Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation

Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination netwo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 22; pp. e2300945 - n/a
Main Authors Liu, Yizhe, Li, Xintong, Zhang, Shoufeng, Wang, Zilong, Wang, Qi, He, Yonghe, Huang, Wei‐Hsiang, Sun, Qidi, Zhong, Xiaoyan, Hu, Jue, Guo, Xuyun, Lin, Qing, Li, Zhuo, Zhu, Ye, Chueh, Chu‐Chen, Chen, Chi‐Liang, Xu, Zhengtao, Zhu, Zonglong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Molecular design and crystal engineering strategy are applied to construct thiol‐functionalized metal–organic frameworks (MOFs). This MOF platform is successfully decorated with nickel–sulfur links cooperating in the network. The prepared 2D MOF with enhanced electro‐conductivity and modified electronic structure demonstrates superior activity and robust stability toward the oxygen evolution reaction (OER), which paves the way to design MOFs at a molecular level.
AbstractList Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan-metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni-S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm-2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis. Molecular design and crystal engineering strategy are applied to construct thiol‐functionalized metal–organic frameworks (MOFs). This MOF platform is successfully decorated with nickel–sulfur links cooperating in the network. The prepared 2D MOF with enhanced electro‐conductivity and modified electronic structure demonstrates superior activity and robust stability toward the oxygen evolution reaction (OER), which paves the way to design MOFs at a molecular level.
Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)‐MOF) is designed. The crystal structure is solved from microcrystals by a continuous‐rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)‐MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)‐MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non‐thiol (e.g., 1,4‐benzene dicarboxylic acid) analog (BDC)‐MOF, because it poses fewer energy barriers during the rate‐limiting *O intermediate formation step. Iron‐substituted NiFe(DMBD)‐MOF achieves a current density of 100 mA cm −2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
Author Li, Xintong
Guo, Xuyun
Huang, Wei‐Hsiang
Wang, Zilong
Zhong, Xiaoyan
Zhu, Ye
He, Yonghe
Zhang, Shoufeng
Lin, Qing
Xu, Zhengtao
Chueh, Chu‐Chen
Chen, Chi‐Liang
Li, Zhuo
Liu, Yizhe
Wang, Qi
Sun, Qidi
Hu, Jue
Zhu, Zonglong
Author_xml – sequence: 1
  givenname: Yizhe
  surname: Liu
  fullname: Liu, Yizhe
  organization: City University of Hong Kong
– sequence: 2
  givenname: Xintong
  surname: Li
  fullname: Li, Xintong
  organization: City University of Hong Kong
– sequence: 3
  givenname: Shoufeng
  surname: Zhang
  fullname: Zhang, Shoufeng
  organization: City University of Hong Kong
– sequence: 4
  givenname: Zilong
  surname: Wang
  fullname: Wang, Zilong
  email: zilong@email.jnu.edu.cn
  organization: Jinan University
– sequence: 5
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: City University of Hong Kong
– sequence: 6
  givenname: Yonghe
  surname: He
  fullname: He, Yonghe
  organization: City University of Hong Kong
– sequence: 7
  givenname: Wei‐Hsiang
  surname: Huang
  fullname: Huang, Wei‐Hsiang
  organization: National Synchrotron Radiation Research Center
– sequence: 8
  givenname: Qidi
  surname: Sun
  fullname: Sun, Qidi
  organization: City University of Hong Kong
– sequence: 9
  givenname: Xiaoyan
  surname: Zhong
  fullname: Zhong, Xiaoyan
  organization: City University of Hong Kong
– sequence: 10
  givenname: Jue
  surname: Hu
  fullname: Hu, Jue
  organization: Kunming University of Science and Technology
– sequence: 11
  givenname: Xuyun
  surname: Guo
  fullname: Guo, Xuyun
  organization: The Hong Kong Polytechnic University
– sequence: 12
  givenname: Qing
  surname: Lin
  fullname: Lin, Qing
  organization: ReadCrystal Biotech Co., Ltd
– sequence: 13
  givenname: Zhuo
  surname: Li
  fullname: Li, Zhuo
  organization: City University of Hong Kong
– sequence: 14
  givenname: Ye
  surname: Zhu
  fullname: Zhu, Ye
  organization: The Hong Kong Polytechnic University
– sequence: 15
  givenname: Chu‐Chen
  surname: Chueh
  fullname: Chueh, Chu‐Chen
  organization: National Taiwan University
– sequence: 16
  givenname: Chi‐Liang
  surname: Chen
  fullname: Chen, Chi‐Liang
  organization: National Synchrotron Radiation Research Center
– sequence: 17
  givenname: Zhengtao
  surname: Xu
  fullname: Xu, Zhengtao
  email: zhengtao@imre.a-star.edu.sg
  organization: Technology and Research (ASTAR)
– sequence: 18
  givenname: Zonglong
  orcidid: 0000-0002-8285-9665
  surname: Zhu
  fullname: Zhu, Zonglong
  email: zonglzhu@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36912205$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPClSOyxIVLwqy9u14fo5ACUqNcQBxXE-84uOzaxd5VyY134A15ElxSilQJcZrL9838mv-MnfjgibHnBSwKAPEauwEXAoQE0GX1iM2KShTzEnR1wmagZTXXddmcsrOUriAzNdRP2KmsdSEEVDPmN6EnM_UY-drvnSeKzu95sHxDI_Y_v__Yxj16Z_hFxIFuQvySOCa-ttYZR37k6-yPMZjPNDiDPV9h9g5pTNyGyD_hSJFvv7kORxf8U_bYYp_o2d08Zx8v1h9W7-aX27fvV8vLuZEqZ64B7M6SNmInsSsr26BCVdQECJWSytam6lBCU1cIUEqohdW6o1ISKNJanrNXx73XMXydKI3t4JKhvkdPYUqtUFktZKNkRl8-QK_CFH1O14pGFKIulVKZenFHTbuBuvY6ugHjof3zyQwsjoCJIaVI9h4poL2tqr2tqr2vKgvlA8G48feTxoiu_7emj9qN6-nwnyPt8s1m-df9BaG-qQ4
CitedBy_id crossref_primary_10_1002_smll_202306085
crossref_primary_10_1002_smll_202308264
crossref_primary_10_1039_D3DT03494A
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1002_adfm_202406587
crossref_primary_10_1016_j_cej_2024_155390
crossref_primary_10_1021_acs_inorgchem_4c00089
crossref_primary_10_1002_cctc_202401944
crossref_primary_10_1021_acs_jpcc_3c06800
crossref_primary_10_1016_j_cej_2023_144818
crossref_primary_10_1016_j_ijhydene_2024_12_398
crossref_primary_10_1002_cssc_202401176
crossref_primary_10_1093_nsr_nwae362
crossref_primary_10_1002_ange_202415755
crossref_primary_10_1039_D3NJ05592B
crossref_primary_10_1021_acs_chemmater_4c00725
crossref_primary_10_1002_adma_202408658
crossref_primary_10_1002_anie_202309930
crossref_primary_10_1016_j_jcis_2024_11_114
crossref_primary_10_1002_cnl2_110
crossref_primary_10_1021_acs_inorgchem_4c00712
crossref_primary_10_1007_s40843_024_3241_5
crossref_primary_10_1016_j_desal_2024_117860
crossref_primary_10_1002_ange_202415051
crossref_primary_10_1016_j_desal_2024_118472
crossref_primary_10_1016_j_jcis_2025_01_115
crossref_primary_10_1016_j_cej_2024_154093
crossref_primary_10_1002_smll_202406657
crossref_primary_10_1021_acsami_3c04454
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1021_acsnano_4c06516
crossref_primary_10_1007_s12598_024_02838_y
crossref_primary_10_1039_D4SC08508F
crossref_primary_10_1002_aenm_202400875
crossref_primary_10_1016_j_jallcom_2024_173757
crossref_primary_10_1021_acssuschemeng_3c07704
crossref_primary_10_1016_j_microc_2024_110152
crossref_primary_10_1016_j_jcis_2023_07_083
crossref_primary_10_1016_j_jcis_2023_11_094
crossref_primary_10_1002_anie_202415755
crossref_primary_10_1002_smtd_202400683
crossref_primary_10_1002_adma_202406094
crossref_primary_10_1002_anie_202409628
crossref_primary_10_1002_adfm_202413856
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1021_acs_nanolett_5c00607
crossref_primary_10_1007_s11426_024_2069_2
crossref_primary_10_1021_acs_inorgchem_4c04958
crossref_primary_10_1016_j_cej_2023_146049
crossref_primary_10_1002_smtd_202401461
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1039_D4TA05512H
crossref_primary_10_1007_s11426_023_1725_8
crossref_primary_10_1039_D3NH00494E
crossref_primary_10_20517_cs_2024_26
crossref_primary_10_1021_acsnano_3c05224
crossref_primary_10_1002_smll_202411017
crossref_primary_10_1002_ange_202409628
crossref_primary_10_1039_D4CC06478J
crossref_primary_10_1016_j_jcis_2024_02_067
crossref_primary_10_1021_acsami_4c13001
crossref_primary_10_1039_D3DT02879H
crossref_primary_10_1002_anie_202415051
crossref_primary_10_1002_cssc_202402112
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1002_smll_202308517
crossref_primary_10_1021_acsnano_3c05583
crossref_primary_10_1002_ange_202309930
Cites_doi 10.1038/s41467-019-13052-1
10.1002/aenm.202003759
10.1038/s41560-018-0308-8
10.1021/acscatal.0c00989
10.1007/s00216-003-1982-2
10.1038/natrevmats.2015.18
10.1038/s41929-019-0400-x
10.1021/jacs.8b09805
10.1002/adma.201807898
10.1002/anie.202104148
10.1038/s41563-022-01199-0
10.1107/S0907444909047337
10.1021/ja400212k
10.1021/acsami.2c04304
10.1002/aenm.202202522
10.1038/s41467-019-09845-z
10.1038/nenergy.2016.184
10.1038/s41929-020-00550-5
10.1038/s41467-019-12886-z
10.1002/adma.202001292
10.1038/nmat4938
10.1002/anie.201902588
10.1016/j.apcatb.2021.120764
10.1002/anie.202207217
10.1002/adma.201704303
10.1039/C4CP05053C
10.1038/s41467-020-16558-1
10.1039/D1NR06044A
10.1126/science.abm8566
10.1038/s41467-021-24453-6
10.1038/s41929-019-0325-4
10.1038/srep13801
10.1107/S2053273314026370
10.1038/s41467-021-21595-5
10.1002/smll.202201076
10.1002/adfm.202102066
10.1107/S2053229614024218
10.1016/j.mtener.2020.100610
10.1038/s41467-021-24052-5
10.1038/s41467-019-13051-2
10.1038/s41929-020-00540-7
10.1002/anie.201914587
10.1021/ja502379c
10.1021/jacs.9b00093
10.1126/science.aat8051
10.1038/ncomms15341
10.1021/ja00905a001
10.1002/aenm.202000361
10.1021/jacs.6b03125
10.1038/nchem.141
10.1038/s41929-021-00578-1
10.1038/s41929-019-0246-2
10.1038/ncomms9304
10.1021/ja405351s
10.1063/1.2801985
10.1038/nmat3313
10.1107/S2052252514028188
10.1002/aenm.201901945
10.1002/anie.202102320
10.1002/anie.202101878
10.1039/D0EE01912G
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202300945
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36912205
10_1002_adma_202300945
ADMA202300945
Genre article
Journal Article
GrantInformation_xml – fundername: New Faculty Start‐up Grant of the City University of Hong Kong
  funderid: 9610421
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019A1515010761
– fundername: Science Technology and Innovation Committee of Shenzhen Municipality
  funderid: SGDX20210823104002015
– fundername: Research Grants Council of Hong Kong
  funderid: ECSgrant(21301319); GRFgrant(11306521)
– fundername: Innovation and Technology Fund
  funderid: ITS/095/20; GHP/100/20SZ; GHP/102/20GD
– fundername: Guangdong Provincial Science and Technology Plan
  funderid: 2021A0505110003
– fundername: New Faculty Start-up Grant of the City University of Hong Kong
  grantid: 9610421
– fundername: Innovation and Technology Fund
  grantid: GHP/100/20SZ
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2019A1515010761
– fundername: Innovation and Technology Fund
  grantid: ITS/095/20
– fundername: Research Grants Council of Hong Kong
  grantid: GRFgrant(11306521)
– fundername: Research Grants Council of Hong Kong
  grantid: ECSgrant(21301319)
– fundername: Guangdong Provincial Science and Technology Plan
  grantid: 2021A0505110003
– fundername: Innovation and Technology Fund
  grantid: GHP/102/20GD
– fundername: Science Technology and Innovation Committee of Shenzhen Municipality
  grantid: SGDX20210823104002015
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3735-600fbfe9c2b3ad45f8a7a716e0a05737f6c5da30865a0043062f99de43e07e993
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:52:44 EDT 2025
Fri Jul 25 05:14:41 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Tue Jul 01 02:33:31 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Wed Jan 22 16:22:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords nickel-mercaptan links
oxygen evolution
thiol functionalization
metal-organic frameworks
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-600fbfe9c2b3ad45f8a7a716e0a05737f6c5da30865a0043062f99de43e07e993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8285-9665
PMID 36912205
PQID 2821264777
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2786513873
proquest_journals_2821264777
pubmed_primary_36912205
crossref_primary_10_1002_adma_202300945
crossref_citationtrail_10_1002_adma_202300945
wiley_primary_10_1002_adma_202300945_ADMA202300945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012 2019 2021; 11 10 12
2015; 6
2019 2019 2020; 10 2 11
2015; 5
2021 2021 2021 2021; 4 4 13 12
2007; 127
2017 2021; 16 19
2019; 2
2019; 10
1963; 85
2019 2019; 31 363
2019; 58
2022 2016; 14 1
2020; 59
2022 2018; 61 140
2020; 32
2020; 10
2014; 136
2009 2020 2020 2022 2020; 1 3 3 376 10
2010 2015 2015 2015 2019; 66 71 71 2 141
2021 2021; 31 60
2016; 1
2021; 11
2013 2015; 135 17
2022 2019 2021; 18 10 12
2013; 135
2018; 30
2016; 138
2017 2021 2022; 8 60 21
2021; 60
2020 2019; 10 4
2022 2022; 301 12
2003 2020; 376 13
e_1_2_7_5_2
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_28_1
e_1_2_7_26_4
e_1_2_7_28_2
e_1_2_7_26_5
e_1_2_7_9_3
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 763
  year: 2019
  publication-title: Nat. Catal.
– volume: 16 19
  start-page: 925
  year: 2017 2021
  publication-title: Nat. Mater. Mater. Today Energy
– volume: 1 3 3 376 10
  start-page: 7 967 55 416
  year: 2009 2020 2020 2022 2020
  publication-title: Nat. Chem. Nat. Catal. Nat. Catal. Science Adv. Energy Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8304
  year: 2015
  publication-title: Nat. Commun.
– volume: 11 10 12
  start-page: 550 2149 4088
  year: 2012 2019 2021
  publication-title: Nat. Mater. Nat. Commun. Nat. Commun.
– volume: 31 363
  start-page: 870
  year: 2019 2019
  publication-title: Adv. Mater. Science
– volume: 85
  start-page: 3533
  year: 1963
  publication-title: J. Am. Chem. Soc.
– volume: 127
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 4 4 13 12
  start-page: 36 212 4218
  year: 2021 2021 2021 2021
  publication-title: Nat. Catal. Nat. Catal. Nanoscale Nat. Commun.
– volume: 14 1
  year: 2022 2016
  publication-title: ACS Appl. Mater. Interfaces Nat. Rev. Mater.
– volume: 136
  start-page: 6744
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 301 12
  year: 2022 2022
  publication-title: Appl. Catal. B Adv. Energy Mater.
– volume: 18 10 12
  start-page: 5048 1369
  year: 2022 2019 2021
  publication-title: Small Nat. Commun. Nat. Commun.
– volume: 10 2 11
  start-page: 4849 304 2701
  year: 2019 2019 2020
  publication-title: Nat. Commun. Nat. Catal. Nat. Commun.
– volume: 66 71 71 2 141
  start-page: 125 3 3 267 4990
  year: 2010 2015 2015 2015 2019
  publication-title: Acta Crystallogr. D Acta Crystallogr. A Acta Crystallogr. C IUCrJ J. Am. Chem. Soc.
– volume: 376 13
  start-page: 562 3607
  year: 2003 2020
  publication-title: Anal. Bioanal. Chem. Energy Environ. Sci.
– volume: 135
  start-page: 7795
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5074
  year: 2019
  publication-title: Nat. Commun.
– volume: 31 60
  year: 2021 2021
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8 60 21
  start-page: 673
  year: 2017 2021 2022
  publication-title: Nat. Commun. Angew. Chem., Int. Ed. Nat. Mater.
– volume: 61 140
  year: 2022 2018
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 10 4
  start-page: 5691 115
  year: 2020 2019
  publication-title: ACS Catal. Nat. Energy
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 59
  start-page: 3630
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 8336
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 135 17
  year: 2013 2015
  publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys.
– volume: 58
  start-page: 7051
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-019-13052-1
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.202003759
– ident: e_1_2_7_14_2
  doi: 10.1038/s41560-018-0308-8
– ident: e_1_2_7_14_1
  doi: 10.1021/acscatal.0c00989
– ident: e_1_2_7_27_1
  doi: 10.1007/s00216-003-1982-2
– ident: e_1_2_7_17_2
  doi: 10.1038/natrevmats.2015.18
– ident: e_1_2_7_1_3
  doi: 10.1038/s41929-019-0400-x
– ident: e_1_2_7_33_2
  doi: 10.1021/jacs.8b09805
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201807898
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202104148
– ident: e_1_2_7_9_3
  doi: 10.1038/s41563-022-01199-0
– ident: e_1_2_7_26_1
  doi: 10.1107/S0907444909047337
– ident: e_1_2_7_21_1
  doi: 10.1021/ja400212k
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.2c04304
– ident: e_1_2_7_28_2
  doi: 10.1002/aenm.202202522
– ident: e_1_2_7_6_2
  doi: 10.1038/s41467-019-09845-z
– ident: e_1_2_7_8_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_7_5_1
  doi: 10.1038/s41929-020-00550-5
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-019-12886-z
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202001292
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4938
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201902588
– ident: e_1_2_7_28_1
  doi: 10.1016/j.apcatb.2021.120764
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.202207217
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_7_32_2
  doi: 10.1039/C4CP05053C
– ident: e_1_2_7_3_3
  doi: 10.1038/s41467-020-16558-1
– ident: e_1_2_7_5_3
  doi: 10.1039/D1NR06044A
– ident: e_1_2_7_1_4
  doi: 10.1126/science.abm8566
– ident: e_1_2_7_5_4
  doi: 10.1038/s41467-021-24453-6
– ident: e_1_2_7_4_1
  doi: 10.1038/s41929-019-0325-4
– ident: e_1_2_7_31_1
  doi: 10.1038/srep13801
– ident: e_1_2_7_26_2
  doi: 10.1107/S2053273314026370
– ident: e_1_2_7_11_3
  doi: 10.1038/s41467-021-21595-5
– ident: e_1_2_7_11_1
  doi: 10.1002/smll.202201076
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.202102066
– ident: e_1_2_7_26_3
  doi: 10.1107/S2053229614024218
– ident: e_1_2_7_2_2
  doi: 10.1016/j.mtener.2020.100610
– ident: e_1_2_7_6_3
  doi: 10.1038/s41467-021-24052-5
– ident: e_1_2_7_11_2
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_7_1_2
  doi: 10.1038/s41929-020-00540-7
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201914587
– ident: e_1_2_7_30_1
  doi: 10.1021/ja502379c
– ident: e_1_2_7_26_5
  doi: 10.1021/jacs.9b00093
– ident: e_1_2_7_7_2
  doi: 10.1126/science.aat8051
– ident: e_1_2_7_9_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_7_22_1
  doi: 10.1021/ja00905a001
– ident: e_1_2_7_1_5
  doi: 10.1002/aenm.202000361
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_7_1_1
  doi: 10.1038/nchem.141
– ident: e_1_2_7_5_2
  doi: 10.1038/s41929-021-00578-1
– ident: e_1_2_7_3_2
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms9304
– ident: e_1_2_7_32_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_24_1
  doi: 10.1063/1.2801985
– ident: e_1_2_7_6_1
  doi: 10.1038/nmat3313
– ident: e_1_2_7_26_4
  doi: 10.1107/S2052252514028188
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.202102320
– ident: e_1_2_7_9_2
  doi: 10.1002/anie.202101878
– ident: e_1_2_7_27_2
  doi: 10.1039/D0EE01912G
SSID ssj0009606
Score 2.6527038
Snippet Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of...
Metal-organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300945
SubjectTerms Benzene
Catalysis
Coordination
Crystal structure
Dicarboxylic acids
Electron diffraction
Electronic structure
Electrons
Energy conversion
Iron compounds
Materials science
Metal-organic frameworks
Microcrystals
Nickel compounds
nickel–mercaptan links
Oxidation
oxygen evolution
Oxygen evolution reactions
thiol functionalization
Title Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300945
https://www.ncbi.nlm.nih.gov/pubmed/36912205
https://www.proquest.com/docview/2821264777
https://www.proquest.com/docview/2786513873
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Em-D7FV-sIHiKJtlN0hxLbRGhCqLoLWySXRAlFdOCevI_-A_9Jc5kk7RVRNBjkl2yj5nMt5OZbwAOUG7RaonMdnUgbLTHoZ1QmJiQrkYDTaRZ5NDvnwen1-Ls1r-dyOI3_BCNw400o_xek4LLpDgek4bKrOQNQgiNJxTKMqeALUJFl2P-KILnJdke9-0oEK2atdHxjqe7T1ulb1BzGrmWpqe3CLIetIk4uT8aDZOj9PULn-N_ZrUECxUuZW0jSMswo_IVmJtgK1yFvF-X0mUT99lAs75CCP_x9m4SO1PWqyO-CiYL1i1ZKtC4sa6puZNWJAWsQ76jl2JYMITO7AZh7xO7eL4zZZ7W4LrXveqc2lW5BjvlIS4wQiedaBWlXsJlJnzdkqHE45hyJLEuhjpI_UxyPEP5sqQaCzwdRZkSXDmhQgFZh9l8kKtNYInOsG-G0EJokWIzjgLU4lkiBdeOIy2w6-2K04rLnEpqPMSGhdmLaR3jZh0tOGzaPxoWjx9b7tS7H1faXMR4LHU9ytgNLdhvHqMe0s8VmavBCNuEOC-Xt0JuwYaRmuZVPIhcSmi2wCv3_pcxxO2Tfru52vpLp22YJye0qIIbHXcHZodPI7WLCGqY7JVa8gm2vxFj
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NTtwwEIBHCA5tD6U_tKSlrSuBOAWS2Ek2hx5W7K6WQqiEQHALTmJLFVW2IrsCeuIdeBJehUfgSZiJk8BSVZUqcegxiaPE8Yxnxhl_A7CMcotWS-S2qwNhoz0O7ZTSxIR0NRpogmbRgn68Ewz3xddD_3AGrpq9MIYP0S64kWZU8zUpOC1Ir99RQ2VegYPQh8YQpcmr3FLnpxi1lV82ezjEK5436O9tDO26sICd8ZD7Nhp5nWoVZV7KZS583ZGhxMBBOZL4gKEOMj-XHL19X1ZQrMDTUZQrwZUTqoj4Szjrz1EZccL193bviFUUEFR4P3xMFIhOw4l0vPXp9522g785t9O-cmXsBvNw3Xwmk-NyvDYZp2vZrwcEyf_qO76A57XrzbpGV17CjCpewbN7QMbXUMRNtWB27zwbaRYrjFJuLi7N3tWMDZqktpLJkvUrEAfab9Y3ZYWymsPANmh57LwclwyjA3aAnv0J-3b23VSyWoD9R-nwG5gtRoVaBJbqHO_N0XsSWmTYjKOOdHieSsG140gL7EY-kqzGtVPVkB-JAU17CY1b0o6bBatt-58GVPLHlkuNuCX1hFUmGHm7Hm1KDi343F7GqYb-H8lCjSbYJsR-ubwTcgveGjFtH8WDyKU92xZ4lbD95R2Sbi_utkfv_uWmT_BkuBdvJ9ubO1vv4SmdNyl8SzA7PpmoD-gsjtOPlXoyOHpsOb4FzqptRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVZFQeyg_bSGwgJGKekqbxE6yOXBY7Y_6w7YVatXeghPbEirKVpusYDnxDrwIr8Ir8CSM4yS7S1VVQuqhxySOEscznhln_A3AFsotWi0mbFcFzEZ7HNqJThNj3FVooDU0Sy_oD4-CvTN2cOFfLMGvei-M4UM0C25aM8r5Wiv4lVC7M2goFyU3CF1ojFDqtMpDOf2KQVv-fr-HI_zO8wb90-6eXdUVsFMaUt9GG68SJaPUSygXzFdtHnKMG6TDNR4wVEHqC07R2fd5ycQKPBVFQjIqnVBGGr-Ek_4DFjiRLhbR-zgDVul4oKT74WOigLVrTKTj7S6-76IZvObbLrrKpa0bPILf9VcyKS6XO5Mi2Um__wOQvE-f8TGsVY436RhNeQJLMnsKq3M4xnXIhnWtYDJ3nowUGUqMUf78-Gl2rqZkUKe05YTnpF9iONB6k74pKpRWFAbS1Ytj07zICcYG5Bz9-jE5_vbZ1LHagLM76fAmLGejTD4HkiiB9wr0nZhiKTajqCFtKhLOqHIcboFdi0ecVrB2XTPkS2ww016sxy1uxs2C7ab9lcGU3NiyVUtbXE1XeYxxt-vpLcmhBW-byzjR6L9HPJOjCbYJsV8ubYfUgmdGSptH0SBy9Y5tC7xS1m55h7jTG3aaoxf_c9MbeHjSG8Qf9o8OX8KKPm3y91qwXIwn8hV6ikXyulROAp_uWoz_Avica_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Engineering+of+Metal%E2%80%93Organic+Frameworks+as+Efficient+Electrochemical+Catalysts+for+Water+Oxidation&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Yizhe&rft.au=Li%2C+Xintong&rft.au=Zhang%2C+Shoufeng&rft.au=Wang%2C+Zilong&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.202300945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202300945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon