2D‐on‐2D Al‐Doped NiCo LDH Nanosheet Arrays for Fabricating High‐Energy‐Density, Wide Voltage Window, and Ultralong‐Lifespan Supercapacitors
Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with hig...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 37; pp. e2401315 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
2D‐on‐2D Al‐doped NiCo LDH nanosheet arrays with high‐mass‐loading delivers the high capacity of 7.25 C cm−2 under 0–0.65 V potential window. The as‐assembled hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. |
---|---|
AbstractList | Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAl
LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl
LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm
(9.87, 10.88, and 11.15 F cm
) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al
cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl
LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm
at 0-2.0 V, a large energy density of 0.84 mWh cm
at a power density of 10.00 mW cm
, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. 2D‐on‐2D Al‐doped NiCo LDH nanosheet arrays with high‐mass‐loading delivers the high capacity of 7.25 C cm−2 under 0–0.65 V potential window. The as‐assembled hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAl x LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl 0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm −2 (9.87, 10.88, and 11.15 F cm −2 ) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al 3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl 0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm −2 at 0–2.0 V, a large energy density of 0.84 mWh cm −2 at a power density of 10.00 mW cm −2 , and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. |
Author | Wu, Qingqing Han, Boming Li, Bin Huang, Xuejing Xu, Xuetang Wang, Fan Yang, Tianyi Chu, Bingxian |
Author_xml | – sequence: 1 givenname: Xuejing surname: Huang fullname: Huang, Xuejing organization: Guangxi University – sequence: 2 givenname: Bingxian surname: Chu fullname: Chu, Bingxian organization: Guangxi University – sequence: 3 givenname: Boming surname: Han fullname: Han, Boming organization: Guangxi University – sequence: 4 givenname: Qingqing surname: Wu fullname: Wu, Qingqing organization: Guangxi University – sequence: 5 givenname: Tianyi surname: Yang fullname: Yang, Tianyi email: tianyiyang@cqu.edu.cn organization: Guangxi University – sequence: 6 givenname: Xuetang surname: Xu fullname: Xu, Xuetang organization: Guangxi University – sequence: 7 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn organization: Guangxi University – sequence: 8 givenname: Bin surname: Li fullname: Li, Bin organization: Guangxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38747008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWHRGXzLJFmOZloGKZRFKSwtxzlJXXns1E5UZccjsOT5eBI8mjJIlRAbH1v6vmP7P6foyHkHCL2mZE4JYe_j1to5I0wQymn2DJ3QBeWzRcHKo8OekmN0GuMdIZwykb9Ax7zIRU5IcYJ-svWv7z-8Swtb46VNde17aPCVWXlcrTf4SjkfbwEGvAxBTRG3PuBLVQej1WBchzemu03ahYPQTTsfXDTDdI6_mQbwV28H1UE6uMY_nGPlGnxjh6Csd12iK9NC7JXD12MPQateaTP4EF-i562yEV491jN0c3nxZbWZVZ8_fFwtq5nmOc9mZZm-AkUrdFPXJMsKooscNNOtqFM-pElQnpcFo7Vgoq0XGVBIQKE0h0VT8jP0bt-3D_5-hDjIrYkarFUO_BglT01FJnLOE_r2CXrnx-DS6ySnlBIuCpIl6s0jNdZbaGQfzFaFSf7JPAHzPaCDjzFAe0Aokbuhyt1Q5WGoSRBPhBRRyt67FKOx_9bKvfZgLEz_uURef6qqv-5vgS-75Q |
CitedBy_id | crossref_primary_10_1039_D4DT02949F crossref_primary_10_1021_acs_jpclett_4c03506 crossref_primary_10_1016_j_jpowsour_2025_236685 crossref_primary_10_1002_smll_202408572 crossref_primary_10_1039_D4NR04664A crossref_primary_10_1016_j_est_2025_115968 crossref_primary_10_1016_j_susmat_2025_e01286 crossref_primary_10_1016_j_ijbiomac_2024_138559 crossref_primary_10_1016_j_jallcom_2024_176865 crossref_primary_10_1002_smll_202409959 crossref_primary_10_1016_j_jallcom_2024_176785 crossref_primary_10_1016_j_jallcom_2024_176850 crossref_primary_10_3390_molecules29235662 crossref_primary_10_6023_A24110358 crossref_primary_10_1021_acs_inorgchem_4c03825 |
Cites_doi | 10.1016/j.cej.2021.128617 10.1039/C7DT01863K 10.1039/C7TA07449B 10.1039/C1CS15060J 10.1016/j.nanoen.2020.105727 10.1016/j.mser.2022.100713 10.1002/adma.201905923 10.1021/acsami.1c10386 10.1016/j.jechem.2020.08.043 10.1016/j.ensm.2022.08.039 10.1039/D0TA11606H 10.1016/j.electacta.2022.140336 10.1002/chem.201803658 10.1021/acsami.1c20922 10.1002/anie.202104167 10.1021/acsanm.2c00131 10.1002/aenm.202001460 10.1016/j.cej.2021.132992 10.1002/chem.201404779 10.1002/aenm.202203216 10.1002/adfm.202108107 10.1016/j.jcis.2023.10.066 10.1039/D2QM01346K 10.1016/j.cej.2023.143694 10.1016/j.est.2022.104300 10.1016/j.jcis.2021.12.087 10.1002/smll.202204121 10.1002/smll.202306382 10.1016/j.jcis.2022.11.131 10.1002/aenm.202003203 10.1016/j.cej.2022.140545 10.1039/D2TA00782G 10.1039/D1TA06263H 10.1021/acsnano.9b06910 10.1002/adfm.202305175 10.1016/j.jpowsour.2022.232309 10.1016/j.ensm.2022.12.006 10.1002/adfm.201903879 10.1016/j.jcis.2022.08.175 10.1021/acsami.1c00506 10.1016/j.rser.2019.01.023 10.1016/j.jpowsour.2022.231982 10.1021/acs.jpcc.8b08481 10.1002/advs.201800064 10.1002/eem2.12545 10.1016/j.nanoen.2023.108763 10.1016/j.jcis.2022.09.092 10.1021/acsaem.2c03629 10.1016/j.jcis.2022.10.033 10.1038/s41467-022-28918-0 10.1016/j.jcis.2021.12.082 10.1016/j.jpowsour.2023.233990 10.1021/acsnano.7b04368 10.1016/j.carbon.2020.02.033 10.1016/j.electacta.2022.140939 10.1002/adma.201902387 10.1002/anie.202007983 10.1039/D1TA06815F 10.1016/j.pmatsci.2021.100911 10.1039/C6CP06270A 10.1016/j.nanoen.2019.06.044 10.1039/C5CS00580A 10.1039/D2TA05309H 10.1021/acsaem.9b02304 10.1016/j.ccr.2021.214242 10.1016/j.nanoen.2019.02.001 10.1149/1945-7111/ac8ad4 10.1016/j.jpowsour.2022.231149 10.1016/j.apsusc.2022.153163 10.1039/D3TA05970G 10.1002/aenm.201502398 10.1002/aenm.202001537 10.1016/j.cej.2021.132470 10.1002/chem.201804218 10.1016/j.est.2021.102858 10.1002/adfm.202213095 10.1002/adfm.202215155 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202401315 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38747008 10_1002_smll_202401315 SMLL202401315 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51862002; 22065003; 22261005 – fundername: National Natural Science Foundation of China grantid: 22065003 – fundername: National Natural Science Foundation of China grantid: 51862002 – fundername: National Natural Science Foundation of China grantid: 22261005 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3735-99874e8f4cdbb05580c87ec2cf4b0020d735779821b424fb65e1e7ec8ac3e6d93 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 10:50:52 EDT 2025 Fri Jul 25 11:58:21 EDT 2025 Mon Jul 21 05:56:39 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Tue Jul 01 05:14:18 EDT 2025 Wed Jan 22 17:16:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | Al doping effect 2D‐on‐2D alignment nickel–cobalt LDH supercapacitor |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-99874e8f4cdbb05580c87ec2cf4b0020d735779821b424fb65e1e7ec8ac3e6d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6106-4724 |
PMID | 38747008 |
PQID | 3111034805 |
PQPubID | 1046358 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3055454733 proquest_journals_3111034805 pubmed_primary_38747008 crossref_primary_10_1002_smll_202401315 crossref_citationtrail_10_1002_smll_202401315 wiley_primary_10_1002_smll_202401315_SMLL202401315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 451 2023; 33 2020; 162 2023; 6 2023; 7 2019; 13 2019; 59 2017; 46 2023; 468 2020; 59 2020; 10 2022; 22 2024 2022; 612 2023; 629 2019; 123 2022; 611 2023; 20 2018; 6 2020; 3 2018; 5 2019; 63 2023; 455 2019; 29 2024; 594 2022; 32 2022; 527 2021; 82 2021; 41 2016; 45 2022; 125 2022; 169 2021; 9 2022; 430 2022; 592 2023; 55 2022; 50 2019; 32 2023; 19 2019; 104 2024; 12 2020; 32 2018; 24 2021; 14 2021; 13 2021; 57 2016; 6 2021; 11 2024; 654 2023; 152 2021; 412 2022; 5 2023; 630 2017; 11 2015; 21 2022; 13 2023; 633 2023; 116 2022; 14 2023; 554 2017; 19 2022; 53 2022; 10 2022; 428 2021; 60 2022; 546 2022; 425 2012; 41 e_1_2_7_5_1 Guo W. (e_1_2_7_18_1) 2021; 14 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 Zhao Y. (e_1_2_7_44_1) 2024 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Liu X. X. (e_1_2_7_27_1) 2022; 22 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 630 start-page: 286 year: 2023 publication-title: J. Colloid Interf. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 428 year: 2022 publication-title: Chem. Eng. J. – volume: 19 start-page: 1762 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 20 year: 2023 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 428 year: 2022 publication-title: Electrochim. Acta – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 79 year: 2022 publication-title: Energy Storage Mater. – volume: 633 start-page: 723 year: 2023 publication-title: J. Colloid Interf. Sci. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 455 year: 2023 publication-title: Chem. Eng. J. – volume: 46 year: 2017 publication-title: Dalton Trans. – volume: 7 year: 2023 publication-title: Energy Environ. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 4528 year: 2021 publication-title: J. Mater. Chem. A – volume: 104 start-page: 192 year: 2019 publication-title: Renew. Sust. Energ. Rev. – volume: 162 start-page: 136 year: 2020 publication-title: Carbon – volume: 594 year: 2024 publication-title: J. Power Sources – volume: 11 year: 2017 publication-title: ACS Nano – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1412 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 6181 year: 2022 publication-title: ACS Appl. Nano Mater – volume: 82 year: 2021 publication-title: Nano Energy – volume: 19 year: 2023 publication-title: Small – volume: 13 year: 2022 publication-title: Adv. Energy Mater. – volume: 41 year: 2021 publication-title: J. Energy Storage – volume: 55 start-page: 356 year: 2023 publication-title: Energy Stor. Mater. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 612 start-page: 772 year: 2022 publication-title: J. Colloid Interf. Sci. – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 629 start-page: 938 year: 2023 publication-title: J. Colloid Interf. Sci. – volume: 116 year: 2023 publication-title: Nano Energy – volume: 125 year: 2022 publication-title: Prog. Mater. Sci. – volume: 152 year: 2023 publication-title: Mater Sci Eng R Rep – volume: 63 year: 2019 publication-title: Nano Energy – volume: 468 year: 2023 publication-title: Chem. Eng. J. – volume: 59 start-page: 41 year: 2019 publication-title: Nano Energy – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 21 start-page: 80 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 45 start-page: 5925 year: 2016 publication-title: Chem. Soc. Rev. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 41 start-page: 797 year: 2012 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 2781 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 57 start-page: 118 year: 2021 publication-title: J Energy Chem – volume: 3 start-page: 2614 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 14 start-page: 4490 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 592 year: 2022 publication-title: Appl. Surf. Sci. – volume: 654 start-page: 539 year: 2024 publication-title: J. Colloid Interf. Sci. – volume: 14 year: 2021 publication-title: Energy Environ. Sci. – volume: 425 year: 2022 publication-title: Electrochim. Acta – volume: 527 year: 2022 publication-title: J. Power Sources – volume: 12 start-page: 1816 year: 2024 publication-title: J. Mater. Chem. A – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 22 year: 2022 publication-title: Chem. Rec. – volume: 59 year: 2020 publication-title: Angew. Chem. Inter. Ed. – volume: 554 year: 2023 publication-title: J. Power Sources – volume: 13 start-page: 1409 year: 2022 publication-title: Nat. Commun. – volume: 7 start-page: 1520 year: 2023 publication-title: Mater. Chem. Front. – volume: 50 year: 2022 publication-title: J. Energy Storage – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 611 start-page: 149 year: 2022 publication-title: J. Colloid Interf. Sci. – year: 2024 publication-title: Energy Environ. Sci. – volume: 630 start-page: 973 year: 2023 publication-title: J. Colloid Interf. Sci. – volume: 451 year: 2022 publication-title: Coordin. Chem. Rev. – volume: 546 year: 2022 publication-title: J. Power Sources – volume: 123 start-page: 1692 year: 2019 publication-title: J. Phys. Chem. C – ident: e_1_2_7_32_1 doi: 10.1016/j.cej.2021.128617 – ident: e_1_2_7_57_1 doi: 10.1039/C7DT01863K – ident: e_1_2_7_49_1 doi: 10.1039/C7TA07449B – ident: e_1_2_7_2_1 doi: 10.1039/C1CS15060J – ident: e_1_2_7_75_1 doi: 10.1016/j.nanoen.2020.105727 – ident: e_1_2_7_6_1 doi: 10.1016/j.mser.2022.100713 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201905923 – ident: e_1_2_7_35_1 doi: 10.1021/acsami.1c10386 – ident: e_1_2_7_67_1 doi: 10.1016/j.jechem.2020.08.043 – ident: e_1_2_7_14_1 doi: 10.1016/j.ensm.2022.08.039 – ident: e_1_2_7_16_1 doi: 10.1039/D0TA11606H – ident: e_1_2_7_45_1 doi: 10.1016/j.electacta.2022.140336 – ident: e_1_2_7_26_1 doi: 10.1002/chem.201803658 – ident: e_1_2_7_48_1 doi: 10.1021/acsami.1c20922 – ident: e_1_2_7_63_1 doi: 10.1002/anie.202104167 – ident: e_1_2_7_52_1 doi: 10.1021/acsanm.2c00131 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.202001460 – ident: e_1_2_7_33_1 doi: 10.1016/j.cej.2021.132992 – ident: e_1_2_7_9_1 doi: 10.1002/chem.201404779 – ident: e_1_2_7_47_1 doi: 10.1002/aenm.202203216 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.202108107 – ident: e_1_2_7_21_1 doi: 10.1016/j.jcis.2023.10.066 – ident: e_1_2_7_15_1 doi: 10.1039/D2QM01346K – ident: e_1_2_7_28_1 doi: 10.1016/j.cej.2023.143694 – ident: e_1_2_7_20_1 doi: 10.1016/j.est.2022.104300 – ident: e_1_2_7_36_1 doi: 10.1016/j.jcis.2021.12.087 – ident: e_1_2_7_7_1 doi: 10.1002/smll.202204121 – ident: e_1_2_7_70_1 doi: 10.1002/smll.202306382 – ident: e_1_2_7_71_1 doi: 10.1016/j.jcis.2022.11.131 – ident: e_1_2_7_54_1 doi: 10.1002/aenm.202003203 – ident: e_1_2_7_43_1 doi: 10.1016/j.cej.2022.140545 – ident: e_1_2_7_53_1 doi: 10.1039/D2TA00782G – ident: e_1_2_7_56_1 doi: 10.1039/D1TA06263H – ident: e_1_2_7_51_1 doi: 10.1021/acsnano.9b06910 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.202305175 – ident: e_1_2_7_17_1 doi: 10.1016/j.jpowsour.2022.232309 – ident: e_1_2_7_41_1 doi: 10.1016/j.ensm.2022.12.006 – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201903879 – ident: e_1_2_7_59_1 doi: 10.1016/j.jcis.2022.08.175 – ident: e_1_2_7_79_1 doi: 10.1021/acsami.1c00506 – ident: e_1_2_7_1_1 doi: 10.1016/j.rser.2019.01.023 – ident: e_1_2_7_40_1 doi: 10.1016/j.jpowsour.2022.231982 – ident: e_1_2_7_73_1 doi: 10.1021/acs.jpcc.8b08481 – ident: e_1_2_7_22_1 doi: 10.1002/advs.201800064 – ident: e_1_2_7_74_1 doi: 10.1002/eem2.12545 – ident: e_1_2_7_77_1 doi: 10.1016/j.nanoen.2023.108763 – ident: e_1_2_7_58_1 doi: 10.1016/j.jcis.2022.09.092 – ident: e_1_2_7_29_1 doi: 10.1021/acsaem.2c03629 – ident: e_1_2_7_34_1 doi: 10.1016/j.jcis.2022.10.033 – ident: e_1_2_7_72_1 doi: 10.1038/s41467-022-28918-0 – ident: e_1_2_7_76_1 doi: 10.1016/j.jcis.2021.12.082 – ident: e_1_2_7_60_1 doi: 10.1016/j.jpowsour.2023.233990 – ident: e_1_2_7_78_1 doi: 10.1021/acsnano.7b04368 – volume: 14 year: 2021 ident: e_1_2_7_18_1 publication-title: Energy Environ. Sci. – ident: e_1_2_7_46_1 doi: 10.1016/j.carbon.2020.02.033 – year: 2024 ident: e_1_2_7_44_1 publication-title: Energy Environ. Sci. – ident: e_1_2_7_61_1 doi: 10.1016/j.electacta.2022.140939 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201902387 – volume: 22 year: 2022 ident: e_1_2_7_27_1 publication-title: Chem. Rec. – ident: e_1_2_7_39_1 doi: 10.1002/anie.202007983 – ident: e_1_2_7_23_1 doi: 10.1039/D1TA06815F – ident: e_1_2_7_31_1 doi: 10.1016/j.pmatsci.2021.100911 – ident: e_1_2_7_68_1 doi: 10.1039/C6CP06270A – ident: e_1_2_7_10_1 doi: 10.1016/j.nanoen.2019.06.044 – ident: e_1_2_7_11_1 doi: 10.1039/C5CS00580A – ident: e_1_2_7_12_1 doi: 10.1039/D2TA05309H – ident: e_1_2_7_66_1 doi: 10.1021/acsaem.9b02304 – ident: e_1_2_7_13_1 doi: 10.1016/j.ccr.2021.214242 – ident: e_1_2_7_5_1 doi: 10.1016/j.nanoen.2019.02.001 – ident: e_1_2_7_42_1 doi: 10.1149/1945-7111/ac8ad4 – ident: e_1_2_7_62_1 doi: 10.1016/j.jpowsour.2022.231149 – ident: e_1_2_7_64_1 doi: 10.1016/j.apsusc.2022.153163 – ident: e_1_2_7_80_1 doi: 10.1039/D3TA05970G – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201502398 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.202001537 – ident: e_1_2_7_38_1 doi: 10.1016/j.cej.2021.132470 – ident: e_1_2_7_55_1 doi: 10.1002/chem.201804218 – ident: e_1_2_7_65_1 doi: 10.1016/j.est.2021.102858 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.202213095 – ident: e_1_2_7_69_1 doi: 10.1002/adfm.202215155 |
SSID | ssj0031247 |
Score | 2.577848 |
Snippet | Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage... Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2401315 |
SubjectTerms | 2D‐on‐2D alignment Activated carbon Al doping effect Arrays Cloth Deposition Electrode materials Electrodes Hydroxides Intermetallic compounds Leaching Nanosheets nickel–cobalt LDH Phase stability Substrates supercapacitor Supercapacitors Synergistic effect |
Title | 2D‐on‐2D Al‐Doped NiCo LDH Nanosheet Arrays for Fabricating High‐Energy‐Density, Wide Voltage Window, and Ultralong‐Lifespan Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202401315 https://www.ncbi.nlm.nih.gov/pubmed/38747008 https://www.proquest.com/docview/3111034805 https://www.proquest.com/docview/3055454733 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VgoyEhIXJo2sZ1Ncqy6Xa3QtgfKQm-RH5OyIjirTVaonPgJHPl9_BJmkt3QBSEkuCSxMs7D8cx8dsbfMPZiGNrYRJAFxL0WKAE20AL1EdJEFTqKNLS5Dk9Oh5OZenUen19Zxd_xQ_QTbqQZrb0mBdemPvhJGlp_LOnXgaABQrvKnAK2CBW97vmjJDqvNrsK-qyAiLc2rI2hONiuvu2VfoOa28i1dT3jW0xvHrqLOPmwv2rMvv38C5_j_7zVbXZzjUv5YdeR7rBr4O-yG1fYCu-xb2L0_cvXyuNGjPhhiftRtQDHT-dHFZ-OJhxNdVW_B2jwOkt9WXNExHysTZeKyF9wiirBasftgkOqT-HzzeUefzd3wN9WZYPmDQveVZ_2uPaOz0qaiqn8BUpP5wWgAfT8bLWApUU3b-eULOg-m42P3xxNgnVih8DKRMYBDvESBWmhrDMmjOM0tGkCVthCEWgIHQolSZaKyCihCjOMIQIUSLWVMHSZfMB2fOXhEeNFHOpIGGlikakstNomkCiHqMm5AodyAxZsPmxu16znlHyjzDu-ZpFTi-d9iw_Yy15-0fF9_FFyd9NP8rXe17lE1xFKlYZ4-nl_GjWWfsNoD9UKZfCNiUZNygF72PWv_lYSGyZBWDZgou0lf3mG_OxkOu1Lj_-l0hN2nY67sLldttMsV_AUcVZjnrW69AOTLCRn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvB-FBYyExGWzm9hOkxxXm60KpD2wW-AW-ZWlIjhVmwotJ34CR34fv4SZpAkUhJDgksjxOLEdz8P2-BtCng59HarAJh5ir3mCWe1JBvxo40gUMgikbWIdTqbD8Uy8eBt23oR4FqbFh-gX3JAzGnmNDI4L0gc_UENXH0rcO2A4Q8Bj5hcxrDfC56evegQpDuqria8CWstD6K0Ot9FnB9vlt_XSb8bmtu3aKJ_RNaK6arc-J-_317Xa159-QXT8r3ZdJ1c3pik9bMfSDXLBupvkyk-AhbfIV5Z--_ylcnBhKT0s4Z5WC2vodH5U0SwdU5DW1eqdtTW8ZynPVxSMYjqSqo1G5M4oOpZAsePmzCGWRw_6-nyPvpkbS19XZQ0SDhLOVB_3qHSGzkpcjancGVBn88KCDHT0ZL2wSw2aXs8xXtBtMhsdnx6NvU1sB0_ziIcezPIiYeNCaKOUH4axr-PIaqYLgXaDb4AoipKYBUowUahhaAMLBLHU3A5Nwu-QHVc5e4_QIvRlwBRXIUtE4mupIxsJA4aTMQXM5gbE6_5srjfA5xh_o8xbyGaWY4_nfY8PyLOeftFCfvyRcrcbKPmG9Vc5B-3hcxH7kP2kzwamxZ0Y6Wy1BhpoMSKpcT4gd9sB1n-KQ8dEYJkNCGuGyV_qkJ9MsqxP3f-XQo_JpfHpJMuz59OXD8hlfN560e2SnXq5tg_B7KrVo4axvgO8GyiD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceD8WChgJiUvTOrbzOlZNVwukK0RZ6C3yY1JWhGS1mxUqJ34CR34fv4Rxshu6IIQEl0SOx4nteB62x98Q8jRkJtA-JJ7DXvMkB-MpjvwIcSQL5fsK2liHR-NwNJEvToKTc6f4O3yIfsHNcUYrrx2Dz2yx9xM0dPGxdFsH3E0Q3CnzizJkiQvekL7uAaQEaq82vAoqLc8hb61hGxnf2yy_qZZ-szU3TddW9wyvEbWudedy8mF32ehd8_kXQMf_adZ1cnVlmNL9biTdIBegukmunIMrvEW-8fT7l691hRee0v0S72k9A0vH04OaZumIoqyuF-8BGnzPXJ0tKJrEdKh0F4uoOqXOrQSLHbYnDl155z_fnO3Qd1ML9G1dNijfMFHZ-tMOVZWlk9KtxdTVKVJn0wJQAlb0eDmDuUE9b6YuWtBtMhkevjkYeavIDp4RkQg8nONFEuJCGqs1C4KYmTgCw00hndXALBJFURJzX0suCx0G4AMSxMoICG0i7pCtqq7gHqFFwJTPtdABT2TCjDIRRNKi2WRtgXO5AfHWPzY3K9hzF32jzDvAZp67Hs_7Hh-QZz39rAP8-CPl9nqc5CvGX-QCdQcTMmaY_aTPRpZ1-zCqgnqJNNhih6MmxIDc7cZX_ymBHROhXTYgvB0lf6lDfnyUZX3q_r8UekwuvUqHefZ8_PIBuewedy5022SrmS_hIdpcjX7UstUPKl4nMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D%E2%80%90on%E2%80%902D+Al%E2%80%90Doped+NiCo+LDH+Nanosheet+Arrays+for+Fabricating+High%E2%80%90Energy%E2%80%90Density%2C+Wide+Voltage+Window%2C+and+Ultralong%E2%80%90Lifespan+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Xuejing&rft.au=Chu%2C+Bingxian&rft.au=Han%2C+Boming&rft.au=Wu%2C+Qingqing&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.202401315&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |