chinese Academy of Sciences – sequence: 3 givenname: Ken‐ichi orcidid: 0000-0002-7904-5003 surname: Otake fullname: Otake, Ken‐ichi email: ootake.kenichi.8a@kyoto-u.ac.jp organization: Kyoto University Yoshida – sequence: 4 givenname: Yusuke orcidid: 0000-0001-7136-1127 surname: Nishiyama fullname: Nishiyama, Yusuke organization: JEOL Ltd – sequence: 5 givenname: Yoshitaka surname: Aoyama fullname: Aoyama, Yoshitaka organization: JEOL Ltd – sequence: 6 givenname: Jia‐Jia surname: Zheng fullname: Zheng, Jia‐Jia organization: National Center for Nanoscience and Technology of China – sequence: 7 givenname: Siquan orcidid: 0000-0001-7057-7778 surname: Zhang fullname: Zhang, Siquan organization: Kyoto University Yoshida – sequence: 8 givenname: Takashi surname: Kajiwara fullname: Kajiwara, Takashi organization: Kyoto University Yoshida – sequence: 9 givenname: Satoshi orcidid: 0000-0001-8530-6364 surname: Horike fullname: Horike, Satoshi organization: Kyoto University Yoshida – sequence: 10 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp organization: Kyoto University Yoshida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38584128$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaZJpt10WQTfdeGr5SrG9HCbTJJA-IO1aaOSriYIspZJM8b-vJpO0EChd6cF3Dveec0qOfPBIyFtWL1ldNx-Vt7hs6obX5SlekBMmGlZB28JRuXOAqu0EOyanKd0Vvuvqs1fkGDrRcdZ0JyR_DsPkVKTnmOzO02Dopd3dupneZLV1SG9wtDr4YdLZ-h39FmKYEl2HEAfrVbbBlz83jxipCZFujLHaos9041DnGNLs823xTnvr1TgGb9Vr8tIol_DN47kgPz5tvq8vq-uvF1fr1XWloQVRGThr1HboGShgW2CoBWIDnJuOm7bvTVuDHhD10MOWtaLlILq9sm8Gw7mGBflw8L2P4eeEKcvRJo3OKY9lCwk18JIUtKKg75-hd2GKvkxXKAF9x5uS5oK8e6Sm7YiDvI92VHGWT3kWgB8AXTZPEY3UNj-klKOyTrJa7muT-9rkn9qKbPlM9uT8T0F_EPyyDuf_0HL15WrzV_sbE36qlA |
CitedBy_id | crossref_primary_10_1002_celc_202400525 crossref_primary_10_1016_j_enchem_2025_100146 crossref_primary_10_1039_D4CS00989D crossref_primary_10_1016_j_ccr_2024_216263 crossref_primary_10_1016_j_jcis_2024_11_204 |
Cites_doi | 10.1021/ja8057953 10.1016/j.jpowsour.2019.04.087 10.1038/s41467-022-28728-4 10.1021/jacs.9b01717 10.1016/j.ccr.2022.214787 10.1021/acs.chemrev.9b00766 10.1021/jacs.5b10881 10.1016/j.ccr.2023.215117 10.1038/s41467-022-35533-6 10.1021/jacs.3c00957 10.1039/C6CS00930A 10.1002/anie.202215234 10.1038/s41563-020-00847-7 10.1039/D2CS90005J 10.1073/pnas.2311149120 10.1038/s41467-021-23115-x 10.1126/science.aaw7515 10.1038/s41560-020-00709-1 10.1039/C9SC03916C 10.1038/s41929-023-00951-2 10.1039/C4CS90059F 10.1002/anie.202004535 10.1039/b903811f 10.1021/acs.inorgchem.8b02360 10.1016/j.ccr.2015.08.005 10.1039/C9QM00527G 10.1039/C8CE01264D 10.1002/adma.201704303 10.1088/0953-8984/18/22/013 10.1039/D2SC00447J 10.1021/jacs.2c03794 10.1021/acs.chemrev.2c00270 10.1021/acsenergylett.1c01350 10.1002/anie.202108095 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202401005 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38584128 10_1002_anie_202401005 ANIE202401005 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the KAKENHI Grant-in-Aid funderid: JP22H05005; JP22K05128 – fundername: International Research Fellow of JSPS (Postdoctoral Fellowships for Research in Japan (Standard) funderid: P20340 – fundername: International Research Fellow of JSPS (Postdoctoral Fellowships for Research in Japan (Standard) grantid: P20340 – fundername: the KAKENHI Grant-in-Aid grantid: JP22H05005 – fundername: the KAKENHI Grant-in-Aid grantid: JP22K05128 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-f362abd913a31b31ec5ee2344f84f799f703cdeecd93b17574358373592df44c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:33:37 EDT 2025 Fri Jul 25 12:09:51 EDT 2025 Mon Jul 21 06:02:56 EDT 2025 Sun Jul 06 05:05:23 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Wed Jan 22 17:20:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Model electrocatalyst Porous coordination polymer/Metal–organic framework Electrical conductivity In-situ XAFS Electrosynthesis ammonia |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-f362abd913a31b31ec5ee2344f84f799f703cdeecd93b17574358373592df44c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6956-9543 0000-0001-7136-1127 0000-0001-8530-6364 0000-0002-7904-5003 0000-0001-7057-7778 |
PMID | 38584128 |
PQID | 3053984214 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_3034773375 proquest_journals_3053984214 pubmed_primary_38584128 crossref_citationtrail_10_1002_anie_202401005 crossref_primary_10_1002_anie_202401005 wiley_primary_10_1002_anie_202401005_ANIE202401005 |
PublicationCentury | 2000 |
PublicationDate | May 21, 2024 |
PublicationDateYYYYMMDD | 2024-05-21 |
PublicationDate_xml | – month: 05 year: 2024 text: May 21, 2024 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 472 2021; 6 2021; 20 2023; 120 2016; 307 2020; 120 2019; 429 2023; 6 2022; 51 2019; 10 2023; 145 2017; 46 2021; 427 2023; 484 2020; 59 2006; 18 2024 2019; 141 2018; 20 2019; 364 2014; 43 2022; 122 2022; 144 2023; 62 2020; 5 2020; 4 2021; 12 2023 2022; 13 2018; 30 2016; 138 2021; 60 2009; 38 2008; 130 2018; 57 e_1_2_3_50_1 Xiong Y. (e_1_2_3_38_2) 2023 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_12_1 e_1_2_3_8_2 e_1_2_3_14_1 e_1_2_3_6_2 e_1_2_3_35_2 e_1_2_3_33_1 e_1_2_3_10_2 e_1_2_3_31_2 Wang Y. (e_1_2_3_46_2) 2024 e_1_2_3_49_1 e_1_2_3_28_2 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_24_1 e_1_2_3_47_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_43_2 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_13_1 e_1_2_3_7_1 e_1_2_3_36_1 e_1_2_3_30_2 e_1_2_3_32_2 e_1_2_3_40_1 Huang Z. H. (e_1_2_3_42_2) 2021; 427 Ninawe P. (e_1_2_3_26_2) 2023 e_1_2_3_27_2 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_48_1 e_1_2_3_25_2 e_1_2_3_44_1 e_1_2_3_21_2 |
References_xml | – volume: 364 start-page: 1091 year: 2019 publication-title: Science – volume: 484 year: 2023 publication-title: Coord. Chem. Rev. – volume: 18 start-page: 5135 year: 2006 end-page: 5146 publication-title: J. Phys. Condens. Matter – volume: 59 start-page: 15325 year: 2020 end-page: 15341 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 130 start-page: 13850 year: 2008 end-page: 13851 publication-title: J. Am. Chem. Soc. – volume: 307 start-page: 1 year: 2016 end-page: 31 publication-title: Coord. Chem. Rev. – volume: 4 start-page: 243 year: 2020 end-page: 251 publication-title: Mater. Chem. Front. – volume: 10 start-page: 10209 year: 2019 end-page: 10230 publication-title: Chem. Sci. – year: 2023 publication-title: Adv. Mater. – volume: 60 start-page: 21221 year: 2021 end-page: 21225 publication-title: Angew. Chem. Int. Ed. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 publication-title: Chem. Rev. – volume: 57 start-page: 14290 year: 2018 end-page: 14297 publication-title: Inorg. Chem. – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 20 start-page: 222 year: 2021 publication-title: Nat. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1129 year: 2022 publication-title: Nat. Commun. – volume: 6 start-page: 402 year: 2023 end-page: 414 publication-title: Nat. Catal. – volume: 46 start-page: 3242 year: 2017 end-page: 3285 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 6458 year: 2018 end-page: 6471 publication-title: CrystEngComm – volume: 472 year: 2022 publication-title: Coord. Chem. Rev. – year: 2023 publication-title: Chem. Eur. J. – volume: 13 start-page: 7899 year: 2022 publication-title: Nat. Commun. – volume: 429 start-page: 22 year: 2019 end-page: 29 publication-title: J. Power Sources – volume: 141 start-page: 6802 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 427 year: 2021 publication-title: Coord. Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 144 start-page: 13242 year: 2022 end-page: 13253 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 9665 year: 2023 end-page: 9671 publication-title: J. Am. Chem. Soc. – year: 2024 publication-title: Adv. Mater. – volume: 6 start-page: 2838 year: 2021 end-page: 2843 publication-title: ACS Energy Lett. – volume: 138 start-page: 914 year: 2016 end-page: 919 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4902 year: 2022 end-page: 4908 publication-title: Chem. Sci. – volume: 51 start-page: 793 year: 2022 end-page: 794 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5415 year: 2014 end-page: 5418 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 881 year: 2020 end-page: 890 publication-title: Nat. Energy – volume: 122 start-page: 17241 year: 2022 end-page: 17338 publication-title: Chem. Rev. – volume: 38 start-page: 1213 year: 2009 end-page: 1214 publication-title: Chem. Soc. Rev. – ident: e_1_2_3_21_2 doi: 10.1021/ja8057953 – ident: e_1_2_3_27_2 doi: 10.1016/j.jpowsour.2019.04.087 – ident: e_1_2_3_45_2 doi: 10.1038/s41467-022-28728-4 – ident: e_1_2_3_31_2 doi: 10.1021/jacs.9b01717 – ident: e_1_2_3_20_1 – ident: e_1_2_3_10_2 doi: 10.1016/j.ccr.2022.214787 – ident: e_1_2_3_8_2 doi: 10.1021/acs.chemrev.9b00766 – year: 2023 ident: e_1_2_3_38_2 publication-title: Adv. Mater. – volume: 427 year: 2021 ident: e_1_2_3_42_2 publication-title: Coord. Chem. Rev. – year: 2024 ident: e_1_2_3_46_2 publication-title: Adv. Mater. – ident: e_1_2_3_23_1 doi: 10.1021/jacs.5b10881 – ident: e_1_2_3_16_2 doi: 10.1016/j.ccr.2023.215117 – ident: e_1_2_3_39_2 doi: 10.1038/s41467-022-35533-6 – ident: e_1_2_3_19_2 doi: 10.1021/jacs.3c00957 – ident: e_1_2_3_4_2 doi: 10.1039/C6CS00930A – ident: e_1_2_3_24_1 – ident: e_1_2_3_1_1 – ident: e_1_2_3_7_1 – ident: e_1_2_3_40_1 – ident: e_1_2_3_43_2 doi: 10.1002/anie.202215234 – ident: e_1_2_3_30_2 doi: 10.1038/s41563-020-00847-7 – ident: e_1_2_3_9_2 doi: 10.1039/D2CS90005J – ident: e_1_2_3_37_2 doi: 10.1073/pnas.2311149120 – ident: e_1_2_3_47_1 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_3_49_1 doi: 10.1126/science.aaw7515 – ident: e_1_2_3_15_2 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_3_12_1 doi: 10.1039/C9SC03916C – ident: e_1_2_3_29_1 – ident: e_1_2_3_50_1 doi: 10.1038/s41929-023-00951-2 – ident: e_1_2_3_2_2 doi: 10.1039/C4CS90059F – ident: e_1_2_3_36_1 – ident: e_1_2_3_3_2 doi: 10.1002/anie.202004535 – ident: e_1_2_3_14_1 – ident: e_1_2_3_17_1 – ident: e_1_2_3_6_2 doi: 10.1039/b903811f – ident: e_1_2_3_44_1 – ident: e_1_2_3_33_1 – year: 2023 ident: e_1_2_3_26_2 publication-title: Chem. Eur. J. – ident: e_1_2_3_22_2 doi: 10.1021/acs.inorgchem.8b02360 – ident: e_1_2_3_41_1 – ident: e_1_2_3_34_2 doi: 10.1016/j.ccr.2015.08.005 – ident: e_1_2_3_25_2 doi: 10.1039/C9QM00527G – ident: e_1_2_3_28_2 doi: 10.1039/C8CE01264D – ident: e_1_2_3_18_2 doi: 10.1002/adma.201704303 – ident: e_1_2_3_48_1 doi: 10.1088/0953-8984/18/22/013 – ident: e_1_2_3_32_2 doi: 10.1039/D2SC00447J – ident: e_1_2_3_11_2 doi: 10.1021/jacs.2c03794 – ident: e_1_2_3_5_2 doi: 10.1021/acs.chemrev.2c00270 – ident: e_1_2_3_13_1 doi: 10.1021/acsenergylett.1c01350 – ident: e_1_2_3_35_2 doi: 10.1002/anie.202108095 |
SSID | ssj0028806 |
Score | 2.472778 |
Snippet | Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202401005 |
SubjectTerms | Absorption spectroscopy Ammonia Chemical reduction Columnar structure Coordination polymers Electrical conductivity Electrical resistivity Electrocatalysts Electrochemistry Electron diffraction Electron transport Electrosynthesis ammonia In-situ XAFS Iron Metal clusters Model electrocatalyst Modular design Nitrate reduction Polymers Porous coordination polymer/Metal–organic framework Pyrazole Pyrazoles Structural stability Synergistic effect |
Title | Modular Design of Highly Stable Semiconducting Porous Coordination Polymer for Efficient Electrosynthesis of Ammonia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401005 https://www.ncbi.nlm.nih.gov/pubmed/38584128 https://www.proquest.com/docview/3053984214 https://www.proquest.com/docview/3034773375 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQXuACC-xC2YKMhMQpbWM7Dx-r0qogUSHYSr1FfkWq6CaoSQ_dX78zcRIoaIUEtyS2E8ee8Xy2x98Q8s5FzqpUwNwkipIALH4eqFTrQMRq4qyMEqg9elus4uVafNpEm19O8Xt-iH7BDTWjGa9RwZWuxj9JQ_EENszvwCKFnsQUHbYQFX3t-aMYCKc_XsR5gFHoO9bGCRufFj-1Sn9AzVPk2piexROiukp7j5Pvo0OtR-b2Nz7H__mrc_K4xaV06gXpKXngimfk4awLB_ec1J9Liy6r9EPj80HLnKKPyO5IAa_qnaPf0M2-LJA_Fswh_VLuy0NFZyXMbrd-yRGe7Y43bk8BKNN5w10BJo_OfSSe6lgAGK22Fb56iuqxVRdkvZhfz5ZBG7IhMDzhUZCDPVTaypArHmoeOhM5x7gQeSryRMocBhhjnTNWcg3IBfBLlGJJyWwuhOGX5KwoC_eS0MRagJIAp40wwqaxzKWOtVExMyEkTAYk6LosMy2fOYbV2GWeiZll2JZZ35YD8r7P_8Mzedybc9hJQNZqdJXBuMhlKlgoBuRtnwx9gBssqnDQpJCHiyThPIFXvPCS038KN2AFgIEBYU3__6UO2XT1cd7fvfqXQlfkEV6jqwMLh-Ss3h_ca0BQtX7TaMkdDScSiQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3pRAKYsE4uQ23l2_Dj1ESaqEthGCVurNeB-WIoKN4kQo_Cv-Cr-oM97YVUAICakHjt6X17vzXM9-A_DaBtZksUTfJAgiDzV-7mWxUp4Ms641SRDh7CnaYhKOLuS7y-ByC340d2EcPkR74EacUctrYnA6kD68Rg2lK9jo4KFKwoImrvLErr6h11YdjQe4xW84Px6e90feOrGAp0UkAi9HqZ0pk_giE74SvtWBtVxImccyj5IkRzbQxlptEqFQv6KWDWLqmXCTS6kFjnsLblMacYLrH3xoEas4soO70CSER3nvG5zILj_cnO-mHvzNuN20lWtld3wPfjbL5GJcPh8sF-pAf_8FQfK_Wsf7cHdterOe45UHsGWLh7DTbzLePYLFWWkoKpcN6rAWVuaMwmBmK4YmuZpZ9pFuEpQFQeSixmfvy3m5rFi_xE-YulNVLJutvtg5Q1-ADWt4DtTqbOiSDVWrAu3talrR0D2SANPsMVzcyEc_ge2iLOxTYJExaC2jx6ClliYOkzxRodJZyLWPFd0OeA2NpHoN2U6ZQ2apA5vmKe1d2u5dB9627b86sJI_ttxrSC5dC60qRdEvklhyX3bgVVuNe0D_kLLC4pJiGyGjSIgIh9h1pNq-iv4xS7R3OsBrgvvLHNLeZDxsn579S6eXsDM6PztNT8eTk-dwh8opsoP7e7C9mC_tCzQYF2q_ZlEGn26alq8AImpvbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIkEvvCmBAosE4uQ23l0_9sAhykMNhagCKvVmvA9LUVO7ihOh8Kv4K_1HnbFjo4AQElIPHL0v72NmZ2Z39huA1y5wNo0l2iZBEHko8TMvjbX2ZJh2nVVBhL0nb4tJeHgi358Gp1vwo3kLU-NDtAduxBnVfk0MfmGzg5-gofQCG-07lEiY0LhVHrnVNzTaynfjAa7wG85Hwy_9Q28dV8AzIhKBl-GmnWqrfJEKXwvfmcA5LqTMYplFSmXIBcY6Z6wSGsUrCtkgppqK20xKI7DdG3BThl1FwSIGn1rAKo7cUL9nEsKjsPcNTGSXH2z2d1MM_qbbbqrKlawb3YXLZpZqF5ez_eVC75vvvwBI_k_TeA_urBVv1qs55T5sufwB3O438e4ewuJjYcknlw0qpxZWZIycYGYrhgq5njn2md4RFDkB5KK8Z8fFvFiWrF_gEKb1mSqmzVbnbs7QEmDDCpwDZTob1qGGylWO2nY5LanpHvH_NH0EJ9cy6MewnRe5ewIsshZ1ZbQXjDTSxqHKlA61SUNufMzodsBrSCQxa8B2ihsyS2qoaZ7Q2iXt2nXgbVv-ooYq-WPJvYbikvWWVSa48QsVS-7LDrxqs3EN6AYpzR1OKZYRMoqEiLCJ3ZpS21_RDbNEbacDvKK3v_Qh6U3Gw_br6b9Uegm3jgej5MN4cvQMdiiZ3Dq4vwfbi_nSPUdtcaFfVAzK4Ot1k_IVQxBuGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+Design+of+Highly+Stable+Semiconducting+Porous+Coordination+Polymer+for+Efficient+Electrosynthesis+of+Ammonia&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xue%2C+Ziqian&rft.au=Yao%2C+Ming-Shui&rft.au=Otake%2C+Ken-Ichi&rft.au=Nishiyama%2C+Yusuke&rft.date=2024-05-21&rft.eissn=1521-3773&rft.spage=e202401005&rft_id=info:doi/10.1002%2Fanie.202401005&rft_id=info%3Apmid%2F38584128&rft.externalDocID=38584128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |