Flexible All‐Solid‐State Direct Methanol Fuel Cells with High Specific Power Density

It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 12; pp. e2205835 - n/a
Main Authors Sun, Shanshan, Zhao, Minglin, Wang, Qingwei, Xue, Shujie, Huang, Qinghong, Yu, Nengfei, Wu, Yuping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC‐modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all‐solid‐state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all‐solid‐state DMFC's power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all‐solid DMFC has an energy density that is 777.78 Wh Kg−1 higher than flexible lithium‐ion batteries, which is advantageous for the commercialization of flexible electronic products. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC modified carbon cloth (TiC/CC) is used as supporting layer. The DMFC's placement and bending angle have little effect on its performance, its power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded.
AbstractList It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC‐modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all‐solid‐state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all‐solid‐state DMFC's power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all‐solid DMFC has an energy density that is 777.78 Wh Kg−1 higher than flexible lithium‐ion batteries, which is advantageous for the commercialization of flexible electronic products. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC modified carbon cloth (TiC/CC) is used as supporting layer. The DMFC's placement and bending angle have little effect on its performance, its power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded.
It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC-modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all-solid-state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all-solid-state DMFC's power density can reach 14.06 mW cm , and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all-solid DMFC has an energy density that is 777.78 Wh Kg higher than flexible lithium-ion batteries, which is advantageous for the commercialization of flexible electronic products.
It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC‐modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all‐solid‐state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all‐solid‐state DMFC's power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all‐solid DMFC has an energy density that is 777.78 Wh Kg−1 higher than flexible lithium‐ion batteries, which is advantageous for the commercialization of flexible electronic products.
Abstract It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC‐modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all‐solid‐state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all‐solid‐state DMFC's power density can reach 14.06 mW cm −2 , and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all‐solid DMFC has an energy density that is 777.78 Wh Kg −1 higher than flexible lithium‐ion batteries, which is advantageous for the commercialization of flexible electronic products.
Author Zhao, Minglin
Yu, Nengfei
Sun, Shanshan
Wang, Qingwei
Xue, Shujie
Wu, Yuping
Huang, Qinghong
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Sun
  fullname: Sun, Shanshan
  organization: Nanjing Tech University
– sequence: 2
  givenname: Minglin
  surname: Zhao
  fullname: Zhao, Minglin
  organization: Nanjing Tech University
– sequence: 3
  givenname: Qingwei
  surname: Wang
  fullname: Wang, Qingwei
  organization: Nanjing Tech University
– sequence: 4
  givenname: Shujie
  surname: Xue
  fullname: Xue, Shujie
  organization: Nanjing Tech University
– sequence: 5
  givenname: Qinghong
  orcidid: 0000-0002-6484-905X
  surname: Huang
  fullname: Huang, Qinghong
  email: huangqh@njtech.edu.cn
  organization: Nanjing Tech University
– sequence: 6
  givenname: Nengfei
  surname: Yu
  fullname: Yu, Nengfei
  organization: Nanjing Tech University
– sequence: 7
  givenname: Yuping
  orcidid: 0000-0002-0833-1205
  surname: Wu
  fullname: Wu, Yuping
  organization: Nanjing Tech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36634982$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKw0AUhgdR7EW3LmXAjZvWueQyWZbWWqFFoQruwnTmxE6ZJDWTULvzEXxGn8SE1gpuXJ2z-M7Pf74OOs7yDBC6oKRPCWE3LrW2zwhjxBfcP0JtGlDeCwSLjg87JS3UcW5FCKfMC09RiwcB9yLB2uhlbOHdLCzggbVfH5_z3BrdzFKWgEemAFXiGZRLmeUWjyuweAjWOrwx5RJPzOsSz9egTGIUfsw3UOARZM6U2zN0kkjr4Hw_u-h5fPs0nPSmD3f3w8G0p3jI_Z5WnlaKSM0ZE5HWSmumPS21z4SUPKCRn4DWgpGQq4SDCrQSXrgQCUlY80YXXe9y10X-VoEr49Q4VVeUGeSVi1kY-GHIieA1evUHXeVVkdXtakpEfhDSGuui_o5SRe5cAUm8Lkwqi21MSdw4jxvn8cF5fXC5j60WKegD_iO5BqIdsDEWtv_ExfPZdPob_g097JGB
CitedBy_id crossref_primary_10_1016_j_cej_2024_150747
crossref_primary_10_1016_j_fuel_2023_130507
Cites_doi 10.1002/smll.201702989
10.1002/adma.201606679
10.1007/s10008-017-3852-4
10.1016/j.snb.2018.02.102
10.1016/j.jelechem.2020.114468
10.1016/j.cej.2021.132718
10.1039/c2jm16326h
10.1002/er.7892
10.1016/j.jelechem.2017.05.046
10.1109/TNANO.2016.2537338
10.1021/acsenergylett.8b02053
10.1016/j.desal.2019.114303
10.1016/j.jpowsour.2019.227669
10.1039/C2TA00659F
10.1016/j.jpowsour.2011.07.039
10.1039/C9TA01026B
10.1016/j.ceramint.2015.05.041
10.1016/j.jpowsour.2010.01.046
10.1002/adma.200803726
10.1016/j.matlet.2015.11.119
10.1002/smll.201804760
10.1016/j.energy.2020.118394
10.1021/acssuschemeng.9b04188
10.1016/j.apsusc.2021.149141
10.1007/s11432-018-9442-3
10.1021/acssuschemeng.1c03047
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202205835
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202205835
36634982
SMLL202205835
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 22279054
– fundername: Natural Science Foundation of China
  grantid: 22279054
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3735-dc4dcc0ad32289ddcdd2d4dad528aa36195fedd82073cf3ec6dc847b8f0f23663
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sat Aug 17 02:49:52 EDT 2024
Thu Oct 10 16:53:41 EDT 2024
Fri Aug 23 03:48:55 EDT 2024
Sat Sep 28 08:15:22 EDT 2024
Sat Aug 24 00:49:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords flexible packages
direct methanol fuel cells
TiC-modified carbon cloth
flexible all-solid-state devices
solid methanol
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-dc4dcc0ad32289ddcdd2d4dad528aa36195fedd82073cf3ec6dc847b8f0f23663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6484-905X
0000-0002-0833-1205
PMID 36634982
PQID 2789567108
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2765773083
proquest_journals_2789567108
crossref_primary_10_1002_smll_202205835
pubmed_primary_36634982
wiley_primary_10_1002_smll_202205835_SMLL202205835
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 430
2021; 9
2018; 263
2019; 7
2019; 4
2013; 1
2009; 21
2020; 481
2017; 22
2019; 15
2021; 547
2022; 46
2016; 165
2017; 29
2018; 61
2011; 196
2018; 22
2016; 15
2020; 208
2017; 799
2021; 13
2018; 4
2020; 450
2015; 41
2020; 874
2018
2010; 195
2012; 22
2018; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Dong S. (e_1_2_8_8_1) 2018
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
Liu W. (e_1_2_8_5_1) 2021; 13
e_1_2_8_30_1
References_xml – volume: 9
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 22
  start-page: 9244
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 195
  start-page: 4418
  year: 2010
  publication-title: J. Power Sources
– volume: 799
  start-page: 377
  year: 2017
  publication-title: J. Electroanal. Chem.
– volume: 1
  start-page: 1030
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 177
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 481
  year: 2020
  publication-title: Desalination
– volume: 208
  year: 2020
  publication-title: Energy
– volume: 13
  start-page: 100
  year: 2021
  publication-title: Nanomicro. Lett.
– volume: 22
  start-page: 1185
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 263
  start-page: 400
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 4
  start-page: 177
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 547
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 46
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 196
  start-page: 9510
  year: 2011
  publication-title: J. Power Sources
– volume: 165
  start-page: 91
  year: 2016
  publication-title: Mater. Lett.
– volume: 22
  start-page: 1185
  year: 2018
  publication-title: J. Solid State Electrochem.
– volume: 450
  year: 2020
  publication-title: J. Power Sources
– volume: 41
  year: 2015
  publication-title: Ceram. Int.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 402
  year: 2016
  publication-title: IEEE Trans. Nanotechnol.
– volume: 874
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 61
  year: 2018
  publication-title: Sci. China Life Sci.
– year: 2018
  publication-title: Flexible Energy Convers. Storage Devices
– volume: 7
  start-page: 9890
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 3007
  year: 2009
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201702989
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201606679
– ident: e_1_2_8_30_1
  doi: 10.1007/s10008-017-3852-4
– ident: e_1_2_8_22_1
  doi: 10.1016/j.snb.2018.02.102
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jelechem.2020.114468
– ident: e_1_2_8_12_1
  doi: 10.1016/j.cej.2021.132718
– ident: e_1_2_8_16_1
  doi: 10.1039/c2jm16326h
– ident: e_1_2_8_28_1
  doi: 10.1002/er.7892
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jelechem.2017.05.046
– ident: e_1_2_8_2_1
  doi: 10.1109/TNANO.2016.2537338
– ident: e_1_2_8_29_1
  doi: 10.1021/acsenergylett.8b02053
– ident: e_1_2_8_23_1
  doi: 10.1016/j.desal.2019.114303
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jpowsour.2019.227669
– volume: 13
  start-page: 100
  year: 2021
  ident: e_1_2_8_5_1
  publication-title: Nanomicro. Lett.
  contributor:
    fullname: Liu W.
– ident: e_1_2_8_18_1
  doi: 10.1039/C2TA00659F
– ident: e_1_2_8_26_1
  doi: 10.1007/s10008-017-3852-4
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jpowsour.2011.07.039
– ident: e_1_2_8_6_1
  doi: 10.1039/C9TA01026B
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jpowsour.2019.227669
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jelechem.2017.05.046
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ceramint.2015.05.041
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jpowsour.2010.01.046
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.200803726
– ident: e_1_2_8_24_1
  doi: 10.1016/j.matlet.2015.11.119
– ident: e_1_2_8_9_1
  doi: 10.1002/smll.201804760
– ident: e_1_2_8_14_1
  doi: 10.1016/j.energy.2020.118394
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jpowsour.2010.01.046
– ident: e_1_2_8_11_1
  doi: 10.1021/acssuschemeng.9b04188
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apsusc.2021.149141
– year: 2018
  ident: e_1_2_8_8_1
  publication-title: Flexible Energy Convers. Storage Devices
  contributor:
    fullname: Dong S.
– ident: e_1_2_8_10_1
  doi: 10.1021/acsenergylett.8b02053
– ident: e_1_2_8_1_1
  doi: 10.1007/s11432-018-9442-3
– ident: e_1_2_8_13_1
  doi: 10.1021/acssuschemeng.1c03047
SSID ssj0031247
Score 2.4944618
Snippet It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and...
Abstract It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2205835
SubjectTerms Assembly
Bends
Clean energy
Commercialization
direct methanol fuel cells
Electrical resistivity
Electronic devices
flexible all‐solid‐state devices
flexible packages
Fuel cells
Lithium-ion batteries
Methanol
Nanotechnology
Portable equipment
Power management
Power sources
solid methanol
TiC‐modified carbon cloth
Title Flexible All‐Solid‐State Direct Methanol Fuel Cells with High Specific Power Density
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205835
https://www.ncbi.nlm.nih.gov/pubmed/36634982
https://www.proquest.com/docview/2789567108
https://search.proquest.com/docview/2765773083
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VnNoDUNqCeWkrIfVkYvblzRGFRgiRqiJFys3al6WIJUEkOcCJn8Bv7C_pjp24BA5IcLIse-X1zs7Mt7Oz3wAcKG2FUFSnPtNZykur07ZGY-gzqTyPS46qaF_vlzy95GcDMXhyir_mh2gCbqgZlb1GBddm0vpPGjq5Drh1gAdFI4qIRhjZ9BAVXTT8USw6r6q6SvRZKRJvLVgbM9pabr7slV5AzWXkWrme7hroRafrjJOrw9nUHNr7Z3yO7_mrdVid41JyXE-kz_DBjzbg0xO2wi8w6CJ5pgmeHIfw9-GxPw5Dh1fEq6S2naTnMRY_DqQ784F0fAgTgrFeggklpKp2Xw4t-Y3F2cgJZs9P777CZffnn85pOi_MkFqWM5E6y521mXbRGqi2c9Y56rjTTlClNYtrMlF65yK4yJktmbfS2egFjSqzkrKIcb7Bymg88ltAjJSC5V4q5znXkpuI146U4tbwnDqTJfBjIZjipubfKGqmZVrgWBXNWCWwu5BbMdfDSYHnfIWMKEol8L15HDUIt0X0yI9n-I4UeTR0iiWwWcu7-RR2lrcVTYBWUnulD0W_d37e3G2_pdEOfMSK9nWa2y6sTG9nfi_inqnZr-b2P6pq-2c
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeqAc-gBKXWi7SJV6Mph9eXOMQqMUEoQKSNysfVlCXZKqSQ7tqT-hv7G_hB07NqQ9VCony7JXXu_szHw7O_sNwHulrRCK6tRnOkt5aXXa0WgMfSaV53HJURXtG53KwSU_vhJNNiGehan5IdqAG2pGZa9RwTEgfXDHGjq9Cbh3gCdFI4xYgcdR5wXq5tHnlkGKRfdV1VeJXitF6q2GtzGjB8vtl_3SX2BzGbtWzqf_DEzT7Trn5Mv-fGb27Y8_GB0f9F_P4ekCmpJuPZdewCM_3oD1e4SFm3DVR_5MEzzphvD756_zSbh2eEXISmrzSUYew_GTQPpzH0jPhzAlGO4lmFNCqoL35bUlZ1ifjRxhAv3s-xZc9j9e9AbpojZDalnOROosd9Zm2kWDoDrOWeeo4047QZXWLC7LROmdi_giZ7Zk3kpnoyM0qsxKyiLMeQmr48nYvwJipBQs91I5z7mW3ETIdqgUt4bn1JksgQ-NZIqvNQVHUZMt0wLHqmjHKoHdRnDFQhWnBR71FTICKZXAXvs4KhHujOixn8zxHSnyaOsUS2C7Fnj7Kews7yiaAK3E9o8-FOej4bC9e_0_jd7B2uBiNCyGn05PduAJFrivs952YXX2be7fRBg0M2-riX4Lbhb_hw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVkL0AJSfEihgJCROaYP_4j1WXaIWdquKUmlvkeNxpAqzW7G7BzjxCH3GPgmeZDftwqESnKIoseJ4PDPf2ONvAN4a65Qy3KY-s1kqa2fTniVj6DNtvIwhR1O0b3isD8_kx5Ea3TjF3_JDdAtupBmNvSYFv8B675o0dPot0NYBHRSNKOIObEgtOIVf_c8dgZSI3qsprxKdVkrMW0vaxozvrbZfdUt_Yc1V6Nr4nuIB2GWv25STr7vzWbXrfv5B6Pg_v_UQ7i-AKdtvZ9IWrPnxI9i8QVf4GEYFsWdWwbP9EK5-XZ5OwjnSlQAra40nG3pajJ8EVsx9YAc-hCmjxV5GGSWsKXdfnzt2QtXZWJ_S52c_nsBZ8eHLwWG6qMyQOpELlaKT6FxmMZoD00N0iBwlWlTcWCtiUKZqjxjRRS5cLbzT6KIbrEyd1VxEkPMU1seTsX8GrNJaidxrg15Kq2UVAdt7Y6SrZM6xyhJ4txRMedEScJQt1TIvaazKbqwS2FnKrVwo4rSkg75KRxhlEnjTPY4qRPsiduwnc3pHqzxaOiMS2G7l3X2KOit7hifAG6nd0ofydDgYdHfP_6XRa7h70i_KwdHxpxdwj6rbtylvO7A--z73LyMGmlWvmmn-G3Bv_jY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+All%E2%80%90Solid%E2%80%90State+Direct+Methanol+Fuel+Cells+with+High+Specific+Power+Density&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sun%2C+Shanshan&rft.au=Zhao%2C+Minglin&rft.au=Wang%2C+Qingwei&rft.au=Xue%2C+Shujie&rft.date=2023-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1002%2Fsmll.202205835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202205835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon