Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation
Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination netwo...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 22; pp. e2300945 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Molecular design and crystal engineering strategy are applied to construct thiol‐functionalized metal–organic frameworks (MOFs). This MOF platform is successfully decorated with nickel–sulfur links cooperating in the network. The prepared 2D MOF with enhanced electro‐conductivity and modified electronic structure demonstrates superior activity and robust stability toward the oxygen evolution reaction (OER), which paves the way to design MOFs at a molecular level. |
---|---|
AbstractList | Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Molecular design and crystal engineering strategy are applied to construct thiol‐functionalized metal–organic frameworks (MOFs). This MOF platform is successfully decorated with nickel–sulfur links cooperating in the network. The prepared 2D MOF with enhanced electro‐conductivity and modified electronic structure demonstrates superior activity and robust stability toward the oxygen evolution reaction (OER), which paves the way to design MOFs at a molecular level. Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm −2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. |
Author | Li, Xintong Guo, Xuyun Huang, Wei‐Hsiang Wang, Zilong Zhong, Xiaoyan Zhu, Ye He, Yonghe Zhang, Shoufeng Lin, Qing Xu, Zhengtao Chueh, Chu‐Chen Chen, Chi‐Liang Li, Zhuo Liu, Yizhe Wang, Qi Sun, Qidi Hu, Jue Zhu, Zonglong |
Author_xml | – sequence: 1 givenname: Yizhe surname: Liu fullname: Liu, Yizhe organization: City University of Hong Kong – sequence: 2 givenname: Xintong surname: Li fullname: Li, Xintong organization: City University of Hong Kong – sequence: 3 givenname: Shoufeng surname: Zhang fullname: Zhang, Shoufeng organization: City University of Hong Kong – sequence: 4 givenname: Zilong surname: Wang fullname: Wang, Zilong email: zilong@email.jnu.edu.cn organization: Jinan University – sequence: 5 givenname: Qi surname: Wang fullname: Wang, Qi organization: City University of Hong Kong – sequence: 6 givenname: Yonghe surname: He fullname: He, Yonghe organization: City University of Hong Kong – sequence: 7 givenname: Wei‐Hsiang surname: Huang fullname: Huang, Wei‐Hsiang organization: National Synchrotron Radiation Research Center – sequence: 8 givenname: Qidi surname: Sun fullname: Sun, Qidi organization: City University of Hong Kong – sequence: 9 givenname: Xiaoyan surname: Zhong fullname: Zhong, Xiaoyan organization: City University of Hong Kong – sequence: 10 givenname: Jue surname: Hu fullname: Hu, Jue organization: Kunming University of Science and Technology – sequence: 11 givenname: Xuyun surname: Guo fullname: Guo, Xuyun organization: The Hong Kong Polytechnic University – sequence: 12 givenname: Qing surname: Lin fullname: Lin, Qing organization: ReadCrystal Biotech Co., Ltd – sequence: 13 givenname: Zhuo surname: Li fullname: Li, Zhuo organization: City University of Hong Kong – sequence: 14 givenname: Ye surname: Zhu fullname: Zhu, Ye organization: The Hong Kong Polytechnic University – sequence: 15 givenname: Chu‐Chen surname: Chueh fullname: Chueh, Chu‐Chen organization: National Taiwan University – sequence: 16 givenname: Chi‐Liang surname: Chen fullname: Chen, Chi‐Liang organization: National Synchrotron Radiation Research Center – sequence: 17 givenname: Zhengtao surname: Xu fullname: Xu, Zhengtao email: zhengtao@imre.a-star.edu.sg organization: Technology and Research (ASTAR) – sequence: 18 givenname: Zonglong orcidid: 0000-0002-8285-9665 surname: Zhu fullname: Zhu, Zonglong email: zonglzhu@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36912205$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPClSOyxIVLwqy9u14fo5ACUqNcQBxXE-84uOzaxd5VyY134A15ElxSilQJcZrL9838mv-MnfjgibHnBSwKAPEauwEXAoQE0GX1iM2KShTzEnR1wmagZTXXddmcsrOUriAzNdRP2KmsdSEEVDPmN6EnM_UY-drvnSeKzu95sHxDI_Y_v__Yxj16Z_hFxIFuQvySOCa-ttYZR37k6-yPMZjPNDiDPV9h9g5pTNyGyD_hSJFvv7kORxf8U_bYYp_o2d08Zx8v1h9W7-aX27fvV8vLuZEqZ64B7M6SNmInsSsr26BCVdQECJWSytam6lBCU1cIUEqohdW6o1ISKNJanrNXx73XMXydKI3t4JKhvkdPYUqtUFktZKNkRl8-QK_CFH1O14pGFKIulVKZenFHTbuBuvY6ugHjof3zyQwsjoCJIaVI9h4poL2tqr2tqr2vKgvlA8G48feTxoiu_7emj9qN6-nwnyPt8s1m-df9BaG-qQ4 |
CitedBy_id | crossref_primary_10_1002_smll_202306085 crossref_primary_10_1002_smll_202308264 crossref_primary_10_1039_D3DT03494A crossref_primary_10_1002_ifm2_19 crossref_primary_10_1002_adfm_202406587 crossref_primary_10_1016_j_cej_2024_155390 crossref_primary_10_1021_acs_inorgchem_4c00089 crossref_primary_10_1002_cctc_202401944 crossref_primary_10_1021_acs_jpcc_3c06800 crossref_primary_10_1016_j_cej_2023_144818 crossref_primary_10_1016_j_ijhydene_2024_12_398 crossref_primary_10_1002_cssc_202401176 crossref_primary_10_1093_nsr_nwae362 crossref_primary_10_1002_ange_202415755 crossref_primary_10_1039_D3NJ05592B crossref_primary_10_1021_acs_chemmater_4c00725 crossref_primary_10_1002_adma_202408658 crossref_primary_10_1002_anie_202309930 crossref_primary_10_1016_j_jcis_2024_11_114 crossref_primary_10_1002_cnl2_110 crossref_primary_10_1021_acs_inorgchem_4c00712 crossref_primary_10_1007_s40843_024_3241_5 crossref_primary_10_1016_j_desal_2024_117860 crossref_primary_10_1002_ange_202415051 crossref_primary_10_1016_j_desal_2024_118472 crossref_primary_10_1016_j_jcis_2025_01_115 crossref_primary_10_1016_j_cej_2024_154093 crossref_primary_10_1002_smll_202406657 crossref_primary_10_1021_acsami_3c04454 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_acsnano_4c06516 crossref_primary_10_1007_s12598_024_02838_y crossref_primary_10_1039_D4SC08508F crossref_primary_10_1002_aenm_202400875 crossref_primary_10_1016_j_jallcom_2024_173757 crossref_primary_10_1021_acssuschemeng_3c07704 crossref_primary_10_1016_j_microc_2024_110152 crossref_primary_10_1016_j_jcis_2023_07_083 crossref_primary_10_1016_j_jcis_2023_11_094 crossref_primary_10_1002_anie_202415755 crossref_primary_10_1002_smtd_202400683 crossref_primary_10_1002_adma_202406094 crossref_primary_10_1002_anie_202409628 crossref_primary_10_1002_adfm_202413856 crossref_primary_10_1039_D3DT04263D crossref_primary_10_1021_acs_nanolett_5c00607 crossref_primary_10_1007_s11426_024_2069_2 crossref_primary_10_1021_acs_inorgchem_4c04958 crossref_primary_10_1016_j_cej_2023_146049 crossref_primary_10_1002_smtd_202401461 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1039_D4TA05512H crossref_primary_10_1007_s11426_023_1725_8 crossref_primary_10_1039_D3NH00494E crossref_primary_10_20517_cs_2024_26 crossref_primary_10_1021_acsnano_3c05224 crossref_primary_10_1002_smll_202411017 crossref_primary_10_1002_ange_202409628 crossref_primary_10_1039_D4CC06478J crossref_primary_10_1016_j_jcis_2024_02_067 crossref_primary_10_1021_acsami_4c13001 crossref_primary_10_1039_D3DT02879H crossref_primary_10_1002_anie_202415051 crossref_primary_10_1002_cssc_202402112 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1002_smll_202308517 crossref_primary_10_1021_acsnano_3c05583 crossref_primary_10_1002_ange_202309930 |
Cites_doi | 10.1038/s41467-019-13052-1 10.1002/aenm.202003759 10.1038/s41560-018-0308-8 10.1021/acscatal.0c00989 10.1007/s00216-003-1982-2 10.1038/natrevmats.2015.18 10.1038/s41929-019-0400-x 10.1021/jacs.8b09805 10.1002/adma.201807898 10.1002/anie.202104148 10.1038/s41563-022-01199-0 10.1107/S0907444909047337 10.1021/ja400212k 10.1021/acsami.2c04304 10.1002/aenm.202202522 10.1038/s41467-019-09845-z 10.1038/nenergy.2016.184 10.1038/s41929-020-00550-5 10.1038/s41467-019-12886-z 10.1002/adma.202001292 10.1038/nmat4938 10.1002/anie.201902588 10.1016/j.apcatb.2021.120764 10.1002/anie.202207217 10.1002/adma.201704303 10.1039/C4CP05053C 10.1038/s41467-020-16558-1 10.1039/D1NR06044A 10.1126/science.abm8566 10.1038/s41467-021-24453-6 10.1038/s41929-019-0325-4 10.1038/srep13801 10.1107/S2053273314026370 10.1038/s41467-021-21595-5 10.1002/smll.202201076 10.1002/adfm.202102066 10.1107/S2053229614024218 10.1016/j.mtener.2020.100610 10.1038/s41467-021-24052-5 10.1038/s41467-019-13051-2 10.1038/s41929-020-00540-7 10.1002/anie.201914587 10.1021/ja502379c 10.1021/jacs.9b00093 10.1126/science.aat8051 10.1038/ncomms15341 10.1021/ja00905a001 10.1002/aenm.202000361 10.1021/jacs.6b03125 10.1038/nchem.141 10.1038/s41929-021-00578-1 10.1038/s41929-019-0246-2 10.1038/ncomms9304 10.1021/ja405351s 10.1063/1.2801985 10.1038/nmat3313 10.1107/S2052252514028188 10.1002/aenm.201901945 10.1002/anie.202102320 10.1002/anie.202101878 10.1039/D0EE01912G |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202300945 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36912205 10_1002_adma_202300945 ADMA202300945 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: New Faculty Start‐up Grant of the City University of Hong Kong funderid: 9610421 – fundername: Natural Science Foundation of Guangdong Province funderid: 2019A1515010761 – fundername: Science Technology and Innovation Committee of Shenzhen Municipality funderid: SGDX20210823104002015 – fundername: Research Grants Council of Hong Kong funderid: ECSgrant(21301319); GRFgrant(11306521) – fundername: Innovation and Technology Fund funderid: ITS/095/20; GHP/100/20SZ; GHP/102/20GD – fundername: Guangdong Provincial Science and Technology Plan funderid: 2021A0505110003 – fundername: New Faculty Start-up Grant of the City University of Hong Kong grantid: 9610421 – fundername: Innovation and Technology Fund grantid: GHP/100/20SZ – fundername: Natural Science Foundation of Guangdong Province grantid: 2019A1515010761 – fundername: Innovation and Technology Fund grantid: ITS/095/20 – fundername: Research Grants Council of Hong Kong grantid: GRFgrant(11306521) – fundername: Research Grants Council of Hong Kong grantid: ECSgrant(21301319) – fundername: Guangdong Provincial Science and Technology Plan grantid: 2021A0505110003 – fundername: Innovation and Technology Fund grantid: GHP/102/20GD – fundername: Science Technology and Innovation Committee of Shenzhen Municipality grantid: SGDX20210823104002015 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3735-600fbfe9c2b3ad45f8a7a716e0a05737f6c5da30865a0043062f99de43e07e993 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:52:44 EDT 2025 Fri Jul 25 05:14:41 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Tue Jul 01 02:33:31 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Wed Jan 22 16:22:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | nickel-mercaptan links oxygen evolution thiol functionalization metal-organic frameworks |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-600fbfe9c2b3ad45f8a7a716e0a05737f6c5da30865a0043062f99de43e07e993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8285-9665 |
PMID | 36912205 |
PQID | 2821264777 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2786513873 proquest_journals_2821264777 pubmed_primary_36912205 crossref_primary_10_1002_adma_202300945 crossref_citationtrail_10_1002_adma_202300945 wiley_primary_10_1002_adma_202300945_ADMA202300945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2023 2023-06-00 2023-Jun 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012 2019 2021; 11 10 12 2015; 6 2019 2019 2020; 10 2 11 2015; 5 2021 2021 2021 2021; 4 4 13 12 2007; 127 2017 2021; 16 19 2019; 2 2019; 10 1963; 85 2019 2019; 31 363 2019; 58 2022 2016; 14 1 2020; 59 2022 2018; 61 140 2020; 32 2020; 10 2014; 136 2009 2020 2020 2022 2020; 1 3 3 376 10 2010 2015 2015 2015 2019; 66 71 71 2 141 2021 2021; 31 60 2016; 1 2021; 11 2013 2015; 135 17 2022 2019 2021; 18 10 12 2013; 135 2018; 30 2016; 138 2017 2021 2022; 8 60 21 2021; 60 2020 2019; 10 4 2022 2022; 301 12 2003 2020; 376 13 e_1_2_7_5_2 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_28_1 e_1_2_7_26_4 e_1_2_7_28_2 e_1_2_7_26_5 e_1_2_7_9_3 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 763 year: 2019 publication-title: Nat. Catal. – volume: 16 19 start-page: 925 year: 2017 2021 publication-title: Nat. Mater. Mater. Today Energy – volume: 1 3 3 376 10 start-page: 7 967 55 416 year: 2009 2020 2020 2022 2020 publication-title: Nat. Chem. Nat. Catal. Nat. Catal. Science Adv. Energy Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8304 year: 2015 publication-title: Nat. Commun. – volume: 11 10 12 start-page: 550 2149 4088 year: 2012 2019 2021 publication-title: Nat. Mater. Nat. Commun. Nat. Commun. – volume: 31 363 start-page: 870 year: 2019 2019 publication-title: Adv. Mater. Science – volume: 85 start-page: 3533 year: 1963 publication-title: J. Am. Chem. Soc. – volume: 127 year: 2007 publication-title: J. Chem. Phys. – volume: 4 4 13 12 start-page: 36 212 4218 year: 2021 2021 2021 2021 publication-title: Nat. Catal. Nat. Catal. Nanoscale Nat. Commun. – volume: 14 1 year: 2022 2016 publication-title: ACS Appl. Mater. Interfaces Nat. Rev. Mater. – volume: 136 start-page: 6744 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 301 12 year: 2022 2022 publication-title: Appl. Catal. B Adv. Energy Mater. – volume: 18 10 12 start-page: 5048 1369 year: 2022 2019 2021 publication-title: Small Nat. Commun. Nat. Commun. – volume: 10 2 11 start-page: 4849 304 2701 year: 2019 2019 2020 publication-title: Nat. Commun. Nat. Catal. Nat. Commun. – volume: 66 71 71 2 141 start-page: 125 3 3 267 4990 year: 2010 2015 2015 2015 2019 publication-title: Acta Crystallogr. D Acta Crystallogr. A Acta Crystallogr. C IUCrJ J. Am. Chem. Soc. – volume: 376 13 start-page: 562 3607 year: 2003 2020 publication-title: Anal. Bioanal. Chem. Energy Environ. Sci. – volume: 135 start-page: 7795 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5074 year: 2019 publication-title: Nat. Commun. – volume: 31 60 year: 2021 2021 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 60 21 start-page: 673 year: 2017 2021 2022 publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nat. Mater. – volume: 61 140 year: 2022 2018 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 10 4 start-page: 5691 115 year: 2020 2019 publication-title: ACS Catal. Nat. Energy – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 59 start-page: 3630 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 8336 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 135 17 year: 2013 2015 publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys. – volume: 58 start-page: 7051 year: 2019 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_13_1 doi: 10.1038/s41467-019-13052-1 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.202003759 – ident: e_1_2_7_14_2 doi: 10.1038/s41560-018-0308-8 – ident: e_1_2_7_14_1 doi: 10.1021/acscatal.0c00989 – ident: e_1_2_7_27_1 doi: 10.1007/s00216-003-1982-2 – ident: e_1_2_7_17_2 doi: 10.1038/natrevmats.2015.18 – ident: e_1_2_7_1_3 doi: 10.1038/s41929-019-0400-x – ident: e_1_2_7_33_2 doi: 10.1021/jacs.8b09805 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201807898 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202104148 – ident: e_1_2_7_9_3 doi: 10.1038/s41563-022-01199-0 – ident: e_1_2_7_26_1 doi: 10.1107/S0907444909047337 – ident: e_1_2_7_21_1 doi: 10.1021/ja400212k – ident: e_1_2_7_17_1 doi: 10.1021/acsami.2c04304 – ident: e_1_2_7_28_2 doi: 10.1002/aenm.202202522 – ident: e_1_2_7_6_2 doi: 10.1038/s41467-019-09845-z – ident: e_1_2_7_8_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_7_5_1 doi: 10.1038/s41929-020-00550-5 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-019-12886-z – ident: e_1_2_7_19_1 doi: 10.1002/adma.202001292 – ident: e_1_2_7_2_1 doi: 10.1038/nmat4938 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201902588 – ident: e_1_2_7_28_1 doi: 10.1016/j.apcatb.2021.120764 – ident: e_1_2_7_33_1 doi: 10.1002/anie.202207217 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201704303 – ident: e_1_2_7_32_2 doi: 10.1039/C4CP05053C – ident: e_1_2_7_3_3 doi: 10.1038/s41467-020-16558-1 – ident: e_1_2_7_5_3 doi: 10.1039/D1NR06044A – ident: e_1_2_7_1_4 doi: 10.1126/science.abm8566 – ident: e_1_2_7_5_4 doi: 10.1038/s41467-021-24453-6 – ident: e_1_2_7_4_1 doi: 10.1038/s41929-019-0325-4 – ident: e_1_2_7_31_1 doi: 10.1038/srep13801 – ident: e_1_2_7_26_2 doi: 10.1107/S2053273314026370 – ident: e_1_2_7_11_3 doi: 10.1038/s41467-021-21595-5 – ident: e_1_2_7_11_1 doi: 10.1002/smll.202201076 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.202102066 – ident: e_1_2_7_26_3 doi: 10.1107/S2053229614024218 – ident: e_1_2_7_2_2 doi: 10.1016/j.mtener.2020.100610 – ident: e_1_2_7_6_3 doi: 10.1038/s41467-021-24052-5 – ident: e_1_2_7_11_2 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_7_1_2 doi: 10.1038/s41929-020-00540-7 – ident: e_1_2_7_15_1 doi: 10.1002/anie.201914587 – ident: e_1_2_7_30_1 doi: 10.1021/ja502379c – ident: e_1_2_7_26_5 doi: 10.1021/jacs.9b00093 – ident: e_1_2_7_7_2 doi: 10.1126/science.aat8051 – ident: e_1_2_7_9_1 doi: 10.1038/ncomms15341 – ident: e_1_2_7_22_1 doi: 10.1021/ja00905a001 – ident: e_1_2_7_1_5 doi: 10.1002/aenm.202000361 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.6b03125 – ident: e_1_2_7_1_1 doi: 10.1038/nchem.141 – ident: e_1_2_7_5_2 doi: 10.1038/s41929-021-00578-1 – ident: e_1_2_7_3_2 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms9304 – ident: e_1_2_7_32_1 doi: 10.1021/ja405351s – ident: e_1_2_7_24_1 doi: 10.1063/1.2801985 – ident: e_1_2_7_6_1 doi: 10.1038/nmat3313 – ident: e_1_2_7_26_4 doi: 10.1107/S2052252514028188 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_7_10_1 doi: 10.1002/anie.202102320 – ident: e_1_2_7_9_2 doi: 10.1002/anie.202101878 – ident: e_1_2_7_27_2 doi: 10.1039/D0EE01912G |
SSID | ssj0009606 |
Score | 2.6527038 |
Snippet | Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of... Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300945 |
SubjectTerms | Benzene Catalysis Coordination Crystal structure Dicarboxylic acids Electron diffraction Electronic structure Electrons Energy conversion Iron compounds Materials science Metal-organic frameworks Microcrystals Nickel compounds nickel–mercaptan links Oxidation oxygen evolution Oxygen evolution reactions thiol functionalization |
Title | Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300945 https://www.ncbi.nlm.nih.gov/pubmed/36912205 https://www.proquest.com/docview/2821264777 https://www.proquest.com/docview/2786513873 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Em-D7FV-sIHiKJtlN0hxLbRGhCqLoLWySXRAlFdOCevI_-A_9Jc5kk7RVRNBjkl2yj5nMt5OZbwAOUG7RaonMdnUgbLTHoZ1QmJiQrkYDTaRZ5NDvnwen1-Ls1r-dyOI3_BCNw400o_xek4LLpDgek4bKrOQNQgiNJxTKMqeALUJFl2P-KILnJdke9-0oEK2atdHxjqe7T1ulb1BzGrmWpqe3CLIetIk4uT8aDZOj9PULn-N_ZrUECxUuZW0jSMswo_IVmJtgK1yFvF-X0mUT99lAs75CCP_x9m4SO1PWqyO-CiYL1i1ZKtC4sa6puZNWJAWsQ76jl2JYMITO7AZh7xO7eL4zZZ7W4LrXveqc2lW5BjvlIS4wQiedaBWlXsJlJnzdkqHE45hyJLEuhjpI_UxyPEP5sqQaCzwdRZkSXDmhQgFZh9l8kKtNYInOsG-G0EJokWIzjgLU4lkiBdeOIy2w6-2K04rLnEpqPMSGhdmLaR3jZh0tOGzaPxoWjx9b7tS7H1faXMR4LHU9ytgNLdhvHqMe0s8VmavBCNuEOC-Xt0JuwYaRmuZVPIhcSmi2wCv3_pcxxO2Tfru52vpLp22YJye0qIIbHXcHZodPI7WLCGqY7JVa8gm2vxFj |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NTtwwEIBHCA5tD6U_tKSlrSuBOAWS2Ek2hx5W7K6WQqiEQHALTmJLFVW2IrsCeuIdeBJehUfgSZiJk8BSVZUqcegxiaPE8Yxnxhl_A7CMcotWS-S2qwNhoz0O7ZTSxIR0NRpogmbRgn68Ewz3xddD_3AGrpq9MIYP0S64kWZU8zUpOC1Ir99RQ2VegYPQh8YQpcmr3FLnpxi1lV82ezjEK5436O9tDO26sICd8ZD7Nhp5nWoVZV7KZS583ZGhxMBBOZL4gKEOMj-XHL19X1ZQrMDTUZQrwZUTqoj4Szjrz1EZccL193bviFUUEFR4P3xMFIhOw4l0vPXp9522g785t9O-cmXsBvNw3Xwmk-NyvDYZp2vZrwcEyf_qO76A57XrzbpGV17CjCpewbN7QMbXUMRNtWB27zwbaRYrjFJuLi7N3tWMDZqktpLJkvUrEAfab9Y3ZYWymsPANmh57LwclwyjA3aAnv0J-3b23VSyWoD9R-nwG5gtRoVaBJbqHO_N0XsSWmTYjKOOdHieSsG140gL7EY-kqzGtVPVkB-JAU17CY1b0o6bBatt-58GVPLHlkuNuCX1hFUmGHm7Hm1KDi343F7GqYb-H8lCjSbYJsR-ubwTcgveGjFtH8WDyKU92xZ4lbD95R2Sbi_utkfv_uWmT_BkuBdvJ9ubO1vv4SmdNyl8SzA7PpmoD-gsjtOPlXoyOHpsOb4FzqptRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVZFQeyg_bSGwgJGKekqbxE6yOXBY7Y_6w7YVatXeghPbEirKVpusYDnxDrwIr8Ir8CSM4yS7S1VVQuqhxySOEscznhln_A3AFsotWi0mbFcFzEZ7HNqJThNj3FVooDU0Sy_oD4-CvTN2cOFfLMGvei-M4UM0C25aM8r5Wiv4lVC7M2goFyU3CF1ojFDqtMpDOf2KQVv-fr-HI_zO8wb90-6eXdUVsFMaUt9GG68SJaPUSygXzFdtHnKMG6TDNR4wVEHqC07R2fd5ycQKPBVFQjIqnVBGGr-Ek_4DFjiRLhbR-zgDVul4oKT74WOigLVrTKTj7S6-76IZvObbLrrKpa0bPILf9VcyKS6XO5Mi2Um__wOQvE-f8TGsVY436RhNeQJLMnsKq3M4xnXIhnWtYDJ3nowUGUqMUf78-Gl2rqZkUKe05YTnpF9iONB6k74pKpRWFAbS1Ytj07zICcYG5Bz9-jE5_vbZ1LHagLM76fAmLGejTD4HkiiB9wr0nZhiKTajqCFtKhLOqHIcboFdi0ecVrB2XTPkS2ww016sxy1uxs2C7ab9lcGU3NiyVUtbXE1XeYxxt-vpLcmhBW-byzjR6L9HPJOjCbYJsV8ubYfUgmdGSptH0SBy9Y5tC7xS1m55h7jTG3aaoxf_c9MbeHjSG8Qf9o8OX8KKPm3y91qwXIwn8hV6ikXyulROAp_uWoz_Avica_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Metal%E2%80%93Organic+Frameworks+as+Efficient+Electrochemical+Catalysts+for+Water+Oxidation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Yizhe&rft.au=Li%2C+Xintong&rft.au=Zhang%2C+Shoufeng&rft.au=Wang%2C+Zilong&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202300945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202300945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |