Modular Design of Highly Stable Semiconducting Porous Coordination Polymer for Efficient Electrosynthesis of Ammonia

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge beca...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 21; pp. e202401005 - n/a
Main Authors Xue, Ziqian, Yao, Ming‐Shui, Otake, Ken‐ichi, Nishiyama, Yusuke, Aoyama, Yoshitaka, Zheng, Jia‐Jia, Zhang, Siquan, Kajiwara, Takashi, Horike, Satoshi, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.05.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR. A semiconductive PCP with excellent chemical and thermal stability was constructed using the “modular design” approach. The Fe‐pyNDI exhibits a well‐defined structure and shows promise as a new platform for investigating electrocatalysts for superior catalytic performance in reducing nitrate to ammonia. In‐situ X‐ray absorption spectra analysis during the reaction revealed that some of the Fe3+ present in Fe‐pyNDI underwent reduction to Fe2+, which serves as a potential active species for the nitrate reduction reaction.
AbstractList Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.
Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h-1 cm-2 (14677 μg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h-1 cm-2 (14677 μg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.
Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO RR) to ammonia with a superior ammonia yield of 339.2 μmol h  cm (14677 μg h  mg ) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe in Fe-pyNDI was reduced in situ to Fe , which serves as the potential active species for NO RR.
Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO 3 RR) to ammonia with a superior ammonia yield of 339.2 μmol h −1 cm −2 (14677 μg h −1 mg cat. −1 ) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe 3+ in Fe‐pyNDI was reduced in situ to Fe 2+ , which serves as the potential active species for NO 3 RR.
Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure–activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe‐pyNDI, which incorporates a chain‐type Fe‐pyrazole metal cluster and π‐stacking column with effective synergistic effects. The three‐dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π‐stacking column in Fe‐pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe‐pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h−1 cm−2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state‐of‐the‐art electrocatalysts. The in‐situ X‐ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe‐pyNDI can be kept, while part of the Fe3+ in Fe‐pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR. A semiconductive PCP with excellent chemical and thermal stability was constructed using the “modular design” approach. The Fe‐pyNDI exhibits a well‐defined structure and shows promise as a new platform for investigating electrocatalysts for superior catalytic performance in reducing nitrate to ammonia. In‐situ X‐ray absorption spectra analysis during the reaction revealed that some of the Fe3+ present in Fe‐pyNDI underwent reduction to Fe2+, which serves as a potential active species for the nitrate reduction reaction.
Author Nishiyama, Yusuke
Zhang, Siquan
Kajiwara, Takashi
Yao, Ming‐Shui
Aoyama, Yoshitaka
Zheng, Jia‐Jia
Xue, Ziqian
Otake, Ken‐ichi
Kitagawa, Susumu
Horike, Satoshi
Author_xml – sequence: 1
  givenname: Ziqian
  surname: Xue
  fullname: Xue, Ziqian
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Ming‐Shui
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ken‐ichi
  orcidid: 0000-0002-7904-5003
  surname: Otake
  fullname: Otake, Ken‐ichi
  email: ootake.kenichi.8a@kyoto-u.ac.jp
  organization: Kyoto University Yoshida
– sequence: 4
  givenname: Yusuke
  orcidid: 0000-0001-7136-1127
  surname: Nishiyama
  fullname: Nishiyama, Yusuke
  organization: JEOL Ltd
– sequence: 5
  givenname: Yoshitaka
  surname: Aoyama
  fullname: Aoyama, Yoshitaka
  organization: JEOL Ltd
– sequence: 6
  givenname: Jia‐Jia
  surname: Zheng
  fullname: Zheng, Jia‐Jia
  organization: National Center for Nanoscience and Technology of China
– sequence: 7
  givenname: Siquan
  orcidid: 0000-0001-7057-7778
  surname: Zhang
  fullname: Zhang, Siquan
  organization: Kyoto University Yoshida
– sequence: 8
  givenname: Takashi
  surname: Kajiwara
  fullname: Kajiwara, Takashi
  organization: Kyoto University Yoshida
– sequence: 9
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  organization: Kyoto University Yoshida
– sequence: 10
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
  organization: Kyoto University Yoshida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38584128$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaZJpt10WQTfdeGr5SrG9HCbTJJA-IO1aaOSriYIspZJM8b-vJpO0EChd6cF3Dveec0qOfPBIyFtWL1ldNx-Vt7hs6obX5SlekBMmGlZB28JRuXOAqu0EOyanKd0Vvuvqs1fkGDrRcdZ0JyR_DsPkVKTnmOzO02Dopd3dupneZLV1SG9wtDr4YdLZ-h39FmKYEl2HEAfrVbbBlz83jxipCZFujLHaos9041DnGNLs823xTnvr1TgGb9Vr8tIol_DN47kgPz5tvq8vq-uvF1fr1XWloQVRGThr1HboGShgW2CoBWIDnJuOm7bvTVuDHhD10MOWtaLlILq9sm8Gw7mGBflw8L2P4eeEKcvRJo3OKY9lCwk18JIUtKKg75-hd2GKvkxXKAF9x5uS5oK8e6Sm7YiDvI92VHGWT3kWgB8AXTZPEY3UNj-klKOyTrJa7muT-9rkn9qKbPlM9uT8T0F_EPyyDuf_0HL15WrzV_sbE36qlA
CitedBy_id crossref_primary_10_1002_celc_202400525
crossref_primary_10_1016_j_enchem_2025_100146
crossref_primary_10_1039_D4CS00989D
crossref_primary_10_1016_j_ccr_2024_216263
crossref_primary_10_1016_j_jcis_2024_11_204
Cites_doi 10.1021/ja8057953
10.1016/j.jpowsour.2019.04.087
10.1038/s41467-022-28728-4
10.1021/jacs.9b01717
10.1016/j.ccr.2022.214787
10.1021/acs.chemrev.9b00766
10.1021/jacs.5b10881
10.1016/j.ccr.2023.215117
10.1038/s41467-022-35533-6
10.1021/jacs.3c00957
10.1039/C6CS00930A
10.1002/anie.202215234
10.1038/s41563-020-00847-7
10.1039/D2CS90005J
10.1073/pnas.2311149120
10.1038/s41467-021-23115-x
10.1126/science.aaw7515
10.1038/s41560-020-00709-1
10.1039/C9SC03916C
10.1038/s41929-023-00951-2
10.1039/C4CS90059F
10.1002/anie.202004535
10.1039/b903811f
10.1021/acs.inorgchem.8b02360
10.1016/j.ccr.2015.08.005
10.1039/C9QM00527G
10.1039/C8CE01264D
10.1002/adma.201704303
10.1088/0953-8984/18/22/013
10.1039/D2SC00447J
10.1021/jacs.2c03794
10.1021/acs.chemrev.2c00270
10.1021/acsenergylett.1c01350
10.1002/anie.202108095
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202401005
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38584128
10_1002_anie_202401005
ANIE202401005
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the KAKENHI Grant-in-Aid
  funderid: JP22H05005; JP22K05128
– fundername: International Research Fellow of JSPS (Postdoctoral Fellowships for Research in Japan (Standard)
  funderid: P20340
– fundername: International Research Fellow of JSPS (Postdoctoral Fellowships for Research in Japan (Standard)
  grantid: P20340
– fundername: the KAKENHI Grant-in-Aid
  grantid: JP22H05005
– fundername: the KAKENHI Grant-in-Aid
  grantid: JP22K05128
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-f362abd913a31b31ec5ee2344f84f799f703cdeecd93b17574358373592df44c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:33:37 EDT 2025
Fri Jul 25 12:09:51 EDT 2025
Mon Jul 21 06:02:56 EDT 2025
Sun Jul 06 05:05:23 EDT 2025
Thu Apr 24 23:07:52 EDT 2025
Wed Jan 22 17:20:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Model electrocatalyst
Porous coordination polymer/Metal–organic framework
Electrical conductivity
In-situ XAFS
Electrosynthesis ammonia
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-f362abd913a31b31ec5ee2344f84f799f703cdeecd93b17574358373592df44c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6956-9543
0000-0001-7136-1127
0000-0001-8530-6364
0000-0002-7904-5003
0000-0001-7057-7778
PMID 38584128
PQID 3053984214
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_3034773375
proquest_journals_3053984214
pubmed_primary_38584128
crossref_citationtrail_10_1002_anie_202401005
crossref_primary_10_1002_anie_202401005
wiley_primary_10_1002_anie_202401005_ANIE202401005
PublicationCentury 2000
PublicationDate May 21, 2024
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: May 21, 2024
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 472
2021; 6
2021; 20
2023; 120
2016; 307
2020; 120
2019; 429
2023; 6
2022; 51
2019; 10
2023; 145
2017; 46
2021; 427
2023; 484
2020; 59
2006; 18
2024
2019; 141
2018; 20
2019; 364
2014; 43
2022; 122
2022; 144
2023; 62
2020; 5
2020; 4
2021; 12
2023
2022; 13
2018; 30
2016; 138
2021; 60
2009; 38
2008; 130
2018; 57
e_1_2_3_50_1
Xiong Y. (e_1_2_3_38_2) 2023
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_12_1
e_1_2_3_8_2
e_1_2_3_14_1
e_1_2_3_6_2
e_1_2_3_35_2
e_1_2_3_33_1
e_1_2_3_10_2
e_1_2_3_31_2
Wang Y. (e_1_2_3_46_2) 2024
e_1_2_3_49_1
e_1_2_3_28_2
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_24_1
e_1_2_3_47_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_43_2
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_17_1
e_1_2_3_3_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_13_1
e_1_2_3_7_1
e_1_2_3_36_1
e_1_2_3_30_2
e_1_2_3_32_2
e_1_2_3_40_1
Huang Z. H. (e_1_2_3_42_2) 2021; 427
Ninawe P. (e_1_2_3_26_2) 2023
e_1_2_3_27_2
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_48_1
e_1_2_3_25_2
e_1_2_3_44_1
e_1_2_3_21_2
References_xml – volume: 364
  start-page: 1091
  year: 2019
  publication-title: Science
– volume: 484
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 18
  start-page: 5135
  year: 2006
  end-page: 5146
  publication-title: J. Phys. Condens. Matter
– volume: 59
  start-page: 15325
  year: 2020
  end-page: 15341
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 130
  start-page: 13850
  year: 2008
  end-page: 13851
  publication-title: J. Am. Chem. Soc.
– volume: 307
  start-page: 1
  year: 2016
  end-page: 31
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 243
  year: 2020
  end-page: 251
  publication-title: Mater. Chem. Front.
– volume: 10
  start-page: 10209
  year: 2019
  end-page: 10230
  publication-title: Chem. Sci.
– year: 2023
  publication-title: Adv. Mater.
– volume: 60
  start-page: 21221
  year: 2021
  end-page: 21225
  publication-title: Angew. Chem. Int. Ed.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  publication-title: Chem. Rev.
– volume: 57
  start-page: 14290
  year: 2018
  end-page: 14297
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 20
  start-page: 222
  year: 2021
  publication-title: Nat. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1129
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  start-page: 402
  year: 2023
  end-page: 414
  publication-title: Nat. Catal.
– volume: 46
  start-page: 3242
  year: 2017
  end-page: 3285
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 6458
  year: 2018
  end-page: 6471
  publication-title: CrystEngComm
– volume: 472
  year: 2022
  publication-title: Coord. Chem. Rev.
– year: 2023
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 7899
  year: 2022
  publication-title: Nat. Commun.
– volume: 429
  start-page: 22
  year: 2019
  end-page: 29
  publication-title: J. Power Sources
– volume: 141
  start-page: 6802
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 427
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 144
  start-page: 13242
  year: 2022
  end-page: 13253
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 9665
  year: 2023
  end-page: 9671
  publication-title: J. Am. Chem. Soc.
– year: 2024
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2838
  year: 2021
  end-page: 2843
  publication-title: ACS Energy Lett.
– volume: 138
  start-page: 914
  year: 2016
  end-page: 919
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4902
  year: 2022
  end-page: 4908
  publication-title: Chem. Sci.
– volume: 51
  start-page: 793
  year: 2022
  end-page: 794
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 5415
  year: 2014
  end-page: 5418
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 881
  year: 2020
  end-page: 890
  publication-title: Nat. Energy
– volume: 122
  start-page: 17241
  year: 2022
  end-page: 17338
  publication-title: Chem. Rev.
– volume: 38
  start-page: 1213
  year: 2009
  end-page: 1214
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_3_21_2
  doi: 10.1021/ja8057953
– ident: e_1_2_3_27_2
  doi: 10.1016/j.jpowsour.2019.04.087
– ident: e_1_2_3_45_2
  doi: 10.1038/s41467-022-28728-4
– ident: e_1_2_3_31_2
  doi: 10.1021/jacs.9b01717
– ident: e_1_2_3_20_1
– ident: e_1_2_3_10_2
  doi: 10.1016/j.ccr.2022.214787
– ident: e_1_2_3_8_2
  doi: 10.1021/acs.chemrev.9b00766
– year: 2023
  ident: e_1_2_3_38_2
  publication-title: Adv. Mater.
– volume: 427
  year: 2021
  ident: e_1_2_3_42_2
  publication-title: Coord. Chem. Rev.
– year: 2024
  ident: e_1_2_3_46_2
  publication-title: Adv. Mater.
– ident: e_1_2_3_23_1
  doi: 10.1021/jacs.5b10881
– ident: e_1_2_3_16_2
  doi: 10.1016/j.ccr.2023.215117
– ident: e_1_2_3_39_2
  doi: 10.1038/s41467-022-35533-6
– ident: e_1_2_3_19_2
  doi: 10.1021/jacs.3c00957
– ident: e_1_2_3_4_2
  doi: 10.1039/C6CS00930A
– ident: e_1_2_3_24_1
– ident: e_1_2_3_1_1
– ident: e_1_2_3_7_1
– ident: e_1_2_3_40_1
– ident: e_1_2_3_43_2
  doi: 10.1002/anie.202215234
– ident: e_1_2_3_30_2
  doi: 10.1038/s41563-020-00847-7
– ident: e_1_2_3_9_2
  doi: 10.1039/D2CS90005J
– ident: e_1_2_3_37_2
  doi: 10.1073/pnas.2311149120
– ident: e_1_2_3_47_1
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_3_49_1
  doi: 10.1126/science.aaw7515
– ident: e_1_2_3_15_2
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_3_12_1
  doi: 10.1039/C9SC03916C
– ident: e_1_2_3_29_1
– ident: e_1_2_3_50_1
  doi: 10.1038/s41929-023-00951-2
– ident: e_1_2_3_2_2
  doi: 10.1039/C4CS90059F
– ident: e_1_2_3_36_1
– ident: e_1_2_3_3_2
  doi: 10.1002/anie.202004535
– ident: e_1_2_3_14_1
– ident: e_1_2_3_17_1
– ident: e_1_2_3_6_2
  doi: 10.1039/b903811f
– ident: e_1_2_3_44_1
– ident: e_1_2_3_33_1
– year: 2023
  ident: e_1_2_3_26_2
  publication-title: Chem. Eur. J.
– ident: e_1_2_3_22_2
  doi: 10.1021/acs.inorgchem.8b02360
– ident: e_1_2_3_41_1
– ident: e_1_2_3_34_2
  doi: 10.1016/j.ccr.2015.08.005
– ident: e_1_2_3_25_2
  doi: 10.1039/C9QM00527G
– ident: e_1_2_3_28_2
  doi: 10.1039/C8CE01264D
– ident: e_1_2_3_18_2
  doi: 10.1002/adma.201704303
– ident: e_1_2_3_48_1
  doi: 10.1088/0953-8984/18/22/013
– ident: e_1_2_3_32_2
  doi: 10.1039/D2SC00447J
– ident: e_1_2_3_11_2
  doi: 10.1021/jacs.2c03794
– ident: e_1_2_3_5_2
  doi: 10.1021/acs.chemrev.2c00270
– ident: e_1_2_3_13_1
  doi: 10.1021/acsenergylett.1c01350
– ident: e_1_2_3_35_2
  doi: 10.1002/anie.202108095
SSID ssj0028806
Score 2.472778
Snippet Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202401005
SubjectTerms Absorption spectroscopy
Ammonia
Chemical reduction
Columnar structure
Coordination polymers
Electrical conductivity
Electrical resistivity
Electrocatalysts
Electrochemistry
Electron diffraction
Electron transport
Electrosynthesis ammonia
In-situ XAFS
Iron
Metal clusters
Model electrocatalyst
Modular design
Nitrate reduction
Polymers
Porous coordination polymer/Metal–organic framework
Pyrazole
Pyrazoles
Structural stability
Synergistic effect
Title Modular Design of Highly Stable Semiconducting Porous Coordination Polymer for Efficient Electrosynthesis of Ammonia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401005
https://www.ncbi.nlm.nih.gov/pubmed/38584128
https://www.proquest.com/docview/3053984214
https://www.proquest.com/docview/3034773375
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQXuACC-xC2YKMhMQpbWM7Dx-r0qogUSHYSr1FfkWq6CaoSQ_dX78zcRIoaIUEtyS2E8ee8Xy2x98Q8s5FzqpUwNwkipIALH4eqFTrQMRq4qyMEqg9elus4uVafNpEm19O8Xt-iH7BDTWjGa9RwZWuxj9JQ_EENszvwCKFnsQUHbYQFX3t-aMYCKc_XsR5gFHoO9bGCRufFj-1Sn9AzVPk2piexROiukp7j5Pvo0OtR-b2Nz7H__mrc_K4xaV06gXpKXngimfk4awLB_ec1J9Liy6r9EPj80HLnKKPyO5IAa_qnaPf0M2-LJA_Fswh_VLuy0NFZyXMbrd-yRGe7Y43bk8BKNN5w10BJo_OfSSe6lgAGK22Fb56iuqxVRdkvZhfz5ZBG7IhMDzhUZCDPVTaypArHmoeOhM5x7gQeSryRMocBhhjnTNWcg3IBfBLlGJJyWwuhOGX5KwoC_eS0MRagJIAp40wwqaxzKWOtVExMyEkTAYk6LosMy2fOYbV2GWeiZll2JZZ35YD8r7P_8Mzedybc9hJQNZqdJXBuMhlKlgoBuRtnwx9gBssqnDQpJCHiyThPIFXvPCS038KN2AFgIEBYU3__6UO2XT1cd7fvfqXQlfkEV6jqwMLh-Ss3h_ca0BQtX7TaMkdDScSiQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcigX3pRAKYsE4uQ23l2_Dj1ESaqEthGCVurNeB-WIoKN4kQo_Cv-Cr-oM97YVUAICakHjt6X17vzXM9-A_DaBtZksUTfJAgiDzV-7mWxUp4Ms641SRDh7CnaYhKOLuS7y-ByC340d2EcPkR74EacUctrYnA6kD68Rg2lK9jo4KFKwoImrvLErr6h11YdjQe4xW84Px6e90feOrGAp0UkAi9HqZ0pk_giE74SvtWBtVxImccyj5IkRzbQxlptEqFQv6KWDWLqmXCTS6kFjnsLblMacYLrH3xoEas4soO70CSER3nvG5zILj_cnO-mHvzNuN20lWtld3wPfjbL5GJcPh8sF-pAf_8FQfK_Wsf7cHdterOe45UHsGWLh7DTbzLePYLFWWkoKpcN6rAWVuaMwmBmK4YmuZpZ9pFuEpQFQeSixmfvy3m5rFi_xE-YulNVLJutvtg5Q1-ADWt4DtTqbOiSDVWrAu3talrR0D2SANPsMVzcyEc_ge2iLOxTYJExaC2jx6ClliYOkzxRodJZyLWPFd0OeA2NpHoN2U6ZQ2apA5vmKe1d2u5dB9627b86sJI_ttxrSC5dC60qRdEvklhyX3bgVVuNe0D_kLLC4pJiGyGjSIgIh9h1pNq-iv4xS7R3OsBrgvvLHNLeZDxsn579S6eXsDM6PztNT8eTk-dwh8opsoP7e7C9mC_tCzQYF2q_ZlEGn26alq8AImpvbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIkEvvCmBAosE4uQ23l0_9sAhykMNhagCKvVmvA9LUVO7ihOh8Kv4K_1HnbFjo4AQElIPHL0v72NmZ2Z39huA1y5wNo0l2iZBEHko8TMvjbX2ZJh2nVVBhL0nb4tJeHgi358Gp1vwo3kLU-NDtAduxBnVfk0MfmGzg5-gofQCG-07lEiY0LhVHrnVNzTaynfjAa7wG85Hwy_9Q28dV8AzIhKBl-GmnWqrfJEKXwvfmcA5LqTMYplFSmXIBcY6Z6wSGsUrCtkgppqK20xKI7DdG3BThl1FwSIGn1rAKo7cUL9nEsKjsPcNTGSXH2z2d1MM_qbbbqrKlawb3YXLZpZqF5ez_eVC75vvvwBI_k_TeA_urBVv1qs55T5sufwB3O438e4ewuJjYcknlw0qpxZWZIycYGYrhgq5njn2md4RFDkB5KK8Z8fFvFiWrF_gEKb1mSqmzVbnbs7QEmDDCpwDZTob1qGGylWO2nY5LanpHvH_NH0EJ9cy6MewnRe5ewIsshZ1ZbQXjDTSxqHKlA61SUNufMzodsBrSCQxa8B2ihsyS2qoaZ7Q2iXt2nXgbVv-ooYq-WPJvYbikvWWVSa48QsVS-7LDrxqs3EN6AYpzR1OKZYRMoqEiLCJ3ZpS21_RDbNEbacDvKK3v_Qh6U3Gw_br6b9Uegm3jgej5MN4cvQMdiiZ3Dq4vwfbi_nSPUdtcaFfVAzK4Ot1k_IVQxBuGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+Design+of+Highly+Stable+Semiconducting+Porous+Coordination+Polymer+for+Efficient+Electrosynthesis+of+Ammonia&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xue%2C+Ziqian&rft.au=Yao%2C+Ming-Shui&rft.au=Otake%2C+Ken-Ichi&rft.au=Nishiyama%2C+Yusuke&rft.date=2024-05-21&rft.eissn=1521-3773&rft.spage=e202401005&rft_id=info:doi/10.1002%2Fanie.202401005&rft_id=info%3Apmid%2F38584128&rft.externalDocID=38584128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon