Recent Advances of Seed‐Mediated Growth of Metal Nanoparticles: from Growth to Applications
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The cent...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 46; pp. e2211915 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
The state‐of‐the‐art development in seeded growth methods from key influencing factors of growth and applications of grown metal nanoparticles are summarized in this review to highlight the achievements and help researchers understand the current investigation status of seed‐mediated methods. Furthermore, the challenges faced by seed‐mediated methods are outlined and the future directions for advancing seed‐mediated methods are outlooked. |
---|---|
AbstractList | Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis and therapy by tuning optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles has been identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductant and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, we systematically summarized the mechanism of growth influencing factors in seed-mediated growth methods. Second, we focus on a variety of critical properties and applications enabled by grown metal nanoparticles. Finally, we review the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles. This article is protected by copyright. All rights reserved. Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. The state‐of‐the‐art development in seeded growth methods from key influencing factors of growth and applications of grown metal nanoparticles are summarized in this review to highlight the achievements and help researchers understand the current investigation status of seed‐mediated methods. Furthermore, the challenges faced by seed‐mediated methods are outlined and the future directions for advancing seed‐mediated methods are outlooked. Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. |
Author | Guan, Liandi Ai, Yongjian Ding, Mingyu He, Meng‐Qi Hu, Wanting Liang, Qionglin |
Author_xml | – sequence: 1 givenname: Meng‐Qi surname: He fullname: He, Meng‐Qi organization: Tsinghua University – sequence: 2 givenname: Yongjian surname: Ai fullname: Ai, Yongjian email: ayj@tsinghua.edu.cn organization: Tsinghua University – sequence: 3 givenname: Wanting surname: Hu fullname: Hu, Wanting organization: Tsinghua University – sequence: 4 givenname: Liandi surname: Guan fullname: Guan, Liandi organization: Tsinghua University – sequence: 5 givenname: Mingyu surname: Ding fullname: Ding, Mingyu organization: Tsinghua University – sequence: 6 givenname: Qionglin orcidid: 0000-0002-6750-038X surname: Liang fullname: Liang, Qionglin email: Liangql@tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36920232$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQhy1EBQv02mMVqRcuu_WfxIl7i6CFSiyVSnusLMceq0ZJnNpeELc-Qp-RJ8HLskVCqnoayfN9o_H8DtDu6EdA6A3BC4Ixfa_MoBYUU0qIINUOmpGKknmJRbWLZliwai542eyjgxivMcaCY76H9hkX2WF0hn58BQ1jKlpzo0YNsfC2uAIw97__LME4lcAUZ8Hfpp_rzhKS6otLNfpJheR0D_FDYYMftkzyRTtNvdMqOT_GI_TKqj7C66d6iL5_-vjt5Hx-8eXs80l7MdeszivyprYaM4qNoaTTtjOMU2aFri2pOlUpAqKhHa8rXNam4diUrMsPjJSY2oayQ3S8mTsF_2sFMcnBRQ19r0bwqyhp3dSUUM5YRt-9QK_9Kox5O0kbkY-SSZ6pt0_UqhvAyCm4QYU7uT1cBsoNoIOPMYCV2qXHT6egXC8Jlut85Dof-TefrC1eaNvJ_xTERrh1Pdz9h5bt6bJ9dh8A8w2hmg |
CitedBy_id | crossref_primary_10_1002_sstr_202400146 crossref_primary_10_1007_s11244_024_01927_7 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_3390_bios14040164 crossref_primary_10_1016_j_molliq_2024_124243 crossref_primary_10_1002_adfm_202306585 crossref_primary_10_1016_j_ccr_2025_216473 crossref_primary_10_1021_acs_analchem_4c05241 crossref_primary_10_1039_D4TA06805J crossref_primary_10_1063_5_0201185 crossref_primary_10_1007_s44174_024_00235_8 crossref_primary_10_1002_cnma_202400407 crossref_primary_10_1021_acsami_4c20674 crossref_primary_10_1007_s12668_024_01673_w crossref_primary_10_3390_chemistry6040044 crossref_primary_10_1021_acs_analchem_3c00426 crossref_primary_10_1002_ejic_202400189 crossref_primary_10_1039_D4AY01509F crossref_primary_10_1002_cssc_202401127 crossref_primary_10_1039_D4RA07404A crossref_primary_10_1039_D3MA00390F crossref_primary_10_1007_s00604_024_06305_4 crossref_primary_10_3390_appliedchem4010007 crossref_primary_10_3390_ijms25179315 crossref_primary_10_3390_mi15091119 crossref_primary_10_1021_acsami_4c17794 crossref_primary_10_1002_adfm_202305071 crossref_primary_10_1186_s40486_025_00223_7 crossref_primary_10_1002_smll_202403313 crossref_primary_10_1039_D3RA04992B crossref_primary_10_1002_adma_202401361 crossref_primary_10_1002_adma_202404071 crossref_primary_10_1002_chem_202303987 crossref_primary_10_1002_cbdv_202401326 crossref_primary_10_1007_s12274_023_5770_3 crossref_primary_10_1021_acs_jpcc_4c08818 crossref_primary_10_1021_acs_chemmater_4c00708 crossref_primary_10_5306_wjco_v16_i4_104435 crossref_primary_10_1002_sstr_202300326 crossref_primary_10_1007_s00216_024_05317_6 crossref_primary_10_1002_adma_202302335 crossref_primary_10_1002_smtd_202401389 crossref_primary_10_1007_s40242_025_4207_9 crossref_primary_10_1016_j_nxnano_2023_100013 crossref_primary_10_26599_EMD_2023_9370008 crossref_primary_10_1016_j_materresbull_2024_113038 crossref_primary_10_1039_D4NA00118D crossref_primary_10_1080_10408398_2024_2376113 crossref_primary_10_1002_cnma_202300468 crossref_primary_10_1039_D4NR03641G crossref_primary_10_1016_j_mtcomm_2025_112315 |
Cites_doi | 10.1021/cm702126j 10.1126/science.aad4998 10.1002/adma.202102591 10.1002/adma.201808166 10.1002/anie.202015451 10.1002/adma.202002219 10.1021/acsami.7b12018 10.1021/jacs.6b09451 10.1038/ncomms12873 10.1039/D1SC03040J 10.1021/acs.analchem.6b01597 10.1002/smll.202105304 10.1021/acs.jpcc.6b09245 10.1002/anie.200906010 10.1021/cr400532z 10.1038/nmat1957 10.1002/ange.201906758 10.1021/cm9027995 10.1515/zpch-1918-9212 10.1021/nl400893p 10.1021/acs.accounts.8b00338 10.1038/s41467-022-29847-8 10.1126/sciadv.1701183 10.1021/jacs.8b13902 10.1002/adfm.202104424 10.1039/C6TB02308H 10.1039/b705253g 10.1002/smtd.201900017 10.1016/j.biomaterials.2012.03.059 10.1002/adfm.202110432 10.1021/jacs.5b03877 10.1021/cs200538g 10.1038/nmat1152 10.1016/j.chempr.2017.08.004 10.1021/acs.analchem.9b04573 10.1021/ja502704n 10.1002/anie.201604731 10.1007/s12274-020-3267-x 10.1016/S0039-6028(02)01560-1 10.1021/jp510908f 10.1039/c3tc30365a 10.1038/s41586-018-0034-1 10.1038/nmat4115 10.1021/la061323x 10.1021/ja310501y 10.1039/c0dt01404d 10.1039/C2CS35367A 10.1021/cm000662n 10.1021/jacs.5b04641 10.1016/j.nantod.2020.101005 10.1039/c0cs00176g 10.1021/jacs.1c11333 10.1021/nl1032233 10.1021/acsnano.7b02349 10.1002/adma.201805875 10.1002/adma.201902733 10.1002/adma.200800044 10.1038/nmat1505 10.1021/nn2051168 10.1016/j.colsurfa.2006.09.003 10.1021/acs.jpcc.0c05258 10.1016/j.biomaterials.2019.03.042 10.1002/anie.202002028 10.1021/nl503777s 10.1021/nl5045378 10.1002/adma.201506119 10.1002/ange.202000474 10.1021/ja300598u 10.1021/cm020587b 10.1021/jacs.5b00313 10.1103/PhysRevLett.65.1020 10.2307/3221838 10.1002/adfm.202103581 10.1021/jacs.0c08604 10.1021/acsnano.9b03084 10.1021/jacs.9b03498 10.1002/ange.201912768 10.1021/jp500716z 10.1002/adma.200800384 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F 10.1126/science.aaz1172 10.1021/acs.langmuir.9b03542 10.1002/adfm.201909260 10.1021/acsnano.5b07968 10.1002/ange.202003760 10.1021/ja502472x 10.1093/nsr/nwv037 10.1002/smll.200801480 10.1002/adma.201903878 10.1039/C5SC02925B 10.1021/cr030063a 10.1021/nl503441v 10.1002/adtp.202200066 10.1038/s41565-019-0392-3 10.1002/anie.201810693 10.1007/s00216-016-0123-7 10.1021/acs.nanolett.6b00002 10.1039/c2nr30300k 10.1021/acs.chemrev.8b00745 10.1021/ja0361749 10.1002/ange.201910615 10.1002/anie.201301096 10.1002/anie.201905669 10.1515/nanoph-2016-0007 10.1002/adma.200600675 10.1039/C6CC09878A 10.1039/c0cp02253e 10.1002/adma.201906580 10.1021/jacs.8b11856 10.1039/C6TA10997G 10.1038/s41467-018-06574-7 10.1021/nl034140t 10.1021/jacs.5b09490 10.1021/nn507310f 10.1002/anie.201105539 10.1002/ange.201908291 10.1021/acs.analchem.7b02073 10.1039/D1SC02203B 10.1021/acs.jpcc.0c07046 10.1021/jacs.1c13116 10.1039/c4nr00299g 10.1021/ja9065333 10.1021/acs.nanolett.8b00344 10.1126/science.1097830 10.1021/acsami.9b19161 10.1021/la4036198 10.1021/acs.nanolett.9b02215 10.1016/j.scib.2018.05.035 10.1002/anie.202105856 10.1021/acs.nanolett.9b00534 10.1021/bp0501423 10.1002/anie.200802248 10.1039/C9CS00011A 10.1021/la049463z 10.1039/b100521i 10.1021/acsnano.8b05906 10.1002/adma.200304652 10.1021/nl2041113 10.1002/advs.201802132 10.1021/ja060447t 10.1021/acs.inorgchem.8b01354 10.1038/nchem.623 10.1039/C6NR08501F 10.1021/jp971091y 10.1073/pnas.1222109110 10.1021/acs.jpclett.7b00563 10.1007/BF01017860 10.1021/acs.nanolett.0c02648 10.1088/0957-4484/19/45/455602 10.1021/acs.accounts.0c00743 10.1021/acs.nanolett.5b00158 10.1126/science.aba0980 10.1002/adma.201905758 10.1126/science.1258361 10.1002/anie.201102619 10.1021/jacs.5b10997 10.1038/s41586-018-0332-7 10.1021/acs.analchem.0c00321 10.1002/adma.201902504 10.1002/adfm.202102517 10.1021/nn800591y 10.1002/ange.200453880 10.1039/C8TA05369C 10.1021/jacs.0c00443 10.1021/nl104347j 10.1021/cm402384j 10.1021/acs.nanolett.6b04151 10.1021/ja056498s 10.1021/cm303659q 10.1039/b616986d 10.1039/C1CS15237H 10.1126/science.266.5193.1961 10.1021/la061366d 10.1002/adma.201202146 10.1021/ja511719g 10.1002/adma.202109354 10.1021/acsami.8b10711 10.1002/adfm.202001771 10.1021/acsnano.8b01362 10.1016/j.cplett.2006.10.095 10.1038/s41557-018-0083-y 10.1021/acs.jpclett.5b02123 10.1002/ange.201107240 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202211915 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36920232 10_1002_adma_202211915 ADMA202211915 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Postdoctoral Innovative Talent Support Program funderid: BX20220160 – fundername: National Key R&D Program of China funderid: 2022YFA1103403 – fundername: Tsinghua‐Peking Joint Center for Life Sciences Postdoctoral Foundation Program – fundername: Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine funderid: ZYYCXTD‐D‐202208 – fundername: Young Elite Scientist Sponsorship Program of the Beijing Association for Science and Technology funderid: BYESS2023166 – fundername: National Natural Science Foundation of China funderid: 81872835; 22074157 – fundername: China Postdoctoral Science Foundation Funded Project funderid: 2022M711779 – fundername: Tsinghua‐Foshan Innovation Special Fund funderid: 2022THFS6121 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3735-687fc0320dd21bcfbd3623f9c7f15ba5a1e982b675047d860d43b82b31402f823 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:31:09 EDT 2025 Fri Jul 25 07:46:31 EDT 2025 Wed Feb 19 02:24:34 EST 2025 Tue Jul 01 02:33:31 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Sun Jul 06 04:45:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | influencing factors metal nanoparticles growth influencing factors seed-mediated growth morphology control |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-687fc0320dd21bcfbd3623f9c7f15ba5a1e982b675047d860d43b82b31402f823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6750-038X |
PMID | 36920232 |
PQID | 2890238726 |
PQPubID | 2045203 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2787212633 proquest_journals_2890238726 pubmed_primary_36920232 crossref_citationtrail_10_1002_adma_202211915 crossref_primary_10_1002_adma_202211915 wiley_primary_10_1002_adma_202211915_ADMA202211915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2002; 14 2004; 20 2019; 92 2013; 1 2012; 124 2020; 20 2019; 13 2017; 89 2019; 14 2014; 26 2004; 3 2019; 19 2019; 207 2020; 12 2012; 12 2014; 136 1994; 266 2010; 22 2018; 6 2018; 9 2012; 134 2015; 137 2006; 22 2020; 92 2005; 105 2007; 295 2013; 52 2022; 34 2014; 14 2007; 6 2013; 110 2022; 32 2008; 20 2012; 24 2010; 2 2007; 17 2019; 3 2019; 6 2019; 31 2020; 142 2019; 36 2016; 10 2020; 35 2020; 32 2016; 16 2004; 304 2012; 33 2016; 5 2018; 18 2017; 53 2016; 7 2021; 54 2010; 49 2020; 30 2022; 5 2019; 48 2005; 127 2017; 56 2022; 13 2005; 4 2015; 119 2014; 30 2018; 12 2016; 28 2021; 60 2018; 10 2012; 41 2022; 18 2017; 5 2017; 8 2013; 25 2017; 3 2019; 58 2020; 368 2011; 11 2003; 15 2020; 59 2002; 512 2011; 13 2020; 367 2020; 124 2017; 355 2017; 9 2009; 48 2012; 51 2017; 409 2021; 31 2013; 13 2020; 132 1997; 101 2003; 3 2019; 119 2003; 125 2001; 13 2006; 128 2014; 6 2016; 88 1920; 39 2015; 2 2014; 118 2018; 141 2015; 15 2015; 14 2015; 6 1918; 92 2008; 19 2013; 42 2011; 40 2006; 18 2007 2018; 63 2009; 131 2015; 9 2019; 141 2016; 120 2014; 114 2006; 432 2022; 144 2021; 14 1990; 65 2004; 116 2012; 2 2021; 12 2001; 7 2018; 556 2018; 559 2017; 17 2017; 11 2011; 50 2013; 135 2018; 51 2016; 138 2009; 5 2009; 3 2012; 6 2012; 4 1985; 38 2014; 346 2019; 131 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_173_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_175_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_172_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – volume: 25 start-page: 555 year: 2013 publication-title: Chem. Mater. – volume: 10 start-page: 821 year: 2018 publication-title: Nat. Chem. – volume: 18 year: 2022 publication-title: Small – volume: 3 start-page: 678 year: 2017 publication-title: Chem – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3942 year: 2015 publication-title: ACS Nano – volume: 16 start-page: 3036 year: 2016 publication-title: Nano Lett. – volume: 137 start-page: 3755 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 92 start-page: 7054 year: 2020 publication-title: Anal. Chem. – volume: 36 start-page: 789 year: 2019 publication-title: Langmuir – volume: 20 start-page: 738 year: 2008 publication-title: Chem. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 842 year: 2015 publication-title: Nano Lett. – volume: 141 start-page: 8158 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 60 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 2644 year: 2021 publication-title: Nano Res. – volume: 138 start-page: 1258 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 2852 year: 2015 publication-title: J. Phys. Chem. C – volume: 28 start-page: 5923 year: 2016 publication-title: Adv. Mater. – volume: 124 start-page: 567 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 4565 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 997 year: 2012 publication-title: Nano Lett. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 3 start-page: 21 year: 2009 publication-title: ACS Nano – volume: 144 start-page: 6311 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 401 year: 2017 publication-title: J. Mater. Chem. B – volume: 355 year: 2017 publication-title: Science – volume: 5 start-page: 96 year: 2016 publication-title: Nanophotonics – volume: 3 start-page: 675 year: 2003 publication-title: Nano Lett. – volume: 4 start-page: 855 year: 2005 publication-title: Nat. Mater. – volume: 110 start-page: 6669 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 559 start-page: 593 year: 2018 publication-title: Nature – volume: 6 start-page: 5630 year: 2014 publication-title: Nanoscale – volume: 11 start-page: 898 year: 2011 publication-title: Nano Lett. – volume: 136 start-page: 6870 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 556 start-page: 360 year: 2018 publication-title: Nature – volume: 12 start-page: 5500 year: 2020 publication-title: ACS Appl. Mater. Interfaces – start-page: 3514 year: 2007 publication-title: Chem. Commun. – volume: 22 start-page: 233 year: 2010 publication-title: Chem. Mater. – volume: 38 start-page: 231 year: 1985 publication-title: J Stat Phys – volume: 137 start-page: 7862 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8153 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2600 year: 2007 publication-title: J. Mater. Chem. – volume: 5 year: 2022 publication-title: Adv. Therap. – volume: 6 start-page: 4270 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 22 year: 2006 publication-title: Langmuir – volume: 346 year: 2014 publication-title: Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 14 start-page: 215 year: 2015 publication-title: Nat. Mater. – volume: 2 start-page: 84 year: 2012 publication-title: ACS Catal. – volume: 144 start-page: 4410 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 512 start-page: 48 year: 2002 publication-title: Surf. Sci. – volume: 135 start-page: 5588 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 22 start-page: 8563 year: 2006 publication-title: Langmuir – volume: 10 start-page: 5037 year: 2010 publication-title: Nano Lett. – volume: 6 start-page: 2617 year: 2012 publication-title: ACS Nano – volume: 3 start-page: 482 year: 2004 publication-title: Nat. Mater. – volume: 132 start-page: 4436 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 602 year: 2014 publication-title: Langmuir – volume: 9 start-page: 4335 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 2213 year: 2017 publication-title: Nanoscale – volume: 13 start-page: 2211 year: 2022 publication-title: Nat. Commun. – volume: 39 start-page: 95 year: 1920 publication-title: Trans Am Microsc Soc – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 465 year: 2019 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 6693 year: 2014 publication-title: Nano Lett. – volume: 132 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 4878 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 20 start-page: 4306 year: 2008 publication-title: Adv. Mater. – volume: 2 start-page: 454 year: 2010 publication-title: Nat. Chem. – volume: 137 start-page: 7947 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2060 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 20 start-page: 4312 year: 2008 publication-title: Adv. Mater. – volume: 19 start-page: 5653 year: 2019 publication-title: Nano Lett. – volume: 89 start-page: 9292 year: 2017 publication-title: Anal. Chem. – volume: 4 start-page: 2875 year: 2012 publication-title: Nanoscale – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1445 year: 2015 publication-title: Nano Lett. – volume: 51 start-page: 602 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 7323 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 295 start-page: 228 year: 2007 publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 15 start-page: 457 year: 2015 publication-title: Nano Lett. – volume: 15 start-page: 695 year: 2003 publication-title: Adv. Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2867 year: 2018 publication-title: Acc. Chem. Res. – volume: 367 start-page: 418 year: 2020 publication-title: Science – volume: 6 start-page: 692 year: 2007 publication-title: Nat. Mater. – volume: 20 start-page: 6414 year: 2004 publication-title: Langmuir – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 137 start-page: 948 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 9463 year: 1997 publication-title: J. Phys. Chem. B – volume: 2 start-page: 329 year: 2015 publication-title: Natl Sci Rev – volume: 128 start-page: 5352 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 6522 year: 2014 publication-title: J. Phys. Chem. C – volume: 304 start-page: 1787 year: 2004 publication-title: Science – volume: 40 start-page: 4167 year: 2011 publication-title: Chem. Soc. Rev. – volume: 409 start-page: 1797 year: 2017 publication-title: Anal. Bioanal. Chem. – volume: 50 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 5166 year: 2012 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 start-page: 228 year: 2016 publication-title: Chem. Sci. – volume: 266 start-page: 1961 year: 1994 publication-title: Science – volume: 14 start-page: 4736 year: 2002 publication-title: Chem. Mater. – volume: 17 start-page: 334 year: 2017 publication-title: Nano Lett. – volume: 207 start-page: 39 year: 2019 publication-title: Biomaterials – volume: 88 start-page: 6638 year: 2016 publication-title: Anal. Chem. – volume: 54 start-page: 1168 year: 2021 publication-title: Acc. Chem. Res. – volume: 131 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 132 start-page: 1699 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 2313 year: 2001 publication-title: Chem. Mater. – volume: 11 start-page: 7889 year: 2017 publication-title: ACS Nano – volume: 20 start-page: 7263 year: 2020 publication-title: Nano Lett. – volume: 1 start-page: 3898 year: 2013 publication-title: J. Mater. Chem. C – volume: 52 start-page: 6063 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 892 year: 2018 publication-title: Sci. Bull. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 116 start-page: 4878 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 3115 year: 2019 publication-title: Nano Lett. – volume: 92 start-page: 1395 year: 2019 publication-title: Anal. Chem. – volume: 18 start-page: 1745 year: 2006 publication-title: Adv. Mater. – volume: 18 start-page: 2116 year: 2018 publication-title: Nano Lett. – volume: 59 start-page: 7131 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 34 year: 2014 publication-title: Chem. Mater. – volume: 41 start-page: 2740 year: 2012 publication-title: Chem. Soc. Rev. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2276 year: 2013 publication-title: Nano Lett. – volume: 368 start-page: 1472 year: 2020 publication-title: Science – volume: 432 start-page: 491 year: 2006 publication-title: Chem. Phys. Lett. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 40 start-page: 5811 year: 2011 publication-title: Dalton Trans – volume: 12 year: 2018 publication-title: ACS Nano – volume: 48 start-page: 5140 year: 2019 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 1965 year: 2017 publication-title: Chem. Commun. – volume: 119 start-page: 8972 year: 2019 publication-title: Chem. Rev. – volume: 42 start-page: 2679 year: 2013 publication-title: Chem. Soc. Rev. – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 57 start-page: 8599 year: 2018 publication-title: Inorg. Chem. – volume: 5 start-page: 6677 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 19 year: 2008 publication-title: Nanotechnology – volume: 10 start-page: 3121 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 646 year: 2009 publication-title: Small – volume: 13 start-page: 1389 year: 2001 publication-title: Adv. Mater. – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 1025 year: 2005 publication-title: Chem. Rev. – volume: 7 start-page: 617 year: 2001 publication-title: Chem. Commun. – volume: 65 start-page: 1020 year: 1990 publication-title: Phys. Rev. Lett. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5615 year: 2018 publication-title: ACS Nano – volume: 92 start-page: 219 year: 1918 publication-title: Phys. Chem. – volume: 56 start-page: 60 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 577 year: 2006 publication-title: Biotechnol. Prog. – volume: 33 start-page: 5130 year: 2012 publication-title: Biomaterials – volume: 13 start-page: 3210 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 35 year: 2020 publication-title: Nano Today – volume: 141 start-page: 1091 year: 2018 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_116_1 doi: 10.1021/cm702126j – ident: e_1_2_7_156_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202102591 – ident: e_1_2_7_172_1 doi: 10.1002/adma.201808166 – ident: e_1_2_7_124_1 doi: 10.1002/anie.202015451 – ident: e_1_2_7_18_1 doi: 10.1002/adma.202002219 – ident: e_1_2_7_159_1 doi: 10.1021/acsami.7b12018 – ident: e_1_2_7_28_1 doi: 10.1021/jacs.6b09451 – ident: e_1_2_7_51_1 doi: 10.1038/ncomms12873 – ident: e_1_2_7_105_1 doi: 10.1039/D1SC03040J – ident: e_1_2_7_122_1 doi: 10.1021/acs.analchem.6b01597 – ident: e_1_2_7_170_1 doi: 10.1002/smll.202105304 – ident: e_1_2_7_87_1 doi: 10.1021/acs.jpcc.6b09245 – ident: e_1_2_7_37_1 doi: 10.1002/anie.200906010 – ident: e_1_2_7_167_1 doi: 10.1021/cr400532z – ident: e_1_2_7_62_1 doi: 10.1038/nmat1957 – ident: e_1_2_7_178_1 doi: 10.1002/ange.201906758 – ident: e_1_2_7_130_1 doi: 10.1021/cm9027995 – ident: e_1_2_7_1_1 doi: 10.1515/zpch-1918-9212 – ident: e_1_2_7_72_1 doi: 10.1021/nl400893p – ident: e_1_2_7_16_1 doi: 10.1021/acs.accounts.8b00338 – ident: e_1_2_7_9_1 doi: 10.1038/s41467-022-29847-8 – ident: e_1_2_7_63_1 doi: 10.1126/sciadv.1701183 – ident: e_1_2_7_175_1 doi: 10.1021/jacs.8b13902 – ident: e_1_2_7_171_1 doi: 10.1002/adfm.202104424 – ident: e_1_2_7_109_1 doi: 10.1039/C6TB02308H – ident: e_1_2_7_95_1 doi: 10.1039/b705253g – ident: e_1_2_7_24_1 doi: 10.1002/smtd.201900017 – ident: e_1_2_7_126_1 doi: 10.1016/j.biomaterials.2012.03.059 – ident: e_1_2_7_117_1 doi: 10.1002/adfm.202110432 – ident: e_1_2_7_158_1 doi: 10.1021/jacs.5b03877 – ident: e_1_2_7_162_1 doi: 10.1021/cs200538g – ident: e_1_2_7_99_1 doi: 10.1038/nmat1152 – ident: e_1_2_7_42_1 doi: 10.1016/j.chempr.2017.08.004 – ident: e_1_2_7_69_1 doi: 10.1021/acs.analchem.9b04573 – ident: e_1_2_7_155_1 doi: 10.1021/ja502704n – ident: e_1_2_7_30_1 doi: 10.1002/anie.201604731 – ident: e_1_2_7_163_1 doi: 10.1007/s12274-020-3267-x – ident: e_1_2_7_61_1 doi: 10.1016/S0039-6028(02)01560-1 – ident: e_1_2_7_131_1 doi: 10.1021/jp510908f – ident: e_1_2_7_31_1 doi: 10.1039/c3tc30365a – ident: e_1_2_7_60_1 doi: 10.1038/s41586-018-0034-1 – ident: e_1_2_7_81_1 doi: 10.1038/nmat4115 – ident: e_1_2_7_102_1 doi: 10.1021/la061323x – ident: e_1_2_7_153_1 doi: 10.1021/ja310501y – ident: e_1_2_7_147_1 doi: 10.1039/c0dt01404d – ident: e_1_2_7_36_1 doi: 10.1039/C2CS35367A – ident: e_1_2_7_4_1 doi: 10.1021/cm000662n – ident: e_1_2_7_45_1 doi: 10.1021/jacs.5b04641 – ident: e_1_2_7_23_1 doi: 10.1016/j.nantod.2020.101005 – ident: e_1_2_7_145_1 doi: 10.1039/c0cs00176g – ident: e_1_2_7_50_1 doi: 10.1021/jacs.1c11333 – ident: e_1_2_7_46_1 doi: 10.1021/nl1032233 – ident: e_1_2_7_43_1 doi: 10.1021/acsnano.7b02349 – ident: e_1_2_7_174_1 doi: 10.1002/adma.201805875 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201902733 – ident: e_1_2_7_86_1 doi: 10.1002/adma.200800044 – ident: e_1_2_7_77_1 doi: 10.1038/nmat1505 – ident: e_1_2_7_83_1 doi: 10.1021/nn2051168 – ident: e_1_2_7_40_1 doi: 10.1016/j.colsurfa.2006.09.003 – ident: e_1_2_7_134_1 doi: 10.1021/acs.jpcc.0c05258 – ident: e_1_2_7_176_1 doi: 10.1016/j.biomaterials.2019.03.042 – ident: e_1_2_7_139_1 doi: 10.1002/anie.202002028 – ident: e_1_2_7_165_1 doi: 10.1021/nl503777s – ident: e_1_2_7_168_1 doi: 10.1021/nl5045378 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201506119 – ident: e_1_2_7_66_1 doi: 10.1002/ange.202000474 – ident: e_1_2_7_89_1 doi: 10.1021/ja300598u – ident: e_1_2_7_90_1 doi: 10.1021/cm020587b – ident: e_1_2_7_128_1 doi: 10.1021/jacs.5b00313 – ident: e_1_2_7_82_1 doi: 10.1103/PhysRevLett.65.1020 – ident: e_1_2_7_133_1 doi: 10.2307/3221838 – ident: e_1_2_7_164_1 doi: 10.1002/adfm.202103581 – ident: e_1_2_7_49_1 doi: 10.1021/jacs.0c08604 – ident: e_1_2_7_67_1 doi: 10.1021/acsnano.9b03084 – ident: e_1_2_7_132_1 doi: 10.1021/jacs.9b03498 – ident: e_1_2_7_173_1 doi: 10.1002/ange.201912768 – ident: e_1_2_7_108_1 doi: 10.1021/jp500716z – ident: e_1_2_7_111_1 doi: 10.1002/adma.200800384 – ident: e_1_2_7_7_1 doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F – ident: e_1_2_7_15_1 doi: 10.1126/science.aaz1172 – ident: e_1_2_7_79_1 doi: 10.1021/acs.langmuir.9b03542 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201909260 – ident: e_1_2_7_5_1 doi: 10.1021/acsnano.5b07968 – ident: e_1_2_7_58_1 doi: 10.1002/ange.202003760 – ident: e_1_2_7_85_1 doi: 10.1021/ja502472x – ident: e_1_2_7_80_1 doi: 10.1093/nsr/nwv037 – ident: e_1_2_7_11_1 doi: 10.1002/smll.200801480 – ident: e_1_2_7_136_1 doi: 10.1002/adma.201903878 – ident: e_1_2_7_119_1 doi: 10.1039/C5SC02925B – ident: e_1_2_7_13_1 doi: 10.1021/cr030063a – ident: e_1_2_7_53_1 doi: 10.1021/nl503441v – ident: e_1_2_7_118_1 doi: 10.1002/adtp.202200066 – ident: e_1_2_7_180_1 doi: 10.1038/s41565-019-0392-3 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201810693 – ident: e_1_2_7_48_1 doi: 10.1007/s00216-016-0123-7 – ident: e_1_2_7_73_1 doi: 10.1021/acs.nanolett.6b00002 – ident: e_1_2_7_12_1 doi: 10.1039/c2nr30300k – ident: e_1_2_7_17_1 doi: 10.1021/acs.chemrev.8b00745 – ident: e_1_2_7_129_1 doi: 10.1021/ja0361749 – ident: e_1_2_7_138_1 doi: 10.1002/ange.201910615 – ident: e_1_2_7_152_1 doi: 10.1002/anie.201301096 – ident: e_1_2_7_142_1 doi: 10.1002/anie.201905669 – ident: e_1_2_7_149_1 doi: 10.1515/nanoph-2016-0007 – ident: e_1_2_7_103_1 doi: 10.1002/adma.200600675 – ident: e_1_2_7_78_1 doi: 10.1039/C6CC09878A – ident: e_1_2_7_127_1 doi: 10.1039/c0cp02253e – ident: e_1_2_7_137_1 doi: 10.1002/adma.201906580 – ident: e_1_2_7_140_1 doi: 10.1021/jacs.8b11856 – ident: e_1_2_7_160_1 doi: 10.1039/C6TA10997G – ident: e_1_2_7_166_1 doi: 10.1038/s41467-018-06574-7 – ident: e_1_2_7_97_1 doi: 10.1021/nl034140t – ident: e_1_2_7_91_1 doi: 10.1021/jacs.5b09490 – ident: e_1_2_7_125_1 doi: 10.1021/nn507310f – ident: e_1_2_7_104_1 doi: 10.1002/anie.201105539 – ident: e_1_2_7_27_1 doi: 10.1002/ange.201908291 – ident: e_1_2_7_47_1 doi: 10.1021/acs.analchem.7b02073 – ident: e_1_2_7_181_1 doi: 10.1039/D1SC02203B – ident: e_1_2_7_33_1 doi: 10.1021/acs.jpcc.0c07046 – ident: e_1_2_7_56_1 doi: 10.1021/jacs.1c13116 – ident: e_1_2_7_84_1 doi: 10.1039/c4nr00299g – ident: e_1_2_7_94_1 doi: 10.1021/ja9065333 – ident: e_1_2_7_54_1 doi: 10.1021/acs.nanolett.8b00344 – ident: e_1_2_7_38_1 doi: 10.1126/science.1097830 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.9b19161 – ident: e_1_2_7_107_1 doi: 10.1021/la4036198 – ident: e_1_2_7_112_1 doi: 10.1021/acs.nanolett.9b02215 – ident: e_1_2_7_29_1 doi: 10.1016/j.scib.2018.05.035 – ident: e_1_2_7_76_1 doi: 10.1002/anie.202105856 – ident: e_1_2_7_113_1 doi: 10.1021/acs.nanolett.9b00534 – ident: e_1_2_7_100_1 doi: 10.1021/bp0501423 – ident: e_1_2_7_32_1 doi: 10.1002/anie.200802248 – ident: e_1_2_7_21_1 doi: 10.1039/C9CS00011A – ident: e_1_2_7_3_1 doi: 10.1021/la049463z – ident: e_1_2_7_2_1 doi: 10.1039/b100521i – ident: e_1_2_7_179_1 doi: 10.1021/acsnano.8b05906 – ident: e_1_2_7_96_1 doi: 10.1002/adma.200304652 – ident: e_1_2_7_64_1 doi: 10.1021/nl2041113 – ident: e_1_2_7_143_1 doi: 10.1002/advs.201802132 – ident: e_1_2_7_8_1 doi: 10.1021/ja060447t – ident: e_1_2_7_6_1 doi: 10.1021/acs.inorgchem.8b01354 – ident: e_1_2_7_157_1 doi: 10.1038/nchem.623 – ident: e_1_2_7_93_1 doi: 10.1039/C6NR08501F – ident: e_1_2_7_35_1 doi: 10.1021/jp971091y – ident: e_1_2_7_92_1 doi: 10.1073/pnas.1222109110 – ident: e_1_2_7_150_1 doi: 10.1021/acs.jpclett.7b00563 – ident: e_1_2_7_41_1 doi: 10.1007/BF01017860 – ident: e_1_2_7_74_1 doi: 10.1021/acs.nanolett.0c02648 – ident: e_1_2_7_161_1 doi: 10.1088/0957-4484/19/45/455602 – ident: e_1_2_7_14_1 doi: 10.1021/acs.accounts.0c00743 – ident: e_1_2_7_101_1 doi: 10.1021/acs.nanolett.5b00158 – ident: e_1_2_7_114_1 doi: 10.1126/science.aba0980 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201905758 – ident: e_1_2_7_52_1 doi: 10.1126/science.1258361 – ident: e_1_2_7_146_1 doi: 10.1002/anie.201102619 – ident: e_1_2_7_123_1 doi: 10.1021/jacs.5b10997 – ident: e_1_2_7_55_1 doi: 10.1038/s41586-018-0332-7 – ident: e_1_2_7_70_1 doi: 10.1021/acs.analchem.0c00321 – ident: e_1_2_7_177_1 doi: 10.1002/adma.201902504 – ident: e_1_2_7_106_1 doi: 10.1002/adfm.202102517 – ident: e_1_2_7_10_1 doi: 10.1021/nn800591y – ident: e_1_2_7_110_1 doi: 10.1002/ange.200453880 – ident: e_1_2_7_148_1 doi: 10.1039/C8TA05369C – ident: e_1_2_7_57_1 doi: 10.1021/jacs.0c00443 – ident: e_1_2_7_75_1 doi: 10.1021/nl104347j – ident: e_1_2_7_68_1 doi: 10.1021/cm402384j – ident: e_1_2_7_71_1 doi: 10.1021/acs.nanolett.6b04151 – ident: e_1_2_7_98_1 doi: 10.1021/ja056498s – ident: e_1_2_7_26_1 doi: 10.1021/cm303659q – ident: e_1_2_7_121_1 doi: 10.1039/b616986d – ident: e_1_2_7_169_1 doi: 10.1039/C1CS15237H – ident: e_1_2_7_115_1 doi: 10.1126/science.266.5193.1961 – ident: e_1_2_7_120_1 doi: 10.1021/la061366d – ident: e_1_2_7_151_1 doi: 10.1002/adma.201202146 – ident: e_1_2_7_154_1 doi: 10.1021/ja511719g – ident: e_1_2_7_141_1 doi: 10.1002/adma.202109354 – ident: e_1_2_7_144_1 doi: 10.1021/acsami.8b10711 – ident: e_1_2_7_182_1 doi: 10.1002/adfm.202001771 – ident: e_1_2_7_183_1 doi: 10.1021/acsnano.8b01362 – ident: e_1_2_7_88_1 doi: 10.1016/j.cplett.2006.10.095 – ident: e_1_2_7_135_1 doi: 10.1038/s41557-018-0083-y – ident: e_1_2_7_39_1 doi: 10.1021/acs.jpclett.5b02123 – ident: e_1_2_7_65_1 doi: 10.1002/ange.201107240 |
SSID | ssj0009606 |
Score | 2.641415 |
SecondaryResourceType | review_article |
Snippet | Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by... Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis and therapy by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2211915 |
SubjectTerms | Biological properties Catalysis growth influencing factors Materials science metal nanoparticles Morphology morphology control Nanoparticles Nucleation Optical properties Reducing agents seed‐mediated growth seed‐mediated growthsynthesis of nanoparticles Synthesis |
Title | Recent Advances of Seed‐Mediated Growth of Metal Nanoparticles: from Growth to Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211915 https://www.ncbi.nlm.nih.gov/pubmed/36920232 https://www.proquest.com/docview/2890238726 https://www.proquest.com/docview/2787212633 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp_YAtOWxPCojIXHKbtZOHKe3iHa7QloOwEp7QZHt2EKi2q3Y7IUTP4HfyC_pjPNglwpVosckY9mxPZ7P9sw3hJyETOnCCR5Y41QQCceCNDZhYDTSh8XMSodHA6MLMRxH55N4shTFX_FDtAduqBl-vUYFV3reeyENVYXnDWKeogyjzNFhC1HR5Qt_FMJzT7bH4yAVkWxYG0PWWy2-apX-gpqryNWbnsEmUU2jK4-Tu-6i1F3z8IrP8X_-aots1LiUZtVE-kTW7PQz-bjEVviF3ADEBBNFs8ptYE5njl6B8Xt-fBr5hB-2oD9hV1_e4peRBVhPYfGGXXntfPeNYjBLI1POaLZ0e75NxoMf12fDoM7OEBieQH8KmTiD6deLgvW1cboAW8hdahLXj7WKVd-mkmmB_PFJIUVYRFzDCw5bOuYk4ztkfTqb2j1CZRphmpm-YdJFQgoZJ0yxMLWx5hFAiA4JmtHJTU1djhk0fuUV6TLLsdvytts65LSV_12RdrwpedgMdl4r7zz3d69cJljxcfsZ1A7vUtTUzhYgAwsdWH3BeYfsVpOkrYqLFJPSsw5hfqj_0YY8-z7K2qf99xQ6IB-wxipG8pCsl_cLewRgqdRfvUL8ATDKCOU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gA9UF4t2xYwEhKntFk7dpzeIkq7QNMDtBIXFMWOrUpFu4hmL5z4CfzG_pLOOI92QRUSHBOP5ed4PtvjbwBexbwytVcictZXUaI8jzJp48gaog-T3GlPRwPFsZqcJu8_y96bkN7CtPwQw4EbaUZYr0nB6UB695o1tKoDcRAPHGXyDqxQWG-iz9__eM0gRQA90O0JGWUq0T1vY8x3F_Mv2qU_wOYidg3G52ANTF_t1ufkfGfemB374zdGx_9q1wO430FTlrdz6SEsuekjWL1BWPgYviDKRCvF8tZz4ILNPPuE9u_y568ixPxwNTvEjX1zRimFQ2TPcP3GjXnnf7fH6D1LL9PMWH7jAv0JnB68PXkziboADZEVKXao0qm3FIG9rvnYWG9qNIfCZzb1Y2kqWY1dprlRRCGf1lrFdSIM_hC4q-Nec7EOy9PZ1D0FprOEIs2MLdc-UVppmfKKx5mTRiSIIkYQ9cNT2o69nIJofC1b3mVeUreVQ7eN4PUg_63l7bhVcrsf7bLT34syXL8KnVLBL4dk1Dy6TqmmbjZHGVzr0PArIUaw0c6SoSihMopLz0fAw1j_pQ5lvl_kw9fmv2R6AXcnJ8VRefTu-MMW3KPS2yeT27DcfJ-7Z4idGvM8aMcVypkNAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iRUJlwfsxUMBISKzSydix47CLGIbymAoBlbpBUfwSUquZimY2rPgEvpEv4V7n0RkQQoJlkmvZsX19j1_nADxJeW1cUCLxNtRJpgJPCmnTxBqiD5Pc60BLA_MDtX-YvT6SR2u3-Ft-iGHBjTwjjtfk4KcujM9JQ2sXeYN4pCiTW3AxU2lB4g3T9-cEUoTPI9uekEmhMt3TNqZ8vJl-Myz9hjU3oWuMPbOrUPelbo-cHO-tGrNnv_5C6Pg_v3UNrnTAlJVtT7oOF_ziBlxeoyu8CZ8QY2KMYmV7buCMLQP7gNHvx7fv86j44R17idP65jN9mXvE9QxHb5yWd6fvnjG6zdLbNEtWrm2f34LD2YuPz_eTTp4hsSLH-lQ6D5b0153jE2ODcRgMRShsHibS1LKe-EJzo4hAPndapS4TBl8InNPxoLm4DduL5cLfBaaLjHRmJpbrkCmttMx5zdPCSyMyxBAjSPrWqWzHXU4SGidVy7rMK6q2aqi2ETwd7E9b1o4_Wu72jV113ntWxc1XoXPK-PHwGf2ONlPqhV-u0AZHOgz7SogR3Gk7yZCVUAWp0vMR8NjUfylDVU7n5fB0718SPYJL76az6u2rgzf3YYcyb-9L7sJ282XlHyBwaszD6Bs_AYvzC7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Seed%E2%80%90Mediated+Growth+of+Metal+Nanoparticles%3A+from+Growth+to+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Meng%E2%80%90Qi&rft.au=Ai%2C+Yongjian&rft.au=Hu%2C+Wanting&rft.au=Guan%2C+Liandi&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202211915&rft.externalDBID=10.1002%252Fadma.202211915&rft.externalDocID=ADMA202211915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |