2D‐on‐2D Al‐Doped NiCo LDH Nanosheet Arrays for Fabricating High‐Energy‐Density, Wide Voltage Window, and Ultralong‐Lifespan Supercapacitors

Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with hig...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 37; pp. e2401315 - n/a
Main Authors Huang, Xuejing, Chu, Bingxian, Han, Boming, Wu, Qingqing, Yang, Tianyi, Xu, Xuetang, Wang, Fan, Li, Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. 2D‐on‐2D Al‐doped NiCo LDH nanosheet arrays with high‐mass‐loading delivers the high capacity of 7.25 C cm−2 under 0–0.65 V potential window. The as‐assembled hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
AbstractList Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAl LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm (9.87, 10.88, and 11.15 F cm ) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm at 0-2.0 V, a large energy density of 0.84 mWh cm at a power density of 10.00 mW cm , and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm−2 (9.87, 10.88, and 11.15 F cm−2) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at a power density of 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles. 2D‐on‐2D Al‐doped NiCo LDH nanosheet arrays with high‐mass‐loading delivers the high capacity of 7.25 C cm−2 under 0–0.65 V potential window. The as‐assembled hybrid supercapacitor delivers 3.11 C cm−2 at 0–2.0 V, a large energy density of 0.84 mWh cm−2 at 10.00 mW cm−2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D‐on‐2D Al‐doped NiCo layered double hydroxide (NiCoAl x LDH) nanosheet arrays with high‐mass‐loading are grown on a carbon cloth (CC) substrate via a two‐step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi‐metallic synergistic effect. The optimized NiCoAl 0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm −2 (9.87, 10.88, and 11.15 F cm −2 ) under 0–0.55, 0–0.60, and 0–0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al 3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as‐assembled NiCoAl 0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm −2 at 0–2.0 V, a large energy density of 0.84 mWh cm −2 at a power density of 10.00 mW cm −2 , and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.
Author Wu, Qingqing
Han, Boming
Li, Bin
Huang, Xuejing
Xu, Xuetang
Wang, Fan
Yang, Tianyi
Chu, Bingxian
Author_xml – sequence: 1
  givenname: Xuejing
  surname: Huang
  fullname: Huang, Xuejing
  organization: Guangxi University
– sequence: 2
  givenname: Bingxian
  surname: Chu
  fullname: Chu, Bingxian
  organization: Guangxi University
– sequence: 3
  givenname: Boming
  surname: Han
  fullname: Han, Boming
  organization: Guangxi University
– sequence: 4
  givenname: Qingqing
  surname: Wu
  fullname: Wu, Qingqing
  organization: Guangxi University
– sequence: 5
  givenname: Tianyi
  surname: Yang
  fullname: Yang, Tianyi
  email: tianyiyang@cqu.edu.cn
  organization: Guangxi University
– sequence: 6
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  organization: Guangxi University
– sequence: 7
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
  organization: Guangxi University
– sequence: 8
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Guangxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38747008$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWHRGXzLJFmOZloGKZRFKSwtxzlJXXns1E5UZccjsOT5eBI8mjJIlRAbH1v6vmP7P6foyHkHCL2mZE4JYe_j1to5I0wQymn2DJ3QBeWzRcHKo8OekmN0GuMdIZwykb9Ax7zIRU5IcYJ-svWv7z-8Swtb46VNde17aPCVWXlcrTf4SjkfbwEGvAxBTRG3PuBLVQej1WBchzemu03ahYPQTTsfXDTDdI6_mQbwV28H1UE6uMY_nGPlGnxjh6Csd12iK9NC7JXD12MPQateaTP4EF-i562yEV491jN0c3nxZbWZVZ8_fFwtq5nmOc9mZZm-AkUrdFPXJMsKooscNNOtqFM-pElQnpcFo7Vgoq0XGVBIQKE0h0VT8jP0bt-3D_5-hDjIrYkarFUO_BglT01FJnLOE_r2CXrnx-DS6ySnlBIuCpIl6s0jNdZbaGQfzFaFSf7JPAHzPaCDjzFAe0Aokbuhyt1Q5WGoSRBPhBRRyt67FKOx_9bKvfZgLEz_uURef6qqv-5vgS-75Q
CitedBy_id crossref_primary_10_1039_D4DT02949F
crossref_primary_10_1021_acs_jpclett_4c03506
crossref_primary_10_1016_j_jpowsour_2025_236685
crossref_primary_10_1002_smll_202408572
crossref_primary_10_1039_D4NR04664A
crossref_primary_10_1016_j_est_2025_115968
crossref_primary_10_1016_j_susmat_2025_e01286
crossref_primary_10_1016_j_ijbiomac_2024_138559
crossref_primary_10_1016_j_jallcom_2024_176865
crossref_primary_10_1002_smll_202409959
crossref_primary_10_1016_j_jallcom_2024_176785
crossref_primary_10_1016_j_jallcom_2024_176850
crossref_primary_10_3390_molecules29235662
crossref_primary_10_6023_A24110358
crossref_primary_10_1021_acs_inorgchem_4c03825
Cites_doi 10.1016/j.cej.2021.128617
10.1039/C7DT01863K
10.1039/C7TA07449B
10.1039/C1CS15060J
10.1016/j.nanoen.2020.105727
10.1016/j.mser.2022.100713
10.1002/adma.201905923
10.1021/acsami.1c10386
10.1016/j.jechem.2020.08.043
10.1016/j.ensm.2022.08.039
10.1039/D0TA11606H
10.1016/j.electacta.2022.140336
10.1002/chem.201803658
10.1021/acsami.1c20922
10.1002/anie.202104167
10.1021/acsanm.2c00131
10.1002/aenm.202001460
10.1016/j.cej.2021.132992
10.1002/chem.201404779
10.1002/aenm.202203216
10.1002/adfm.202108107
10.1016/j.jcis.2023.10.066
10.1039/D2QM01346K
10.1016/j.cej.2023.143694
10.1016/j.est.2022.104300
10.1016/j.jcis.2021.12.087
10.1002/smll.202204121
10.1002/smll.202306382
10.1016/j.jcis.2022.11.131
10.1002/aenm.202003203
10.1016/j.cej.2022.140545
10.1039/D2TA00782G
10.1039/D1TA06263H
10.1021/acsnano.9b06910
10.1002/adfm.202305175
10.1016/j.jpowsour.2022.232309
10.1016/j.ensm.2022.12.006
10.1002/adfm.201903879
10.1016/j.jcis.2022.08.175
10.1021/acsami.1c00506
10.1016/j.rser.2019.01.023
10.1016/j.jpowsour.2022.231982
10.1021/acs.jpcc.8b08481
10.1002/advs.201800064
10.1002/eem2.12545
10.1016/j.nanoen.2023.108763
10.1016/j.jcis.2022.09.092
10.1021/acsaem.2c03629
10.1016/j.jcis.2022.10.033
10.1038/s41467-022-28918-0
10.1016/j.jcis.2021.12.082
10.1016/j.jpowsour.2023.233990
10.1021/acsnano.7b04368
10.1016/j.carbon.2020.02.033
10.1016/j.electacta.2022.140939
10.1002/adma.201902387
10.1002/anie.202007983
10.1039/D1TA06815F
10.1016/j.pmatsci.2021.100911
10.1039/C6CP06270A
10.1016/j.nanoen.2019.06.044
10.1039/C5CS00580A
10.1039/D2TA05309H
10.1021/acsaem.9b02304
10.1016/j.ccr.2021.214242
10.1016/j.nanoen.2019.02.001
10.1149/1945-7111/ac8ad4
10.1016/j.jpowsour.2022.231149
10.1016/j.apsusc.2022.153163
10.1039/D3TA05970G
10.1002/aenm.201502398
10.1002/aenm.202001537
10.1016/j.cej.2021.132470
10.1002/chem.201804218
10.1016/j.est.2021.102858
10.1002/adfm.202213095
10.1002/adfm.202215155
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202401315
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38747008
10_1002_smll_202401315
SMLL202401315
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51862002; 22065003; 22261005
– fundername: National Natural Science Foundation of China
  grantid: 22065003
– fundername: National Natural Science Foundation of China
  grantid: 51862002
– fundername: National Natural Science Foundation of China
  grantid: 22261005
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3735-99874e8f4cdbb05580c87ec2cf4b0020d735779821b424fb65e1e7ec8ac3e6d93
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 10:50:52 EDT 2025
Fri Jul 25 11:58:21 EDT 2025
Mon Jul 21 05:56:39 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Tue Jul 01 05:14:18 EDT 2025
Wed Jan 22 17:16:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords Al doping effect
2D‐on‐2D alignment
nickel–cobalt LDH
supercapacitor
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-99874e8f4cdbb05580c87ec2cf4b0020d735779821b424fb65e1e7ec8ac3e6d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6106-4724
PMID 38747008
PQID 3111034805
PQPubID 1046358
PageCount 14
ParticipantIDs proquest_miscellaneous_3055454733
proquest_journals_3111034805
pubmed_primary_38747008
crossref_primary_10_1002_smll_202401315
crossref_citationtrail_10_1002_smll_202401315
wiley_primary_10_1002_smll_202401315_SMLL202401315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 451
2023; 33
2020; 162
2023; 6
2023; 7
2019; 13
2019; 59
2017; 46
2023; 468
2020; 59
2020; 10
2022; 22
2024
2022; 612
2023; 629
2019; 123
2022; 611
2023; 20
2018; 6
2020; 3
2018; 5
2019; 63
2023; 455
2019; 29
2024; 594
2022; 32
2022; 527
2021; 82
2021; 41
2016; 45
2022; 125
2022; 169
2021; 9
2022; 430
2022; 592
2023; 55
2022; 50
2019; 32
2023; 19
2019; 104
2024; 12
2020; 32
2018; 24
2021; 14
2021; 13
2021; 57
2016; 6
2021; 11
2024; 654
2023; 152
2021; 412
2022; 5
2023; 630
2017; 11
2015; 21
2022; 13
2023; 633
2023; 116
2022; 14
2023; 554
2017; 19
2022; 53
2022; 10
2022; 428
2021; 60
2022; 546
2022; 425
2012; 41
e_1_2_7_5_1
Guo W. (e_1_2_7_18_1) 2021; 14
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
Zhao Y. (e_1_2_7_44_1) 2024
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Liu X. X. (e_1_2_7_27_1) 2022; 22
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 630
  start-page: 286
  year: 2023
  publication-title: J. Colloid Interf. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 428
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 1762
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 20
  year: 2023
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 428
  year: 2022
  publication-title: Electrochim. Acta
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 79
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 633
  start-page: 723
  year: 2023
  publication-title: J. Colloid Interf. Sci.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 455
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 7
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 4528
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 104
  start-page: 192
  year: 2019
  publication-title: Renew. Sust. Energ. Rev.
– volume: 162
  start-page: 136
  year: 2020
  publication-title: Carbon
– volume: 594
  year: 2024
  publication-title: J. Power Sources
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1412
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6181
  year: 2022
  publication-title: ACS Appl. Nano Mater
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 19
  year: 2023
  publication-title: Small
– volume: 13
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 41
  year: 2021
  publication-title: J. Energy Storage
– volume: 55
  start-page: 356
  year: 2023
  publication-title: Energy Stor. Mater.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 612
  start-page: 772
  year: 2022
  publication-title: J. Colloid Interf. Sci.
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 629
  start-page: 938
  year: 2023
  publication-title: J. Colloid Interf. Sci.
– volume: 116
  year: 2023
  publication-title: Nano Energy
– volume: 125
  year: 2022
  publication-title: Prog. Mater. Sci.
– volume: 152
  year: 2023
  publication-title: Mater Sci Eng R Rep
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 468
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 41
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 21
  start-page: 80
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 45
  start-page: 5925
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 41
  start-page: 797
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 2781
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 57
  start-page: 118
  year: 2021
  publication-title: J Energy Chem
– volume: 3
  start-page: 2614
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 14
  start-page: 4490
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 592
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 654
  start-page: 539
  year: 2024
  publication-title: J. Colloid Interf. Sci.
– volume: 14
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 425
  year: 2022
  publication-title: Electrochim. Acta
– volume: 527
  year: 2022
  publication-title: J. Power Sources
– volume: 12
  start-page: 1816
  year: 2024
  publication-title: J. Mater. Chem. A
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 22
  year: 2022
  publication-title: Chem. Rec.
– volume: 59
  year: 2020
  publication-title: Angew. Chem. Inter. Ed.
– volume: 554
  year: 2023
  publication-title: J. Power Sources
– volume: 13
  start-page: 1409
  year: 2022
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1520
  year: 2023
  publication-title: Mater. Chem. Front.
– volume: 50
  year: 2022
  publication-title: J. Energy Storage
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 611
  start-page: 149
  year: 2022
  publication-title: J. Colloid Interf. Sci.
– year: 2024
  publication-title: Energy Environ. Sci.
– volume: 630
  start-page: 973
  year: 2023
  publication-title: J. Colloid Interf. Sci.
– volume: 451
  year: 2022
  publication-title: Coordin. Chem. Rev.
– volume: 546
  year: 2022
  publication-title: J. Power Sources
– volume: 123
  start-page: 1692
  year: 2019
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_32_1
  doi: 10.1016/j.cej.2021.128617
– ident: e_1_2_7_57_1
  doi: 10.1039/C7DT01863K
– ident: e_1_2_7_49_1
  doi: 10.1039/C7TA07449B
– ident: e_1_2_7_2_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_7_75_1
  doi: 10.1016/j.nanoen.2020.105727
– ident: e_1_2_7_6_1
  doi: 10.1016/j.mser.2022.100713
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201905923
– ident: e_1_2_7_35_1
  doi: 10.1021/acsami.1c10386
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jechem.2020.08.043
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ensm.2022.08.039
– ident: e_1_2_7_16_1
  doi: 10.1039/D0TA11606H
– ident: e_1_2_7_45_1
  doi: 10.1016/j.electacta.2022.140336
– ident: e_1_2_7_26_1
  doi: 10.1002/chem.201803658
– ident: e_1_2_7_48_1
  doi: 10.1021/acsami.1c20922
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.202104167
– ident: e_1_2_7_52_1
  doi: 10.1021/acsanm.2c00131
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202001460
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cej.2021.132992
– ident: e_1_2_7_9_1
  doi: 10.1002/chem.201404779
– ident: e_1_2_7_47_1
  doi: 10.1002/aenm.202203216
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.202108107
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jcis.2023.10.066
– ident: e_1_2_7_15_1
  doi: 10.1039/D2QM01346K
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cej.2023.143694
– ident: e_1_2_7_20_1
  doi: 10.1016/j.est.2022.104300
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jcis.2021.12.087
– ident: e_1_2_7_7_1
  doi: 10.1002/smll.202204121
– ident: e_1_2_7_70_1
  doi: 10.1002/smll.202306382
– ident: e_1_2_7_71_1
  doi: 10.1016/j.jcis.2022.11.131
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.202003203
– ident: e_1_2_7_43_1
  doi: 10.1016/j.cej.2022.140545
– ident: e_1_2_7_53_1
  doi: 10.1039/D2TA00782G
– ident: e_1_2_7_56_1
  doi: 10.1039/D1TA06263H
– ident: e_1_2_7_51_1
  doi: 10.1021/acsnano.9b06910
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.202305175
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jpowsour.2022.232309
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ensm.2022.12.006
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201903879
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jcis.2022.08.175
– ident: e_1_2_7_79_1
  doi: 10.1021/acsami.1c00506
– ident: e_1_2_7_1_1
  doi: 10.1016/j.rser.2019.01.023
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jpowsour.2022.231982
– ident: e_1_2_7_73_1
  doi: 10.1021/acs.jpcc.8b08481
– ident: e_1_2_7_22_1
  doi: 10.1002/advs.201800064
– ident: e_1_2_7_74_1
  doi: 10.1002/eem2.12545
– ident: e_1_2_7_77_1
  doi: 10.1016/j.nanoen.2023.108763
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jcis.2022.09.092
– ident: e_1_2_7_29_1
  doi: 10.1021/acsaem.2c03629
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jcis.2022.10.033
– ident: e_1_2_7_72_1
  doi: 10.1038/s41467-022-28918-0
– ident: e_1_2_7_76_1
  doi: 10.1016/j.jcis.2021.12.082
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jpowsour.2023.233990
– ident: e_1_2_7_78_1
  doi: 10.1021/acsnano.7b04368
– volume: 14
  year: 2021
  ident: e_1_2_7_18_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_46_1
  doi: 10.1016/j.carbon.2020.02.033
– year: 2024
  ident: e_1_2_7_44_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_61_1
  doi: 10.1016/j.electacta.2022.140939
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201902387
– volume: 22
  year: 2022
  ident: e_1_2_7_27_1
  publication-title: Chem. Rec.
– ident: e_1_2_7_39_1
  doi: 10.1002/anie.202007983
– ident: e_1_2_7_23_1
  doi: 10.1039/D1TA06815F
– ident: e_1_2_7_31_1
  doi: 10.1016/j.pmatsci.2021.100911
– ident: e_1_2_7_68_1
  doi: 10.1039/C6CP06270A
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2019.06.044
– ident: e_1_2_7_11_1
  doi: 10.1039/C5CS00580A
– ident: e_1_2_7_12_1
  doi: 10.1039/D2TA05309H
– ident: e_1_2_7_66_1
  doi: 10.1021/acsaem.9b02304
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ccr.2021.214242
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2019.02.001
– ident: e_1_2_7_42_1
  doi: 10.1149/1945-7111/ac8ad4
– ident: e_1_2_7_62_1
  doi: 10.1016/j.jpowsour.2022.231149
– ident: e_1_2_7_64_1
  doi: 10.1016/j.apsusc.2022.153163
– ident: e_1_2_7_80_1
  doi: 10.1039/D3TA05970G
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201502398
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.202001537
– ident: e_1_2_7_38_1
  doi: 10.1016/j.cej.2021.132470
– ident: e_1_2_7_55_1
  doi: 10.1002/chem.201804218
– ident: e_1_2_7_65_1
  doi: 10.1016/j.est.2021.102858
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.202213095
– ident: e_1_2_7_69_1
  doi: 10.1002/adfm.202215155
SSID ssj0031247
Score 2.577848
Snippet Battery‐type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage...
Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2401315
SubjectTerms 2D‐on‐2D alignment
Activated carbon
Al doping effect
Arrays
Cloth
Deposition
Electrode materials
Electrodes
Hydroxides
Intermetallic compounds
Leaching
Nanosheets
nickel–cobalt LDH
Phase stability
Substrates
supercapacitor
Supercapacitors
Synergistic effect
Title 2D‐on‐2D Al‐Doped NiCo LDH Nanosheet Arrays for Fabricating High‐Energy‐Density, Wide Voltage Window, and Ultralong‐Lifespan Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202401315
https://www.ncbi.nlm.nih.gov/pubmed/38747008
https://www.proquest.com/docview/3111034805
https://www.proquest.com/docview/3055454733
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VgoyEhIXJo2sZ1Ncqy6Xa3QtgfKQm-RH5OyIjirTVaonPgJHPl9_BJmkt3QBSEkuCSxMs7D8cx8dsbfMPZiGNrYRJAFxL0WKAE20AL1EdJEFTqKNLS5Dk9Oh5OZenUen19Zxd_xQ_QTbqQZrb0mBdemPvhJGlp_LOnXgaABQrvKnAK2CBW97vmjJDqvNrsK-qyAiLc2rI2hONiuvu2VfoOa28i1dT3jW0xvHrqLOPmwv2rMvv38C5_j_7zVbXZzjUv5YdeR7rBr4O-yG1fYCu-xb2L0_cvXyuNGjPhhiftRtQDHT-dHFZ-OJhxNdVW_B2jwOkt9WXNExHysTZeKyF9wiirBasftgkOqT-HzzeUefzd3wN9WZYPmDQveVZ_2uPaOz0qaiqn8BUpP5wWgAfT8bLWApUU3b-eULOg-m42P3xxNgnVih8DKRMYBDvESBWmhrDMmjOM0tGkCVthCEWgIHQolSZaKyCihCjOMIQIUSLWVMHSZfMB2fOXhEeNFHOpIGGlikakstNomkCiHqMm5AodyAxZsPmxu16znlHyjzDu-ZpFTi-d9iw_Yy15-0fF9_FFyd9NP8rXe17lE1xFKlYZ4-nl_GjWWfsNoD9UKZfCNiUZNygF72PWv_lYSGyZBWDZgou0lf3mG_OxkOu1Lj_-l0hN2nY67sLldttMsV_AUcVZjnrW69AOTLCRn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvB-FBYyExGWzm9hOkxxXm60KpD2wW-AW-ZWlIjhVmwotJ34CR34fv4SZpAkUhJDgksjxOLEdz8P2-BtCng59HarAJh5ir3mCWe1JBvxo40gUMgikbWIdTqbD8Uy8eBt23oR4FqbFh-gX3JAzGnmNDI4L0gc_UENXH0rcO2A4Q8Bj5hcxrDfC56evegQpDuqria8CWstD6K0Ot9FnB9vlt_XSb8bmtu3aKJ_RNaK6arc-J-_317Xa159-QXT8r3ZdJ1c3pik9bMfSDXLBupvkyk-AhbfIV5Z--_ylcnBhKT0s4Z5WC2vodH5U0SwdU5DW1eqdtTW8ZynPVxSMYjqSqo1G5M4oOpZAsePmzCGWRw_6-nyPvpkbS19XZQ0SDhLOVB_3qHSGzkpcjancGVBn88KCDHT0ZL2wSw2aXs8xXtBtMhsdnx6NvU1sB0_ziIcezPIiYeNCaKOUH4axr-PIaqYLgXaDb4AoipKYBUowUahhaAMLBLHU3A5Nwu-QHVc5e4_QIvRlwBRXIUtE4mupIxsJA4aTMQXM5gbE6_5srjfA5xh_o8xbyGaWY4_nfY8PyLOeftFCfvyRcrcbKPmG9Vc5B-3hcxH7kP2kzwamxZ0Y6Wy1BhpoMSKpcT4gd9sB1n-KQ8dEYJkNCGuGyV_qkJ9MsqxP3f-XQo_JpfHpJMuz59OXD8hlfN560e2SnXq5tg_B7KrVo4axvgO8GyiD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceD8WChgJiUvTOrbzOlZNVwukK0RZ6C3yY1JWhGS1mxUqJ34CR34fv4Rxshu6IIQEl0SOx4nteB62x98Q8jRkJtA-JJ7DXvMkB-MpjvwIcSQL5fsK2liHR-NwNJEvToKTc6f4O3yIfsHNcUYrrx2Dz2yx9xM0dPGxdFsH3E0Q3CnzizJkiQvekL7uAaQEaq82vAoqLc8hb61hGxnf2yy_qZZ-szU3TddW9wyvEbWudedy8mF32ehd8_kXQMf_adZ1cnVlmNL9biTdIBegukmunIMrvEW-8fT7l691hRee0v0S72k9A0vH04OaZumIoqyuF-8BGnzPXJ0tKJrEdKh0F4uoOqXOrQSLHbYnDl155z_fnO3Qd1ML9G1dNijfMFHZ-tMOVZWlk9KtxdTVKVJn0wJQAlb0eDmDuUE9b6YuWtBtMhkevjkYeavIDp4RkQg8nONFEuJCGqs1C4KYmTgCw00hndXALBJFURJzX0suCx0G4AMSxMoICG0i7pCtqq7gHqFFwJTPtdABT2TCjDIRRNKi2WRtgXO5AfHWPzY3K9hzF32jzDvAZp67Hs_7Hh-QZz39rAP8-CPl9nqc5CvGX-QCdQcTMmaY_aTPRpZ1-zCqgnqJNNhih6MmxIDc7cZX_ymBHROhXTYgvB0lf6lDfnyUZX3q_r8UekwuvUqHefZ8_PIBuewedy5022SrmS_hIdpcjX7UstUPKl4nMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D%E2%80%90on%E2%80%902D+Al%E2%80%90Doped+NiCo+LDH+Nanosheet+Arrays+for+Fabricating+High%E2%80%90Energy%E2%80%90Density%2C+Wide+Voltage+Window%2C+and+Ultralong%E2%80%90Lifespan+Supercapacitors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Huang%2C+Xuejing&rft.au=Chu%2C+Bingxian&rft.au=Han%2C+Boming&rft.au=Wu%2C+Qingqing&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=37&rft_id=info:doi/10.1002%2Fsmll.202401315&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon