Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction

Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalab...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 6; pp. e202115835 - n/a
Main Authors Zaman, Shahid, Su, Ya‐Qiong, Dong, Chung‐Li, Qi, Ruijuan, Huang, Lei, Qin, Yanyang, Huang, Yu‐Cheng, Li, Fu‐Min, You, Bo, Guo, Wei, Li, Qing, Ding, Shujiang, Yu Xia, Bao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Pt−Co nanoalloys planted in the metal–nitrogen–graphene system achieved by a scalable molten salt pyrolysis method demonstrate improved activity and stability for oxygen reduction through a synergistic effect among multiple active sites and a strong metal–support interaction.
AbstractList Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt -1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt -1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mg Pt −1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mg and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Pt−Co nanoalloys planted in the metal–nitrogen–graphene system achieved by a scalable molten salt pyrolysis method demonstrate improved activity and stability for oxygen reduction through a synergistic effect among multiple active sites and a strong metal–support interaction.
Author Huang, Lei
Huang, Yu‐Cheng
Li, Qing
Su, Ya‐Qiong
Ding, Shujiang
Yu Xia, Bao
Qin, Yanyang
Dong, Chung‐Li
Li, Fu‐Min
Guo, Wei
Qi, Ruijuan
You, Bo
Zaman, Shahid
Author_xml – sequence: 1
  givenname: Shahid
  orcidid: 0000-0002-8534-4333
  surname: Zaman
  fullname: Zaman, Shahid
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Ya‐Qiong
  surname: Su
  fullname: Su, Ya‐Qiong
  organization: Xi'an Jiao Tong University
– sequence: 3
  givenname: Chung‐Li
  surname: Dong
  fullname: Dong, Chung‐Li
  organization: Tamkang University
– sequence: 4
  givenname: Ruijuan
  surname: Qi
  fullname: Qi, Ruijuan
  organization: East China Normal University
– sequence: 5
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Yanyang
  surname: Qin
  fullname: Qin, Yanyang
  organization: Xi'an Jiao Tong University
– sequence: 7
  givenname: Yu‐Cheng
  surname: Huang
  fullname: Huang, Yu‐Cheng
  organization: Tamkang University
– sequence: 8
  givenname: Fu‐Min
  surname: Li
  fullname: Li, Fu‐Min
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Bo
  surname: You
  fullname: You, Bo
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 10
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 11
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: Huazhong University of Science and Technology
– sequence: 12
  givenname: Shujiang
  surname: Ding
  fullname: Ding, Shujiang
  organization: Xi'an Jiao Tong University
– sequence: 13
  givenname: Bao
  orcidid: 0000-0002-2054-908X
  surname: Yu Xia
  fullname: Yu Xia, Bao
  email: byxia@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34894036$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWGTwZfYcZajaloq9YIYWFuOc0JdeewhdlSy4x14Q54Ej6YFqRJi5WP5-458zn-MDkIMgNBrShaUEPbeBAcLRhilQnHxDB1RwWjFm4YflLrmvGqUoIfoOKW7witF5At0yGvV1oTLI3S_tsabzgO-ij5DwGvjM17PId9CcgnHAX_0JrswbfDS-zin3T1k6LEL-Aqy8b9-_Lx2eYxfIZTyfDTbWwiAhzji1TA46yBkfPN9Lu_4E_STzS6Gl-j5YHyCVw_nCfpytvp8-qG6vDm_OF1eVpY3XFQN6ZXsWiu7ARgjhNbU9JbUQlFhG9pSQYSgkpNGmYYow01jRSulBCEY7wZ-gt7t-27H-G2ClPXGJQu-zABxSppJysq2JBMFffsEvYvTGMrvCsVYzSnnqlBvHqip20Cvt6PbmHHWjystQL0H7BhTGmHQ1mWzmzmPxnlNid4lp3fJ6T_JFW3xRHvs_E-h3Qv3zsP8H1ovry9Wf93fLTSr9w
CitedBy_id crossref_primary_10_1002_cssc_202201551
crossref_primary_10_1007_s12274_024_6528_2
crossref_primary_10_3390_nano13212818
crossref_primary_10_1016_j_cclet_2022_107824
crossref_primary_10_1016_j_jcis_2023_04_080
crossref_primary_10_1039_D3MA00540B
crossref_primary_10_1039_D3TA02889E
crossref_primary_10_1007_s12274_023_6317_3
crossref_primary_10_1002_advs_202308205
crossref_primary_10_1021_acsami_2c20246
crossref_primary_10_34133_energymatadv_0042
crossref_primary_10_1016_j_nanoms_2022_04_001
crossref_primary_10_1016_j_cej_2024_149060
crossref_primary_10_1002_cjoc_202400578
crossref_primary_10_1016_j_ijhydene_2022_12_236
crossref_primary_10_1007_s12598_022_02214_8
crossref_primary_10_1016_j_resconrec_2025_108145
crossref_primary_10_1016_j_nanoen_2023_109247
crossref_primary_10_1021_accountsmr_2c00261
crossref_primary_10_1021_acsanm_4c05974
crossref_primary_10_1016_j_ijhydene_2022_10_191
crossref_primary_10_1021_acsanm_4c07115
crossref_primary_10_1007_s40820_024_01463_9
crossref_primary_10_1002_ange_202219188
crossref_primary_10_1002_ange_202317167
crossref_primary_10_1039_D4NA00936C
crossref_primary_10_1016_j_gee_2022_10_007
crossref_primary_10_1002_adfm_202405726
crossref_primary_10_1016_j_matchemphys_2023_127845
crossref_primary_10_1002_anie_202317167
crossref_primary_10_1007_s12209_023_00371_0
crossref_primary_10_1016_j_jcis_2024_09_213
crossref_primary_10_1016_j_trechm_2022_07_007
crossref_primary_10_1016_j_seppur_2023_124591
crossref_primary_10_1088_1742_6596_2578_1_012018
crossref_primary_10_3390_molecules29092129
crossref_primary_10_1016_j_cej_2022_139831
crossref_primary_10_1039_D3QM00558E
crossref_primary_10_1002_ange_202217719
crossref_primary_10_1021_acsaem_2c03543
crossref_primary_10_3390_molecules27238150
crossref_primary_10_1021_acscatal_4c01202
crossref_primary_10_1007_s40242_022_2092_z
crossref_primary_10_3390_catal12101242
crossref_primary_10_1016_j_apcatb_2024_123740
crossref_primary_10_1016_j_tet_2025_134563
crossref_primary_10_3390_catal13010161
crossref_primary_10_1016_j_jcis_2024_09_081
crossref_primary_10_3390_molecules27196396
crossref_primary_10_1016_j_ijhydene_2022_09_073
crossref_primary_10_1016_j_jcis_2023_05_106
crossref_primary_10_1016_j_ijhydene_2022_11_249
crossref_primary_10_1002_smll_202400240
crossref_primary_10_1038_s41467_023_43294_z
crossref_primary_10_1039_D2TA03744K
crossref_primary_10_1002_smll_202208077
crossref_primary_10_1021_acsami_2c15996
crossref_primary_10_1016_j_apcatb_2024_124346
crossref_primary_10_3390_nano13212831
crossref_primary_10_1002_smll_202302170
crossref_primary_10_3390_catal13040779
crossref_primary_10_1002_cssc_202202379
crossref_primary_10_1039_D4SE01397B
crossref_primary_10_1142_S0217979224501273
crossref_primary_10_1021_acsnano_3c09819
crossref_primary_10_1149_1945_7111_ad659d
crossref_primary_10_1039_D4TA07187E
crossref_primary_10_1039_D4SC06600F
crossref_primary_10_1016_j_cclet_2024_110303
crossref_primary_10_1002_adfm_202410774
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1016_j_ijhydene_2023_09_259
crossref_primary_10_1016_j_fmre_2024_04_017
crossref_primary_10_1002_cssc_202400956
crossref_primary_10_1016_j_cej_2023_144378
crossref_primary_10_1002_adfm_202406347
crossref_primary_10_1016_j_cej_2024_151987
crossref_primary_10_1016_j_ijhydene_2022_12_307
crossref_primary_10_1002_adma_202404773
crossref_primary_10_1002_sus2_148
crossref_primary_10_3389_fchem_2022_1066958
crossref_primary_10_1002_bte2_20220060
crossref_primary_10_1016_j_jcis_2023_08_054
crossref_primary_10_1002_advs_202308923
crossref_primary_10_1002_smll_202400381
crossref_primary_10_1002_adma_202416111
crossref_primary_10_1016_j_cej_2024_158666
crossref_primary_10_1039_D3CY01066J
crossref_primary_10_1039_D4SC03369H
crossref_primary_10_1016_j_mtchem_2023_101857
crossref_primary_10_3390_molecules29081890
crossref_primary_10_3389_fchem_2023_1152217
crossref_primary_10_1021_acsanm_4c04705
crossref_primary_10_1002_sus2_252
crossref_primary_10_1016_j_ccr_2025_216603
crossref_primary_10_1016_j_electacta_2025_145915
crossref_primary_10_1038_s41467_025_58193_8
crossref_primary_10_3390_nano13142139
crossref_primary_10_1002_smll_202207037
crossref_primary_10_1002_adma_202200840
crossref_primary_10_1016_j_ccr_2024_216021
crossref_primary_10_1039_D3QM00012E
crossref_primary_10_1016_j_cej_2024_156355
crossref_primary_10_1016_j_jallcom_2023_168792
crossref_primary_10_1021_acsnano_4c01113
crossref_primary_10_1038_s41467_022_34444_w
crossref_primary_10_1021_acsenergylett_4c00275
crossref_primary_10_3390_nano13182555
crossref_primary_10_1002_adfm_202417621
crossref_primary_10_1016_j_ijhydene_2024_01_050
crossref_primary_10_1039_D4SC01329H
crossref_primary_10_3866_PKU_WHXB202303003
crossref_primary_10_1021_acscatal_4c02973
crossref_primary_10_1016_j_jallcom_2024_177039
crossref_primary_10_3389_fchem_2023_1263648
crossref_primary_10_1021_acssuschemeng_4c08588
crossref_primary_10_1039_D3CC06143D
crossref_primary_10_1039_D4CC06525E
crossref_primary_10_1016_j_jechem_2024_09_023
crossref_primary_10_1021_acssuschemeng_3c02853
crossref_primary_10_1002_adma_202301310
crossref_primary_10_1002_adma_202308989
crossref_primary_10_1016_j_cej_2023_143665
crossref_primary_10_1002_anie_202219188
crossref_primary_10_1016_j_isci_2023_106730
crossref_primary_10_1021_acssuschemeng_2c01086
crossref_primary_10_1021_acs_nanolett_4c00315
crossref_primary_10_1002_advs_202303693
crossref_primary_10_3390_catal12111470
crossref_primary_10_3389_fchem_2022_1025030
crossref_primary_10_1016_j_ijhydene_2023_04_297
crossref_primary_10_3389_fchem_2023_1218451
crossref_primary_10_1002_anie_202217719
crossref_primary_10_1002_celc_202300505
crossref_primary_10_1016_j_jelechem_2024_118747
crossref_primary_10_3390_catal12121521
crossref_primary_10_1002_cctc_202300023
crossref_primary_10_2139_ssrn_4201275
crossref_primary_10_1002_celc_202200123
crossref_primary_10_1021_jacs_4c06904
crossref_primary_10_3390_catal14090569
crossref_primary_10_1016_j_jcat_2023_05_016
crossref_primary_10_1016_j_jcis_2025_02_163
crossref_primary_10_1002_slct_202304902
crossref_primary_10_1016_j_nxmate_2024_100473
crossref_primary_10_1039_D3TA04591A
crossref_primary_10_1016_j_apsusc_2025_162488
crossref_primary_10_1002_adma_202408285
crossref_primary_10_1016_j_nanoen_2024_110088
crossref_primary_10_1021_acs_jpcc_4c01551
crossref_primary_10_3390_catal12091050
crossref_primary_10_1002_adfm_202414379
crossref_primary_10_1063_5_0147165
crossref_primary_10_1039_D4GC02727B
crossref_primary_10_1002_adfm_202303833
crossref_primary_10_1088_1361_6528_ad18ea
crossref_primary_10_1039_D3TA04792J
crossref_primary_10_1016_j_jcat_2023_03_030
Cites_doi 10.1002/adma.201808115
10.1002/anie.202016977
10.1016/j.ensm.2021.02.017
10.1002/anie.201500569
10.1039/D1EE01675J
10.1038/s41557-020-0473-9
10.1002/ange.202015679
10.1002/ange.201207256
10.1002/ange.202000324
10.1038/s41563-019-0487-0
10.1038/s41467-018-05878-y
10.1021/ja500432h
10.1002/anie.201906870
10.1126/science.aad0832
10.1038/s41929-020-00546-1
10.1038/s41929-021-00632-y
10.1016/j.joule.2019.12.014
10.1002/ange.202014857
10.1002/ange.202016977
10.1038/s41565-020-00824-w
10.1002/adma.202006292
10.1002/anie.201207256
10.1021/acs.nanolett.8b00978
10.1002/adma.202006613
10.1002/anie.202014323
10.1126/science.abj9980
10.1126/science.1200832
10.1126/science.aaw7493
10.1038/s41467-018-04713-8
10.1073/pnas.1813605115
10.1038/s41929-019-0304-9
10.1002/ange.201906870
10.1002/ange.202014323
10.1002/smll.202006805
10.1002/adma.201302034
10.1126/science.aau0630
10.1002/adfm.201908486
10.1021/cs501973j
10.1038/nmat2878
10.1002/adma.202003577
10.1038/nmat3458
10.1002/anie.202111426
10.1002/anie.202014857
10.1021/acs.accounts.0c00488
10.1016/j.scib.2021.07.001
10.1021/jacs.5b00292
10.1002/adma.201804297
10.1002/aenm.202100219
10.1002/ange.201500569
10.1021/acscatal.8b03446
10.1002/anie.202015679
10.1002/anie.202000324
10.1126/science.aad8892
10.1002/cctc.201801679
10.1007/s40242-020-0182-3
10.1002/ange.202111426
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202115835
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34894036
10_1002_anie_202115835
ANIE202115835
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075092
– fundername: National Natural Science Foundation of China
  grantid: 22075092
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-70d86b9c6bfe2200141adc045815c71915055163078a708a3a7c59666e5523bf3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:50:19 EDT 2025
Fri Jul 25 11:57:14 EDT 2025
Wed Feb 19 02:28:05 EST 2025
Tue Jul 01 01:18:13 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Wed Jan 22 16:26:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Oxygen reduction
Electrocatalyst
Metal-nitrogen-graphene
Platinum alloy
Molten-salt synthesis
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-70d86b9c6bfe2200141adc045815c71915055163078a708a3a7c59666e5523bf3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2054-908X
0000-0002-8534-4333
PMID 34894036
PQID 2622431338
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2612377625
proquest_journals_2622431338
pubmed_primary_34894036
crossref_citationtrail_10_1002_anie_202115835
crossref_primary_10_1002_anie_202115835
wiley_primary_10_1002_anie_202115835_ANIE202115835
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2022
2022-02-00
2022-Feb-01
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2019; 9
2015; 5
2021; 4
2013; 25
2021; 66
2019; 31
2019; 2
2019; 11
2020 2020; 59 132
2019; 366
2020; 36
2020; 12
2020; 32
2014; 136
2011; 332
2019 2019; 58 131
2020; 19
2021; 14
2018; 9
2021; 16
2018; 18
2021; 37
2020; 4
2021; 54
2020; 3
2021; 33
2021; 11
2015; 137
2020; 30
2013; 12
2012 2012; 51 124
2021; 17
2018; 115
2021 2021; 60 133
2015 2015; 54 127
2016; 352
2021; 374
2016; 351
2010; 9
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_36_2
e_1_2_7_38_1
Huang L. (e_1_2_7_26_1) 2021; 37
References_xml – volume: 66
  start-page: 2207
  year: 2021
  publication-title: Sci. Bull.
– volume: 60 133
  start-page: 9590 9676
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 6122 6178
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 6284
  year: 2013
  publication-title: Adv. Mater.
– volume: 352
  start-page: 73
  year: 2016
  publication-title: Science
– volume: 14
  start-page: 4948
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2235
  year: 2018
  publication-title: Nat. Commun.
– volume: 18
  start-page: 4163
  year: 2018
  publication-title: Nano Lett.
– volume: 54
  start-page: 311
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 374
  start-page: 459
  year: 2021
  publication-title: Science
– volume: 115
  start-page: 12692
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 1044
  year: 2020
  publication-title: Nat. Catal.
– volume: 137
  start-page: 5414
  year: 2015
  end-page: 5420
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 83
  year: 2019
  publication-title: ACS Catal.
– volume: 9
  start-page: 904
  year: 2010
  publication-title: Nat. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 3376
  year: 2018
  publication-title: Nat. Commun.
– volume: 60 133
  start-page: 25530 25734
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  year: 2021
  publication-title: Acta Phys.-Chim. Sin.
– volume: 60 133
  start-page: 17832 17976
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 453
  year: 2021
  publication-title: Nat. Catal.
– volume: 51 124
  start-page: 12613 12782
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 140
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 60 133
  start-page: 5121 5181
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 764
  year: 2020
  publication-title: Nat. Chem.
– volume: 12
  start-page: 81
  year: 2013
  publication-title: Nat. Mater.
– volume: 5
  start-page: 2184
  year: 2015
  publication-title: ACS Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 6533 6607
  year: 2021 2021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 274
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 13354 13488
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 611
  year: 2020
  publication-title: Chem. Res. Chin. Univ.
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 54 127
  start-page: 10102 10240
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 655
  year: 2019
  publication-title: ChemCatChem
– volume: 2
  start-page: 578
  year: 2019
  publication-title: Nat. Catal.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 362
  start-page: 1276
  year: 2018
  publication-title: Science
– volume: 19
  start-page: 77
  year: 2020
  publication-title: Nat. Mater.
– volume: 4
  start-page: 45
  year: 2020
  publication-title: Joule
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201808115
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202016977
– ident: e_1_2_7_38_1
  doi: 10.1016/j.ensm.2021.02.017
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.201500569
– ident: e_1_2_7_35_1
  doi: 10.1039/D1EE01675J
– ident: e_1_2_7_40_1
  doi: 10.1038/s41557-020-0473-9
– ident: e_1_2_7_9_2
  doi: 10.1002/ange.202015679
– ident: e_1_2_7_5_2
  doi: 10.1002/ange.201207256
– ident: e_1_2_7_48_2
  doi: 10.1002/ange.202000324
– ident: e_1_2_7_13_1
  doi: 10.1038/s41563-019-0487-0
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-018-05878-y
– ident: e_1_2_7_10_1
  doi: 10.1021/ja500432h
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201906870
– ident: e_1_2_7_15_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_20_1
  doi: 10.1038/s41929-020-00546-1
– ident: e_1_2_7_27_1
  doi: 10.1038/s41929-021-00632-y
– ident: e_1_2_7_2_1
  doi: 10.1016/j.joule.2019.12.014
– ident: e_1_2_7_28_2
  doi: 10.1002/ange.202014857
– ident: e_1_2_7_3_2
  doi: 10.1002/ange.202016977
– ident: e_1_2_7_24_1
  doi: 10.1038/s41565-020-00824-w
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.202006292
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201207256
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.nanolett.8b00978
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202006613
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202014323
– ident: e_1_2_7_6_1
  doi: 10.1126/science.abj9980
– ident: e_1_2_7_39_1
  doi: 10.1126/science.1200832
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-018-04713-8
– ident: e_1_2_7_47_1
  doi: 10.1073/pnas.1813605115
– ident: e_1_2_7_30_1
  doi: 10.1038/s41929-019-0304-9
– ident: e_1_2_7_36_2
  doi: 10.1002/ange.201906870
– ident: e_1_2_7_22_2
  doi: 10.1002/ange.202014323
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.202006805
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201302034
– ident: e_1_2_7_16_1
  doi: 10.1126/science.aau0630
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201908486
– ident: e_1_2_7_7_1
  doi: 10.1021/cs501973j
– ident: e_1_2_7_42_1
  doi: 10.1038/nmat2878
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.202003577
– ident: e_1_2_7_43_1
  doi: 10.1038/nmat3458
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202111426
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202014857
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.accounts.0c00488
– ident: e_1_2_7_29_1
  doi: 10.1016/j.scib.2021.07.001
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.5b00292
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201804297
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.202100219
– ident: e_1_2_7_18_2
  doi: 10.1002/ange.201500569
– ident: e_1_2_7_41_1
  doi: 10.1021/acscatal.8b03446
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202015679
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202000324
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aad8892
– ident: e_1_2_7_44_1
  doi: 10.1002/cctc.201801679
– volume: 37
  year: 2021
  ident: e_1_2_7_26_1
  publication-title: Acta Phys.-Chim. Sin.
– ident: e_1_2_7_25_1
  doi: 10.1007/s40242-020-0182-3
– ident: e_1_2_7_21_2
  doi: 10.1002/ange.202111426
SSID ssj0028806
Score 2.6823146
Snippet Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202115835
SubjectTerms Alloying
Catalysts
Electrocatalyst
Fuel cells
Fuel technology
Graphene
Metal–nitrogen–graphene
Molten salts
Molten-salt synthesis
Nanoalloys
Nanoparticles
Nitrogen
Oxygen
Oxygen reduction
Platinum
Platinum alloy
Platinum base alloys
Production methods
Robustness
Title Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115835
https://www.ncbi.nlm.nih.gov/pubmed/34894036
https://www.proquest.com/docview/2622431338
https://www.proquest.com/docview/2612377625
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl_YC9AULtDISUk-B1I88jqvVbmmlXSoWJG6R7djSijSpSFawnPof-g_7SzqTbAJbVCGVW6zYieMZe76JZz4Tcqi0UhEYNk8oP_UET30virX0jAysFWmYGocJzuNJcHIhvl7KywdZ_A0_RPfDDWdGvV7jBFe6PL4nDcUMbPDvwIGRgCJgEcaALURFZx1_FAPlbNKLOPfwFPqWtdFnx6vNV63SI6i5ilxr0zPaJKrtdBNxcnU0r_SRufuLz_E5X7VFNpa4lPYbRXpF1mz-mrwYtMfBvSE3U5Am5lnRcZEB0KZTlVV0usgBQZazkhaOfsO4unz-nfazrFiUWAaxpXSW07EFkP_756_JrLouQGfh8jNSZcNKSwE202HNZAEGkJ7eLuA-PUNKWVSat-RiNDwfnHjLUxs8w0Pkv_TTKNCxCbSzjNWBpCo1uB_7SZoQ3EPAXBJQIGATFfqR4io0EpyuwEpwirXj78h6XuR2h1AlnGJOOcYdFzoKY2ZCbmLtmHRWxEGPeK3UErOkNMeTNbKkIWNmCQ5n0g1nj3zs6v9oyDz-WXO_VYJkOanLhAWAdzg69T1y0N0GMeAei8ptMcc6AAVCsDDwiO1GebpXcRHFAhBDj7BaBZ7oQ9KffBl2pd3_abRHXjJM16ijzPfJenU9t-8BRFX6Qz1R_gCokBTX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUqb-pHHcVW2bKG7oG4rcYtsx5ZWpEnVzQqWE_-Bf8gvYSbZBC0IIcEtUezE8Ywz3zgz3wC80EbrBA1bIHWYB1LkYZCkRgVWRc7JPM6tpwTnyTQan8k3H1QXTUi5MC0_RL_hRiuj-V7TAqcN6b2frKGUgo0OHnowCmHEVbhGZb2JPv_VSc8gxVE92wQjIQKqQ9_xNoZ8b7P_pl36DWxuYtfG-BzeBNMNu405-bi7rM2u_fILo-N_vdctuLGGpmzY6tJtuOLKO7B90FWEuwufZihQSrVik6pArM1muqjZbFUiiFzMF6zy7D2F1pXLczYsimq1oHOUXM7mJZs4xPnfv36bzuvLCtUWD18TWzZ-bBkiZzZqyCzQBrJ3n1d4nZ0QqyzpzT04OxydHoyDdeGGwIqYKDDDPIlMaiPjHedNLKnOLf2S3Vc2Rg8RYZdCIIjwRMdhooWOrUK_K3IK_WLjxX3YKqvSPQSmpdfca8-FF9IkccptLGxqPFfeyTQaQNCJLbNrVnMqrlFkLR8zz2g6s346B_Cyb3_R8nn8seVOpwXZel0vMh4h5BHk1w_geX8ZxUC_WXTpqiW1QTQQo5HBWzxotad_lJBJKhE0DIA3OvCXMWTD6dGoP3v0L52ewfb4dHKcHR9N3z6G65yyN5qg8x3Yqi-X7gliqto8bVbND-_tGPM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78dCASMhcUob_MjjuGp3aYFdqi6Veotsx5ZWhKTqZgXLif_AP-SXMJNsAgtCSHCLFTtx7LHnm3jmG4Bn2midoGILpA7zQIo8DJLUqMCqyDmZx7n1FOA8mUYHJ_LVqTr9KYq_5Yfof7jRymj2a1rgZ7nf_UEaShHYaN-hAaMQRVyESzIKU0resH_cE0hxlM42vkiIgNLQd7SNId_dbL-pln7DmpvQtdE94-ugu163Lifvd5a12bGffyF0_J_PugHX1sCUDVtJugkXXHkLrux1-eBuw8cZTicFWrFJVSDSZjNd1Gy2KhFCLuYLVnl2RI515fIDGxZFtVpQGectZ_OSTRyi_G9fvk7n9XmFQouXL4krG7dahriZjRoqC9SA7O2nFd5nx8QpS1JzB07Go3d7B8E6bUNgRUwEmGGeRCa1kfGO88aTVOeWDmRfKBujfYigSyEMRHCi4zDRQsdWodUVOYVWsfHiLmyVVenuA9PSa-6158ILaZI45TYWNjWeK-9kGg0g6GYts2tOc0qtUWQtGzPPaDizfjgH8Lyvf9ayefyx5nYnBNl6VS8yHiHgEWTVD-BpfxungQ5ZdOmqJdVBLBCjisFH3GuFp3-VkEkqETIMgDci8Jc-ZMPp4agvPfiXRk_g8tH-OHtzOH39EK5yCt1oPM63Yas-X7pHCKhq87hZM98BjW0Xog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Molten+Salt+Synthesis+of+Platinum+Alloys+Planted+in+Metal-Nitrogen-Graphene+for+Efficient+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zaman%2C+Shahid&rft.au=Su%2C+Ya-Qiong&rft.au=Dong%2C+Chung-Li&rft.au=Qi%2C+Ruijuan&rft.date=2022-02-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=6&rft.spage=e202115835&rft_id=info:doi/10.1002%2Fanie.202115835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon