Pressure‐Tuned Multicolor Emission of 2D Lead Halide Perovskites with Ultrahigh Color Purity

The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of h...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 12; pp. e202218675 - n/a
Main Authors Gao, Fei‐Fei, Song, Haipeng, Li, Zhi‐Gang, Qin, Yan, Li, Xiang, Yao, Zhao‐Quan, Fan, Jia‐Hui, Wu, Xiang, Li, Wei, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 13.03.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing. Wide‐range and ultrapure emissions are achieved in 2D lead halide perovskites (LHPs) by combined chemical pressure from halogen doping/substitution and physical pressure from hydrostatic compression. This work demonstrates precise emission tuning and effective color regulation of 2D LHPs by pressure engineering, which would open a new pathway for developing ultrapure emitters and highly sensitive pressure sensors.
AbstractList The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA] 2 PbBr 4−4 x I 4 x (MeOPEA=4‐methoxyphenethylammonium; x =0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing.
The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing.
The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2 PbBr4-4x I4x (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.
The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide‐range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA]2PbBr4−4xI4x (MeOPEA=4‐methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C−H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide‐range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra‐wide color gamut and high color purity which are highly useful for pressure sensing. Wide‐range and ultrapure emissions are achieved in 2D lead halide perovskites (LHPs) by combined chemical pressure from halogen doping/substitution and physical pressure from hydrostatic compression. This work demonstrates precise emission tuning and effective color regulation of 2D LHPs by pressure engineering, which would open a new pathway for developing ultrapure emitters and highly sensitive pressure sensors.
The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through internal molecular engineering and external stimuli. Herein, we report the wide-range and ultrapure photoluminescence emissions in a family of homologous 2D LHPs, [MeOPEA] PbBr I (MeOPEA=4-methoxyphenethylammonium; x=0, 0.2, 0.425, 0.575, 1) enabled through internal chemical pressure and external hydrostatic pressure. The chemical pressure, induced by the C-H⋅⋅⋅π interactions and halogen doping/substitution strengthens the structural rigidity to give sustained narrow emissions, and regulates the emission energy, respectively. Further manipulation of physical pressure leads to wide-range emission tuning from 412 to 647 nm in a continuous and reversible manner. This work could open up new pathways for developing 2D LHP emitters with ultra-wide color gamut and high color purity which are highly useful for pressure sensing.
Author Li, Zhi‐Gang
Fan, Jia‐Hui
Yao, Zhao‐Quan
Qin, Yan
Wu, Xiang
Li, Wei
Bu, Xian‐He
Li, Xiang
Song, Haipeng
Gao, Fei‐Fei
Author_xml – sequence: 1
  givenname: Fei‐Fei
  orcidid: 0000-0002-6900-817X
  surname: Gao
  fullname: Gao, Fei‐Fei
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 2
  givenname: Haipeng
  surname: Song
  fullname: Song, Haipeng
  organization: China University of Geosciences (Wuhan)
– sequence: 3
  givenname: Zhi‐Gang
  surname: Li
  fullname: Li, Zhi‐Gang
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 4
  givenname: Yan
  orcidid: 0000-0002-6187-601X
  surname: Qin
  fullname: Qin, Yan
  email: qinyan@ncu.edu.cn
  organization: Nanchang University
– sequence: 5
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Universität Münster
– sequence: 6
  givenname: Zhao‐Quan
  surname: Yao
  fullname: Yao, Zhao‐Quan
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 7
  givenname: Jia‐Hui
  surname: Fan
  fullname: Fan, Jia‐Hui
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 8
  givenname: Xiang
  surname: Wu
  fullname: Wu, Xiang
  organization: China University of Geosciences (Wuhan)
– sequence: 9
  givenname: Wei
  orcidid: 0000-0002-5277-6850
  surname: Li
  fullname: Li, Wei
  email: wl276@nankai.edu.cn
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
– sequence: 10
  givenname: Xian‐He
  orcidid: 0000-0002-2646-7974
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University & TKL of Metal and Molecule Based Material Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36656542$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWEzwXc7yyoEWilAFu0Wy-M5Ji6TcbFnqLLjEXhGngSXtCBVQqx8ZH3f0dH_H6ODIQ2A0HNKZpQQ9toNEWaMMEaN0vIROqKS0YZrzQ_qLDhvtJH0EB2XclV5Y4h6gg65UlJJwY7Qp3WGUqYMP7__uJgG6PD7qR-jT33KeLmNpcQ04BQwe4NX4Dp85vrYAV5DTt_KlzhCwTdx3ODLfsxuEz9v8OK3u55yHHdP0ePg-gLP7t4TdPl2ebE4a1Yf350vTleN55rLJhAqqHTSMKmdMD4wGVpNeSuAGNW22hHfEVK_GJ8HSYJmRnNtWm3A-wD8BL3a773O6esEZbT1dA997wZIU7FMK03VXAlW0ZcP0Ks05aFeVylTExJCmkq9uKOmdgudvc5x6_LO3idXAbEHfE6lZAjWx9GNNa2aQ-wtJfa2IHtbkP1TUNVmD7T7zf8U5nvhJvaw-w9tTz-cL_-6vwDEUaL4
CitedBy_id crossref_primary_10_1002_anie_202411298
crossref_primary_10_1002_anie_202500027
crossref_primary_10_1021_acs_chemmater_4c01671
crossref_primary_10_1039_D4DT03416C
crossref_primary_10_1021_acs_inorgchem_3c00571
crossref_primary_10_1039_D3TC04393B
crossref_primary_10_1002_cjoc_202401020
crossref_primary_10_1002_smtd_202301662
crossref_primary_10_1002_lpor_202300565
crossref_primary_10_1039_D4CP01142B
crossref_primary_10_1021_acsnano_3c09756
crossref_primary_10_1063_5_0235038
crossref_primary_10_1002_ange_202411298
crossref_primary_10_1039_D3QI01723K
crossref_primary_10_1039_D3TC04505F
crossref_primary_10_1021_acs_chemmater_4c00305
crossref_primary_10_1002_adfm_202313683
crossref_primary_10_1002_advs_202305597
crossref_primary_10_1021_jacs_4c11414
crossref_primary_10_1016_j_cej_2023_145213
crossref_primary_10_1021_acs_inorgchem_4c01846
crossref_primary_10_1002_ange_202500027
crossref_primary_10_1021_jacs_5c01503
crossref_primary_10_1063_5_0140844
crossref_primary_10_1002_anie_202412756
crossref_primary_10_1039_D4DT01795A
crossref_primary_10_1002_adfm_202315918
crossref_primary_10_1002_adom_202303038
crossref_primary_10_1039_D3DT04137A
crossref_primary_10_1038_s41467_024_50961_2
crossref_primary_10_1039_D3QI02252H
crossref_primary_10_1002_ange_202412756
crossref_primary_10_1021_jacsau_3c00481
crossref_primary_10_1039_D3QI01116J
crossref_primary_10_1002_adom_202402136
Cites_doi 10.1021/jz502086e
10.1002/ange.201900190
10.1038/s41565-020-00811-1
10.1002/anie.202015395
10.1039/D0DT04165C
10.1007/s40843-020-1463-0
10.1002/advs.201902900
10.1002/adma.201505224
10.1021/acs.inorgchem.7b01094
10.1107/S1600576719000463
10.1107/S1600576716008050
10.1039/c1cp20404a
10.1002/ange.201906311
10.1021/acs.jpclett.0c01014
10.1063/1.5133653
10.1021/jacs.7b06143
10.1063/1.5042645
10.1021/acsenergylett.7b00284
10.1002/anie.201701134
10.1002/anie.202202073
10.1039/C8CS00563J
10.1038/s41467-018-06840-8
10.1126/sciadv.aav9445
10.1002/ange.202009237
10.1002/anie.202001635
10.1016/j.cplett.2021.139132
10.1039/D1QM00566A
10.1002/adfm.202104923
10.1021/acsenergylett.2c01631
10.1021/acs.jpclett.9b03650
10.1002/ange.201701134
10.1002/ange.202202073
10.1021/jacs.1c00605
10.1021/jacs.6b10390
10.31635/ccschem.020.202000430
10.1021/jacs.1c06207
10.1126/science.aam7093
10.1002/advs.202004805
10.1021/jacs.8b10851
10.1016/j.actamat.2022.118638
10.1021/acs.jpcc.5b07432
10.1016/j.nanoen.2021.106039
10.1002/anie.202009237
10.1038/s41563-018-0081-x
10.1021/acs.jpclett.7b01796
10.1021/acscentsci.6b00055
10.1021/jacs.1c06841
10.1039/B712869J
10.1002/anie.201900190
10.1021/acs.chemmater.9b01564
10.1107/S1600576721002910
10.1002/adma.201500589
10.1002/advs.201801628
10.1002/ange.202015395
10.1002/ange.202001635
10.1021/ja511499p
10.1039/B818330A
10.1021/acsmaterialslett.0c00033
10.1016/j.matt.2021.06.028
10.1002/anie.201906311
10.1021/jacs.8b09416
10.1002/adom.202100003
10.1107/S0021889812043026
10.1021/acs.jpclett.9b01011
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202218675
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36656542
10_1002_anie_202218675
ANIE202218675
Genre article
Journal Article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities
  funderid: 63196006
– fundername: the National Natural Science Foundation of China
  funderid: 22035003, 21975132 and 21991143
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: 63196006
– fundername: the National Natural Science Foundation of China
  grantid: 22035003, 21975132 and 21991143
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-f01415a58257a48cf25fb713b4e086bb7a0cd00b71239f50f7287378b78eccfe3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:08:30 EDT 2025
Fri Jul 25 11:58:08 EDT 2025
Wed Feb 19 02:24:48 EST 2025
Tue Jul 01 05:15:32 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Jan 22 16:23:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Color Purity
Pressure Engineering
Lead Halide Perovskites
Multicolor Emission
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-f01415a58257a48cf25fb713b4e086bb7a0cd00b71239f50f7287378b78eccfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6187-601X
0000-0002-2646-7974
0000-0002-6900-817X
0000-0002-5277-6850
PMID 36656542
PQID 2782884458
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2767169642
proquest_journals_2782884458
pubmed_primary_36656542
crossref_citationtrail_10_1002_anie_202218675
crossref_primary_10_1002_anie_202218675
wiley_primary_10_1002_anie_202218675_ANIE202218675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 13, 2023
PublicationDateYYYYMMDD 2023-03-13
PublicationDate_xml – month: 03
  year: 2023
  text: March 13, 2023
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 2
2021; 64
2019; 52
2019; 10
2020 2020; 59 132
2020; 15
2011; 13
2020; 11
2017; 358
2009; 11
2018; 6
2020; 7
2018; 9
2020; 5
2022 2022; 61 134
2014; 5
2021; 31
2020; 2
2015; 137
2016; 49
2021; 9
2021; 8
2021; 5
2021; 4
2021; 86
2018; 140
2019; 6
2021; 3
2019; 5
2019; 31
2021; 785
2023; 245
2008; 10
2021; 143
2017 2017; 56 129
2021; 50
2019; 141
2019 2019; 58 131
2017; 139
2018; 17
2021; 54
2015; 27
2016; 2
2022; 7
2019; 48
2017; 56
2021 2021; 60 133
2015; 119
2016; 28
2012; 45
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_64_3
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_71_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_1
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_65_2
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_51_3
e_1_2_7_53_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_1
References_xml – volume: 56
  start-page: 9291
  year: 2017
  end-page: 9302
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 931
  year: 2015
  end-page: 939
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 10082 10170
  year: 2021 2021
  end-page: 10088 10176
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 2203
  year: 2021
  end-page: 2210
  publication-title: CCS Chem.
– volume: 52
  start-page: 451
  year: 2019
  end-page: 456
  publication-title: J. Appl. Crystallogr.
– volume: 13
  start-page: 13873
  year: 2011
  end-page: 13900
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 7587
  year: 2021
  end-page: 7594
  publication-title: Mater. Chem. Front.
– volume: 139
  start-page: 39
  year: 2017
  end-page: 42
  publication-title: J. Am. Chem. Soc.
– volume: 358
  start-page: 745
  year: 2017
  end-page: 750
  publication-title: Science
– volume: 4
  start-page: 2765
  year: 2021
  end-page: 2809
  publication-title: Matter
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 2
  start-page: 381
  year: 2020
  end-page: 388
  publication-title: ACS Mater. Lett.
– volume: 5
  start-page: 3958
  year: 2014
  end-page: 3963
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 2579
  year: 2016
  end-page: 2586
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 5614 5670
  year: 2019 2019
  end-page: 5618 5674
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 2918
  year: 2015
  end-page: 2922
  publication-title: Adv. Mater.
– volume: 139
  start-page: 11956
  year: 2017
  end-page: 11963
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 15249 15393
  year: 2019 2019
  end-page: 15253 15397
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 9
  start-page: 4506
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 3423
  year: 2022
  end-page: 3431
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 4693
  year: 2020
  end-page: 4701
  publication-title: J. Phys. Chem. Lett.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 1171
  year: 2019
  end-page: 1190
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 4191
  year: 2017
  end-page: 4196
  publication-title: J. Phys. Chem. Lett.
– volume: 59 132
  start-page: 17533 17686
  year: 2020 2020
  end-page: 17539 17692
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 143
  start-page: 15176
  year: 2021
  end-page: 15184
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 197
  year: 2008
  end-page: 206
  publication-title: CrystEngComm
– volume: 143
  start-page: 6491
  year: 2021
  end-page: 6497
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1321
  year: 2012
  end-page: 1329
  publication-title: J. Appl. Crystallogr.
– volume: 11
  start-page: 19
  year: 2009
  end-page: 32
  publication-title: CrystEngComm
– volume: 2
  start-page: 1549
  year: 2017
  end-page: 1555
  publication-title: ACS Energy Lett.
– volume: 60 133
  start-page: 2583 2615
  year: 2021 2021
  end-page: 2587 2619
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 64
  start-page: 706
  year: 2021
  end-page: 716
  publication-title: Sci. China Mater.
– volume: 10
  start-page: 2546
  year: 2019
  end-page: 2553
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  year: 2018
  publication-title: APL Mater.
– volume: 245
  year: 2023
  publication-title: Acta Mater.
– volume: 56 129
  start-page: 4252 4316
  year: 2017 2017
  end-page: 4255 4319
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 18114
  year: 2021
  end-page: 18120
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 201
  year: 2016
  end-page: 209
  publication-title: ACS Cent. Sci.
– volume: 50
  start-page: 2648
  year: 2021
  end-page: 2653
  publication-title: Dalton Trans.
– volume: 17
  start-page: 550
  year: 2018
  end-page: 556
  publication-title: Nat. Mater.
– volume: 11
  start-page: 920
  year: 2020
  end-page: 926
  publication-title: J. Phys. Chem. Lett.
– volume: 785
  year: 2021
  publication-title: Chem. Phys. Lett.
– volume: 49
  start-page: 1377
  year: 2016
  end-page: 1382
  publication-title: J. Appl. Crystallogr.
– volume: 5
  year: 2020
  publication-title: Matter Radiat. Extremes
– volume: 31
  start-page: 6145
  year: 2019
  end-page: 6153
  publication-title: Chem. Mater.
– volume: 140
  start-page: 13970
  year: 2018
  end-page: 13975
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 1006
  year: 2021
  end-page: 1011
  publication-title: J. Appl. Crystallogr.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 119
  start-page: 25703
  year: 2015
  end-page: 25718
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 15
  start-page: 969
  year: 2020
  end-page: 985
  publication-title: Nat. Nanotechnol.
– volume: 48
  start-page: 517
  year: 2019
  end-page: 539
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_7_32_2
  doi: 10.1021/jz502086e
– ident: e_1_2_7_34_1
– ident: e_1_2_7_51_3
  doi: 10.1002/ange.201900190
– ident: e_1_2_7_1_1
  doi: 10.1038/s41565-020-00811-1
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.202015395
– ident: e_1_2_7_33_1
  doi: 10.1039/D0DT04165C
– ident: e_1_2_7_44_1
  doi: 10.1007/s40843-020-1463-0
– ident: e_1_2_7_70_1
  doi: 10.1002/advs.201902900
– ident: e_1_2_7_25_2
  doi: 10.1002/adma.201505224
– ident: e_1_2_7_56_1
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.inorgchem.7b01094
– ident: e_1_2_7_20_2
  doi: 10.1107/S1600576719000463
– ident: e_1_2_7_68_1
  doi: 10.1107/S1600576716008050
– ident: e_1_2_7_39_2
  doi: 10.1039/c1cp20404a
– ident: e_1_2_7_64_3
  doi: 10.1002/ange.201906311
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.jpclett.0c01014
– ident: e_1_2_7_12_2
  doi: 10.1063/1.5133653
– ident: e_1_2_7_24_2
  doi: 10.1021/jacs.7b06143
– ident: e_1_2_7_54_2
  doi: 10.1063/1.5042645
– ident: e_1_2_7_9_2
  doi: 10.1021/acsenergylett.7b00284
– ident: e_1_2_7_31_2
  doi: 10.1002/anie.201701134
– ident: e_1_2_7_8_1
– ident: e_1_2_7_60_1
  doi: 10.1002/anie.202202073
– ident: e_1_2_7_26_2
  doi: 10.1039/C8CS00563J
– ident: e_1_2_7_2_1
– ident: e_1_2_7_14_2
  doi: 10.1038/s41467-018-06840-8
– ident: e_1_2_7_30_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_16_1
  doi: 10.1126/sciadv.aav9445
– ident: e_1_2_7_6_3
  doi: 10.1002/ange.202009237
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.202001635
– ident: e_1_2_7_27_2
  doi: 10.1016/j.cplett.2021.139132
– ident: e_1_2_7_49_1
– ident: e_1_2_7_55_2
  doi: 10.1039/D1QM00566A
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.202104923
– ident: e_1_2_7_29_2
  doi: 10.1021/acsenergylett.2c01631
– ident: e_1_2_7_59_1
  doi: 10.1021/acs.jpclett.9b03650
– ident: e_1_2_7_31_3
  doi: 10.1002/ange.201701134
– ident: e_1_2_7_60_2
  doi: 10.1002/ange.202202073
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.1c00605
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.6b10390
– ident: e_1_2_7_65_2
  doi: 10.31635/ccschem.020.202000430
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.1c06207
– ident: e_1_2_7_61_1
  doi: 10.1126/science.aam7093
– ident: e_1_2_7_58_2
– ident: e_1_2_7_37_1
  doi: 10.1002/advs.202004805
– ident: e_1_2_7_11_2
  doi: 10.1021/jacs.8b10851
– ident: e_1_2_7_36_2
  doi: 10.1016/j.actamat.2022.118638
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.jpcc.5b07432
– ident: e_1_2_7_28_2
  doi: 10.1016/j.nanoen.2021.106039
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.202009237
– ident: e_1_2_7_22_1
  doi: 10.1038/s41563-018-0081-x
– ident: e_1_2_7_67_1
  doi: 10.1021/acs.jpclett.7b01796
– ident: e_1_2_7_69_1
  doi: 10.1021/acscentsci.6b00055
– ident: e_1_2_7_57_2
– ident: e_1_2_7_71_1
– ident: e_1_2_7_40_2
  doi: 10.1021/jacs.1c06841
– ident: e_1_2_7_42_1
  doi: 10.1039/B712869J
– ident: e_1_2_7_51_2
  doi: 10.1002/anie.201900190
– ident: e_1_2_7_63_1
– ident: e_1_2_7_35_2
  doi: 10.1021/acs.chemmater.9b01564
– ident: e_1_2_7_41_1
  doi: 10.1107/S1600576721002910
– ident: e_1_2_7_50_2
  doi: 10.1002/adma.201500589
– ident: e_1_2_7_19_2
  doi: 10.1002/advs.201801628
– ident: e_1_2_7_3_3
  doi: 10.1002/ange.202015395
– ident: e_1_2_7_15_3
  doi: 10.1002/ange.202001635
– ident: e_1_2_7_52_2
  doi: 10.1021/ja511499p
– ident: e_1_2_7_43_1
  doi: 10.1039/B818330A
– ident: e_1_2_7_66_2
  doi: 10.1021/acsmaterialslett.0c00033
– ident: e_1_2_7_18_1
– ident: e_1_2_7_53_1
– ident: e_1_2_7_17_1
  doi: 10.1016/j.matt.2021.06.028
– ident: e_1_2_7_64_2
  doi: 10.1002/anie.201906311
– ident: e_1_2_7_23_1
– ident: e_1_2_7_7_2
  doi: 10.1021/jacs.8b09416
– ident: e_1_2_7_13_2
  doi: 10.1002/adom.202100003
– ident: e_1_2_7_62_1
  doi: 10.1107/S0021889812043026
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.jpclett.9b01011
SSID ssj0028806
Score 2.5347931
Snippet The chemical diversity and structural flexibility of lead halide perovskites (LHPs) offer tremendous opportunities to tune their optical properties through...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202218675
SubjectTerms Color
Color Purity
Emission
Emissions
Emitters
External pressure
External stimuli
Hydrostatic pressure
Lead compounds
Lead Halide Perovskites
Metal halides
Multicolor Emission
Optical properties
Perovskites
Photoluminescence
Photons
Pressure
Pressure Engineering
Purity
Rigidity
Title Pressure‐Tuned Multicolor Emission of 2D Lead Halide Perovskites with Ultrahigh Color Purity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202218675
https://www.ncbi.nlm.nih.gov/pubmed/36656542
https://www.proquest.com/docview/2782884458
https://www.proquest.com/docview/2767169642
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDh_RgvBQmJU6FLmiY7orFpcJgQYhInqqRNAIE2tG4cOPET-I38Euy-YCCEBLe2cfpIYsd27c-E7DdcGGoVg_SzVnhBEjqvqTmwO09U3HQ-cFQW5dsLu_3g7Epcfcriz_EhKocbckYmr5HBtUmPPkBDMQMb7DuGRZUkZpljwBZqRRcVfhSDxZmnF3HuYRX6ErXRZ0fT3ad3pW-q5rTmmm09nQWiy5fOI07uDydjcxg_f8Fz_M9XLZL5Qi-lx_lCWiIzdrBMZltlObgVcp0nEo7s28vr5QSEM81ydxH0ekTbQIVuNzp0lJ1QrNtJu6DhJ5ae29HwKUUfcUrR6Uv7D2MQcHc3t7SV9T3P6uetkn6nfdnqekVxBi_mkgvPYYSo0AIsTKkDFTsmnAGL1wQWrCRjpPbjxPfhEuNNJ3wnwTbjUhmpYNU4y9dIbTAc2A1C4TZNo51iMk7AGlJKgPSWFsz2hPmBlHXilZMTxQVyORbQeIhyzGUW4ahF1ajVyUFF_5hjdvxIuV3OdVTwbhoxUJqUCgKh6mSvaoZxxF8pemCHE6QJEWYIjLc6Wc_XSPUoHoKOLLCFZTP9yztEx73TdnW2-ZdOW2QOjjmGxjX4NqmNRxO7A7rS2Oxm_PAOBN4Kjw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BeCgvY_xd2MaMhMRTttSOY_dx6jp1Y1QVaiWeiOLEHogpndp0D3vaR-Az8kl25zSZCkJI8JjEThzbd7nf5e53AO-6LkkynaP2s1aGcZG4sJcJFHdR6LznIpQoH-U7SobT-OyzbKIJKRem5odoHW4kGV5fk4CTQ_rwnjWUUrAR4HGqqqTkQ3hEZb09qvrUMkhx3J51gpEQIdWhb3gbI3643n_9u_Sbsbluu_qPz8kTMM2w65iT7wfLyhzkN78wOv7Xe23B5so0ZUf1XnoKD2z5DDr9piLcc_hS5xLO7c_bH5Ml6mfm03eJ93rOBtiKPG9s5hg_ZlS6kw3RyC8sG9v57HpBbuIFI78vm15WqOO-XXxlfd937EvovYDpyWDSH4ar-gxhLpSQoaMgUZlJBJkqi3XuuHQGQa-JLQIlY1QW5UUU4Skuek5GTiE8E0obpXHjOCtewkY5K-02MLxNz2ROc5UXCIi0lqjAlUXkXvAoViqAsFmdNF-Rl1MNjcu0pl3mKc1a2s5aAO_b9lc1bccfW-42i52uxHeRcrSbtI5jqQN4217GeaS_KVlpZ0tqkxDTEOK3AF7Vm6R9lEjQTJZ0hful_ssY0qPR6aA9ev0vnfahM5x8PE_PT0cfduAxnhcUKdcVu7BRzZd2D02nyrzxwnEHrqwOqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BkCiXltICoTy2EhInE2fX690cozyUQBVFFZFywvJjFxAoQXlw6Kk_ob-RX9IZOzYNCFWCo9e79np3ZnZmPPMNwHHV-n6oY5R-xkjHS3zr1EKB7C4SHdesixyVRvn2_M7AOxvK4T9Z_Bk-ROFwI85I5TUx-H1iK0-goZSBjfYdp6JKSq7Cmue7mui6-bMAkOJInVl-kRAOlaHPYRtdXlkev3wsvdA1l1XX9Oxpf4Iwn3UWcnJ7Op9Fp_GvZ4CO7_msTfi4UExZPaOkz7BiRlvwoZHXg_sCl1km4cQ8_v5zMUfpzNLkXUK9nrAW9iK_GxtbxpuMCneyDqr4iWF9Mxk_TMlJPGXk9WWDuxlKuJura9ZIx_bTAnpfYdBuXTQ6zqI6gxMLJaRjKURUhhJNTBV6OrZc2ghN3sgzaCZFkQrdOHFdbOKiZqVrFRpnQulIaSQba8Q2lEbjkdkFho-pRaHVXMUJmkNaSxTfyqDdnnDXU6oMTr45QbyALqcKGndBBrrMA1q1oFi1MpwU_e8z0I5Xe-7nex0smHcacNSatPY8qcvwvbiN60j_UsKRGc-pj084Q2i9lWEno5HiVcJHJVnSHZ7u9H_mENR73VZxtfeWQUew3m-2gx_d3vk32MBmQWFyVbEPpdlkbg5Qb5pFhylr_AWLLQ1i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure%E2%80%90Tuned+Multicolor+Emission+of+2D+Lead+Halide+Perovskites+with+Ultrahigh+Color+Purity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Fei%E2%80%90Fei&rft.au=Song%2C+Haipeng&rft.au=Li%2C+Zhi%E2%80%90Gang&rft.au=Qin%2C+Yan&rft.date=2023-03-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=12&rft_id=info:doi/10.1002%2Fanie.202218675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202218675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon