Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalab...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 6; pp. e202115835 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
Pt−Co nanoalloys planted in the metal–nitrogen–graphene system achieved by a scalable molten salt pyrolysis method demonstrate improved activity and stability for oxygen reduction through a synergistic effect among multiple active sites and a strong metal–support interaction. |
---|---|
AbstractList | Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt -1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt -1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mg Pt −1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mg and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten‐salt synthesis method for producing a low‐platinum (Pt) nanoalloy implanted in metal–nitrogen–graphene. The as‐prepared low‐Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mgPt−1 and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal–support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low‐Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond. Pt−Co nanoalloys planted in the metal–nitrogen–graphene system achieved by a scalable molten salt pyrolysis method demonstrate improved activity and stability for oxygen reduction through a synergistic effect among multiple active sites and a strong metal–support interaction. |
Author | Huang, Lei Huang, Yu‐Cheng Li, Qing Su, Ya‐Qiong Ding, Shujiang Yu Xia, Bao Qin, Yanyang Dong, Chung‐Li Li, Fu‐Min Guo, Wei Qi, Ruijuan You, Bo Zaman, Shahid |
Author_xml | – sequence: 1 givenname: Shahid orcidid: 0000-0002-8534-4333 surname: Zaman fullname: Zaman, Shahid organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Ya‐Qiong surname: Su fullname: Su, Ya‐Qiong organization: Xi'an Jiao Tong University – sequence: 3 givenname: Chung‐Li surname: Dong fullname: Dong, Chung‐Li organization: Tamkang University – sequence: 4 givenname: Ruijuan surname: Qi fullname: Qi, Ruijuan organization: East China Normal University – sequence: 5 givenname: Lei surname: Huang fullname: Huang, Lei organization: Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Yanyang surname: Qin fullname: Qin, Yanyang organization: Xi'an Jiao Tong University – sequence: 7 givenname: Yu‐Cheng surname: Huang fullname: Huang, Yu‐Cheng organization: Tamkang University – sequence: 8 givenname: Fu‐Min surname: Li fullname: Li, Fu‐Min organization: Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Bo surname: You fullname: You, Bo organization: Huazhong University of Science and Technology (HUST) – sequence: 10 givenname: Wei surname: Guo fullname: Guo, Wei organization: Huazhong University of Science and Technology (HUST) – sequence: 11 givenname: Qing surname: Li fullname: Li, Qing organization: Huazhong University of Science and Technology – sequence: 12 givenname: Shujiang surname: Ding fullname: Ding, Shujiang organization: Xi'an Jiao Tong University – sequence: 13 givenname: Bao orcidid: 0000-0002-2054-908X surname: Yu Xia fullname: Yu Xia, Bao email: byxia@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34894036$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWGTwZfYcZajaloq9YIYWFuOc0JdeewhdlSy4x14Q54Ej6YFqRJi5WP5-458zn-MDkIMgNBrShaUEPbeBAcLRhilQnHxDB1RwWjFm4YflLrmvGqUoIfoOKW7witF5At0yGvV1oTLI3S_tsabzgO-ij5DwGvjM17PId9CcgnHAX_0JrswbfDS-zin3T1k6LEL-Aqy8b9-_Lx2eYxfIZTyfDTbWwiAhzji1TA46yBkfPN9Lu_4E_STzS6Gl-j5YHyCVw_nCfpytvp8-qG6vDm_OF1eVpY3XFQN6ZXsWiu7ARgjhNbU9JbUQlFhG9pSQYSgkpNGmYYow01jRSulBCEY7wZ-gt7t-27H-G2ClPXGJQu-zABxSppJysq2JBMFffsEvYvTGMrvCsVYzSnnqlBvHqip20Cvt6PbmHHWjystQL0H7BhTGmHQ1mWzmzmPxnlNid4lp3fJ6T_JFW3xRHvs_E-h3Qv3zsP8H1ovry9Wf93fLTSr9w |
CitedBy_id | crossref_primary_10_1002_cssc_202201551 crossref_primary_10_1007_s12274_024_6528_2 crossref_primary_10_3390_nano13212818 crossref_primary_10_1016_j_cclet_2022_107824 crossref_primary_10_1016_j_jcis_2023_04_080 crossref_primary_10_1039_D3MA00540B crossref_primary_10_1039_D3TA02889E crossref_primary_10_1007_s12274_023_6317_3 crossref_primary_10_1002_advs_202308205 crossref_primary_10_1021_acsami_2c20246 crossref_primary_10_34133_energymatadv_0042 crossref_primary_10_1016_j_nanoms_2022_04_001 crossref_primary_10_1016_j_cej_2024_149060 crossref_primary_10_1002_cjoc_202400578 crossref_primary_10_1016_j_ijhydene_2022_12_236 crossref_primary_10_1007_s12598_022_02214_8 crossref_primary_10_1016_j_resconrec_2025_108145 crossref_primary_10_1016_j_nanoen_2023_109247 crossref_primary_10_1021_accountsmr_2c00261 crossref_primary_10_1021_acsanm_4c05974 crossref_primary_10_1016_j_ijhydene_2022_10_191 crossref_primary_10_1021_acsanm_4c07115 crossref_primary_10_1007_s40820_024_01463_9 crossref_primary_10_1002_ange_202219188 crossref_primary_10_1002_ange_202317167 crossref_primary_10_1039_D4NA00936C crossref_primary_10_1016_j_gee_2022_10_007 crossref_primary_10_1002_adfm_202405726 crossref_primary_10_1016_j_matchemphys_2023_127845 crossref_primary_10_1002_anie_202317167 crossref_primary_10_1007_s12209_023_00371_0 crossref_primary_10_1016_j_jcis_2024_09_213 crossref_primary_10_1016_j_trechm_2022_07_007 crossref_primary_10_1016_j_seppur_2023_124591 crossref_primary_10_1088_1742_6596_2578_1_012018 crossref_primary_10_3390_molecules29092129 crossref_primary_10_1016_j_cej_2022_139831 crossref_primary_10_1039_D3QM00558E crossref_primary_10_1002_ange_202217719 crossref_primary_10_1021_acsaem_2c03543 crossref_primary_10_3390_molecules27238150 crossref_primary_10_1021_acscatal_4c01202 crossref_primary_10_1007_s40242_022_2092_z crossref_primary_10_3390_catal12101242 crossref_primary_10_1016_j_apcatb_2024_123740 crossref_primary_10_1016_j_tet_2025_134563 crossref_primary_10_3390_catal13010161 crossref_primary_10_1016_j_jcis_2024_09_081 crossref_primary_10_3390_molecules27196396 crossref_primary_10_1016_j_ijhydene_2022_09_073 crossref_primary_10_1016_j_jcis_2023_05_106 crossref_primary_10_1016_j_ijhydene_2022_11_249 crossref_primary_10_1002_smll_202400240 crossref_primary_10_1038_s41467_023_43294_z crossref_primary_10_1039_D2TA03744K crossref_primary_10_1002_smll_202208077 crossref_primary_10_1021_acsami_2c15996 crossref_primary_10_1016_j_apcatb_2024_124346 crossref_primary_10_3390_nano13212831 crossref_primary_10_1002_smll_202302170 crossref_primary_10_3390_catal13040779 crossref_primary_10_1002_cssc_202202379 crossref_primary_10_1039_D4SE01397B crossref_primary_10_1142_S0217979224501273 crossref_primary_10_1021_acsnano_3c09819 crossref_primary_10_1149_1945_7111_ad659d crossref_primary_10_1039_D4TA07187E crossref_primary_10_1039_D4SC06600F crossref_primary_10_1016_j_cclet_2024_110303 crossref_primary_10_1002_adfm_202410774 crossref_primary_10_1002_smll_202302739 crossref_primary_10_1016_j_ijhydene_2023_09_259 crossref_primary_10_1016_j_fmre_2024_04_017 crossref_primary_10_1002_cssc_202400956 crossref_primary_10_1016_j_cej_2023_144378 crossref_primary_10_1002_adfm_202406347 crossref_primary_10_1016_j_cej_2024_151987 crossref_primary_10_1016_j_ijhydene_2022_12_307 crossref_primary_10_1002_adma_202404773 crossref_primary_10_1002_sus2_148 crossref_primary_10_3389_fchem_2022_1066958 crossref_primary_10_1002_bte2_20220060 crossref_primary_10_1016_j_jcis_2023_08_054 crossref_primary_10_1002_advs_202308923 crossref_primary_10_1002_smll_202400381 crossref_primary_10_1002_adma_202416111 crossref_primary_10_1016_j_cej_2024_158666 crossref_primary_10_1039_D3CY01066J crossref_primary_10_1039_D4SC03369H crossref_primary_10_1016_j_mtchem_2023_101857 crossref_primary_10_3390_molecules29081890 crossref_primary_10_3389_fchem_2023_1152217 crossref_primary_10_1021_acsanm_4c04705 crossref_primary_10_1002_sus2_252 crossref_primary_10_1016_j_ccr_2025_216603 crossref_primary_10_1016_j_electacta_2025_145915 crossref_primary_10_1038_s41467_025_58193_8 crossref_primary_10_3390_nano13142139 crossref_primary_10_1002_smll_202207037 crossref_primary_10_1002_adma_202200840 crossref_primary_10_1016_j_ccr_2024_216021 crossref_primary_10_1039_D3QM00012E crossref_primary_10_1016_j_cej_2024_156355 crossref_primary_10_1016_j_jallcom_2023_168792 crossref_primary_10_1021_acsnano_4c01113 crossref_primary_10_1038_s41467_022_34444_w crossref_primary_10_1021_acsenergylett_4c00275 crossref_primary_10_3390_nano13182555 crossref_primary_10_1002_adfm_202417621 crossref_primary_10_1016_j_ijhydene_2024_01_050 crossref_primary_10_1039_D4SC01329H crossref_primary_10_3866_PKU_WHXB202303003 crossref_primary_10_1021_acscatal_4c02973 crossref_primary_10_1016_j_jallcom_2024_177039 crossref_primary_10_3389_fchem_2023_1263648 crossref_primary_10_1021_acssuschemeng_4c08588 crossref_primary_10_1039_D3CC06143D crossref_primary_10_1039_D4CC06525E crossref_primary_10_1016_j_jechem_2024_09_023 crossref_primary_10_1021_acssuschemeng_3c02853 crossref_primary_10_1002_adma_202301310 crossref_primary_10_1002_adma_202308989 crossref_primary_10_1016_j_cej_2023_143665 crossref_primary_10_1002_anie_202219188 crossref_primary_10_1016_j_isci_2023_106730 crossref_primary_10_1021_acssuschemeng_2c01086 crossref_primary_10_1021_acs_nanolett_4c00315 crossref_primary_10_1002_advs_202303693 crossref_primary_10_3390_catal12111470 crossref_primary_10_3389_fchem_2022_1025030 crossref_primary_10_1016_j_ijhydene_2023_04_297 crossref_primary_10_3389_fchem_2023_1218451 crossref_primary_10_1002_anie_202217719 crossref_primary_10_1002_celc_202300505 crossref_primary_10_1016_j_jelechem_2024_118747 crossref_primary_10_3390_catal12121521 crossref_primary_10_1002_cctc_202300023 crossref_primary_10_2139_ssrn_4201275 crossref_primary_10_1002_celc_202200123 crossref_primary_10_1021_jacs_4c06904 crossref_primary_10_3390_catal14090569 crossref_primary_10_1016_j_jcat_2023_05_016 crossref_primary_10_1016_j_jcis_2025_02_163 crossref_primary_10_1002_slct_202304902 crossref_primary_10_1016_j_nxmate_2024_100473 crossref_primary_10_1039_D3TA04591A crossref_primary_10_1016_j_apsusc_2025_162488 crossref_primary_10_1002_adma_202408285 crossref_primary_10_1016_j_nanoen_2024_110088 crossref_primary_10_1021_acs_jpcc_4c01551 crossref_primary_10_3390_catal12091050 crossref_primary_10_1002_adfm_202414379 crossref_primary_10_1063_5_0147165 crossref_primary_10_1039_D4GC02727B crossref_primary_10_1002_adfm_202303833 crossref_primary_10_1088_1361_6528_ad18ea crossref_primary_10_1039_D3TA04792J crossref_primary_10_1016_j_jcat_2023_03_030 |
Cites_doi | 10.1002/adma.201808115 10.1002/anie.202016977 10.1016/j.ensm.2021.02.017 10.1002/anie.201500569 10.1039/D1EE01675J 10.1038/s41557-020-0473-9 10.1002/ange.202015679 10.1002/ange.201207256 10.1002/ange.202000324 10.1038/s41563-019-0487-0 10.1038/s41467-018-05878-y 10.1021/ja500432h 10.1002/anie.201906870 10.1126/science.aad0832 10.1038/s41929-020-00546-1 10.1038/s41929-021-00632-y 10.1016/j.joule.2019.12.014 10.1002/ange.202014857 10.1002/ange.202016977 10.1038/s41565-020-00824-w 10.1002/adma.202006292 10.1002/anie.201207256 10.1021/acs.nanolett.8b00978 10.1002/adma.202006613 10.1002/anie.202014323 10.1126/science.abj9980 10.1126/science.1200832 10.1126/science.aaw7493 10.1038/s41467-018-04713-8 10.1073/pnas.1813605115 10.1038/s41929-019-0304-9 10.1002/ange.201906870 10.1002/ange.202014323 10.1002/smll.202006805 10.1002/adma.201302034 10.1126/science.aau0630 10.1002/adfm.201908486 10.1021/cs501973j 10.1038/nmat2878 10.1002/adma.202003577 10.1038/nmat3458 10.1002/anie.202111426 10.1002/anie.202014857 10.1021/acs.accounts.0c00488 10.1016/j.scib.2021.07.001 10.1021/jacs.5b00292 10.1002/adma.201804297 10.1002/aenm.202100219 10.1002/ange.201500569 10.1021/acscatal.8b03446 10.1002/anie.202015679 10.1002/anie.202000324 10.1126/science.aad8892 10.1002/cctc.201801679 10.1007/s40242-020-0182-3 10.1002/ange.202111426 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202115835 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34894036 10_1002_anie_202115835 ANIE202115835 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075092 – fundername: National Natural Science Foundation of China grantid: 22075092 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-70d86b9c6bfe2200141adc045815c71915055163078a708a3a7c59666e5523bf3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:50:19 EDT 2025 Fri Jul 25 11:57:14 EDT 2025 Wed Feb 19 02:28:05 EST 2025 Tue Jul 01 01:18:13 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Wed Jan 22 16:26:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Oxygen reduction Electrocatalyst Metal-nitrogen-graphene Platinum alloy Molten-salt synthesis |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-70d86b9c6bfe2200141adc045815c71915055163078a708a3a7c59666e5523bf3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2054-908X 0000-0002-8534-4333 |
PMID | 34894036 |
PQID | 2622431338 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2612377625 proquest_journals_2622431338 pubmed_primary_34894036 crossref_citationtrail_10_1002_anie_202115835 crossref_primary_10_1002_anie_202115835 wiley_primary_10_1002_anie_202115835_ANIE202115835 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2022 2022-02-00 2022-Feb-01 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2019; 9 2015; 5 2021; 4 2013; 25 2021; 66 2019; 31 2019; 2 2019; 11 2020 2020; 59 132 2019; 366 2020; 36 2020; 12 2020; 32 2014; 136 2011; 332 2019 2019; 58 131 2020; 19 2021; 14 2018; 9 2021; 16 2018; 18 2021; 37 2020; 4 2021; 54 2020; 3 2021; 33 2021; 11 2015; 137 2020; 30 2013; 12 2012 2012; 51 124 2021; 17 2018; 115 2021 2021; 60 133 2015 2015; 54 127 2016; 352 2021; 374 2016; 351 2010; 9 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_36_2 e_1_2_7_38_1 Huang L. (e_1_2_7_26_1) 2021; 37 |
References_xml | – volume: 66 start-page: 2207 year: 2021 publication-title: Sci. Bull. – volume: 60 133 start-page: 9590 9676 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 6122 6178 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 6284 year: 2013 publication-title: Adv. Mater. – volume: 352 start-page: 73 year: 2016 publication-title: Science – volume: 14 start-page: 4948 year: 2021 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2235 year: 2018 publication-title: Nat. Commun. – volume: 18 start-page: 4163 year: 2018 publication-title: Nano Lett. – volume: 54 start-page: 311 year: 2021 publication-title: Acc. Chem. Res. – volume: 374 start-page: 459 year: 2021 publication-title: Science – volume: 115 start-page: 12692 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 1044 year: 2020 publication-title: Nat. Catal. – volume: 137 start-page: 5414 year: 2015 end-page: 5420 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 83 year: 2019 publication-title: ACS Catal. – volume: 9 start-page: 904 year: 2010 publication-title: Nat. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 332 start-page: 443 year: 2011 publication-title: Science – volume: 9 start-page: 3376 year: 2018 publication-title: Nat. Commun. – volume: 60 133 start-page: 25530 25734 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 year: 2021 publication-title: Acta Phys.-Chim. Sin. – volume: 60 133 start-page: 17832 17976 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 453 year: 2021 publication-title: Nat. Catal. – volume: 51 124 start-page: 12613 12782 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 140 year: 2021 publication-title: Nat. Nanotechnol. – volume: 60 133 start-page: 5121 5181 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 764 year: 2020 publication-title: Nat. Chem. – volume: 12 start-page: 81 year: 2013 publication-title: Nat. Mater. – volume: 5 start-page: 2184 year: 2015 publication-title: ACS Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 6533 6607 year: 2021 2021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 37 start-page: 274 year: 2021 publication-title: Energy Storage Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 58 131 start-page: 13354 13488 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 611 year: 2020 publication-title: Chem. Res. Chin. Univ. – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 54 127 start-page: 10102 10240 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 655 year: 2019 publication-title: ChemCatChem – volume: 2 start-page: 578 year: 2019 publication-title: Nat. Catal. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 362 start-page: 1276 year: 2018 publication-title: Science – volume: 19 start-page: 77 year: 2020 publication-title: Nat. Mater. – volume: 4 start-page: 45 year: 2020 publication-title: Joule – ident: e_1_2_7_4_1 doi: 10.1002/adma.201808115 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202016977 – ident: e_1_2_7_38_1 doi: 10.1016/j.ensm.2021.02.017 – ident: e_1_2_7_18_1 doi: 10.1002/anie.201500569 – ident: e_1_2_7_35_1 doi: 10.1039/D1EE01675J – ident: e_1_2_7_40_1 doi: 10.1038/s41557-020-0473-9 – ident: e_1_2_7_9_2 doi: 10.1002/ange.202015679 – ident: e_1_2_7_5_2 doi: 10.1002/ange.201207256 – ident: e_1_2_7_48_2 doi: 10.1002/ange.202000324 – ident: e_1_2_7_13_1 doi: 10.1038/s41563-019-0487-0 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-018-05878-y – ident: e_1_2_7_10_1 doi: 10.1021/ja500432h – ident: e_1_2_7_36_1 doi: 10.1002/anie.201906870 – ident: e_1_2_7_15_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_20_1 doi: 10.1038/s41929-020-00546-1 – ident: e_1_2_7_27_1 doi: 10.1038/s41929-021-00632-y – ident: e_1_2_7_2_1 doi: 10.1016/j.joule.2019.12.014 – ident: e_1_2_7_28_2 doi: 10.1002/ange.202014857 – ident: e_1_2_7_3_2 doi: 10.1002/ange.202016977 – ident: e_1_2_7_24_1 doi: 10.1038/s41565-020-00824-w – ident: e_1_2_7_1_1 doi: 10.1002/adma.202006292 – ident: e_1_2_7_5_1 doi: 10.1002/anie.201207256 – ident: e_1_2_7_37_1 doi: 10.1021/acs.nanolett.8b00978 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202006613 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202014323 – ident: e_1_2_7_6_1 doi: 10.1126/science.abj9980 – ident: e_1_2_7_39_1 doi: 10.1126/science.1200832 – ident: e_1_2_7_12_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-018-04713-8 – ident: e_1_2_7_47_1 doi: 10.1073/pnas.1813605115 – ident: e_1_2_7_30_1 doi: 10.1038/s41929-019-0304-9 – ident: e_1_2_7_36_2 doi: 10.1002/ange.201906870 – ident: e_1_2_7_22_2 doi: 10.1002/ange.202014323 – ident: e_1_2_7_23_1 doi: 10.1002/smll.202006805 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201302034 – ident: e_1_2_7_16_1 doi: 10.1126/science.aau0630 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201908486 – ident: e_1_2_7_7_1 doi: 10.1021/cs501973j – ident: e_1_2_7_42_1 doi: 10.1038/nmat2878 – ident: e_1_2_7_45_1 doi: 10.1002/adma.202003577 – ident: e_1_2_7_43_1 doi: 10.1038/nmat3458 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202111426 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202014857 – ident: e_1_2_7_17_1 doi: 10.1021/acs.accounts.0c00488 – ident: e_1_2_7_29_1 doi: 10.1016/j.scib.2021.07.001 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.5b00292 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201804297 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.202100219 – ident: e_1_2_7_18_2 doi: 10.1002/ange.201500569 – ident: e_1_2_7_41_1 doi: 10.1021/acscatal.8b03446 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202015679 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202000324 – ident: e_1_2_7_11_1 doi: 10.1126/science.aad8892 – ident: e_1_2_7_44_1 doi: 10.1002/cctc.201801679 – volume: 37 year: 2021 ident: e_1_2_7_26_1 publication-title: Acta Phys.-Chim. Sin. – ident: e_1_2_7_25_1 doi: 10.1007/s40242-020-0182-3 – ident: e_1_2_7_21_2 doi: 10.1002/ange.202111426 |
SSID | ssj0028806 |
Score | 2.6823146 |
Snippet | Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202115835 |
SubjectTerms | Alloying Catalysts Electrocatalyst Fuel cells Fuel technology Graphene Metal–nitrogen–graphene Molten salts Molten-salt synthesis Nanoalloys Nanoparticles Nitrogen Oxygen Oxygen reduction Platinum Platinum alloy Platinum base alloys Production methods Robustness |
Title | Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202115835 https://www.ncbi.nlm.nih.gov/pubmed/34894036 https://www.proquest.com/docview/2622431338 https://www.proquest.com/docview/2612377625 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQl_YC9AULtDISUk-B1I88jqvVbmmlXSoWJG6R7djSijSpSFawnPof-g_7SzqTbAJbVCGVW6zYieMZe76JZz4Tcqi0UhEYNk8oP_UET30virX0jAysFWmYGocJzuNJcHIhvl7KywdZ_A0_RPfDDWdGvV7jBFe6PL4nDcUMbPDvwIGRgCJgEcaALURFZx1_FAPlbNKLOPfwFPqWtdFnx6vNV63SI6i5ilxr0zPaJKrtdBNxcnU0r_SRufuLz_E5X7VFNpa4lPYbRXpF1mz-mrwYtMfBvSE3U5Am5lnRcZEB0KZTlVV0usgBQZazkhaOfsO4unz-nfazrFiUWAaxpXSW07EFkP_756_JrLouQGfh8jNSZcNKSwE202HNZAEGkJ7eLuA-PUNKWVSat-RiNDwfnHjLUxs8w0Pkv_TTKNCxCbSzjNWBpCo1uB_7SZoQ3EPAXBJQIGATFfqR4io0EpyuwEpwirXj78h6XuR2h1AlnGJOOcYdFzoKY2ZCbmLtmHRWxEGPeK3UErOkNMeTNbKkIWNmCQ5n0g1nj3zs6v9oyDz-WXO_VYJkOanLhAWAdzg69T1y0N0GMeAei8ptMcc6AAVCsDDwiO1GebpXcRHFAhBDj7BaBZ7oQ9KffBl2pd3_abRHXjJM16ijzPfJenU9t-8BRFX6Qz1R_gCokBTX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUqb-pHHcVW2bKG7oG4rcYtsx5ZWpEnVzQqWE_-Bf8gvYSbZBC0IIcEtUezE8Ywz3zgz3wC80EbrBA1bIHWYB1LkYZCkRgVWRc7JPM6tpwTnyTQan8k3H1QXTUi5MC0_RL_hRiuj-V7TAqcN6b2frKGUgo0OHnowCmHEVbhGZb2JPv_VSc8gxVE92wQjIQKqQ9_xNoZ8b7P_pl36DWxuYtfG-BzeBNMNu405-bi7rM2u_fILo-N_vdctuLGGpmzY6tJtuOLKO7B90FWEuwufZihQSrVik6pArM1muqjZbFUiiFzMF6zy7D2F1pXLczYsimq1oHOUXM7mJZs4xPnfv36bzuvLCtUWD18TWzZ-bBkiZzZqyCzQBrJ3n1d4nZ0QqyzpzT04OxydHoyDdeGGwIqYKDDDPIlMaiPjHedNLKnOLf2S3Vc2Rg8RYZdCIIjwRMdhooWOrUK_K3IK_WLjxX3YKqvSPQSmpdfca8-FF9IkccptLGxqPFfeyTQaQNCJLbNrVnMqrlFkLR8zz2g6s346B_Cyb3_R8nn8seVOpwXZel0vMh4h5BHk1w_geX8ZxUC_WXTpqiW1QTQQo5HBWzxotad_lJBJKhE0DIA3OvCXMWTD6dGoP3v0L52ewfb4dHKcHR9N3z6G65yyN5qg8x3Yqi-X7gliqto8bVbND-_tGPM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL78dCASMhcUob_MjjuGp3aYFdqi6Veotsx5ZWhKTqZgXLif_AP-SXMJNsAgtCSHCLFTtx7LHnm3jmG4Bn2midoGILpA7zQIo8DJLUqMCqyDmZx7n1FOA8mUYHJ_LVqTr9KYq_5Yfof7jRymj2a1rgZ7nf_UEaShHYaN-hAaMQRVyESzIKU0resH_cE0hxlM42vkiIgNLQd7SNId_dbL-pln7DmpvQtdE94-ugu163Lifvd5a12bGffyF0_J_PugHX1sCUDVtJugkXXHkLrux1-eBuw8cZTicFWrFJVSDSZjNd1Gy2KhFCLuYLVnl2RI515fIDGxZFtVpQGectZ_OSTRyi_G9fvk7n9XmFQouXL4krG7dahriZjRoqC9SA7O2nFd5nx8QpS1JzB07Go3d7B8E6bUNgRUwEmGGeRCa1kfGO88aTVOeWDmRfKBujfYigSyEMRHCi4zDRQsdWodUVOYVWsfHiLmyVVenuA9PSa-6158ILaZI45TYWNjWeK-9kGg0g6GYts2tOc0qtUWQtGzPPaDizfjgH8Lyvf9ayefyx5nYnBNl6VS8yHiHgEWTVD-BpfxungQ5ZdOmqJdVBLBCjisFH3GuFp3-VkEkqETIMgDci8Jc-ZMPp4agvPfiXRk_g8tH-OHtzOH39EK5yCt1oPM63Yas-X7pHCKhq87hZM98BjW0Xog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Molten+Salt+Synthesis+of+Platinum+Alloys+Planted+in+Metal-Nitrogen-Graphene+for+Efficient+Oxygen+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zaman%2C+Shahid&rft.au=Su%2C+Ya-Qiong&rft.au=Dong%2C+Chung-Li&rft.au=Qi%2C+Ruijuan&rft.date=2022-02-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=6&rft.spage=e202115835&rft_id=info:doi/10.1002%2Fanie.202115835&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |