Inorganic Composition Modulation of Solid Electrolyte Interphase for Fast Charging Lithium Metal Batteries

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to local...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 30; pp. e2404815 - n/a
Main Authors Tan, Yi‐Hong, Liu, Zhu, Zheng, Jian‐Hui, Ju, Zhi‐Jin, He, Xiao‐Ya, Hao, Wei, Wu, Ye‐Chao, Xu, Wen‐Shan, Zhang, Hao‐Jie, Li, Guo‐Qing, Zhou, Li‐Sha, Zhou, Fei, Tao, Xinyong, Yao, Hong‐Bin, Liang, Zheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs. Lithium fluoride (LiF) can effectively improve the stability of solid electrolyte interphase (SEI). However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI. To address this issue, a fluorophosphated SEI with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced, which enable Li metal batteries to exhibit excellent fast‐charging performance.
AbstractList The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li 3 P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm −2 ). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg −1 ) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs.
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm ). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg ) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs. Lithium fluoride (LiF) can effectively improve the stability of solid electrolyte interphase (SEI). However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI. To address this issue, a fluorophosphated SEI with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced, which enable Li metal batteries to exhibit excellent fast‐charging performance.
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs.
Author Ju, Zhi‐Jin
Wu, Ye‐Chao
Zhou, Li‐Sha
Yao, Hong‐Bin
Hao, Wei
Xu, Wen‐Shan
Liang, Zheng
He, Xiao‐Ya
Liu, Zhu
Li, Guo‐Qing
Zhang, Hao‐Jie
Tao, Xinyong
Zhou, Fei
Zheng, Jian‐Hui
Tan, Yi‐Hong
Author_xml – sequence: 1
  givenname: Yi‐Hong
  surname: Tan
  fullname: Tan, Yi‐Hong
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Zhu
  surname: Liu
  fullname: Liu, Zhu
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Jian‐Hui
  surname: Zheng
  fullname: Zheng, Jian‐Hui
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Zhi‐Jin
  surname: Ju
  fullname: Ju, Zhi‐Jin
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Xiao‐Ya
  surname: He
  fullname: He, Xiao‐Ya
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Wei
  surname: Hao
  fullname: Hao, Wei
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Ye‐Chao
  surname: Wu
  fullname: Wu, Ye‐Chao
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Wen‐Shan
  surname: Xu
  fullname: Xu, Wen‐Shan
  organization: Monta Vista Energy Technologies Corporation
– sequence: 9
  givenname: Hao‐Jie
  surname: Zhang
  fullname: Zhang, Hao‐Jie
  organization: Monta Vista Energy Technologies Corporation
– sequence: 10
  givenname: Guo‐Qing
  surname: Li
  fullname: Li, Guo‐Qing
  organization: Monta Vista Energy Technologies Corporation
– sequence: 11
  givenname: Li‐Sha
  surname: Zhou
  fullname: Zhou, Li‐Sha
  organization: Monta Vista Energy Technologies Corporation
– sequence: 12
  givenname: Fei
  surname: Zhou
  fullname: Zhou, Fei
  email: fei.zhou@monvitech.com
  organization: Monta Vista Energy Technologies Corporation
– sequence: 13
  givenname: Xinyong
  surname: Tao
  fullname: Tao, Xinyong
  email: tao@zjut.edu.cn
  organization: Zhejiang University of Technology
– sequence: 14
  givenname: Hong‐Bin
  surname: Yao
  fullname: Yao, Hong‐Bin
  email: yhb@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 15
  givenname: Zheng
  orcidid: 0000-0001-9137-0338
  surname: Liang
  fullname: Liang, Zheng
  email: liangzheng06@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38719211$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvGyEQRlGVqnHSXnuskHrpxe7Awu5ydN2ktWQrh-a-wsDaWCy4wCryvy-Jk1SKFOXEHN4bZua7QGc-eIPQZwIzAkC_Sz3IGQXKgLWEv0MTwimZMhD8DE1AVHwqataeo4uU9gAgaqg_oPOqbYighEzQfulD3EpvFV6E4RCSzTZ4vA56dPKhDD3-E5zV-MoZlWNwx2zw0mcTDzuZDO5DxNcyZbzYybi1fotXNu_sOOC1ydLhHzIX1pr0Eb3vpUvm0-N7iW6vr24Xv6erm1_LxXw1VVVT5q1V0_aqrKRYz1kNUjDKtTGUbzatAE0qwY3UG0WbXgM0ouFCMU2oZjWRfXWJvp3aHmL4O5qUu8EmZZyT3oQxdRXwilSsIaygX1-g-zBGX4YrVMtIy2ughfrySI2bwejuEO0g47F7OmIBZidAxZBSNP0zQqC7T6m7T6l7TqkI7IWgbH64do7Sutc1cdLurDPHNz7p5j_X8__uP1XApnM
CitedBy_id crossref_primary_10_1039_D4EE02311K
crossref_primary_10_54097_vhfkhm68
crossref_primary_10_1002_eem2_12861
crossref_primary_10_1073_pnas_2420398122
crossref_primary_10_1002_aenm_202403678
crossref_primary_10_1021_acs_nanolett_4c02983
crossref_primary_10_1021_acsami_4c15229
crossref_primary_10_1016_j_cej_2024_159047
crossref_primary_10_1016_j_ensm_2025_104020
crossref_primary_10_1002_cnl2_184
crossref_primary_10_1016_j_jpowsour_2024_235569
crossref_primary_10_1002_aenm_202402811
crossref_primary_10_1039_D4CC04956J
crossref_primary_10_1039_D4EE03862B
crossref_primary_10_1360_TB_2024_0526
crossref_primary_10_1002_adfm_202409492
crossref_primary_10_1007_s11426_024_2265_9
crossref_primary_10_1039_D4TA07788A
Cites_doi 10.1038/s41560-021-00917-3
10.1038/s41467-021-27429-8
10.1002/adfm.202000831
10.1016/j.compositesb.2020.108397
10.1126/sciadv.aau9245
10.1016/j.joule.2019.05.006
10.1016/j.joule.2018.08.004
10.1038/s41560-023-01282-z
10.1016/j.jpowsour.2004.04.011
10.1149/1.1837858
10.1073/pnas.2020357118
10.1149/2.0041514jes
10.1002/anie.201911724
10.1039/C8TA05102J
10.1016/j.ensm.2017.03.008
10.1038/s41467-023-36793-6
10.1016/j.jpcs.2006.01.030
10.1021/acsami.2c13359
10.1039/C3EE40795K
10.1039/D1EE04053G
10.1002/adma.202102134
10.1038/s41560-019-0464-5
10.1039/D0TA11444H
10.1038/s41560-020-0634-5
10.1016/j.joule.2018.06.015
10.1038/s41560-019-0336-z
10.1002/advs.201700032
10.1149/2.0121711jes
10.1038/s41560-023-01202-1
10.1149/1.1804812
10.1103/PhysRevLett.77.3865
10.1016/j.apenergy.2019.04.009
10.1038/s41560-019-0390-6
10.1021/acsnano.2c12470
10.1021/ma049759b
10.1002/ange.202104671
10.1021/acs.jpcc.9b00436
10.1038/s41560-018-0196-y
10.1016/j.ensm.2020.07.018
10.1002/ange.202116214
10.1021/acsaem.0c01605
10.1002/adfm.202301755
10.1016/j.surfrep.2010.10.001
10.1002/aenm.201903362
10.1016/j.ensm.2021.07.002
10.1021/acsaem.1c00773
10.1016/0009-2614(90)85472-O
10.1038/s41467-022-29761-z
10.1103/PhysRevB.54.11169
10.1021/acsami.9b16589
10.1002/aenm.202200244
10.1038/s41565-018-0183-2
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202404815
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 38719211
10_1002_adma_202404815
ADMA202404815
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52102282; 22325505
– fundername: CATL Future Energy Research Institute
  funderid: 22H010102023
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 22X010201631; 23X010301599
– fundername: National Natural Science Foundation of China
  grantid: 22325505
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 22X010201631
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 23X010301599
– fundername: CATL Future Energy Research Institute
  grantid: 22H010102023
– fundername: National Natural Science Foundation of China
  grantid: 52102282
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3735-6c78fc202c4f5460a9425dee25bb890d1395eadbc27fd0079759c4d12d461af3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 20:01:53 EDT 2025
Sat Jul 26 02:04:53 EDT 2025
Mon Jul 21 06:05:40 EDT 2025
Tue Jul 01 00:54:50 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Aug 20 07:27:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords fast‐charging Li metal batteries
fluorophosphated SEI
inorganic grain boundaries
sol electrolyte
electrolyte additives
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-6c78fc202c4f5460a9425dee25bb890d1395eadbc27fd0079759c4d12d461af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9137-0338
PMID 38719211
PQID 3084185602
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_3053134714
proquest_journals_3084185602
pubmed_primary_38719211
crossref_primary_10_1002_adma_202404815
crossref_citationtrail_10_1002_adma_202404815
wiley_primary_10_1002_adma_202404815_ADMA202404815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2015; 162
2022; 134
2021; 6
2019; 4
2019; 3
2021; 4
2023; 14
2017; 4
2023; 17
2019; 11
2023; 8
2020; 59
2019; 246
2020; 202
2020; 32
2020; 10
1990; 167
1996; 54
2019; 123
1996; 77
2018; 6
2020; 5
2018; 3
2018; 2
2020; 3
2018; 4
2004; 135
2021; 33
2006; 67
2023
2020; 30
2004; 151
2004; 37
1997; 144
2021; 118
2022; 12
2022; 13
2022; 14
2011; 66
2022; 15
2017; 164
2021; 133
2014; 7
2018; 10
2021; 41
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 67
  start-page: 1100
  year: 2006
  publication-title: J. Phys. Chem. Solids
– volume: 32
  start-page: 425
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 1662
  year: 2019
  publication-title: Joule
– volume: 13
  start-page: 5
  year: 2022
  publication-title: Nat. Commun.
– volume: 37
  start-page: 5995
  year: 2004
  publication-title: Macromolecules
– volume: 2
  start-page: 2167
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 340
  year: 2023
  publication-title: Nat. Energy
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 715
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 2047
  year: 2018
  publication-title: Joule
– volume: 246
  start-page: 53
  year: 2019
  publication-title: Appl. Energy
– volume: 41
  start-page: 697
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 796
  year: 2019
  publication-title: Nat. Energy
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1081
  year: 2023
  publication-title: Nat. Commun.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 202
  year: 2020
  publication-title: Composites, Part B
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 3416
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 144
  start-page: L208
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 987
  year: 2021
  publication-title: Nat. Energy
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 17
  start-page: 3168
  year: 2023
  publication-title: ACS Nano
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 10
  start-page: 199
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 66
  start-page: 1
  year: 2011
  publication-title: Surf. Sci. Rep.
– volume: 135
  start-page: 291
  year: 2004
  publication-title: J. Power Sources
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 575
  year: 1990
  publication-title: Chem. Phys. Lett.
– volume: 151
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 269
  year: 2019
  publication-title: Nat. Energy
– volume: 4
  start-page: 5246
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 674
  year: 2018
  publication-title: Nat. Energy
– volume: 13
  start-page: 2029
  year: 2022
  publication-title: Nat. Commun.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 934
  year: 2023
  publication-title: Nat. Energy
– volume: 59
  start-page: 3252
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– ident: e_1_2_9_38_1
  doi: 10.1038/s41560-021-00917-3
– ident: e_1_2_9_50_1
  doi: 10.1038/s41467-021-27429-8
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.202000831
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compositesb.2020.108397
– ident: e_1_2_9_2_1
  doi: 10.1126/sciadv.aau9245
– ident: e_1_2_9_12_1
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_9_37_1
  doi: 10.1016/j.joule.2018.08.004
– ident: e_1_2_9_46_1
  doi: 10.1038/s41560-023-01282-z
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jpowsour.2004.04.011
– ident: e_1_2_9_5_1
  doi: 10.1149/1.1837858
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.2020357118
– ident: e_1_2_9_14_1
  doi: 10.1149/2.0041514jes
– ident: e_1_2_9_52_1
  doi: 10.1002/anie.201911724
– ident: e_1_2_9_20_1
  doi: 10.1039/C8TA05102J
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ensm.2017.03.008
– ident: e_1_2_9_42_1
  doi: 10.1038/s41467-023-36793-6
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jpcs.2006.01.030
– ident: e_1_2_9_21_1
  doi: 10.1021/acsami.2c13359
– ident: e_1_2_9_1_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_9_29_1
  doi: 10.1039/D1EE04053G
– ident: e_1_2_9_41_1
  doi: 10.1002/adma.202102134
– ident: e_1_2_9_11_1
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_9_4_1
  doi: 10.1039/D0TA11444H
– ident: e_1_2_9_9_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_9_24_1
  doi: 10.1016/j.joule.2018.06.015
– ident: e_1_2_9_7_1
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_9_13_1
  doi: 10.1002/advs.201700032
– ident: e_1_2_9_3_1
  doi: 10.1149/2.0121711jes
– ident: e_1_2_9_40_1
  doi: 10.1038/s41560-023-01202-1
– ident: e_1_2_9_6_1
  doi: 10.1149/1.1804812
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_9_16_1
  doi: 10.1016/j.apenergy.2019.04.009
– ident: e_1_2_9_47_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_9_18_1
  doi: 10.1021/acsnano.2c12470
– ident: e_1_2_9_28_1
  doi: 10.1021/ma049759b
– ident: e_1_2_9_51_1
  doi: 10.1002/ange.202104671
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.jpcc.9b00436
– ident: e_1_2_9_10_1
  doi: 10.1038/s41560-018-0196-y
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ensm.2020.07.018
– ident: e_1_2_9_49_1
  doi: 10.1002/ange.202116214
– ident: e_1_2_9_34_1
  doi: 10.1021/acsaem.0c01605
– ident: e_1_2_9_45_1
  doi: 10.1002/adfm.202301755
– ident: e_1_2_9_36_1
  doi: 10.1016/j.surfrep.2010.10.001
– ident: e_1_2_9_48_1
  doi: 10.1002/aenm.201903362
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ensm.2021.07.002
– ident: e_1_2_9_22_1
  doi: 10.1021/acsaem.1c00773
– ident: e_1_2_9_30_1
  doi: 10.1016/0009-2614(90)85472-O
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-022-29761-z
– ident: e_1_2_9_32_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_9_25_1
  doi: 10.1021/acsami.9b16589
– ident: e_1_2_9_23_1
  doi: 10.1002/aenm.202200244
– ident: e_1_2_9_15_1
  doi: 10.1038/s41565-018-0183-2
SSID ssj0009606
Score 2.6087992
Snippet The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2404815
SubjectTerms Charging
Diffusion rate
electrolyte additives
Electrolytes
fast‐charging Li metal batteries
fluorophosphated SEI
Functional groups
Grain boundaries
inorganic grain boundaries
Intrinsically safe
Lithium
Lithium batteries
Lithium fluoride
Mechanical properties
sol electrolyte
Solid electrolytes
Stability
Title Inorganic Composition Modulation of Solid Electrolyte Interphase for Fast Charging Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404815
https://www.ncbi.nlm.nih.gov/pubmed/38719211
https://www.proquest.com/docview/3084185602
https://www.proquest.com/docview/3053134714
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iSQ_uy7gRQfBU7aTpkuOgDiqOBxfwVrIVR8dWnM5Bf73vNZ3qKCLoraUJTZO3fK95-R4he0wkUvlKekxlwuPahJ5iRnrtjEtpeJhJhaeRe5fR6S0_vwvvPp3id_wQzQ831IzKXqOCSzU8_CANlabiDQKPhHwjYIQxYQtR0dUHfxTC84psLwg9EfFkzNros8PJ7pNe6RvUnESulevpzhM5HrTLOHk8GJXqQL994XP8z1ctkLkal9KOE6RFMmXzJTL7ia1wmTyc5a4GlKZoRepsL9orTF0CjBYZvS4GfUNPXHGdwWtpqUtrvAdvSQEg064clhQ3-bE6Er3ol_f90RPtWQgCqCP7hNh9hdx0T26OTr26VIOngxgmN9JxkmkYt-ZZyCNfCrAFxloWKpUI3wDODEFmlWZxZgCWiDgUmps2MzxqyyxYJdN5kdt1Qi30F5LHRjDJg8AHQUI-S6YAaSRSsBbxxiuV6prGHKtpDFJHwMxSnMK0mcIW2W_aPzsCjx9bbo0XPq0VeZgGfoL0PpEPL95tHoMK4r6KzG0xwjZgyALw8rxF1pzANK8KICAVEGS3CKuW_ZcxpJ3jXqe52_hLp00yg9cupXiLTJcvI7sNwKlUO5VyvAM0_g9Z
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHKI_C9kGNhMQpbdZxHj6uoKst3fQAi8Qt8ivqwpIgmj3Ar2cmTlK2qEKCYxJbduwZzzf2-BuAV1xmSodaBVyXMhDGxoHmVgXjUihlRVwqTbeR8_Nk9lG8-xT30YR0F8bzQwwbbqQZ7XpNCk4b0sdXrKHKtsRBaJKIcOQ23KG03q1X9f6KQYoAeku3F8WBTETW8zaG_Hiz_qZd-gNsbmLX1vhMH4Luu-1jTr4crRt9ZH5eY3T8r__ahgcdNGUTL0uP4JarHsP93wgLn8Dn08qngTKMFpIu4Ivlte2ygLG6ZB_q1dKyE59fZ_WjccxHNl6gwWSIkdlUXTaMzvkpQRKbL5uL5foryx36AczzfaL7_hQW05PFm1nQZWsITJTi6CYmzUqD_TaijEUSKonLgXWOx1pnMrQINWMUW214WlpEJjKNpRF2zK1IxqqMdmCrqiv3HJjD-lKJ1EquRBSFKEtEack1go1MST6CoJ-qwnRM5pRQY1V4DmZe0BAWwxCO4PVQ_pvn8Lix5H4_80Wny5dFFGbE8JOE2PDL4TNqIR2tqMrVayqDa1mEhl6M4JmXmKGpCH1SiX72CHg773_pQzF5m0-Gp91_qXQId2eLfF7MT8_P9uAevfcRxvuw1XxfuwPEUY1-0WrKLyngE3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFB7aIEWui0FIyH1FMg6zsPHVZcVr0UIqMQt8lMsbBNUsofy6xnH2cBSVUjlmMRWHHse38TjbwC2Kc-EDKUIqLQ8YErHgaRaBF3LhNAstkK608jDk2T_Jzu8jC-fnOL3_BDtDzenGbW9dgp-q-3uI2mo0DVvEHokxzfyBhZYEmZOrvtnjwRSDp_XbHtRHPCEZVPaxpDuzvafdUt_Yc1Z6Fr7nsEHENNR-5STm51JJXfU_TNCx9d81hK8b4Ap6XlJWoY5U6zAuyd0hR_h-qDwRaAUcWakSfciw1I3NcBIacl5OR5psuer64z_VIb4vMYrdJcEETIZiLuKuF1-Vx6JHI-qq9HkFxkajAKIZ_vE4P0TXAz2Ln7sB02thkBFKU5uotLMKhy3YjbGlRAcjYE2hsZSZjzUCDRjFFqpaGo14hKexlwx3aWaJV1ho1WYL8rCfAZisD8XLNWcChZFIUqSI7SkEqFGJjjtQDBdqVw1POaunMY49wzMNHdTmLdT2IHvbftbz-Dxz5br04XPG02-y6Mwc_w-SYgv3mofow66jRVRmHLi2qAli9DNsw6seYFpXxVhRMoxyu4ArZf9hTHkvf6w1159-Z9Om7B42h_kxwcnR1_hrbvt04vXYb76PTHfEERVcqPWkwf0GxIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Composition+Modulation+of+Solid+Electrolyte+Interphase+for+Fast+Charging+Lithium+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Yi%E2%80%90Hong&rft.au=Liu%2C+Zhu&rft.au=Zheng%2C+Jian%E2%80%90Hui&rft.au=Ju%2C+Zhi%E2%80%90Jin&rft.date=2024-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=30&rft_id=info:doi/10.1002%2Fadma.202404815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202404815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon