Inorganic Composition Modulation of Solid Electrolyte Interphase for Fast Charging Lithium Metal Batteries
The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to local...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 30; pp. e2404815 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs.
Lithium fluoride (LiF) can effectively improve the stability of solid electrolyte interphase (SEI). However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI. To address this issue, a fluorophosphated SEI with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced, which enable Li metal batteries to exhibit excellent fast‐charging performance. |
---|---|
AbstractList | The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li
3
P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm
−2
). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg
−1
) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs. The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm ). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg ) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs. The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs. Lithium fluoride (LiF) can effectively improve the stability of solid electrolyte interphase (SEI). However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI. To address this issue, a fluorophosphated SEI with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced, which enable Li metal batteries to exhibit excellent fast‐charging performance. The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs. The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high‐current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion‐diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus‐containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion‐diffusing grain boundaries (GBs‐Li) that are non‐nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast‐charging rates of 5 C (11 mA cm−2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg−1) is fabricated. The work reveals how SEI components and structure design can enable fast‐charging LMBs. |
Author | Ju, Zhi‐Jin Wu, Ye‐Chao Zhou, Li‐Sha Yao, Hong‐Bin Hao, Wei Xu, Wen‐Shan Liang, Zheng He, Xiao‐Ya Liu, Zhu Li, Guo‐Qing Zhang, Hao‐Jie Tao, Xinyong Zhou, Fei Zheng, Jian‐Hui Tan, Yi‐Hong |
Author_xml | – sequence: 1 givenname: Yi‐Hong surname: Tan fullname: Tan, Yi‐Hong organization: Shanghai Jiao Tong University – sequence: 2 givenname: Zhu surname: Liu fullname: Liu, Zhu organization: Shanghai Jiao Tong University – sequence: 3 givenname: Jian‐Hui surname: Zheng fullname: Zheng, Jian‐Hui organization: Zhejiang University of Technology – sequence: 4 givenname: Zhi‐Jin surname: Ju fullname: Ju, Zhi‐Jin organization: Shanghai Jiao Tong University – sequence: 5 givenname: Xiao‐Ya surname: He fullname: He, Xiao‐Ya organization: Shanghai Jiao Tong University – sequence: 6 givenname: Wei surname: Hao fullname: Hao, Wei organization: Shanghai Jiao Tong University – sequence: 7 givenname: Ye‐Chao surname: Wu fullname: Wu, Ye‐Chao organization: University of Science and Technology of China – sequence: 8 givenname: Wen‐Shan surname: Xu fullname: Xu, Wen‐Shan organization: Monta Vista Energy Technologies Corporation – sequence: 9 givenname: Hao‐Jie surname: Zhang fullname: Zhang, Hao‐Jie organization: Monta Vista Energy Technologies Corporation – sequence: 10 givenname: Guo‐Qing surname: Li fullname: Li, Guo‐Qing organization: Monta Vista Energy Technologies Corporation – sequence: 11 givenname: Li‐Sha surname: Zhou fullname: Zhou, Li‐Sha organization: Monta Vista Energy Technologies Corporation – sequence: 12 givenname: Fei surname: Zhou fullname: Zhou, Fei email: fei.zhou@monvitech.com organization: Monta Vista Energy Technologies Corporation – sequence: 13 givenname: Xinyong surname: Tao fullname: Tao, Xinyong email: tao@zjut.edu.cn organization: Zhejiang University of Technology – sequence: 14 givenname: Hong‐Bin surname: Yao fullname: Yao, Hong‐Bin email: yhb@ustc.edu.cn organization: University of Science and Technology of China – sequence: 15 givenname: Zheng orcidid: 0000-0001-9137-0338 surname: Liang fullname: Liang, Zheng email: liangzheng06@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38719211$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvGyEQRlGVqnHSXnuskHrpxe7Awu5ydN2ktWQrh-a-wsDaWCy4wCryvy-Jk1SKFOXEHN4bZua7QGc-eIPQZwIzAkC_Sz3IGQXKgLWEv0MTwimZMhD8DE1AVHwqataeo4uU9gAgaqg_oPOqbYighEzQfulD3EpvFV6E4RCSzTZ4vA56dPKhDD3-E5zV-MoZlWNwx2zw0mcTDzuZDO5DxNcyZbzYybi1fotXNu_sOOC1ydLhHzIX1pr0Eb3vpUvm0-N7iW6vr24Xv6erm1_LxXw1VVVT5q1V0_aqrKRYz1kNUjDKtTGUbzatAE0qwY3UG0WbXgM0ouFCMU2oZjWRfXWJvp3aHmL4O5qUu8EmZZyT3oQxdRXwilSsIaygX1-g-zBGX4YrVMtIy2ughfrySI2bwejuEO0g47F7OmIBZidAxZBSNP0zQqC7T6m7T6l7TqkI7IWgbH64do7Sutc1cdLurDPHNz7p5j_X8__uP1XApnM |
CitedBy_id | crossref_primary_10_1039_D4EE02311K crossref_primary_10_54097_vhfkhm68 crossref_primary_10_1002_eem2_12861 crossref_primary_10_1073_pnas_2420398122 crossref_primary_10_1002_aenm_202403678 crossref_primary_10_1021_acs_nanolett_4c02983 crossref_primary_10_1021_acsami_4c15229 crossref_primary_10_1016_j_cej_2024_159047 crossref_primary_10_1016_j_ensm_2025_104020 crossref_primary_10_1002_cnl2_184 crossref_primary_10_1016_j_jpowsour_2024_235569 crossref_primary_10_1002_aenm_202402811 crossref_primary_10_1039_D4CC04956J crossref_primary_10_1039_D4EE03862B crossref_primary_10_1360_TB_2024_0526 crossref_primary_10_1002_adfm_202409492 crossref_primary_10_1007_s11426_024_2265_9 crossref_primary_10_1039_D4TA07788A |
Cites_doi | 10.1038/s41560-021-00917-3 10.1038/s41467-021-27429-8 10.1002/adfm.202000831 10.1016/j.compositesb.2020.108397 10.1126/sciadv.aau9245 10.1016/j.joule.2019.05.006 10.1016/j.joule.2018.08.004 10.1038/s41560-023-01282-z 10.1016/j.jpowsour.2004.04.011 10.1149/1.1837858 10.1073/pnas.2020357118 10.1149/2.0041514jes 10.1002/anie.201911724 10.1039/C8TA05102J 10.1016/j.ensm.2017.03.008 10.1038/s41467-023-36793-6 10.1016/j.jpcs.2006.01.030 10.1021/acsami.2c13359 10.1039/C3EE40795K 10.1039/D1EE04053G 10.1002/adma.202102134 10.1038/s41560-019-0464-5 10.1039/D0TA11444H 10.1038/s41560-020-0634-5 10.1016/j.joule.2018.06.015 10.1038/s41560-019-0336-z 10.1002/advs.201700032 10.1149/2.0121711jes 10.1038/s41560-023-01202-1 10.1149/1.1804812 10.1103/PhysRevLett.77.3865 10.1016/j.apenergy.2019.04.009 10.1038/s41560-019-0390-6 10.1021/acsnano.2c12470 10.1021/ma049759b 10.1002/ange.202104671 10.1021/acs.jpcc.9b00436 10.1038/s41560-018-0196-y 10.1016/j.ensm.2020.07.018 10.1002/ange.202116214 10.1021/acsaem.0c01605 10.1002/adfm.202301755 10.1016/j.surfrep.2010.10.001 10.1002/aenm.201903362 10.1016/j.ensm.2021.07.002 10.1021/acsaem.1c00773 10.1016/0009-2614(90)85472-O 10.1038/s41467-022-29761-z 10.1103/PhysRevB.54.11169 10.1021/acsami.9b16589 10.1002/aenm.202200244 10.1038/s41565-018-0183-2 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202404815 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38719211 10_1002_adma_202404815 ADMA202404815 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52102282; 22325505 – fundername: CATL Future Energy Research Institute funderid: 22H010102023 – fundername: Fundamental Research Funds for the Central Universities funderid: 22X010201631; 23X010301599 – fundername: National Natural Science Foundation of China grantid: 22325505 – fundername: Fundamental Research Funds for the Central Universities grantid: 22X010201631 – fundername: Fundamental Research Funds for the Central Universities grantid: 23X010301599 – fundername: CATL Future Energy Research Institute grantid: 22H010102023 – fundername: National Natural Science Foundation of China grantid: 52102282 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3735-6c78fc202c4f5460a9425dee25bb890d1395eadbc27fd0079759c4d12d461af3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 20:01:53 EDT 2025 Sat Jul 26 02:04:53 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Tue Jul 01 00:54:50 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Aug 20 07:27:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | fast‐charging Li metal batteries fluorophosphated SEI inorganic grain boundaries sol electrolyte electrolyte additives |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-6c78fc202c4f5460a9425dee25bb890d1395eadbc27fd0079759c4d12d461af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9137-0338 |
PMID | 38719211 |
PQID | 3084185602 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3053134714 proquest_journals_3084185602 pubmed_primary_38719211 crossref_primary_10_1002_adma_202404815 crossref_citationtrail_10_1002_adma_202404815 wiley_primary_10_1002_adma_202404815_ADMA202404815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2015; 162 2022; 134 2021; 6 2019; 4 2019; 3 2021; 4 2023; 14 2017; 4 2023; 17 2019; 11 2023; 8 2020; 59 2019; 246 2020; 202 2020; 32 2020; 10 1990; 167 1996; 54 2019; 123 1996; 77 2018; 6 2020; 5 2018; 3 2018; 2 2020; 3 2018; 4 2004; 135 2021; 33 2006; 67 2023 2020; 30 2004; 151 2004; 37 1997; 144 2021; 118 2022; 12 2022; 13 2022; 14 2011; 66 2022; 15 2017; 164 2021; 133 2014; 7 2018; 10 2021; 41 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 67 start-page: 1100 year: 2006 publication-title: J. Phys. Chem. Solids – volume: 32 start-page: 425 year: 2020 publication-title: Energy Storage Mater. – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 1662 year: 2019 publication-title: Joule – volume: 13 start-page: 5 year: 2022 publication-title: Nat. Commun. – volume: 37 start-page: 5995 year: 2004 publication-title: Macromolecules – volume: 2 start-page: 2167 year: 2018 publication-title: Joule – volume: 8 start-page: 340 year: 2023 publication-title: Nat. Energy – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 715 year: 2018 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 2 start-page: 2047 year: 2018 publication-title: Joule – volume: 246 start-page: 53 year: 2019 publication-title: Appl. Energy – volume: 41 start-page: 697 year: 2021 publication-title: Energy Storage Mater. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 4 start-page: 796 year: 2019 publication-title: Nat. Energy – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1081 year: 2023 publication-title: Nat. Commun. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 202 year: 2020 publication-title: Composites, Part B – year: 2023 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 3416 year: 2022 publication-title: Energy Environ. Sci. – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 144 start-page: L208 year: 1997 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 987 year: 2021 publication-title: Nat. Energy – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 17 start-page: 3168 year: 2023 publication-title: ACS Nano – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy – volume: 10 start-page: 199 year: 2018 publication-title: Energy Storage Mater. – volume: 66 start-page: 1 year: 2011 publication-title: Surf. Sci. Rep. – volume: 135 start-page: 291 year: 2004 publication-title: J. Power Sources – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 575 year: 1990 publication-title: Chem. Phys. Lett. – volume: 151 year: 2004 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 269 year: 2019 publication-title: Nat. Energy – volume: 4 start-page: 5246 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 674 year: 2018 publication-title: Nat. Energy – volume: 13 start-page: 2029 year: 2022 publication-title: Nat. Commun. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 8 start-page: 934 year: 2023 publication-title: Nat. Energy – volume: 59 start-page: 3252 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – ident: e_1_2_9_38_1 doi: 10.1038/s41560-021-00917-3 – ident: e_1_2_9_50_1 doi: 10.1038/s41467-021-27429-8 – ident: e_1_2_9_19_1 doi: 10.1002/adfm.202000831 – ident: e_1_2_9_27_1 doi: 10.1016/j.compositesb.2020.108397 – ident: e_1_2_9_2_1 doi: 10.1126/sciadv.aau9245 – ident: e_1_2_9_12_1 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_9_37_1 doi: 10.1016/j.joule.2018.08.004 – ident: e_1_2_9_46_1 doi: 10.1038/s41560-023-01282-z – ident: e_1_2_9_39_1 doi: 10.1016/j.jpowsour.2004.04.011 – ident: e_1_2_9_5_1 doi: 10.1149/1.1837858 – ident: e_1_2_9_8_1 doi: 10.1073/pnas.2020357118 – ident: e_1_2_9_14_1 doi: 10.1149/2.0041514jes – ident: e_1_2_9_52_1 doi: 10.1002/anie.201911724 – ident: e_1_2_9_20_1 doi: 10.1039/C8TA05102J – ident: e_1_2_9_17_1 doi: 10.1016/j.ensm.2017.03.008 – ident: e_1_2_9_42_1 doi: 10.1038/s41467-023-36793-6 – ident: e_1_2_9_31_1 doi: 10.1016/j.jpcs.2006.01.030 – ident: e_1_2_9_21_1 doi: 10.1021/acsami.2c13359 – ident: e_1_2_9_1_1 doi: 10.1039/C3EE40795K – ident: e_1_2_9_29_1 doi: 10.1039/D1EE04053G – ident: e_1_2_9_41_1 doi: 10.1002/adma.202102134 – ident: e_1_2_9_11_1 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_9_4_1 doi: 10.1039/D0TA11444H – ident: e_1_2_9_9_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_9_24_1 doi: 10.1016/j.joule.2018.06.015 – ident: e_1_2_9_7_1 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_9_13_1 doi: 10.1002/advs.201700032 – ident: e_1_2_9_3_1 doi: 10.1149/2.0121711jes – ident: e_1_2_9_40_1 doi: 10.1038/s41560-023-01202-1 – ident: e_1_2_9_6_1 doi: 10.1149/1.1804812 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_9_16_1 doi: 10.1016/j.apenergy.2019.04.009 – ident: e_1_2_9_47_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_9_18_1 doi: 10.1021/acsnano.2c12470 – ident: e_1_2_9_28_1 doi: 10.1021/ma049759b – ident: e_1_2_9_51_1 doi: 10.1002/ange.202104671 – ident: e_1_2_9_35_1 doi: 10.1021/acs.jpcc.9b00436 – ident: e_1_2_9_10_1 doi: 10.1038/s41560-018-0196-y – ident: e_1_2_9_26_1 doi: 10.1016/j.ensm.2020.07.018 – ident: e_1_2_9_49_1 doi: 10.1002/ange.202116214 – ident: e_1_2_9_34_1 doi: 10.1021/acsaem.0c01605 – ident: e_1_2_9_45_1 doi: 10.1002/adfm.202301755 – ident: e_1_2_9_36_1 doi: 10.1016/j.surfrep.2010.10.001 – ident: e_1_2_9_48_1 doi: 10.1002/aenm.201903362 – ident: e_1_2_9_44_1 doi: 10.1016/j.ensm.2021.07.002 – ident: e_1_2_9_22_1 doi: 10.1021/acsaem.1c00773 – ident: e_1_2_9_30_1 doi: 10.1016/0009-2614(90)85472-O – ident: e_1_2_9_43_1 doi: 10.1038/s41467-022-29761-z – ident: e_1_2_9_32_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_9_25_1 doi: 10.1021/acsami.9b16589 – ident: e_1_2_9_23_1 doi: 10.1002/aenm.202200244 – ident: e_1_2_9_15_1 doi: 10.1038/s41565-018-0183-2 |
SSID | ssj0009606 |
Score | 2.6087992 |
Snippet | The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2404815 |
SubjectTerms | Charging Diffusion rate electrolyte additives Electrolytes fast‐charging Li metal batteries fluorophosphated SEI Functional groups Grain boundaries inorganic grain boundaries Intrinsically safe Lithium Lithium batteries Lithium fluoride Mechanical properties sol electrolyte Solid electrolytes Stability |
Title | Inorganic Composition Modulation of Solid Electrolyte Interphase for Fast Charging Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202404815 https://www.ncbi.nlm.nih.gov/pubmed/38719211 https://www.proquest.com/docview/3084185602 https://www.proquest.com/docview/3053134714 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7iSQ_uy7gRQfBU7aTpkuOgDiqOBxfwVrIVR8dWnM5Bf73vNZ3qKCLoraUJTZO3fK95-R4he0wkUvlKekxlwuPahJ5iRnrtjEtpeJhJhaeRe5fR6S0_vwvvPp3id_wQzQ831IzKXqOCSzU8_CANlabiDQKPhHwjYIQxYQtR0dUHfxTC84psLwg9EfFkzNros8PJ7pNe6RvUnESulevpzhM5HrTLOHk8GJXqQL994XP8z1ctkLkal9KOE6RFMmXzJTL7ia1wmTyc5a4GlKZoRepsL9orTF0CjBYZvS4GfUNPXHGdwWtpqUtrvAdvSQEg064clhQ3-bE6Er3ol_f90RPtWQgCqCP7hNh9hdx0T26OTr26VIOngxgmN9JxkmkYt-ZZyCNfCrAFxloWKpUI3wDODEFmlWZxZgCWiDgUmps2MzxqyyxYJdN5kdt1Qi30F5LHRjDJg8AHQUI-S6YAaSRSsBbxxiuV6prGHKtpDFJHwMxSnMK0mcIW2W_aPzsCjx9bbo0XPq0VeZgGfoL0PpEPL95tHoMK4r6KzG0xwjZgyALw8rxF1pzANK8KICAVEGS3CKuW_ZcxpJ3jXqe52_hLp00yg9cupXiLTJcvI7sNwKlUO5VyvAM0_g9Z |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHKI_C9kGNhMQpbdZxHj6uoKst3fQAi8Qt8ivqwpIgmj3Ar2cmTlK2qEKCYxJbduwZzzf2-BuAV1xmSodaBVyXMhDGxoHmVgXjUihlRVwqTbeR8_Nk9lG8-xT30YR0F8bzQwwbbqQZ7XpNCk4b0sdXrKHKtsRBaJKIcOQ23KG03q1X9f6KQYoAeku3F8WBTETW8zaG_Hiz_qZd-gNsbmLX1vhMH4Luu-1jTr4crRt9ZH5eY3T8r__ahgcdNGUTL0uP4JarHsP93wgLn8Dn08qngTKMFpIu4Ivlte2ygLG6ZB_q1dKyE59fZ_WjccxHNl6gwWSIkdlUXTaMzvkpQRKbL5uL5foryx36AczzfaL7_hQW05PFm1nQZWsITJTi6CYmzUqD_TaijEUSKonLgXWOx1pnMrQINWMUW214WlpEJjKNpRF2zK1IxqqMdmCrqiv3HJjD-lKJ1EquRBSFKEtEack1go1MST6CoJ-qwnRM5pRQY1V4DmZe0BAWwxCO4PVQ_pvn8Lix5H4_80Wny5dFFGbE8JOE2PDL4TNqIR2tqMrVayqDa1mEhl6M4JmXmKGpCH1SiX72CHg773_pQzF5m0-Gp91_qXQId2eLfF7MT8_P9uAevfcRxvuw1XxfuwPEUY1-0WrKLyngE3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFB7aIEWui0FIyH1FMg6zsPHVZcVr0UIqMQt8lMsbBNUsofy6xnH2cBSVUjlmMRWHHse38TjbwC2Kc-EDKUIqLQ8YErHgaRaBF3LhNAstkK608jDk2T_Jzu8jC-fnOL3_BDtDzenGbW9dgp-q-3uI2mo0DVvEHokxzfyBhZYEmZOrvtnjwRSDp_XbHtRHPCEZVPaxpDuzvafdUt_Yc1Z6Fr7nsEHENNR-5STm51JJXfU_TNCx9d81hK8b4Ap6XlJWoY5U6zAuyd0hR_h-qDwRaAUcWakSfciw1I3NcBIacl5OR5psuer64z_VIb4vMYrdJcEETIZiLuKuF1-Vx6JHI-qq9HkFxkajAKIZ_vE4P0TXAz2Ln7sB02thkBFKU5uotLMKhy3YjbGlRAcjYE2hsZSZjzUCDRjFFqpaGo14hKexlwx3aWaJV1ho1WYL8rCfAZisD8XLNWcChZFIUqSI7SkEqFGJjjtQDBdqVw1POaunMY49wzMNHdTmLdT2IHvbftbz-Dxz5br04XPG02-y6Mwc_w-SYgv3mofow66jRVRmHLi2qAli9DNsw6seYFpXxVhRMoxyu4ArZf9hTHkvf6w1159-Z9Om7B42h_kxwcnR1_hrbvt04vXYb76PTHfEERVcqPWkwf0GxIs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+Composition+Modulation+of+Solid+Electrolyte+Interphase+for+Fast+Charging+Lithium+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tan%2C+Yi%E2%80%90Hong&rft.au=Liu%2C+Zhu&rft.au=Zheng%2C+Jian%E2%80%90Hui&rft.au=Ju%2C+Zhi%E2%80%90Jin&rft.date=2024-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=30&rft_id=info:doi/10.1002%2Fadma.202404815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202404815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |