Pressure‐Tuned Multicolor Emission of 2D Lead Halide Perovskites with Ultrahigh Color Purity
The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of h...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 12; pp. e202218675 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
13.03.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing.
Wide‐range and ultrapure emissions are achieved in 2D lead halide perovskites (LHPs) by combined chemical pressure from halogen doping/substitution and physical pressure from hydrostatic compression. This work demonstrates precise emission tuning and effective color regulation of 2D LHPs by pressure engineering, which would open a new pathway for developing ultrapure emitters and highly sensitive pressure sensors. |
---|---|
AbstractList | The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA] 2 PbBr 4−4 x I 4 x (MeOPEA=4‐methoxyphenethylammonium; x =0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing. The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing. The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing. The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing. Wide‐range and ultrapure emissions are achieved in 2D lead halide perovskites (LHPs) by combined chemical pressure from halogen doping/substitution and physical pressure from hydrostatic compression. This work demonstrates precise emission tuning and effective color regulation of 2D LHPs by pressure engineering, which would open a new pathway for developing ultrapure emitters and highly sensitive pressure sensors. The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA] PbBr I (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing. |
Author | Li, Zhi‐Gang Fan, Jia‐Hui Yao, Zhao‐Quan Qin, Yan Wu, Xiang Li, Wei Bu, Xian‐He Li, Xiang Song, Haipeng Gao, Fei‐Fei |
Author_xml | – sequence: 1 givenname: Fei‐Fei orcidid: 0000-0002-6900-817X surname: Gao fullname: Gao, Fei‐Fei organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 2 givenname: Haipeng surname: Song fullname: Song, Haipeng organization: China University of Geosciences (Wuhan) – sequence: 3 givenname: Zhi‐Gang surname: Li fullname: Li, Zhi‐Gang organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 4 givenname: Yan orcidid: 0000-0002-6187-601X surname: Qin fullname: Qin, Yan email: qinyan@ncu.edu.cn organization: Nanchang University – sequence: 5 givenname: Xiang surname: Li fullname: Li, Xiang organization: Universität Münster – sequence: 6 givenname: Zhao‐Quan surname: Yao fullname: Yao, Zhao‐Quan organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 7 givenname: Jia‐Hui surname: Fan fullname: Fan, Jia‐Hui organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 8 givenname: Xiang surname: Wu fullname: Wu, Xiang organization: China University of Geosciences (Wuhan) – sequence: 9 givenname: Wei orcidid: 0000-0002-5277-6850 surname: Li fullname: Li, Wei email: wl276@nankai.edu.cn organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry – sequence: 10 givenname: Xian‐He orcidid: 0000-0002-2646-7974 surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36656542$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWEzwXc7yyoEWilAFu0Wy-M5Ji6TcbFnqLLjEXhGngSXtCBVQqx8ZH3f0dH_H6ODIQ2A0HNKZpQQ9toNEWaMMEaN0vIROqKS0YZrzQ_qLDhvtJH0EB2XclV5Y4h6gg65UlJJwY7Qp3WGUqYMP7__uJgG6PD7qR-jT33KeLmNpcQ04BQwe4NX4Dp85vrYAV5DTt_KlzhCwTdx3ODLfsxuEz9v8OK3u55yHHdP0ePg-gLP7t4TdPl2ebE4a1Yf350vTleN55rLJhAqqHTSMKmdMD4wGVpNeSuAGNW22hHfEVK_GJ8HSYJmRnNtWm3A-wD8BL3a773O6esEZbT1dA997wZIU7FMK03VXAlW0ZcP0Ks05aFeVylTExJCmkq9uKOmdgudvc5x6_LO3idXAbEHfE6lZAjWx9GNNa2aQ-wtJfa2IHtbkP1TUNVmD7T7zf8U5nvhJvaw-w9tTz-cL_-6vwDEUaL4 |
CitedBy_id | crossref_primary_10_1002_anie_202411298 crossref_primary_10_1002_anie_202500027 crossref_primary_10_1021_acs_chemmater_4c01671 crossref_primary_10_1039_D4DT03416C crossref_primary_10_1021_acs_inorgchem_3c00571 crossref_primary_10_1039_D3TC04393B crossref_primary_10_1002_cjoc_202401020 crossref_primary_10_1002_smtd_202301662 crossref_primary_10_1002_lpor_202300565 crossref_primary_10_1039_D4CP01142B crossref_primary_10_1021_acsnano_3c09756 crossref_primary_10_1063_5_0235038 crossref_primary_10_1002_ange_202411298 crossref_primary_10_1039_D3QI01723K crossref_primary_10_1039_D3TC04505F crossref_primary_10_1021_acs_chemmater_4c00305 crossref_primary_10_1002_adfm_202313683 crossref_primary_10_1002_advs_202305597 crossref_primary_10_1021_jacs_4c11414 crossref_primary_10_1016_j_cej_2023_145213 crossref_primary_10_1021_acs_inorgchem_4c01846 crossref_primary_10_1002_ange_202500027 crossref_primary_10_1021_jacs_5c01503 crossref_primary_10_1063_5_0140844 crossref_primary_10_1002_anie_202412756 crossref_primary_10_1039_D4DT01795A crossref_primary_10_1002_adfm_202315918 crossref_primary_10_1002_adom_202303038 crossref_primary_10_1039_D3DT04137A crossref_primary_10_1038_s41467_024_50961_2 crossref_primary_10_1039_D3QI02252H crossref_primary_10_1002_ange_202412756 crossref_primary_10_1021_jacsau_3c00481 crossref_primary_10_1039_D3QI01116J crossref_primary_10_1002_adom_202402136 |
Cites_doi | 10.1021/jz502086e 10.1002/ange.201900190 10.1038/s41565-020-00811-1 10.1002/anie.202015395 10.1039/D0DT04165C 10.1007/s40843-020-1463-0 10.1002/advs.201902900 10.1002/adma.201505224 10.1021/acs.inorgchem.7b01094 10.1107/S1600576719000463 10.1107/S1600576716008050 10.1039/c1cp20404a 10.1002/ange.201906311 10.1021/acs.jpclett.0c01014 10.1063/1.5133653 10.1021/jacs.7b06143 10.1063/1.5042645 10.1021/acsenergylett.7b00284 10.1002/anie.201701134 10.1002/anie.202202073 10.1039/C8CS00563J 10.1038/s41467-018-06840-8 10.1126/sciadv.aav9445 10.1002/ange.202009237 10.1002/anie.202001635 10.1016/j.cplett.2021.139132 10.1039/D1QM00566A 10.1002/adfm.202104923 10.1021/acsenergylett.2c01631 10.1021/acs.jpclett.9b03650 10.1002/ange.201701134 10.1002/ange.202202073 10.1021/jacs.1c00605 10.1021/jacs.6b10390 10.31635/ccschem.020.202000430 10.1021/jacs.1c06207 10.1126/science.aam7093 10.1002/advs.202004805 10.1021/jacs.8b10851 10.1016/j.actamat.2022.118638 10.1021/acs.jpcc.5b07432 10.1016/j.nanoen.2021.106039 10.1002/anie.202009237 10.1038/s41563-018-0081-x 10.1021/acs.jpclett.7b01796 10.1021/acscentsci.6b00055 10.1021/jacs.1c06841 10.1039/B712869J 10.1002/anie.201900190 10.1021/acs.chemmater.9b01564 10.1107/S1600576721002910 10.1002/adma.201500589 10.1002/advs.201801628 10.1002/ange.202015395 10.1002/ange.202001635 10.1021/ja511499p 10.1039/B818330A 10.1021/acsmaterialslett.0c00033 10.1016/j.matt.2021.06.028 10.1002/anie.201906311 10.1021/jacs.8b09416 10.1002/adom.202100003 10.1107/S0021889812043026 10.1021/acs.jpclett.9b01011 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202218675 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36656542 10_1002_anie_202218675 ANIE202218675 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities funderid: 63196006 – fundername: the National Natural Science Foundation of China funderid: 22035003, 21975132 and 21991143 – fundername: the Fundamental Research Funds for the Central Universities grantid: 63196006 – fundername: the National Natural Science Foundation of China grantid: 22035003, 21975132 and 21991143 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-f01415a58257a48cf25fb713b4e086bb7a0cd00b71239f50f7287378b78eccfe3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:08:30 EDT 2025 Fri Jul 25 11:58:08 EDT 2025 Wed Feb 19 02:24:48 EST 2025 Tue Jul 01 05:15:32 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Jan 22 16:23:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Color Purity Pressure Engineering Lead Halide Perovskites Multicolor Emission |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-f01415a58257a48cf25fb713b4e086bb7a0cd00b71239f50f7287378b78eccfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6187-601X 0000-0002-2646-7974 0000-0002-6900-817X 0000-0002-5277-6850 |
PMID | 36656542 |
PQID | 2782884458 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2767169642 proquest_journals_2782884458 pubmed_primary_36656542 crossref_citationtrail_10_1002_anie_202218675 crossref_primary_10_1002_anie_202218675 wiley_primary_10_1002_anie_202218675_ANIE202218675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 13, 2023 |
PublicationDateYYYYMMDD | 2023-03-13 |
PublicationDate_xml | – month: 03 year: 2023 text: March 13, 2023 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 2 2021; 64 2019; 52 2019; 10 2020 2020; 59 132 2020; 15 2011; 13 2020; 11 2017; 358 2009; 11 2018; 6 2020; 7 2018; 9 2020; 5 2022 2022; 61 134 2014; 5 2021; 31 2020; 2 2015; 137 2016; 49 2021; 9 2021; 8 2021; 5 2021; 4 2021; 86 2018; 140 2019; 6 2021; 3 2019; 5 2019; 31 2021; 785 2023; 245 2008; 10 2021; 143 2017 2017; 56 129 2021; 50 2019; 141 2019 2019; 58 131 2017; 139 2018; 17 2021; 54 2015; 27 2016; 2 2022; 7 2019; 48 2017; 56 2021 2021; 60 133 2015; 119 2016; 28 2012; 45 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_64_3 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_71_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_65_2 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_51_3 e_1_2_7_53_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_1 |
References_xml | – volume: 56 start-page: 9291 year: 2017 end-page: 9302 publication-title: Inorg. Chem. – volume: 137 start-page: 931 year: 2015 end-page: 939 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 10082 10170 year: 2021 2021 end-page: 10088 10176 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 2203 year: 2021 end-page: 2210 publication-title: CCS Chem. – volume: 52 start-page: 451 year: 2019 end-page: 456 publication-title: J. Appl. Crystallogr. – volume: 13 start-page: 13873 year: 2011 end-page: 13900 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 7587 year: 2021 end-page: 7594 publication-title: Mater. Chem. Front. – volume: 139 start-page: 39 year: 2017 end-page: 42 publication-title: J. Am. Chem. Soc. – volume: 358 start-page: 745 year: 2017 end-page: 750 publication-title: Science – volume: 4 start-page: 2765 year: 2021 end-page: 2809 publication-title: Matter – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 2 start-page: 381 year: 2020 end-page: 388 publication-title: ACS Mater. Lett. – volume: 5 start-page: 3958 year: 2014 end-page: 3963 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 2579 year: 2016 end-page: 2586 publication-title: Adv. Mater. – volume: 58 131 start-page: 5614 5670 year: 2019 2019 end-page: 5618 5674 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 2918 year: 2015 end-page: 2922 publication-title: Adv. Mater. – volume: 139 start-page: 11956 year: 2017 end-page: 11963 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 15249 15393 year: 2019 2019 end-page: 15253 15397 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 9 start-page: 4506 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 3423 year: 2022 end-page: 3431 publication-title: ACS Energy Lett. – volume: 11 start-page: 4693 year: 2020 end-page: 4701 publication-title: J. Phys. Chem. Lett. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 1171 year: 2019 end-page: 1190 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 4191 year: 2017 end-page: 4196 publication-title: J. Phys. Chem. Lett. – volume: 59 132 start-page: 17533 17686 year: 2020 2020 end-page: 17539 17692 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 143 start-page: 15176 year: 2021 end-page: 15184 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 197 year: 2008 end-page: 206 publication-title: CrystEngComm – volume: 143 start-page: 6491 year: 2021 end-page: 6497 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1321 year: 2012 end-page: 1329 publication-title: J. Appl. Crystallogr. – volume: 11 start-page: 19 year: 2009 end-page: 32 publication-title: CrystEngComm – volume: 2 start-page: 1549 year: 2017 end-page: 1555 publication-title: ACS Energy Lett. – volume: 60 133 start-page: 2583 2615 year: 2021 2021 end-page: 2587 2619 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 64 start-page: 706 year: 2021 end-page: 716 publication-title: Sci. China Mater. – volume: 10 start-page: 2546 year: 2019 end-page: 2553 publication-title: J. Phys. Chem. Lett. – volume: 6 year: 2018 publication-title: APL Mater. – volume: 245 year: 2023 publication-title: Acta Mater. – volume: 56 129 start-page: 4252 4316 year: 2017 2017 end-page: 4255 4319 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 18114 year: 2021 end-page: 18120 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 201 year: 2016 end-page: 209 publication-title: ACS Cent. Sci. – volume: 50 start-page: 2648 year: 2021 end-page: 2653 publication-title: Dalton Trans. – volume: 17 start-page: 550 year: 2018 end-page: 556 publication-title: Nat. Mater. – volume: 11 start-page: 920 year: 2020 end-page: 926 publication-title: J. Phys. Chem. Lett. – volume: 785 year: 2021 publication-title: Chem. Phys. Lett. – volume: 49 start-page: 1377 year: 2016 end-page: 1382 publication-title: J. Appl. Crystallogr. – volume: 5 year: 2020 publication-title: Matter Radiat. Extremes – volume: 31 start-page: 6145 year: 2019 end-page: 6153 publication-title: Chem. Mater. – volume: 140 start-page: 13970 year: 2018 end-page: 13975 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1006 year: 2021 end-page: 1011 publication-title: J. Appl. Crystallogr. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 119 start-page: 25703 year: 2015 end-page: 25718 publication-title: J. Phys. Chem. C – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 15 start-page: 969 year: 2020 end-page: 985 publication-title: Nat. Nanotechnol. – volume: 48 start-page: 517 year: 2019 end-page: 539 publication-title: Chem. Soc. Rev. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – ident: e_1_2_7_32_2 doi: 10.1021/jz502086e – ident: e_1_2_7_34_1 – ident: e_1_2_7_51_3 doi: 10.1002/ange.201900190 – ident: e_1_2_7_1_1 doi: 10.1038/s41565-020-00811-1 – ident: e_1_2_7_3_2 doi: 10.1002/anie.202015395 – ident: e_1_2_7_33_1 doi: 10.1039/D0DT04165C – ident: e_1_2_7_44_1 doi: 10.1007/s40843-020-1463-0 – ident: e_1_2_7_70_1 doi: 10.1002/advs.201902900 – ident: e_1_2_7_25_2 doi: 10.1002/adma.201505224 – ident: e_1_2_7_56_1 – ident: e_1_2_7_46_1 doi: 10.1021/acs.inorgchem.7b01094 – ident: e_1_2_7_20_2 doi: 10.1107/S1600576719000463 – ident: e_1_2_7_68_1 doi: 10.1107/S1600576716008050 – ident: e_1_2_7_39_2 doi: 10.1039/c1cp20404a – ident: e_1_2_7_64_3 doi: 10.1002/ange.201906311 – ident: e_1_2_7_10_2 doi: 10.1021/acs.jpclett.0c01014 – ident: e_1_2_7_12_2 doi: 10.1063/1.5133653 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.7b06143 – ident: e_1_2_7_54_2 doi: 10.1063/1.5042645 – ident: e_1_2_7_9_2 doi: 10.1021/acsenergylett.7b00284 – ident: e_1_2_7_31_2 doi: 10.1002/anie.201701134 – ident: e_1_2_7_8_1 – ident: e_1_2_7_60_1 doi: 10.1002/anie.202202073 – ident: e_1_2_7_26_2 doi: 10.1039/C8CS00563J – ident: e_1_2_7_2_1 – ident: e_1_2_7_14_2 doi: 10.1038/s41467-018-06840-8 – ident: e_1_2_7_30_1 – ident: e_1_2_7_38_1 – ident: e_1_2_7_16_1 doi: 10.1126/sciadv.aav9445 – ident: e_1_2_7_6_3 doi: 10.1002/ange.202009237 – ident: e_1_2_7_15_2 doi: 10.1002/anie.202001635 – ident: e_1_2_7_27_2 doi: 10.1016/j.cplett.2021.139132 – ident: e_1_2_7_49_1 – ident: e_1_2_7_55_2 doi: 10.1039/D1QM00566A – ident: e_1_2_7_4_2 doi: 10.1002/adfm.202104923 – ident: e_1_2_7_29_2 doi: 10.1021/acsenergylett.2c01631 – ident: e_1_2_7_59_1 doi: 10.1021/acs.jpclett.9b03650 – ident: e_1_2_7_31_3 doi: 10.1002/ange.201701134 – ident: e_1_2_7_60_2 doi: 10.1002/ange.202202073 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.1c00605 – ident: e_1_2_7_45_1 doi: 10.1021/jacs.6b10390 – ident: e_1_2_7_65_2 doi: 10.31635/ccschem.020.202000430 – ident: e_1_2_7_5_2 doi: 10.1021/jacs.1c06207 – ident: e_1_2_7_61_1 doi: 10.1126/science.aam7093 – ident: e_1_2_7_58_2 – ident: e_1_2_7_37_1 doi: 10.1002/advs.202004805 – ident: e_1_2_7_11_2 doi: 10.1021/jacs.8b10851 – ident: e_1_2_7_36_2 doi: 10.1016/j.actamat.2022.118638 – ident: e_1_2_7_48_1 doi: 10.1021/acs.jpcc.5b07432 – ident: e_1_2_7_28_2 doi: 10.1016/j.nanoen.2021.106039 – ident: e_1_2_7_6_2 doi: 10.1002/anie.202009237 – ident: e_1_2_7_22_1 doi: 10.1038/s41563-018-0081-x – ident: e_1_2_7_67_1 doi: 10.1021/acs.jpclett.7b01796 – ident: e_1_2_7_69_1 doi: 10.1021/acscentsci.6b00055 – ident: e_1_2_7_57_2 – ident: e_1_2_7_71_1 – ident: e_1_2_7_40_2 doi: 10.1021/jacs.1c06841 – ident: e_1_2_7_42_1 doi: 10.1039/B712869J – ident: e_1_2_7_51_2 doi: 10.1002/anie.201900190 – ident: e_1_2_7_63_1 – ident: e_1_2_7_35_2 doi: 10.1021/acs.chemmater.9b01564 – ident: e_1_2_7_41_1 doi: 10.1107/S1600576721002910 – ident: e_1_2_7_50_2 doi: 10.1002/adma.201500589 – ident: e_1_2_7_19_2 doi: 10.1002/advs.201801628 – ident: e_1_2_7_3_3 doi: 10.1002/ange.202015395 – ident: e_1_2_7_15_3 doi: 10.1002/ange.202001635 – ident: e_1_2_7_52_2 doi: 10.1021/ja511499p – ident: e_1_2_7_43_1 doi: 10.1039/B818330A – ident: e_1_2_7_66_2 doi: 10.1021/acsmaterialslett.0c00033 – ident: e_1_2_7_18_1 – ident: e_1_2_7_53_1 – ident: e_1_2_7_17_1 doi: 10.1016/j.matt.2021.06.028 – ident: e_1_2_7_64_2 doi: 10.1002/anie.201906311 – ident: e_1_2_7_23_1 – ident: e_1_2_7_7_2 doi: 10.1021/jacs.8b09416 – ident: e_1_2_7_13_2 doi: 10.1002/adom.202100003 – ident: e_1_2_7_62_1 doi: 10.1107/S0021889812043026 – ident: e_1_2_7_47_1 doi: 10.1021/acs.jpclett.9b01011 |
SSID | ssj0028806 |
Score | 2.5347931 |
Snippet | The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202218675 |
SubjectTerms | Color Color Purity Emission Emissions Emitters External pressure External stimuli Hydrostatic pressure Lead compounds Lead Halide Perovskites Metal halides Multicolor Emission Optical properties Perovskites Photoluminescence Photons Pressure Pressure Engineering Purity Rigidity |
Title | Pressure‐Tuned Multicolor Emission of 2D Lead Halide Perovskites with Ultrahigh Color Purity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218675 https://www.ncbi.nlm.nih.gov/pubmed/36656542 https://www.proquest.com/docview/2782884458 https://www.proquest.com/docview/2767169642 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDh_RgvBQmJU6FLmiY7orFpcJgQYhInqqRNAIE2tG4cOPET-I38Euy-YCCEBLe2cfpIYsd27c-E7DdcGGoVg_SzVnhBEjqvqTmwO09U3HQ-cFQW5dsLu_3g7Epcfcriz_EhKocbckYmr5HBtUmPPkBDMQMb7DuGRZUkZpljwBZqRRcVfhSDxZmnF3HuYRX6ErXRZ0fT3ad3pW-q5rTmmm09nQWiy5fOI07uDydjcxg_f8Fz_M9XLZL5Qi-lx_lCWiIzdrBMZltlObgVcp0nEo7s28vr5QSEM81ydxH0ekTbQIVuNzp0lJ1QrNtJu6DhJ5ae29HwKUUfcUrR6Uv7D2MQcHc3t7SV9T3P6uetkn6nfdnqekVxBi_mkgvPYYSo0AIsTKkDFTsmnAGL1wQWrCRjpPbjxPfhEuNNJ3wnwTbjUhmpYNU4y9dIbTAc2A1C4TZNo51iMk7AGlJKgPSWFsz2hPmBlHXilZMTxQVyORbQeIhyzGUW4ahF1ajVyUFF_5hjdvxIuV3OdVTwbhoxUJqUCgKh6mSvaoZxxF8pemCHE6QJEWYIjLc6Wc_XSPUoHoKOLLCFZTP9yztEx73TdnW2-ZdOW2QOjjmGxjX4NqmNRxO7A7rS2Oxm_PAOBN4Kjw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BeCgvY_xd2MaMhMRTttSOY_dx6jp1Y1QVaiWeiOLEHogpndp0D3vaR-Az8kl25zSZCkJI8JjEThzbd7nf5e53AO-6LkkynaP2s1aGcZG4sJcJFHdR6LznIpQoH-U7SobT-OyzbKIJKRem5odoHW4kGV5fk4CTQ_rwnjWUUrAR4HGqqqTkQ3hEZb09qvrUMkhx3J51gpEQIdWhb3gbI3643n_9u_Sbsbluu_qPz8kTMM2w65iT7wfLyhzkN78wOv7Xe23B5so0ZUf1XnoKD2z5DDr9piLcc_hS5xLO7c_bH5Ml6mfm03eJ93rOBtiKPG9s5hg_ZlS6kw3RyC8sG9v57HpBbuIFI78vm15WqOO-XXxlfd937EvovYDpyWDSH4ar-gxhLpSQoaMgUZlJBJkqi3XuuHQGQa-JLQIlY1QW5UUU4Skuek5GTiE8E0obpXHjOCtewkY5K-02MLxNz2ROc5UXCIi0lqjAlUXkXvAoViqAsFmdNF-Rl1MNjcu0pl3mKc1a2s5aAO_b9lc1bccfW-42i52uxHeRcrSbtI5jqQN4217GeaS_KVlpZ0tqkxDTEOK3AF7Vm6R9lEjQTJZ0hful_ssY0qPR6aA9ev0vnfahM5x8PE_PT0cfduAxnhcUKdcVu7BRzZd2D02nyrzxwnEHrqwOqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BkCiXltICoTy2EhInE2fX690cozyUQBVFFZFywvJjFxAoQXlw6Kk_ob-RX9IZOzYNCFWCo9e79np3ZnZmPPMNwHHV-n6oY5R-xkjHS3zr1EKB7C4SHdesixyVRvn2_M7AOxvK4T9Z_Bk-ROFwI85I5TUx-H1iK0-goZSBjfYdp6JKSq7Cmue7mui6-bMAkOJInVl-kRAOlaHPYRtdXlkev3wsvdA1l1XX9Oxpf4Iwn3UWcnJ7Op9Fp_GvZ4CO7_msTfi4UExZPaOkz7BiRlvwoZHXg_sCl1km4cQ8_v5zMUfpzNLkXUK9nrAW9iK_GxtbxpuMCneyDqr4iWF9Mxk_TMlJPGXk9WWDuxlKuJura9ZIx_bTAnpfYdBuXTQ6zqI6gxMLJaRjKURUhhJNTBV6OrZc2ghN3sgzaCZFkQrdOHFdbOKiZqVrFRpnQulIaSQba8Q2lEbjkdkFho-pRaHVXMUJmkNaSxTfyqDdnnDXU6oMTr45QbyALqcKGndBBrrMA1q1oFi1MpwU_e8z0I5Xe-7nex0smHcacNSatPY8qcvwvbiN60j_UsKRGc-pj084Q2i9lWEno5HiVcJHJVnSHZ7u9H_mENR73VZxtfeWQUew3m-2gx_d3vk32MBmQWFyVbEPpdlkbg5Qb5pFhylr_AWLLQ1i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure%E2%80%90Tuned+Multicolor+Emission+of+2D+Lead+Halide+Perovskites+with+Ultrahigh+Color+Purity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Fei%E2%80%90Fei&rft.au=Song%2C+Haipeng&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Qin%2C+Yan&rft.date=2023-03-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=12&rft_id=info:doi/10.1002%2Fanie.202218675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202218675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |