Recent Advances of Seed‐Mediated Growth of Metal Nanoparticles: from Growth to Applications

Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The cent...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 46; pp. e2211915 - n/a
Main Authors He, Meng‐Qi, Ai, Yongjian, Hu, Wanting, Guan, Liandi, Ding, Mingyu, Liang, Qionglin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. The state‐of‐the‐art development in seeded growth methods from key influencing factors of growth and applications of grown metal nanoparticles are summarized in this review to highlight the achievements and help researchers understand the current investigation status of seed‐mediated methods. Furthermore, the challenges faced by seed‐mediated methods are outlined and the future directions for advancing seed‐mediated methods are outlooked.
AbstractList Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis and therapy by tuning optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles has been identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductant and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, we systematically summarized the mechanism of growth influencing factors in seed-mediated growth methods. Second, we focus on a variety of critical properties and applications enabled by grown metal nanoparticles. Finally, we review the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles. This article is protected by copyright. All rights reserved.
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed. The state‐of‐the‐art development in seeded growth methods from key influencing factors of growth and applications of grown metal nanoparticles are summarized in this review to highlight the achievements and help researchers understand the current investigation status of seed‐mediated methods. Furthermore, the challenges faced by seed‐mediated methods are outlined and the future directions for advancing seed‐mediated methods are outlooked.
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed‐mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed‐mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Author Guan, Liandi
Ai, Yongjian
Ding, Mingyu
He, Meng‐Qi
Hu, Wanting
Liang, Qionglin
Author_xml – sequence: 1
  givenname: Meng‐Qi
  surname: He
  fullname: He, Meng‐Qi
  organization: Tsinghua University
– sequence: 2
  givenname: Yongjian
  surname: Ai
  fullname: Ai, Yongjian
  email: ayj@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 3
  givenname: Wanting
  surname: Hu
  fullname: Hu, Wanting
  organization: Tsinghua University
– sequence: 4
  givenname: Liandi
  surname: Guan
  fullname: Guan, Liandi
  organization: Tsinghua University
– sequence: 5
  givenname: Mingyu
  surname: Ding
  fullname: Ding, Mingyu
  organization: Tsinghua University
– sequence: 6
  givenname: Qionglin
  orcidid: 0000-0002-6750-038X
  surname: Liang
  fullname: Liang, Qionglin
  email: Liangql@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36920232$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQhy1EBQv02mMVqRcuu_WfxIl7i6CFSiyVSnusLMceq0ZJnNpeELc-Qp-RJ8HLskVCqnoayfN9o_H8DtDu6EdA6A3BC4Ixfa_MoBYUU0qIINUOmpGKknmJRbWLZliwai542eyjgxivMcaCY76H9hkX2WF0hn58BQ1jKlpzo0YNsfC2uAIw97__LME4lcAUZ8Hfpp_rzhKS6otLNfpJheR0D_FDYYMftkzyRTtNvdMqOT_GI_TKqj7C66d6iL5_-vjt5Hx-8eXs80l7MdeszivyprYaM4qNoaTTtjOMU2aFri2pOlUpAqKhHa8rXNam4diUrMsPjJSY2oayQ3S8mTsF_2sFMcnBRQ19r0bwqyhp3dSUUM5YRt-9QK_9Kox5O0kbkY-SSZ6pt0_UqhvAyCm4QYU7uT1cBsoNoIOPMYCV2qXHT6egXC8Jlut85Dof-TefrC1eaNvJ_xTERrh1Pdz9h5bt6bJ9dh8A8w2hmg
CitedBy_id crossref_primary_10_1002_sstr_202400146
crossref_primary_10_1007_s11244_024_01927_7
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_3390_bios14040164
crossref_primary_10_1016_j_molliq_2024_124243
crossref_primary_10_1002_adfm_202306585
crossref_primary_10_1016_j_ccr_2025_216473
crossref_primary_10_1021_acs_analchem_4c05241
crossref_primary_10_1039_D4TA06805J
crossref_primary_10_1063_5_0201185
crossref_primary_10_1007_s44174_024_00235_8
crossref_primary_10_1002_cnma_202400407
crossref_primary_10_1021_acsami_4c20674
crossref_primary_10_1007_s12668_024_01673_w
crossref_primary_10_3390_chemistry6040044
crossref_primary_10_1021_acs_analchem_3c00426
crossref_primary_10_1002_ejic_202400189
crossref_primary_10_1039_D4AY01509F
crossref_primary_10_1002_cssc_202401127
crossref_primary_10_1039_D4RA07404A
crossref_primary_10_1039_D3MA00390F
crossref_primary_10_1007_s00604_024_06305_4
crossref_primary_10_3390_appliedchem4010007
crossref_primary_10_3390_ijms25179315
crossref_primary_10_3390_mi15091119
crossref_primary_10_1021_acsami_4c17794
crossref_primary_10_1002_adfm_202305071
crossref_primary_10_1186_s40486_025_00223_7
crossref_primary_10_1002_smll_202403313
crossref_primary_10_1039_D3RA04992B
crossref_primary_10_1002_adma_202401361
crossref_primary_10_1002_adma_202404071
crossref_primary_10_1002_chem_202303987
crossref_primary_10_1002_cbdv_202401326
crossref_primary_10_1007_s12274_023_5770_3
crossref_primary_10_1021_acs_jpcc_4c08818
crossref_primary_10_1021_acs_chemmater_4c00708
crossref_primary_10_5306_wjco_v16_i4_104435
crossref_primary_10_1002_sstr_202300326
crossref_primary_10_1007_s00216_024_05317_6
crossref_primary_10_1002_adma_202302335
crossref_primary_10_1002_smtd_202401389
crossref_primary_10_1007_s40242_025_4207_9
crossref_primary_10_1016_j_nxnano_2023_100013
crossref_primary_10_26599_EMD_2023_9370008
crossref_primary_10_1016_j_materresbull_2024_113038
crossref_primary_10_1039_D4NA00118D
crossref_primary_10_1080_10408398_2024_2376113
crossref_primary_10_1002_cnma_202300468
crossref_primary_10_1039_D4NR03641G
crossref_primary_10_1016_j_mtcomm_2025_112315
Cites_doi 10.1021/cm702126j
10.1126/science.aad4998
10.1002/adma.202102591
10.1002/adma.201808166
10.1002/anie.202015451
10.1002/adma.202002219
10.1021/acsami.7b12018
10.1021/jacs.6b09451
10.1038/ncomms12873
10.1039/D1SC03040J
10.1021/acs.analchem.6b01597
10.1002/smll.202105304
10.1021/acs.jpcc.6b09245
10.1002/anie.200906010
10.1021/cr400532z
10.1038/nmat1957
10.1002/ange.201906758
10.1021/cm9027995
10.1515/zpch-1918-9212
10.1021/nl400893p
10.1021/acs.accounts.8b00338
10.1038/s41467-022-29847-8
10.1126/sciadv.1701183
10.1021/jacs.8b13902
10.1002/adfm.202104424
10.1039/C6TB02308H
10.1039/b705253g
10.1002/smtd.201900017
10.1016/j.biomaterials.2012.03.059
10.1002/adfm.202110432
10.1021/jacs.5b03877
10.1021/cs200538g
10.1038/nmat1152
10.1016/j.chempr.2017.08.004
10.1021/acs.analchem.9b04573
10.1021/ja502704n
10.1002/anie.201604731
10.1007/s12274-020-3267-x
10.1016/S0039-6028(02)01560-1
10.1021/jp510908f
10.1039/c3tc30365a
10.1038/s41586-018-0034-1
10.1038/nmat4115
10.1021/la061323x
10.1021/ja310501y
10.1039/c0dt01404d
10.1039/C2CS35367A
10.1021/cm000662n
10.1021/jacs.5b04641
10.1016/j.nantod.2020.101005
10.1039/c0cs00176g
10.1021/jacs.1c11333
10.1021/nl1032233
10.1021/acsnano.7b02349
10.1002/adma.201805875
10.1002/adma.201902733
10.1002/adma.200800044
10.1038/nmat1505
10.1021/nn2051168
10.1016/j.colsurfa.2006.09.003
10.1021/acs.jpcc.0c05258
10.1016/j.biomaterials.2019.03.042
10.1002/anie.202002028
10.1021/nl503777s
10.1021/nl5045378
10.1002/adma.201506119
10.1002/ange.202000474
10.1021/ja300598u
10.1021/cm020587b
10.1021/jacs.5b00313
10.1103/PhysRevLett.65.1020
10.2307/3221838
10.1002/adfm.202103581
10.1021/jacs.0c08604
10.1021/acsnano.9b03084
10.1021/jacs.9b03498
10.1002/ange.201912768
10.1021/jp500716z
10.1002/adma.200800384
10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
10.1126/science.aaz1172
10.1021/acs.langmuir.9b03542
10.1002/adfm.201909260
10.1021/acsnano.5b07968
10.1002/ange.202003760
10.1021/ja502472x
10.1093/nsr/nwv037
10.1002/smll.200801480
10.1002/adma.201903878
10.1039/C5SC02925B
10.1021/cr030063a
10.1021/nl503441v
10.1002/adtp.202200066
10.1038/s41565-019-0392-3
10.1002/anie.201810693
10.1007/s00216-016-0123-7
10.1021/acs.nanolett.6b00002
10.1039/c2nr30300k
10.1021/acs.chemrev.8b00745
10.1021/ja0361749
10.1002/ange.201910615
10.1002/anie.201301096
10.1002/anie.201905669
10.1515/nanoph-2016-0007
10.1002/adma.200600675
10.1039/C6CC09878A
10.1039/c0cp02253e
10.1002/adma.201906580
10.1021/jacs.8b11856
10.1039/C6TA10997G
10.1038/s41467-018-06574-7
10.1021/nl034140t
10.1021/jacs.5b09490
10.1021/nn507310f
10.1002/anie.201105539
10.1002/ange.201908291
10.1021/acs.analchem.7b02073
10.1039/D1SC02203B
10.1021/acs.jpcc.0c07046
10.1021/jacs.1c13116
10.1039/c4nr00299g
10.1021/ja9065333
10.1021/acs.nanolett.8b00344
10.1126/science.1097830
10.1021/acsami.9b19161
10.1021/la4036198
10.1021/acs.nanolett.9b02215
10.1016/j.scib.2018.05.035
10.1002/anie.202105856
10.1021/acs.nanolett.9b00534
10.1021/bp0501423
10.1002/anie.200802248
10.1039/C9CS00011A
10.1021/la049463z
10.1039/b100521i
10.1021/acsnano.8b05906
10.1002/adma.200304652
10.1021/nl2041113
10.1002/advs.201802132
10.1021/ja060447t
10.1021/acs.inorgchem.8b01354
10.1038/nchem.623
10.1039/C6NR08501F
10.1021/jp971091y
10.1073/pnas.1222109110
10.1021/acs.jpclett.7b00563
10.1007/BF01017860
10.1021/acs.nanolett.0c02648
10.1088/0957-4484/19/45/455602
10.1021/acs.accounts.0c00743
10.1021/acs.nanolett.5b00158
10.1126/science.aba0980
10.1002/adma.201905758
10.1126/science.1258361
10.1002/anie.201102619
10.1021/jacs.5b10997
10.1038/s41586-018-0332-7
10.1021/acs.analchem.0c00321
10.1002/adma.201902504
10.1002/adfm.202102517
10.1021/nn800591y
10.1002/ange.200453880
10.1039/C8TA05369C
10.1021/jacs.0c00443
10.1021/nl104347j
10.1021/cm402384j
10.1021/acs.nanolett.6b04151
10.1021/ja056498s
10.1021/cm303659q
10.1039/b616986d
10.1039/C1CS15237H
10.1126/science.266.5193.1961
10.1021/la061366d
10.1002/adma.201202146
10.1021/ja511719g
10.1002/adma.202109354
10.1021/acsami.8b10711
10.1002/adfm.202001771
10.1021/acsnano.8b01362
10.1016/j.cplett.2006.10.095
10.1038/s41557-018-0083-y
10.1021/acs.jpclett.5b02123
10.1002/ange.201107240
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202211915
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36920232
10_1002_adma_202211915
ADMA202211915
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Postdoctoral Innovative Talent Support Program
  funderid: BX20220160
– fundername: National Key R&D Program of China
  funderid: 2022YFA1103403
– fundername: Tsinghua‐Peking Joint Center for Life Sciences Postdoctoral Foundation Program
– fundername: Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine
  funderid: ZYYCXTD‐D‐202208
– fundername: Young Elite Scientist Sponsorship Program of the Beijing Association for Science and Technology
  funderid: BYESS2023166
– fundername: National Natural Science Foundation of China
  funderid: 81872835; 22074157
– fundername: China Postdoctoral Science Foundation Funded Project
  funderid: 2022M711779
– fundername: Tsinghua‐Foshan Innovation Special Fund
  funderid: 2022THFS6121
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3735-687fc0320dd21bcfbd3623f9c7f15ba5a1e982b675047d860d43b82b31402f823
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:31:09 EDT 2025
Fri Jul 25 07:46:31 EDT 2025
Wed Feb 19 02:24:34 EST 2025
Tue Jul 01 02:33:31 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Sun Jul 06 04:45:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords influencing factors
metal nanoparticles
growth influencing factors
seed-mediated growth
morphology control
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-687fc0320dd21bcfbd3623f9c7f15ba5a1e982b675047d860d43b82b31402f823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6750-038X
PMID 36920232
PQID 2890238726
PQPubID 2045203
PageCount 33
ParticipantIDs proquest_miscellaneous_2787212633
proquest_journals_2890238726
pubmed_primary_36920232
crossref_citationtrail_10_1002_adma_202211915
crossref_primary_10_1002_adma_202211915
wiley_primary_10_1002_adma_202211915_ADMA202211915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2002; 14
2004; 20
2019; 92
2013; 1
2012; 124
2020; 20
2019; 13
2017; 89
2019; 14
2014; 26
2004; 3
2019; 19
2019; 207
2020; 12
2012; 12
2014; 136
1994; 266
2010; 22
2018; 6
2018; 9
2012; 134
2015; 137
2006; 22
2020; 92
2005; 105
2007; 295
2013; 52
2022; 34
2014; 14
2007; 6
2013; 110
2022; 32
2008; 20
2012; 24
2010; 2
2007; 17
2019; 3
2019; 6
2019; 31
2020; 142
2019; 36
2016; 10
2020; 35
2020; 32
2016; 16
2004; 304
2012; 33
2016; 5
2018; 18
2017; 53
2016; 7
2021; 54
2010; 49
2020; 30
2022; 5
2019; 48
2005; 127
2017; 56
2022; 13
2005; 4
2015; 119
2014; 30
2018; 12
2016; 28
2021; 60
2018; 10
2012; 41
2022; 18
2017; 5
2017; 8
2013; 25
2017; 3
2019; 58
2020; 368
2011; 11
2003; 15
2020; 59
2002; 512
2011; 13
2020; 367
2020; 124
2017; 355
2017; 9
2009; 48
2012; 51
2017; 409
2021; 31
2013; 13
2020; 132
1997; 101
2003; 3
2019; 119
2003; 125
2001; 13
2006; 128
2014; 6
2016; 88
1920; 39
2015; 2
2014; 118
2018; 141
2015; 15
2015; 14
2015; 6
1918; 92
2008; 19
2013; 42
2011; 40
2006; 18
2007
2018; 63
2009; 131
2015; 9
2019; 141
2016; 120
2014; 114
2006; 432
2022; 144
2021; 14
1990; 65
2004; 116
2012; 2
2021; 12
2001; 7
2018; 556
2018; 559
2017; 17
2017; 11
2011; 50
2013; 135
2018; 51
2016; 138
2009; 5
2009; 3
2012; 6
2012; 4
1985; 38
2014; 346
2019; 131
2018; 57
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_173_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_175_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_172_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 25
  start-page: 555
  year: 2013
  publication-title: Chem. Mater.
– volume: 10
  start-page: 821
  year: 2018
  publication-title: Nat. Chem.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 3
  start-page: 678
  year: 2017
  publication-title: Chem
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3942
  year: 2015
  publication-title: ACS Nano
– volume: 16
  start-page: 3036
  year: 2016
  publication-title: Nano Lett.
– volume: 137
  start-page: 3755
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 92
  start-page: 7054
  year: 2020
  publication-title: Anal. Chem.
– volume: 36
  start-page: 789
  year: 2019
  publication-title: Langmuir
– volume: 20
  start-page: 738
  year: 2008
  publication-title: Chem. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 842
  year: 2015
  publication-title: Nano Lett.
– volume: 141
  start-page: 8158
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 60
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 2644
  year: 2021
  publication-title: Nano Res.
– volume: 138
  start-page: 1258
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 2852
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 5923
  year: 2016
  publication-title: Adv. Mater.
– volume: 124
  start-page: 567
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 4565
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 997
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 3
  start-page: 21
  year: 2009
  publication-title: ACS Nano
– volume: 144
  start-page: 6311
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 401
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 355
  year: 2017
  publication-title: Science
– volume: 5
  start-page: 96
  year: 2016
  publication-title: Nanophotonics
– volume: 3
  start-page: 675
  year: 2003
  publication-title: Nano Lett.
– volume: 4
  start-page: 855
  year: 2005
  publication-title: Nat. Mater.
– volume: 110
  start-page: 6669
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 559
  start-page: 593
  year: 2018
  publication-title: Nature
– volume: 6
  start-page: 5630
  year: 2014
  publication-title: Nanoscale
– volume: 11
  start-page: 898
  year: 2011
  publication-title: Nano Lett.
– volume: 136
  start-page: 6870
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 556
  start-page: 360
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 5500
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 3514
  year: 2007
  publication-title: Chem. Commun.
– volume: 22
  start-page: 233
  year: 2010
  publication-title: Chem. Mater.
– volume: 38
  start-page: 231
  year: 1985
  publication-title: J Stat Phys
– volume: 137
  start-page: 7862
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8153
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 2600
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 5
  year: 2022
  publication-title: Adv. Therap.
– volume: 6
  start-page: 4270
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  year: 2006
  publication-title: Langmuir
– volume: 346
  year: 2014
  publication-title: Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: 215
  year: 2015
  publication-title: Nat. Mater.
– volume: 2
  start-page: 84
  year: 2012
  publication-title: ACS Catal.
– volume: 144
  start-page: 4410
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 125
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 512
  start-page: 48
  year: 2002
  publication-title: Surf. Sci.
– volume: 135
  start-page: 5588
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 22
  start-page: 8563
  year: 2006
  publication-title: Langmuir
– volume: 10
  start-page: 5037
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 2617
  year: 2012
  publication-title: ACS Nano
– volume: 3
  start-page: 482
  year: 2004
  publication-title: Nat. Mater.
– volume: 132
  start-page: 4436
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 602
  year: 2014
  publication-title: Langmuir
– volume: 9
  start-page: 4335
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2213
  year: 2017
  publication-title: Nanoscale
– volume: 13
  start-page: 2211
  year: 2022
  publication-title: Nat. Commun.
– volume: 39
  start-page: 95
  year: 1920
  publication-title: Trans Am Microsc Soc
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 465
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 6693
  year: 2014
  publication-title: Nano Lett.
– volume: 132
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 4878
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 20
  start-page: 4306
  year: 2008
  publication-title: Adv. Mater.
– volume: 2
  start-page: 454
  year: 2010
  publication-title: Nat. Chem.
– volume: 137
  start-page: 7947
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2060
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 20
  start-page: 4312
  year: 2008
  publication-title: Adv. Mater.
– volume: 19
  start-page: 5653
  year: 2019
  publication-title: Nano Lett.
– volume: 89
  start-page: 9292
  year: 2017
  publication-title: Anal. Chem.
– volume: 4
  start-page: 2875
  year: 2012
  publication-title: Nanoscale
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1445
  year: 2015
  publication-title: Nano Lett.
– volume: 51
  start-page: 602
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 7323
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 295
  start-page: 228
  year: 2007
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 15
  start-page: 457
  year: 2015
  publication-title: Nano Lett.
– volume: 15
  start-page: 695
  year: 2003
  publication-title: Adv. Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2867
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 367
  start-page: 418
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 692
  year: 2007
  publication-title: Nat. Mater.
– volume: 20
  start-page: 6414
  year: 2004
  publication-title: Langmuir
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 948
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 9463
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 329
  year: 2015
  publication-title: Natl Sci Rev
– volume: 128
  start-page: 5352
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 6522
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 304
  start-page: 1787
  year: 2004
  publication-title: Science
– volume: 40
  start-page: 4167
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 409
  start-page: 1797
  year: 2017
  publication-title: Anal. Bioanal. Chem.
– volume: 50
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 5166
  year: 2012
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  start-page: 228
  year: 2016
  publication-title: Chem. Sci.
– volume: 266
  start-page: 1961
  year: 1994
  publication-title: Science
– volume: 14
  start-page: 4736
  year: 2002
  publication-title: Chem. Mater.
– volume: 17
  start-page: 334
  year: 2017
  publication-title: Nano Lett.
– volume: 207
  start-page: 39
  year: 2019
  publication-title: Biomaterials
– volume: 88
  start-page: 6638
  year: 2016
  publication-title: Anal. Chem.
– volume: 54
  start-page: 1168
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 131
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 132
  start-page: 1699
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 2313
  year: 2001
  publication-title: Chem. Mater.
– volume: 11
  start-page: 7889
  year: 2017
  publication-title: ACS Nano
– volume: 20
  start-page: 7263
  year: 2020
  publication-title: Nano Lett.
– volume: 1
  start-page: 3898
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 52
  start-page: 6063
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 892
  year: 2018
  publication-title: Sci. Bull.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 4878
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 3115
  year: 2019
  publication-title: Nano Lett.
– volume: 92
  start-page: 1395
  year: 2019
  publication-title: Anal. Chem.
– volume: 18
  start-page: 1745
  year: 2006
  publication-title: Adv. Mater.
– volume: 18
  start-page: 2116
  year: 2018
  publication-title: Nano Lett.
– volume: 59
  start-page: 7131
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 34
  year: 2014
  publication-title: Chem. Mater.
– volume: 41
  start-page: 2740
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2276
  year: 2013
  publication-title: Nano Lett.
– volume: 368
  start-page: 1472
  year: 2020
  publication-title: Science
– volume: 432
  start-page: 491
  year: 2006
  publication-title: Chem. Phys. Lett.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 40
  start-page: 5811
  year: 2011
  publication-title: Dalton Trans
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 48
  start-page: 5140
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 1965
  year: 2017
  publication-title: Chem. Commun.
– volume: 119
  start-page: 8972
  year: 2019
  publication-title: Chem. Rev.
– volume: 42
  start-page: 2679
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 8599
  year: 2018
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 6677
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 19
  year: 2008
  publication-title: Nanotechnology
– volume: 10
  start-page: 3121
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 646
  year: 2009
  publication-title: Small
– volume: 13
  start-page: 1389
  year: 2001
  publication-title: Adv. Mater.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 1025
  year: 2005
  publication-title: Chem. Rev.
– volume: 7
  start-page: 617
  year: 2001
  publication-title: Chem. Commun.
– volume: 65
  start-page: 1020
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 5615
  year: 2018
  publication-title: ACS Nano
– volume: 92
  start-page: 219
  year: 1918
  publication-title: Phys. Chem.
– volume: 56
  start-page: 60
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 577
  year: 2006
  publication-title: Biotechnol. Prog.
– volume: 33
  start-page: 5130
  year: 2012
  publication-title: Biomaterials
– volume: 13
  start-page: 3210
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  year: 2020
  publication-title: Nano Today
– volume: 141
  start-page: 1091
  year: 2018
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_116_1
  doi: 10.1021/cm702126j
– ident: e_1_2_7_156_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202102591
– ident: e_1_2_7_172_1
  doi: 10.1002/adma.201808166
– ident: e_1_2_7_124_1
  doi: 10.1002/anie.202015451
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.202002219
– ident: e_1_2_7_159_1
  doi: 10.1021/acsami.7b12018
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.6b09451
– ident: e_1_2_7_51_1
  doi: 10.1038/ncomms12873
– ident: e_1_2_7_105_1
  doi: 10.1039/D1SC03040J
– ident: e_1_2_7_122_1
  doi: 10.1021/acs.analchem.6b01597
– ident: e_1_2_7_170_1
  doi: 10.1002/smll.202105304
– ident: e_1_2_7_87_1
  doi: 10.1021/acs.jpcc.6b09245
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.200906010
– ident: e_1_2_7_167_1
  doi: 10.1021/cr400532z
– ident: e_1_2_7_62_1
  doi: 10.1038/nmat1957
– ident: e_1_2_7_178_1
  doi: 10.1002/ange.201906758
– ident: e_1_2_7_130_1
  doi: 10.1021/cm9027995
– ident: e_1_2_7_1_1
  doi: 10.1515/zpch-1918-9212
– ident: e_1_2_7_72_1
  doi: 10.1021/nl400893p
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.accounts.8b00338
– ident: e_1_2_7_9_1
  doi: 10.1038/s41467-022-29847-8
– ident: e_1_2_7_63_1
  doi: 10.1126/sciadv.1701183
– ident: e_1_2_7_175_1
  doi: 10.1021/jacs.8b13902
– ident: e_1_2_7_171_1
  doi: 10.1002/adfm.202104424
– ident: e_1_2_7_109_1
  doi: 10.1039/C6TB02308H
– ident: e_1_2_7_95_1
  doi: 10.1039/b705253g
– ident: e_1_2_7_24_1
  doi: 10.1002/smtd.201900017
– ident: e_1_2_7_126_1
  doi: 10.1016/j.biomaterials.2012.03.059
– ident: e_1_2_7_117_1
  doi: 10.1002/adfm.202110432
– ident: e_1_2_7_158_1
  doi: 10.1021/jacs.5b03877
– ident: e_1_2_7_162_1
  doi: 10.1021/cs200538g
– ident: e_1_2_7_99_1
  doi: 10.1038/nmat1152
– ident: e_1_2_7_42_1
  doi: 10.1016/j.chempr.2017.08.004
– ident: e_1_2_7_69_1
  doi: 10.1021/acs.analchem.9b04573
– ident: e_1_2_7_155_1
  doi: 10.1021/ja502704n
– ident: e_1_2_7_30_1
  doi: 10.1002/anie.201604731
– ident: e_1_2_7_163_1
  doi: 10.1007/s12274-020-3267-x
– ident: e_1_2_7_61_1
  doi: 10.1016/S0039-6028(02)01560-1
– ident: e_1_2_7_131_1
  doi: 10.1021/jp510908f
– ident: e_1_2_7_31_1
  doi: 10.1039/c3tc30365a
– ident: e_1_2_7_60_1
  doi: 10.1038/s41586-018-0034-1
– ident: e_1_2_7_81_1
  doi: 10.1038/nmat4115
– ident: e_1_2_7_102_1
  doi: 10.1021/la061323x
– ident: e_1_2_7_153_1
  doi: 10.1021/ja310501y
– ident: e_1_2_7_147_1
  doi: 10.1039/c0dt01404d
– ident: e_1_2_7_36_1
  doi: 10.1039/C2CS35367A
– ident: e_1_2_7_4_1
  doi: 10.1021/cm000662n
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.5b04641
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nantod.2020.101005
– ident: e_1_2_7_145_1
  doi: 10.1039/c0cs00176g
– ident: e_1_2_7_50_1
  doi: 10.1021/jacs.1c11333
– ident: e_1_2_7_46_1
  doi: 10.1021/nl1032233
– ident: e_1_2_7_43_1
  doi: 10.1021/acsnano.7b02349
– ident: e_1_2_7_174_1
  doi: 10.1002/adma.201805875
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201902733
– ident: e_1_2_7_86_1
  doi: 10.1002/adma.200800044
– ident: e_1_2_7_77_1
  doi: 10.1038/nmat1505
– ident: e_1_2_7_83_1
  doi: 10.1021/nn2051168
– ident: e_1_2_7_40_1
  doi: 10.1016/j.colsurfa.2006.09.003
– ident: e_1_2_7_134_1
  doi: 10.1021/acs.jpcc.0c05258
– ident: e_1_2_7_176_1
  doi: 10.1016/j.biomaterials.2019.03.042
– ident: e_1_2_7_139_1
  doi: 10.1002/anie.202002028
– ident: e_1_2_7_165_1
  doi: 10.1021/nl503777s
– ident: e_1_2_7_168_1
  doi: 10.1021/nl5045378
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201506119
– ident: e_1_2_7_66_1
  doi: 10.1002/ange.202000474
– ident: e_1_2_7_89_1
  doi: 10.1021/ja300598u
– ident: e_1_2_7_90_1
  doi: 10.1021/cm020587b
– ident: e_1_2_7_128_1
  doi: 10.1021/jacs.5b00313
– ident: e_1_2_7_82_1
  doi: 10.1103/PhysRevLett.65.1020
– ident: e_1_2_7_133_1
  doi: 10.2307/3221838
– ident: e_1_2_7_164_1
  doi: 10.1002/adfm.202103581
– ident: e_1_2_7_49_1
  doi: 10.1021/jacs.0c08604
– ident: e_1_2_7_67_1
  doi: 10.1021/acsnano.9b03084
– ident: e_1_2_7_132_1
  doi: 10.1021/jacs.9b03498
– ident: e_1_2_7_173_1
  doi: 10.1002/ange.201912768
– ident: e_1_2_7_108_1
  doi: 10.1021/jp500716z
– ident: e_1_2_7_111_1
  doi: 10.1002/adma.200800384
– ident: e_1_2_7_7_1
  doi: 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
– ident: e_1_2_7_15_1
  doi: 10.1126/science.aaz1172
– ident: e_1_2_7_79_1
  doi: 10.1021/acs.langmuir.9b03542
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201909260
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.5b07968
– ident: e_1_2_7_58_1
  doi: 10.1002/ange.202003760
– ident: e_1_2_7_85_1
  doi: 10.1021/ja502472x
– ident: e_1_2_7_80_1
  doi: 10.1093/nsr/nwv037
– ident: e_1_2_7_11_1
  doi: 10.1002/smll.200801480
– ident: e_1_2_7_136_1
  doi: 10.1002/adma.201903878
– ident: e_1_2_7_119_1
  doi: 10.1039/C5SC02925B
– ident: e_1_2_7_13_1
  doi: 10.1021/cr030063a
– ident: e_1_2_7_53_1
  doi: 10.1021/nl503441v
– ident: e_1_2_7_118_1
  doi: 10.1002/adtp.202200066
– ident: e_1_2_7_180_1
  doi: 10.1038/s41565-019-0392-3
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201810693
– ident: e_1_2_7_48_1
  doi: 10.1007/s00216-016-0123-7
– ident: e_1_2_7_73_1
  doi: 10.1021/acs.nanolett.6b00002
– ident: e_1_2_7_12_1
  doi: 10.1039/c2nr30300k
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.chemrev.8b00745
– ident: e_1_2_7_129_1
  doi: 10.1021/ja0361749
– ident: e_1_2_7_138_1
  doi: 10.1002/ange.201910615
– ident: e_1_2_7_152_1
  doi: 10.1002/anie.201301096
– ident: e_1_2_7_142_1
  doi: 10.1002/anie.201905669
– ident: e_1_2_7_149_1
  doi: 10.1515/nanoph-2016-0007
– ident: e_1_2_7_103_1
  doi: 10.1002/adma.200600675
– ident: e_1_2_7_78_1
  doi: 10.1039/C6CC09878A
– ident: e_1_2_7_127_1
  doi: 10.1039/c0cp02253e
– ident: e_1_2_7_137_1
  doi: 10.1002/adma.201906580
– ident: e_1_2_7_140_1
  doi: 10.1021/jacs.8b11856
– ident: e_1_2_7_160_1
  doi: 10.1039/C6TA10997G
– ident: e_1_2_7_166_1
  doi: 10.1038/s41467-018-06574-7
– ident: e_1_2_7_97_1
  doi: 10.1021/nl034140t
– ident: e_1_2_7_91_1
  doi: 10.1021/jacs.5b09490
– ident: e_1_2_7_125_1
  doi: 10.1021/nn507310f
– ident: e_1_2_7_104_1
  doi: 10.1002/anie.201105539
– ident: e_1_2_7_27_1
  doi: 10.1002/ange.201908291
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.analchem.7b02073
– ident: e_1_2_7_181_1
  doi: 10.1039/D1SC02203B
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.jpcc.0c07046
– ident: e_1_2_7_56_1
  doi: 10.1021/jacs.1c13116
– ident: e_1_2_7_84_1
  doi: 10.1039/c4nr00299g
– ident: e_1_2_7_94_1
  doi: 10.1021/ja9065333
– ident: e_1_2_7_54_1
  doi: 10.1021/acs.nanolett.8b00344
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1097830
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.9b19161
– ident: e_1_2_7_107_1
  doi: 10.1021/la4036198
– ident: e_1_2_7_112_1
  doi: 10.1021/acs.nanolett.9b02215
– ident: e_1_2_7_29_1
  doi: 10.1016/j.scib.2018.05.035
– ident: e_1_2_7_76_1
  doi: 10.1002/anie.202105856
– ident: e_1_2_7_113_1
  doi: 10.1021/acs.nanolett.9b00534
– ident: e_1_2_7_100_1
  doi: 10.1021/bp0501423
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.200802248
– ident: e_1_2_7_21_1
  doi: 10.1039/C9CS00011A
– ident: e_1_2_7_3_1
  doi: 10.1021/la049463z
– ident: e_1_2_7_2_1
  doi: 10.1039/b100521i
– ident: e_1_2_7_179_1
  doi: 10.1021/acsnano.8b05906
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.200304652
– ident: e_1_2_7_64_1
  doi: 10.1021/nl2041113
– ident: e_1_2_7_143_1
  doi: 10.1002/advs.201802132
– ident: e_1_2_7_8_1
  doi: 10.1021/ja060447t
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.inorgchem.8b01354
– ident: e_1_2_7_157_1
  doi: 10.1038/nchem.623
– ident: e_1_2_7_93_1
  doi: 10.1039/C6NR08501F
– ident: e_1_2_7_35_1
  doi: 10.1021/jp971091y
– ident: e_1_2_7_92_1
  doi: 10.1073/pnas.1222109110
– ident: e_1_2_7_150_1
  doi: 10.1021/acs.jpclett.7b00563
– ident: e_1_2_7_41_1
  doi: 10.1007/BF01017860
– ident: e_1_2_7_74_1
  doi: 10.1021/acs.nanolett.0c02648
– ident: e_1_2_7_161_1
  doi: 10.1088/0957-4484/19/45/455602
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.accounts.0c00743
– ident: e_1_2_7_101_1
  doi: 10.1021/acs.nanolett.5b00158
– ident: e_1_2_7_114_1
  doi: 10.1126/science.aba0980
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201905758
– ident: e_1_2_7_52_1
  doi: 10.1126/science.1258361
– ident: e_1_2_7_146_1
  doi: 10.1002/anie.201102619
– ident: e_1_2_7_123_1
  doi: 10.1021/jacs.5b10997
– ident: e_1_2_7_55_1
  doi: 10.1038/s41586-018-0332-7
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.analchem.0c00321
– ident: e_1_2_7_177_1
  doi: 10.1002/adma.201902504
– ident: e_1_2_7_106_1
  doi: 10.1002/adfm.202102517
– ident: e_1_2_7_10_1
  doi: 10.1021/nn800591y
– ident: e_1_2_7_110_1
  doi: 10.1002/ange.200453880
– ident: e_1_2_7_148_1
  doi: 10.1039/C8TA05369C
– ident: e_1_2_7_57_1
  doi: 10.1021/jacs.0c00443
– ident: e_1_2_7_75_1
  doi: 10.1021/nl104347j
– ident: e_1_2_7_68_1
  doi: 10.1021/cm402384j
– ident: e_1_2_7_71_1
  doi: 10.1021/acs.nanolett.6b04151
– ident: e_1_2_7_98_1
  doi: 10.1021/ja056498s
– ident: e_1_2_7_26_1
  doi: 10.1021/cm303659q
– ident: e_1_2_7_121_1
  doi: 10.1039/b616986d
– ident: e_1_2_7_169_1
  doi: 10.1039/C1CS15237H
– ident: e_1_2_7_115_1
  doi: 10.1126/science.266.5193.1961
– ident: e_1_2_7_120_1
  doi: 10.1021/la061366d
– ident: e_1_2_7_151_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_7_154_1
  doi: 10.1021/ja511719g
– ident: e_1_2_7_141_1
  doi: 10.1002/adma.202109354
– ident: e_1_2_7_144_1
  doi: 10.1021/acsami.8b10711
– ident: e_1_2_7_182_1
  doi: 10.1002/adfm.202001771
– ident: e_1_2_7_183_1
  doi: 10.1021/acsnano.8b01362
– ident: e_1_2_7_88_1
  doi: 10.1016/j.cplett.2006.10.095
– ident: e_1_2_7_135_1
  doi: 10.1038/s41557-018-0083-y
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.jpclett.5b02123
– ident: e_1_2_7_65_1
  doi: 10.1002/ange.201107240
SSID ssj0009606
Score 2.641415
SecondaryResourceType review_article
Snippet Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by...
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis and therapy by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2211915
SubjectTerms Biological properties
Catalysis
growth influencing factors
Materials science
metal nanoparticles
Morphology
morphology control
Nanoparticles
Nucleation
Optical properties
Reducing agents
seed‐mediated growth
seed‐mediated growthsynthesis of nanoparticles
Synthesis
Title Recent Advances of Seed‐Mediated Growth of Metal Nanoparticles: from Growth to Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211915
https://www.ncbi.nlm.nih.gov/pubmed/36920232
https://www.proquest.com/docview/2890238726
https://www.proquest.com/docview/2787212633
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQp_YAtOWxPCojIXHKbtZOHKe3iHa7QloOwEp7QZHt2EKi2q3Y7IUTP4HfyC_pjPNglwpVosckY9mxPZ7P9sw3hJyETOnCCR5Y41QQCceCNDZhYDTSh8XMSodHA6MLMRxH55N4shTFX_FDtAduqBl-vUYFV3reeyENVYXnDWKeogyjzNFhC1HR5Qt_FMJzT7bH4yAVkWxYG0PWWy2-apX-gpqryNWbnsEmUU2jK4-Tu-6i1F3z8IrP8X_-aots1LiUZtVE-kTW7PQz-bjEVviF3ADEBBNFs8ptYE5njl6B8Xt-fBr5hB-2oD9hV1_e4peRBVhPYfGGXXntfPeNYjBLI1POaLZ0e75NxoMf12fDoM7OEBieQH8KmTiD6deLgvW1cboAW8hdahLXj7WKVd-mkmmB_PFJIUVYRFzDCw5bOuYk4ztkfTqb2j1CZRphmpm-YdJFQgoZJ0yxMLWx5hFAiA4JmtHJTU1djhk0fuUV6TLLsdvytts65LSV_12RdrwpedgMdl4r7zz3d69cJljxcfsZ1A7vUtTUzhYgAwsdWH3BeYfsVpOkrYqLFJPSsw5hfqj_0YY8-z7K2qf99xQ6IB-wxipG8pCsl_cLewRgqdRfvUL8ATDKCOU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gA9UF4t2xYwEhKntFk7dpzeIkq7QNMDtBIXFMWOrUpFu4hmL5z4CfzG_pLOOI92QRUSHBOP5ed4PtvjbwBexbwytVcictZXUaI8jzJp48gaog-T3GlPRwPFsZqcJu8_y96bkN7CtPwQw4EbaUZYr0nB6UB695o1tKoDcRAPHGXyDqxQWG-iz9__eM0gRQA90O0JGWUq0T1vY8x3F_Mv2qU_wOYidg3G52ANTF_t1ufkfGfemB374zdGx_9q1wO430FTlrdz6SEsuekjWL1BWPgYviDKRCvF8tZz4ILNPPuE9u_y568ixPxwNTvEjX1zRimFQ2TPcP3GjXnnf7fH6D1LL9PMWH7jAv0JnB68PXkziboADZEVKXao0qm3FIG9rvnYWG9qNIfCZzb1Y2kqWY1dprlRRCGf1lrFdSIM_hC4q-Nec7EOy9PZ1D0FprOEIs2MLdc-UVppmfKKx5mTRiSIIkYQ9cNT2o69nIJofC1b3mVeUreVQ7eN4PUg_63l7bhVcrsf7bLT34syXL8KnVLBL4dk1Dy6TqmmbjZHGVzr0PArIUaw0c6SoSihMopLz0fAw1j_pQ5lvl_kw9fmv2R6AXcnJ8VRefTu-MMW3KPS2yeT27DcfJ-7Z4idGvM8aMcVypkNAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2iRUJlwfsxUMBISKzSydix47CLGIbymAoBlbpBUfwSUquZimY2rPgEvpEv4V7n0RkQQoJlkmvZsX19j1_nADxJeW1cUCLxNtRJpgJPCmnTxBqiD5Pc60BLA_MDtX-YvT6SR2u3-Ft-iGHBjTwjjtfk4KcujM9JQ2sXeYN4pCiTW3AxU2lB4g3T9-cEUoTPI9uekEmhMt3TNqZ8vJl-Myz9hjU3oWuMPbOrUPelbo-cHO-tGrNnv_5C6Pg_v3UNrnTAlJVtT7oOF_ziBlxeoyu8CZ8QY2KMYmV7buCMLQP7gNHvx7fv86j44R17idP65jN9mXvE9QxHb5yWd6fvnjG6zdLbNEtWrm2f34LD2YuPz_eTTp4hsSLH-lQ6D5b0153jE2ODcRgMRShsHibS1LKe-EJzo4hAPndapS4TBl8InNPxoLm4DduL5cLfBaaLjHRmJpbrkCmttMx5zdPCSyMyxBAjSPrWqWzHXU4SGidVy7rMK6q2aqi2ETwd7E9b1o4_Wu72jV113ntWxc1XoXPK-PHwGf2ONlPqhV-u0AZHOgz7SogR3Gk7yZCVUAWp0vMR8NjUfylDVU7n5fB0718SPYJL76az6u2rgzf3YYcyb-9L7sJ282XlHyBwaszD6Bs_AYvzC7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Seed%E2%80%90Mediated+Growth+of+Metal+Nanoparticles%3A+from+Growth+to+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=He%2C+Meng%E2%80%90Qi&rft.au=Ai%2C+Yongjian&rft.au=Hu%2C+Wanting&rft.au=Guan%2C+Liandi&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202211915&rft.externalDBID=10.1002%252Fadma.202211915&rft.externalDocID=ADMA202211915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon