Research Progress of Intramolecular π‐Stacked Small Molecules for Device Applications
Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can sta...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 22; pp. e2104125 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Unlike traditional covalent bond‐connected conjugated molecules, π‐stacked small molecules have special advantages in organic semiconductors. This review mainly focuses on the research development of π‐stacked molecular systems and introduces the new characteristics brought by the special molecular configuration and its application in organic semiconductors. |
---|---|
AbstractList | Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors. Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors. Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors. Unlike traditional covalent bond‐connected conjugated molecules, π‐stacked small molecules have special advantages in organic semiconductors. This review mainly focuses on the research development of π‐stacked molecular systems and introduces the new characteristics brought by the special molecular configuration and its application in organic semiconductors. |
Author | Jiang, Zuo‐Quan Yang, Sheng‐Yi Liao, Liang‐Sheng Lee, Shuit‐Tong Qu, Yang‐Kun |
Author_xml | – sequence: 1 givenname: Sheng‐Yi surname: Yang fullname: Yang, Sheng‐Yi organization: Soochow University – sequence: 2 givenname: Yang‐Kun surname: Qu fullname: Qu, Yang‐Kun organization: Soochow University – sequence: 3 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Macau University of Science and Technology – sequence: 4 givenname: Zuo‐Quan orcidid: 0000-0003-4447-2408 surname: Jiang fullname: Jiang, Zuo‐Quan email: zqjiang@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Shuit‐Tong surname: Lee fullname: Lee, Shuit‐Tong organization: Macau University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34595783$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMoOl62LiXgxs2MSdok7XLwOjCieAF3IZOeajVtxqRV3PkIvpnv4JMYHS8giKuzyPfn_Of_l9F84xpAaJ2SASWEbeui1gNGGCUpZXwO9ShntJ-SnM-jHskT3s9Fmi2h5RBuCCG5IGIRLSUpz7nMkh66PIUA2ptrfOLdlYcQsCvxqGm9rp0F01nt8cvT69PzWavNLRT4rNbW4qPZIwRcOo934b4ygIfTqa2MbivXhFW0UGobYO1zrqCL_b3zncP--PhgtDMc900iozsuC8FKzuUkM1pmTAtJJCkybngxiXaNoVIakgkGmY4QL5jOxSSTBXAOMk9W0Nbs36l3dx2EVtVVMGCtbsB1QbF4p5Tx3DSim7_QG9f5JrpTTEjGmKBERmrjk-omNRRq6qta-0f1lVkEBjPAeBeCh_IboUS9l6LeS1HfpURB-ktgqvYjpZhyZf-W5TPZQ2Xh8Z8larh7NPzRvgE-IKEY |
CitedBy_id | crossref_primary_10_1002_anie_202418008 crossref_primary_10_1002_anie_202501895 crossref_primary_10_1021_acs_jpca_2c09106 crossref_primary_10_1021_acsami_2c22266 crossref_primary_10_1002_adom_202201071 crossref_primary_10_1002_adfm_202201512 crossref_primary_10_1002_adom_202300432 crossref_primary_10_1002_anie_202408712 crossref_primary_10_3390_molecules27134048 crossref_primary_10_1002_adfm_202412267 crossref_primary_10_1007_s11426_024_2026_2 crossref_primary_10_1021_acs_jpcc_4c02935 crossref_primary_10_1002_chem_202403203 crossref_primary_10_1039_D1TC05711A crossref_primary_10_1007_s40843_023_2563_2 crossref_primary_10_1002_anie_202201886 crossref_primary_10_1039_D3QM01106B crossref_primary_10_3390_molecules28247994 crossref_primary_10_1002_agt2_624 crossref_primary_10_1002_anie_202413129 crossref_primary_10_1021_acs_jpca_2c03114 crossref_primary_10_1016_j_dyepig_2024_112597 crossref_primary_10_1021_acsmaterialslett_3c00310 crossref_primary_10_1007_s11426_022_1249_7 crossref_primary_10_1002_adom_202300017 crossref_primary_10_1002_ange_202500923 crossref_primary_10_1002_adfm_202422927 crossref_primary_10_1039_D3TC01632C crossref_primary_10_1038_s41467_023_42028_5 crossref_primary_10_1021_jacs_4c14818 crossref_primary_10_1002_advs_202412260 crossref_primary_10_1002_ange_202200290 crossref_primary_10_1039_D4CP03970J crossref_primary_10_1021_jacs_3c08627 crossref_primary_10_1021_acs_jpca_4c01667 crossref_primary_10_1002_cplu_202400354 crossref_primary_10_1002_adfm_202404148 crossref_primary_10_1021_acs_orglett_3c04093 crossref_primary_10_1038_s41467_022_31184_9 crossref_primary_10_1002_anie_202206861 crossref_primary_10_1021_acs_macromol_3c01977 crossref_primary_10_1039_D4TC05428H crossref_primary_10_1002_ange_202201886 crossref_primary_10_1002_ange_202310047 crossref_primary_10_1002_bmm2_12009 crossref_primary_10_1039_D3QI02342G crossref_primary_10_1002_ange_202305404 crossref_primary_10_1002_ange_202300353 crossref_primary_10_1021_acsaom_3c00446 crossref_primary_10_1002_ange_202418008 crossref_primary_10_1016_j_cej_2023_146326 crossref_primary_10_3390_molecules27249068 crossref_primary_10_1063_5_0227631 crossref_primary_10_1002_ange_202312571 crossref_primary_10_1021_acs_macromol_3c00876 crossref_primary_10_1002_ange_202312297 crossref_primary_10_1021_acs_jpcc_4c04350 crossref_primary_10_1002_anie_202201464 crossref_primary_10_1016_j_dyepig_2023_111858 crossref_primary_10_1039_D1QM01588E crossref_primary_10_1038_s41598_024_84769_3 crossref_primary_10_1002_anie_202212079 crossref_primary_10_1002_ange_202413129 crossref_primary_10_1039_D2QM01379G crossref_primary_10_70401_smd_2025_0001 crossref_primary_10_1002_anie_202305404 crossref_primary_10_1002_anie_202300353 crossref_primary_10_1002_adma_202210772 crossref_primary_10_1002_adma_202407882 crossref_primary_10_1021_acsaom_4c00527 crossref_primary_10_1002_ange_202201464 crossref_primary_10_1002_adma_202210085 crossref_primary_10_1021_jacs_5c02567 crossref_primary_10_1039_D3QI02559D crossref_primary_10_1021_acs_inorgchem_4c02223 crossref_primary_10_1021_acs_jpcc_4c01369 crossref_primary_10_1002_asia_202401488 crossref_primary_10_1002_anie_202312571 crossref_primary_10_1002_anie_202500923 crossref_primary_10_1002_anie_202312297 crossref_primary_10_1021_acs_langmuir_4c00504 crossref_primary_10_1038_s41528_022_00212_5 crossref_primary_10_1002_ange_202212079 crossref_primary_10_1016_j_dyepig_2023_111572 crossref_primary_10_1039_D4TC03810J crossref_primary_10_1002_adma_202403329 crossref_primary_10_1002_ange_202501895 crossref_primary_10_1021_acsmaterialslett_2c00889 crossref_primary_10_1002_ange_202206861 crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1002_adma_202415951 crossref_primary_10_1021_acs_cgd_2c00120 crossref_primary_10_1002_adma_202209088 crossref_primary_10_1039_D1TB02738G crossref_primary_10_1002_anie_202310047 crossref_primary_10_3390_molecules28124642 crossref_primary_10_1039_D2TC04403J crossref_primary_10_1002_ange_202408712 crossref_primary_10_1016_j_jlumin_2023_120087 crossref_primary_10_1002_agt2_70024 crossref_primary_10_1002_adfm_202209708 crossref_primary_10_1021_acs_langmuir_4c04715 crossref_primary_10_1039_D2CC06763C crossref_primary_10_1002_anie_202413295 crossref_primary_10_1002_agt2_310 crossref_primary_10_1039_D3CP02553E crossref_primary_10_1016_j_cej_2023_148314 crossref_primary_10_1002_ange_202402704 crossref_primary_10_1002_anie_202117872 crossref_primary_10_1016_j_dyepig_2024_112484 crossref_primary_10_1002_adom_202202224 crossref_primary_10_1002_smll_202407480 crossref_primary_10_1039_D5CC00059A crossref_primary_10_1002_advs_202200374 crossref_primary_10_1021_acsaom_3c00370 crossref_primary_10_1007_s11426_022_1382_5 crossref_primary_10_1021_acs_langmuir_3c03947 crossref_primary_10_1021_jacs_2c13843 crossref_primary_10_1021_jacs_4c15216 crossref_primary_10_1039_D3QM00210A crossref_primary_10_1039_D4CS00218K crossref_primary_10_1002_anie_202200290 crossref_primary_10_1016_j_orgel_2024_107072 crossref_primary_10_1002_adom_202400860 crossref_primary_10_1021_acs_inorgchem_4c05326 crossref_primary_10_1021_acsami_3c14230 crossref_primary_10_1002_anie_202301896 crossref_primary_10_1002_cptc_202400162 crossref_primary_10_1002_adfm_202411957 crossref_primary_10_1002_ange_202413295 crossref_primary_10_1002_ange_202117872 crossref_primary_10_1002_adma_202306617 crossref_primary_10_1002_smll_202311087 crossref_primary_10_1002_adfm_202407721 crossref_primary_10_1002_adfm_202208082 crossref_primary_10_1016_j_cej_2023_144505 crossref_primary_10_1007_s11426_023_1669_9 crossref_primary_10_1039_D1TC04875A crossref_primary_10_1002_adma_202208378 crossref_primary_10_1039_D4QM00720D crossref_primary_10_1088_1361_6633_ace06a crossref_primary_10_1002_ange_202301896 crossref_primary_10_1021_jacsau_3c00845 crossref_primary_10_1002_anie_202402704 crossref_primary_10_59717_j_xinn_mater_2023_100026 crossref_primary_10_1016_j_saa_2025_125827 crossref_primary_10_1039_D4TC05181E crossref_primary_10_1002_adma_202304032 crossref_primary_10_1002_pol_20210870 |
Cites_doi | 10.1038/nphoton.2011.288 10.1038/s41578-020-00254-z 10.1016/j.joule.2019.01.004 10.1002/adma.201502772 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U 10.1038/nature04645 10.1021/acs.jpca.8b06535 10.1039/b901261n 10.1002/anie.202105628 10.1038/s41566-020-0668-z 10.1039/D1SC02335G 10.1002/9783527621309 10.1016/j.cclet.2020.08.045 10.1021/acs.jpcc.0c05980 10.1126/science.1228604 10.1063/1.2244560 10.1038/s41570-017-0045 10.1039/C9TC01585J 10.1557/mrs2008.142 10.1039/C6CS00368K 10.1021/jacs.7b00873 10.1002/3527603964 10.31635/ccschem.021.202000677 10.1038/176915a0 10.1021/jo101999b 10.1038/natrevmats.2016.2 10.1039/C7CC05198K 10.1021/acs.jpcc.9b01900 10.1063/1.1712006 10.1016/j.ccr.2018.08.015 10.31635/ccschem.019.20180020 10.1002/adma.201402532 10.1002/asia.201900401 10.1063/1.2834918 10.1002/adma.201304373 10.1021/acsenergylett.9b00528 10.1039/D1CS00198A 10.1021/jacs.7b10257 10.1039/C4CS00143E 10.1126/science.270.5243.1789 10.1021/cr050149z 10.1002/adma.201701248 10.1002/adma.201700553 10.1021/ja100936w 10.1038/ncomms9476 10.1038/s41467-019-11467-4 10.1021/ar990114j 10.1021/acs.chemrev.6b00354 10.1021/cr200087r 10.1021/acs.accounts.6b00305 10.1002/anie.201709125 10.1038/s41586-020-1937-1 10.1002/adma.201801830 10.1002/adfm.202010281 10.1002/anie.201915433 10.1039/C8TC05612A 10.1016/0263-7855(96)00018-5 10.1038/347539a0 10.1002/adma.201601675 10.1002/9783527685172 10.1002/adom.202002204 10.1002/adfm.201903112 10.1038/natrevmats.2017.43 10.1002/adma.202003885 10.1002/chem.201403811 10.1002/adom.201800538 10.1021/acscatal.5b02204 10.1038/nmat4154 10.1039/C6TC00825A 10.1002/anie.202013051 10.1063/1.98799 10.1021/ja3066623 10.1002/adma.201602127 10.1021/jo100688m 10.1002/anie.201705945 10.1039/c0cs00160k 10.1016/j.cej.2020.125648 10.1016/j.xcrp.2021.100364 10.1039/D1CC02311J 10.1021/acs.chemrev.8b00016 10.1038/s41566-020-0667-0 10.1016/S0379-6779(98)80049-0 10.1021/acs.chemrev.0c01017 10.1002/anie.202104145 10.1039/C4NJ00955J 10.1021/acs.chemrev.1c00078 10.1002/anie.202011384 10.1038/s41467-020-20311-z 10.1002/adma.202008071 10.1038/nphoton.2012.31 10.1039/C6TA09049D 10.1039/C9MH00130A 10.1021/j100887a008 10.1039/C9TA00343F 10.1002/adma.201907539 10.1063/1.3558906 10.1038/nature11687 10.1039/C7CS00803A 10.1039/C7TC04626J 10.1021/acsami.6b14285 10.1063/1.1306639 10.1016/j.ccr.2017.07.016 10.1038/nature13829 10.1021/jacs.9b00053 10.1021/accountsmr.1c00045 10.1021/ja111320n 10.1002/chem.201103131 10.1038/s41566-019-0415-5 10.1038/s41563-020-0710-z 10.1021/cr0501386 10.1021/acsnano.9b02940 10.1016/j.cej.2020.126173 10.1021/jacs.9b13019 10.1002/anie.201909076 10.1038/nmat4259 10.1039/C5CP07883K 10.1016/j.cej.2021.129366 10.3389/fchem.2019.00199 10.1021/ja909084e 10.1246/cl.200337 10.1021/jacs.6b02004 10.1039/C9SC01686D 10.1002/adma.200401373 10.1016/j.chempr.2017.10.005 10.1021/acs.jpclett.1c00265 10.1021/ja035626e 10.1002/advs.201700989 10.1021/jacs.0c11053 10.1021/j100168a018 10.1021/ja01156a059 10.1038/nmat2317 10.1038/s42254-019-0022-x 10.31635/ccschem.020.202000355 10.1039/C7CP02110K 10.1016/j.cclet.2016.06.031 10.1039/C5DT00231A 10.1039/C6QO00204H 10.1039/C5CS00424A 10.1016/j.mser.2020.100581 10.1002/anie.202000061 10.1007/s11426-015-5415-9 10.1039/C4SC01404A 10.1002/adma.201404317 10.1021/jacs.8b00809 10.31635/ccschem.020.202000243 10.1002/agt2.4 10.1063/1.3382344 10.1039/D0CC01738H 10.1002/adpr.202000136 10.1021/cr400704v 10.1038/ncomms2083 10.1021/acs.accounts.0c00677 10.1038/171737a0 10.1021/acs.orglett.8b02995 10.1021/acsami.8b16784 10.1002/anie.201709874 10.1093/nsr/nwz203 10.1002/anie.201603232 10.1063/1.1675677 10.1039/C8SC04991B 10.1021/jacs.7b08592 10.1021/acs.chemmater.9b02712 10.1039/c3sc53442a 10.1039/C9CC07169E 10.1039/C8CC04594A 10.1021/acsenergylett.0c02384 10.1038/s41563-020-0797-2 10.1002/ejoc.201900061 10.1002/anie.201902264 10.1002/chem.201704182 10.1021/ja00170a016 10.1039/C9TC06204A 10.1039/c2sc20045g 10.1063/1.3692184 10.1021/ar7000638 10.1039/C6TC03767D 10.1038/ncomms15195 10.1021/om4011406 10.1002/chem.201100254 10.1002/advs.201902087 10.1039/b904665h 10.1021/jacs.7b05082 10.3390/ijms9081527 10.1038/nphoton.2014.12 10.1002/anie.201813604 10.1039/c39850000474 10.1038/nature08003 10.1039/C8CS00157J 10.1002/adfm.202010547 10.1063/1.1383587 10.1002/adom.201800385 10.1002/bbpc.19630670810 10.1126/science.7802858 10.1126/science.aat2612 10.1021/cr100380z 10.1039/C4CS00325J 10.1039/D0TC00975J 10.1021/acs.chemrev.5b00680 10.1002/jcc.22885 10.1039/c3dt52465e 10.1002/adma.201807577 10.1039/D0QM00420K 10.1038/s41377-021-00516-7 10.1039/D0NJ00905A 10.1021/ja00784a066 10.1007/s40242-021-0381-6 10.1016/j.cplett.2004.06.011 10.1038/natrevmats.2018.20 10.1038/25954 10.1039/D0TC04547K 10.1021/ja01652a081 10.1002/adma.201204724 10.1021/acsami.0c09139 10.1039/D0CS00084A 10.1039/C4CS00262H 10.1021/acs.nanolett.8b01082 10.1039/C9SC01821B 10.1007/s11426-020-9841-5 10.1007/978-4-431-54129-5 10.1039/C9SC02282A 10.1021/acsami.1c04779 10.1021/acs.chemrev.9b00033 10.1002/adfm.201700986 10.1021/jacs.6b02463 10.1039/b105159h 10.1021/acs.jpclett.6b02492 10.1002/chem.200701036 10.1021/jacs.9b13956 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 10.1002/anie.201411909 10.1021/jacs.1c03882 10.1002/adma.201102804 10.1002/adma.201601737 10.1002/adma.201201124 10.1016/j.dyepig.2016.11.037 10.1002/anie.201609459 10.1039/c3cs60471c 10.1039/b810189b 10.1021/acs.jpclett.9b01040 10.1002/asia.201300002 10.1021/ja300278e 10.1002/anie.202004361 10.1039/c39770000578 10.1039/D0TA00047G 10.1002/adma.201900110 10.1021/ja109745a 10.1016/j.jlumin.2011.06.027 10.1021/ja3019065 10.1039/b822665m 10.1039/C5CC05022G 10.1021/acs.chemrev.6b00144 10.1002/anie.202011830 10.1039/C6TA06978A 10.1021/acs.jpclett.9b03363 10.1002/adma.202007811 10.1021/acsami.7b05615 10.1039/D1TC02316K 10.1021/acs.joc.0c01200 10.1021/acs.chemrev.5b00263 10.1002/adfm.201505014 10.1021/ja0702824 10.1039/C5CS00620A 10.1021/jacs.0c08980 10.1007/978-981-15-2309-0 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202104125 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34595783 10_1002_adma_202104125 ADMA202104125 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51773141; 51873139; 61961160731; 51821002 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices – fundername: Natural Science Foundation of Jiangsu Province of China funderid: BK20181442 – fundername: National Natural Science Foundation of China grantid: 61961160731 – fundername: National Natural Science Foundation of China grantid: 51821002 – fundername: National Natural Science Foundation of China grantid: 51773141 – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20181442 – fundername: Joint International Research Laboratory of Carbon-Based Functional Materials and Devices – fundername: National Natural Science Foundation of China grantid: 51873139 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3735-57d62f557b8ca782a67070d85c5db096cc177c0862e8a7b85d2a96b87de55e793 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:02:18 EDT 2025 Mon Jul 14 10:41:16 EDT 2025 Wed Feb 19 02:23:38 EST 2025 Thu Apr 24 22:50:21 EDT 2025 Tue Jul 01 02:33:08 EDT 2025 Wed Jan 22 16:24:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | small molecule through-space interaction π-stacked configuration optoelectronics organic semiconductor |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-57d62f557b8ca782a67070d85c5db096cc177c0862e8a7b85d2a96b87de55e793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4447-2408 |
PMID | 34595783 |
PQID | 2672226107 |
PQPubID | 2045203 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2578775954 proquest_journals_2672226107 pubmed_primary_34595783 crossref_primary_10_1002_adma_202104125 crossref_citationtrail_10_1002_adma_202104125 wiley_primary_10_1002_adma_202104125_ADMA202104125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1953 1993 2019; 171 262 48 2021 2020; 9 1 2014 2015; 26 6 1985 1991 2009 2021 2007 2014; 95 8 6 40 43 2019; 10 2016 2019 2020; 4 7 8 2021 2020; 32 3 2019; 13 1990 2010; 112 132 2019; 14 2019; 58 1987 1990 1998 2006 2012 2009 1997 2018 2016 2015 2020 2019 2016 2012 2013 2013 2017 2016 2019 2017; 51 347 395 440 492 459 3 28 115 32 29 26 24 8 25 29 28 11 56 2016 2019; 116 1 2020; 14 2008; 33 2018 2019; 47 10 2020 2020 2020 2019 2019 2020 2020 2021; 49 402 44 31 123 56 399 9 2015 2016; 27 138 2017; 9 2012 2011 2016; 18 131 18 2019 2019 2021; 10 7 57 1977 2020 2017 2016 2021; 578 139 6 50 2012 2015; 134 44 2020; 8 2018; 6 2020 2021; 85 64 2019 2012 2012 2010 2017; 1 3 134 39 56 2012; 134 2018; 5 2019 2019; 3 31 2015; 44 2011 2014; 76 38 2011; 23 2019 2019 2019 2020 2015 2021; 58 6 10 8 14 20 2001; 18 2020 2021 2021 2021 2017 2020 2021; 11 60 33 33 56 59 60 2016 2014; 1 43 2017 2019 2021; 5 141 54 2003; 125 2020 2016 2021 2021; 2 55 2019 2020; 2019 7 2012; 338 2016 2011 2008 2019 2015 2013 2006; 125 1963 1967 1971 1973 2007 2020; 67 47 55 95 129 4 2021; 9 2011 2020; 98 142 2010; 75 2019 2020 2018; 7 124 355 2014 2012 2017 2015 2017; 8 6 27 14 46 2014 2017 2020 2020 2021; 139 14 19 60 2015; 51 2014 1995 2018 2017 2017 2007 2020 2019 2021 2021; 26 270 361 2 107 49 4 6 121 2018 2016 2021 2014 2009; 140 116 12 43 38 2008; 128 2008; 10 2019 2017 2016 2020; 7 138 4 142 1996; 14 1955 2004 1954 1951 2012 2019; 76 73 136 2018; 20 2012; 33 2017; 139 2012; 3 2021 2016 2016 2017 2017; 3 4 3 5 23 2020 2020 2021 2020; 7 32 60 142 2017 2021 2018 2020 2015 2015 2021 2011 2011 2016 2017; 8 2 18 59 54 58 12 133 133 49 29 2004; 393 1998 2001 2019 2002 2007 2019 2018 2017 2012; 10 34 119 14 107 119 30 3 112 2017; 56 2011 2005 2008 2011 2021 2000 2015 2011 2007 2019 2017 2019; 5 17 9 40 77 44 17 13 55 9 58 2010; 132 2016 2021 2017 2015 2015 2014 2009 2021; 27 37 139 115 44 20 2017 2021 2021 2020 2016 2020; 1 12 31 32 116 142 2017; 19 2015 2017 2018 2019 2020 2021 2016 2012 2020 2018 2021 2021 2021 2016 2019 2019 2020; 8 122 119 142 121 45 112 6 2 10 13 138 10 13 12 2014 2021; 33 418 2018 2014 2017 2014 2020; 376 5 53 5 59 2016; 28 2018; 54 2001; 115 1965 1997 2014; 69 91 515 e_1_2_9_79_1 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_10_1 e_1_2_9_33_3 e_1_2_9_56_1 e_1_2_9_10_3 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_56_4 e_1_2_9_56_3 e_1_2_9_18_2 e_1_2_9_18_1 e_1_2_9_18_3 e_1_2_9_19_11 e_1_2_9_19_10 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_83_2 e_1_2_9_22_3 e_1_2_9_22_2 e_1_2_9_6_3 e_1_2_9_6_2 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_6_6 e_1_2_9_6_5 e_1_2_9_6_4 e_1_2_9_72_2 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_11_3 e_1_2_9_11_2 e_1_2_9_3_20 e_1_2_9_19_5 e_1_2_9_19_4 e_1_2_9_19_7 e_1_2_9_19_6 Sun S.‐S. (e_1_2_9_1_1) 2016 e_1_2_9_19_9 e_1_2_9_19_8 e_1_2_9_57_2 e_1_2_9_19_1 e_1_2_9_19_3 e_1_2_9_19_2 e_1_2_9_3_14 e_1_2_9_3_15 e_1_2_9_3_12 e_1_2_9_3_13 e_1_2_9_61_1 e_1_2_9_3_18 e_1_2_9_3_19 e_1_2_9_84_1 e_1_2_9_3_16 e_1_2_9_23_2 e_1_2_9_84_2 e_1_2_9_3_17 e_1_2_9_23_1 e_1_2_9_5_3 e_1_2_9_5_2 e_1_2_9_5_1 e_1_2_9_3_10 e_1_2_9_3_11 Yersin H. (e_1_2_9_1_4) 2019 e_1_2_9_5_9 e_1_2_9_5_8 e_1_2_9_5_7 Israelachvili J. N. (e_1_2_9_70_1) 2015 e_1_2_9_5_6 e_1_2_9_5_5 e_1_2_9_46_2 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_31_4 e_1_2_9_31_5 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_31_3 e_1_2_9_54_1 e_1_2_9_16_8 e_1_2_9_16_7 e_1_2_9_16_9 e_1_2_9_31_8 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_31_6 e_1_2_9_16_1 e_1_2_9_31_7 e_1_2_9_16_4 e_1_2_9_39_4 e_1_2_9_16_3 e_1_2_9_16_6 e_1_2_9_39_2 e_1_2_9_16_5 e_1_2_9_39_3 e_1_2_9_20_1 e_1_2_9_20_3 e_1_2_9_43_3 e_1_2_9_20_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_20_4 e_1_2_9_43_2 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_5_10 e_1_2_9_8_5 e_1_2_9_8_4 e_1_2_9_8_3 Brütting W. (e_1_2_9_1_6) 2013 e_1_2_9_8_2 e_1_2_9_28_1 e_1_2_9_55_3 e_1_2_9_55_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Miyata S. (e_1_2_9_3_7) 1997 e_1_2_9_17_6 e_1_2_9_55_7 e_1_2_9_55_6 e_1_2_9_17_1 e_1_2_9_55_5 e_1_2_9_55_4 e_1_2_9_17_3 e_1_2_9_17_2 e_1_2_9_17_5 e_1_2_9_55_9 e_1_2_9_17_4 e_1_2_9_55_8 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_21_1 e_1_2_9_44_3 e_1_2_9_67_1 e_1_2_9_21_4 e_1_2_9_21_3 e_1_2_9_44_1 Sun S.‐S. (e_1_2_9_5_4) 2017 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_29_5 e_1_2_9_44_6 e_1_2_9_21_5 e_1_2_9_44_4 e_1_2_9_44_5 e_1_2_9_29_2 e_1_2_9_29_1 e_1_2_9_29_4 e_1_2_9_29_3 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_14_4 e_1_2_9_14_3 e_1_2_9_37_1 e_1_2_9_14_6 e_1_2_9_14_5 e_1_2_9_14_8 e_1_2_9_14_7 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_49_2 e_1_2_9_16_16 e_1_2_9_16_14 e_1_2_9_49_5 e_1_2_9_16_15 e_1_2_9_16_12 e_1_2_9_49_3 e_1_2_9_16_13 e_1_2_9_49_4 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_38_2 e_1_2_9_15_3 e_1_2_9_15_2 e_1_2_9_38_5 e_1_2_9_15_4 e_1_2_9_38_3 e_1_2_9_38_4 e_1_2_9_42_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_5 e_1_2_9_1_3 e_1_2_9_9_6 e_1_2_9_9_5 e_1_2_9_9_4 e_1_2_9_9_3 e_1_2_9_9_2 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_50_3 e_1_2_9_50_4 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_50_7 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_50_5 e_1_2_9_12_1 e_1_2_9_50_6 Wu G. (e_1_2_9_46_1) 2019; 2019 e_1_2_9_35_2 e_1_2_9_58_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_5 e_1_2_9_4_4 e_1_2_9_4_3 e_1_2_9_4_2 e_1_2_9_4_1 e_1_2_9_4_9 e_1_2_9_4_8 e_1_2_9_4_7 e_1_2_9_4_6 Kampen T. U. (e_1_2_9_1_2) 2011 e_1_2_9_24_2 e_1_2_9_47_1 e_1_2_9_16_10 e_1_2_9_51_2 e_1_2_9_16_11 e_1_2_9_51_3 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_55_11 e_1_2_9_55_12 e_1_2_9_55_10 e_1_2_9_13_3 e_1_2_9_13_2 e_1_2_9_13_5 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_13_4 e_1_2_9_36_2 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_3_6 e_1_2_9_3_5 e_1_2_9_3_4 e_1_2_9_3_3 e_1_2_9_3_2 e_1_2_9_3_1 e_1_2_9_3_9 e_1_2_9_3_8 e_1_2_9_25_2 e_1_2_9_25_1 e_1_2_9_25_4 e_1_2_9_25_3 e_1_2_9_48_1 e_1_2_9_25_6 e_1_2_9_25_5 |
References_xml | – volume: 14 start-page: 1921 year: 2019 publication-title: Chem.‐ Asian J. – volume: 33 418 start-page: 964 year: 2014 2021 publication-title: Organometallics Chem. Eng. J. – volume: 26 6 start-page: 7931 8476 year: 2014 2015 publication-title: Adv. Mater. Nat. Commun. – volume: 10 34 119 14 107 119 30 3 112 start-page: 365 359 3 99 1066 3 724 2208 year: 1998 2001 2019 2002 2007 2019 2018 2017 2012 publication-title: Adv. Mater. Acc. Chem. Res. Chem. Rev. Adv. Mater. Chem. Rev. Chem. Rev. Adv. Mater. Chem Chem. Rev. – volume: 116 1 start-page: 4318 211 year: 2016 2019 publication-title: Chem. Rev. Nat. Rev. Phys. – volume: 7 124 355 start-page: 1198 101 year: 2019 2020 2018 publication-title: J. Mater. Chem. C J. Phys. Chem. C Coord. Chem. Rev. – volume: 10 7 57 start-page: 2915 199 7144 year: 2019 2019 2021 publication-title: Chem. Sci. Front. Chem. Chem. Commun. – volume: 134 start-page: 4080 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 698 year: 2008 publication-title: MRS Bull. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 1740 year: 2001 publication-title: Chem. Commun. – volume: 58 6 10 8 14 20 start-page: 1215 7352 7384 685 175 year: 2019 2019 2019 2020 2015 2021 publication-title: Angew. Chem., Int. Ed. Mater. Horiz. Chem. Sci. J. Mater. Chem. C Nat. Mater. Nat. Mater. – volume: 140 116 12 43 38 start-page: 4884 9565 2820 4978 1714 year: 2018 2016 2021 2014 2009 publication-title: J. Am. Chem. Soc. Chem. Rev. J. Phys. Chem. Lett. Dalton Trans. Chem. Soc. Rev. – volume: 75 start-page: 6104 year: 2010 publication-title: J. Org. Chem. – year: 2016 2011 2008 2019 2015 2013 – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 139 14 19 60 start-page: 4894 643 1332 3994 year: 2014 2017 2020 2020 2021 publication-title: J. Am. Chem. Soc. Nat. Photonics Nat. Mater. Angew. Chem., Int. Ed. – volume: 32 3 start-page: 1245 1757 year: 2021 2020 publication-title: Chin. Chem. Lett. CCS Chem. – volume: 11 60 33 33 56 59 60 start-page: 6191 2058 year: 2020 2021 2021 2021 2017 2020 2021 publication-title: J. Phys. Chem. Lett. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 5 17 9 40 77 44 17 13 55 9 58 start-page: 716 285 1527 2943 904 8484 5800 6194 3848 year: 2011 2005 2008 2011 2021 2000 2015 2011 2007 2019 2017 2019 publication-title: Nat. Photonics Adv. Mater. Int. J. Mol. Sci. Chem. Soc. Rev. Adv. Funct. Mater. Appl. Phys. Lett. Chem. Soc. Rev. Chem. ‐ Eur. J. Chem. ‐ Eur. J. Chem. Commun. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. – volume: 28 start-page: 6976 year: 2016 publication-title: Adv. Mater. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 10 start-page: 8129 year: 2019 publication-title: Chem. Sci. – volume: 27 37 139 115 44 20 start-page: 1115 1 4228 4332 9565 year: 2016 2021 2017 2015 2015 2014 2009 2021 publication-title: Chin. Chem. Lett. Chem. Res. Chin. Univ. J. Am. Chem. Soc. Chem. Rev. Chem. Soc. Rev. Chem. ‐ Eur. J. Chem. Commun. J. Am. Chem. Soc. – volume: 8 6 27 14 46 start-page: 326 253 330 915 year: 2014 2012 2017 2015 2017 publication-title: Nat. Photonics Nat. Photonics Adv. Funct. Mater. Nat. Mater. Chem. Soc. Rev. – volume: 8 122 119 142 121 45 112 6 2 10 13 138 10 13 12 start-page: 42 7455 8846 2373 1542 1463 76 9743 6689 8099 year: 2017 2018 2019 2020 2021 2016 2012 2020 2018 2021 2021 2021 2016 2019 2019 2020 publication-title: J. Phys. Chem. Lett. J. Phys. Chem. A Chem. Rev. J. Am. Chem. Soc. Chem. Rev. Chem. Soc. Rev. Chem. Rev. Adv. Opt. Mater. Adv. Photonics Res. Light: Sci. Appl. ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Chem. Sci. ACS Nano ACS Appl. Mater. Interfaces – volume: 2 55 start-page: 1268 7171 501 year: 2020 2016 2021 2021 publication-title: CCS Chem. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Acc. Mater. Res. – volume: 5 141 54 start-page: 3475 5402 961 year: 2017 2019 2021 publication-title: J. Mater. Chem. A J. Am. Chem. Soc. Acc. Chem. Res. – volume: 76 38 start-page: 316 5686 year: 2011 2014 publication-title: J. Org. Chem. New J. Chem. – volume: 58 start-page: 8405 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 67 47 55 95 129 4 start-page: 791 1183 5344 948 6839 3623 year: 1963 1967 1971 1973 2007 2020 publication-title: Ber. Bunsen‐Ges. Phys. Chem. J. Chem. Phys. J. Chem. Phys. J. Am. Chem. Soc. J. Am. Chem. Soc. Mater. Chem. Front. – volume: 13 start-page: 540 year: 2019 publication-title: Nat. Photonics – volume: 49 402 44 31 123 56 399 9 start-page: 932 9743 5981 5957 8819 year: 2020 2020 2020 2019 2019 2020 2020 2021 publication-title: Chem. Lett. Chem. Eng. J. New J. Chem. Chem. Mater. J. Phys. Chem. C Chem. Commun. Chem. Eng. J. J. Mater. Chem. C – volume: 18 131 18 start-page: 3765 2775 9702 year: 2012 2011 2016 publication-title: Chem. ‐ Eur. J. J. Lumin. Phys. Chem. Chem. Phys. – volume: 3 start-page: 2191 year: 2012 publication-title: Chem. Sci. – volume: 132 start-page: 6498 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 1 43 start-page: 7378 year: 2016 2014 publication-title: Nat. Rev. Mater. Chem. Soc. Rev. – year: 2015 – volume: 134 44 start-page: 5939 year: 2012 2015 publication-title: J. Am. Chem. Soc. Dalton Trans. – volume: 10 start-page: 3576 year: 2019 publication-title: Nat. Commun. – volume: 47 10 start-page: 6947 2648 year: 2018 2019 publication-title: Chem. Soc. Rev. J. Phys. Chem. Lett. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – start-page: 578 year: 1977 publication-title: J. Chem. Soc., Chem. Commun. – volume: 44 start-page: 988 year: 2015 publication-title: Chem. Soc. Rev. – volume: 3 4 3 5 23 start-page: 633 9316 1091 year: 2021 2016 2016 2017 2017 publication-title: CCS Chem. J. Mater. Chem. C Org. Chem. Front. J. Mater. Chem. C Chem. ‐ Eur. J. – volume: 578 139 6 50 start-page: 403 9799 873 7587 year: 2020 2017 2016 2021 publication-title: Nature J. Am. Chem. Soc. ACS Catal. Chem. Soc. Rev. – volume: 2019 7 start-page: 588 year: 2019 2020 publication-title: Research Natl. Sci. Rev. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 376 5 53 5 59 start-page: 533 1915 9210 3680 year: 2018 2014 2017 2014 2020 publication-title: Coord. Chem. Rev. Chem. Sci. Chem. Commun. Chem. Sci. Angew. Chem., Int. Ed. – volume: 10 start-page: 6615 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 27 138 start-page: 1170 4955 year: 2015 2016 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 125 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 636 year: 2020 publication-title: Nat. Photonics – volume: 125 year: 2006 publication-title: J. Chem. Phys. – volume: 4 7 8 start-page: 8136 6501 year: 2016 2019 2020 publication-title: J. Mater. Chem. A J. Mater. Chem. A J. Mater. Chem. A – volume: 112 132 start-page: 5525 5735 year: 1990 2010 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 393 start-page: 51 year: 2004 publication-title: Chem. Phys. Lett. – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 20 start-page: 6868 year: 2018 publication-title: Org. Lett. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 69 91 515 start-page: 755 311 96 year: 1965 1997 2014 publication-title: J. Phys. Chem. Synth. Met. Nature – volume: 3 31 start-page: 1140 year: 2019 2019 publication-title: Joule Adv. Mater. – volume: 51 347 395 440 492 459 3 28 115 32 29 26 24 8 25 29 28 11 56 start-page: 913 539 151 908 234 234 8449 2002 3410 1253 2205 479 1096 1571 year: 1987 1990 1998 2006 2012 2009 1997 2018 2016 2015 2020 2019 2016 2012 2013 2013 2017 2016 2019 2017 publication-title: Appl. Phys. Lett. Nature Nature Nature Nature Nature Nat. Rev. Mater. Adv. Mater. Chem. Rev. Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Mater. Chem. Asian J. Adv. Mater. Adv. Mater. Adv. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. – volume: 23 start-page: 5430 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 4253 year: 2020 publication-title: J. Mater. Chem. C – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graphics – volume: 115 start-page: 3540 year: 2001 publication-title: J. Chem. Phys. – volume: 95 8 6 40 43 start-page: 474 5802 76 168 543 4084 year: 1985 1991 2009 2021 2007 2014 publication-title: J. Chem. Soc., Chem. Commun. J. Phys. Chem. Nat. Mater. Nat. Rev. Mater. Acc. Chem. Res. Chem. Soc. Rev. – volume: 1 3 134 39 56 start-page: 181 1086 7176 4195 year: 2019 2012 2012 2010 2017 publication-title: CCS Chem. Nat. Commun. J. Am. Chem. Soc. Chem. Soc. Rev. Angew. Chem., Int. Ed. – volume: 9 start-page: 1678 year: 2021 publication-title: J. Mater. Chem. C – volume: 171 262 48 start-page: 737 1025 971 year: 1953 1993 2019 publication-title: Nature Science Chem. Soc. Rev. – volume: 128 year: 2008 publication-title: J. Chem. Phys. – volume: 76 73 136 start-page: 915 6132 5691 3073 year: 1955 2004 1954 1951 2012 2019 publication-title: Nature J. Am. Chem. Soc. J. Am. Chem. Soc. J. Chem. Phys. Eur. J. Org. Chem. – volume: 26 270 361 2 107 49 4 6 121 start-page: 10 1789 1094 1324 2828 1241 598 8234 year: 2014 1995 2018 2017 2017 2007 2020 2019 2021 2021 publication-title: Adv. Mater. Science Science Nat. Rev. Mater. Chem. Rev. Chem. Soc. Rev. ACS Energy Lett. ACS Energy Lett. Chem. Rev. – volume: 1 12 31 32 116 142 start-page: 0045 8589 2059 year: 2017 2021 2021 2020 2016 2020 publication-title: Nat. Rev. Chem. Chem. Sci. Adv. Funct. Mater. Adv. Mater. Chem. Rev. J. Am. Chem. Soc. – volume: 85 64 start-page: 165 year: 2020 2021 publication-title: J. Org. Chem. Sci. China: Chem. – volume: 7 32 60 142 start-page: 5213 year: 2020 2020 2021 2020 publication-title: Adv. Sci. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 8 2 18 59 54 58 12 133 133 49 29 start-page: 4200 4581 4231 831 167 2136 2370 1852 year: 2017 2021 2018 2020 2015 2015 2021 2011 2011 2016 2017 publication-title: Nat. Commun. Cell Rep. Phys. Sci. Nano Lett. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Sci. China: Chem. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. Acc. Chem. Res. Adv. Mater. – volume: 54 start-page: 9278 year: 2018 publication-title: Chem. Commun. – volume: 28 start-page: 7620 year: 2016 publication-title: Adv. Mater. – volume: 7 138 4 142 start-page: 5910 162 6007 7469 year: 2019 2017 2016 2020 publication-title: J. Mater. Chem. C Dyes Pigm. J. Mater. Chem. C J. Am. Chem. Soc. – volume: 9 1 start-page: 45 year: 2021 2020 publication-title: Adv. Opt. Mater. Aggregate. – volume: 98 142 year: 2011 2020 publication-title: Appl. Phys. Lett. Mater. Sci. Eng., R – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_9_55_1 doi: 10.1038/nphoton.2011.288 – ident: e_1_2_9_6_4 doi: 10.1038/s41578-020-00254-z – ident: e_1_2_9_84_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_9_3_18 doi: 10.1002/adma.201502772 – ident: e_1_2_9_4_1 doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U – volume-title: Low Molecular Weight Organic Semiconductors year: 2011 ident: e_1_2_9_1_2 – ident: e_1_2_9_3_4 doi: 10.1038/nature04645 – ident: e_1_2_9_16_2 doi: 10.1021/acs.jpca.8b06535 – ident: e_1_2_9_21_5 doi: 10.1039/b901261n – ident: e_1_2_9_50_2 doi: 10.1002/anie.202105628 – ident: e_1_2_9_62_1 doi: 10.1038/s41566-020-0668-z – ident: e_1_2_9_44_2 doi: 10.1039/D1SC02335G – ident: e_1_2_9_1_3 doi: 10.1002/9783527621309 – ident: e_1_2_9_30_1 doi: 10.1016/j.cclet.2020.08.045 – ident: e_1_2_9_22_2 doi: 10.1021/acs.jpcc.0c05980 – ident: e_1_2_9_86_1 doi: 10.1126/science.1228604 – ident: e_1_2_9_76_1 doi: 10.1063/1.2244560 – ident: e_1_2_9_44_1 doi: 10.1038/s41570-017-0045 – ident: e_1_2_9_56_1 doi: 10.1039/C9TC01585J – ident: e_1_2_9_7_1 doi: 10.1557/mrs2008.142 – ident: e_1_2_9_38_5 doi: 10.1039/C6CS00368K – ident: e_1_2_9_8_2 doi: 10.1021/jacs.7b00873 – ident: e_1_2_9_25_2 doi: 10.1002/3527603964 – ident: e_1_2_9_29_1 doi: 10.31635/ccschem.021.202000677 – ident: e_1_2_9_25_1 doi: 10.1038/176915a0 – ident: e_1_2_9_35_1 doi: 10.1021/jo101999b – ident: e_1_2_9_52_1 doi: 10.1038/natrevmats.2016.2 – ident: e_1_2_9_49_3 doi: 10.1039/C7CC05198K – ident: e_1_2_9_31_5 doi: 10.1021/acs.jpcc.9b01900 – ident: e_1_2_9_9_2 doi: 10.1063/1.1712006 – ident: e_1_2_9_49_1 doi: 10.1016/j.ccr.2018.08.015 – ident: e_1_2_9_13_1 doi: 10.31635/ccschem.019.20180020 – ident: e_1_2_9_37_1 doi: 10.1002/adma.201402532 – ident: e_1_2_9_42_1 doi: 10.1002/asia.201900401 – ident: e_1_2_9_77_1 doi: 10.1063/1.2834918 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201304373 – ident: e_1_2_9_5_8 doi: 10.1021/acsenergylett.9b00528 – ident: e_1_2_9_39_4 doi: 10.1039/D1CS00198A – ident: e_1_2_9_40_1 doi: 10.1021/jacs.7b10257 – ident: e_1_2_9_52_2 doi: 10.1039/C4CS00143E – ident: e_1_2_9_5_2 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_9_5_6 doi: 10.1021/cr050149z – ident: e_1_2_9_19_11 doi: 10.1002/adma.201701248 – ident: e_1_2_9_3_17 doi: 10.1002/adma.201700553 – ident: e_1_2_9_79_1 doi: 10.1021/ja100936w – ident: e_1_2_9_37_2 doi: 10.1038/ncomms9476 – ident: e_1_2_9_27_1 doi: 10.1038/s41467-019-11467-4 – ident: e_1_2_9_4_2 doi: 10.1021/ar990114j – ident: e_1_2_9_44_5 doi: 10.1021/acs.chemrev.6b00354 – ident: e_1_2_9_16_7 doi: 10.1021/cr200087r – ident: e_1_2_9_19_10 doi: 10.1021/acs.accounts.6b00305 – ident: e_1_2_9_58_1 doi: 10.1002/anie.201709125 – ident: e_1_2_9_39_1 doi: 10.1038/s41586-020-1937-1 – ident: e_1_2_9_4_7 doi: 10.1002/adma.201801830 – ident: e_1_2_9_44_3 doi: 10.1002/adfm.202010281 – ident: e_1_2_9_50_6 doi: 10.1002/anie.201915433 – ident: e_1_2_9_22_1 doi: 10.1039/C8TC05612A – ident: e_1_2_9_82_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_9_3_2 doi: 10.1038/347539a0 – ident: e_1_2_9_65_1 doi: 10.1002/adma.201601675 – volume-title: Organic Photovoltaics: Mechanisms, Materials, and Devices year: 2017 ident: e_1_2_9_5_4 – ident: e_1_2_9_1_5 doi: 10.1002/9783527685172 – ident: e_1_2_9_57_1 doi: 10.1002/adom.202002204 – ident: e_1_2_9_3_12 doi: 10.1002/adfm.201903112 – ident: e_1_2_9_5_5 doi: 10.1038/natrevmats.2017.43 – volume-title: Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence year: 2019 ident: e_1_2_9_1_4 – ident: e_1_2_9_15_2 doi: 10.1002/adma.202003885 – ident: e_1_2_9_14_6 doi: 10.1002/chem.201403811 – ident: e_1_2_9_16_9 doi: 10.1002/adom.201800538 – ident: e_1_2_9_39_3 doi: 10.1021/acscatal.5b02204 – ident: e_1_2_9_38_4 doi: 10.1038/nmat4154 – ident: e_1_2_9_56_3 doi: 10.1039/C6TC00825A – ident: e_1_2_9_8_5 doi: 10.1002/anie.202013051 – ident: e_1_2_9_3_1 doi: 10.1063/1.98799 – ident: e_1_2_9_34_1 doi: 10.1021/ja3066623 – ident: e_1_2_9_69_1 doi: 10.1002/adma.201602127 – ident: e_1_2_9_26_1 doi: 10.1021/jo100688m – ident: e_1_2_9_50_5 doi: 10.1002/anie.201705945 – ident: e_1_2_9_55_4 doi: 10.1039/c0cs00160k – ident: e_1_2_9_31_7 doi: 10.1016/j.cej.2020.125648 – ident: e_1_2_9_19_2 doi: 10.1016/j.xcrp.2021.100364 – ident: e_1_2_9_43_3 doi: 10.1039/D1CC02311J – ident: e_1_2_9_4_6 doi: 10.1021/acs.chemrev.8b00016 – ident: e_1_2_9_8_3 doi: 10.1038/s41566-020-0667-0 – ident: e_1_2_9_10_2 doi: 10.1016/S0379-6779(98)80049-0 – ident: e_1_2_9_16_5 doi: 10.1021/acs.chemrev.0c01017 – ident: e_1_2_9_20_3 doi: 10.1002/anie.202104145 – ident: e_1_2_9_35_2 doi: 10.1039/C4NJ00955J – ident: e_1_2_9_5_10 doi: 10.1021/acs.chemrev.1c00078 – ident: e_1_2_9_15_3 doi: 10.1002/anie.202011384 – ident: e_1_2_9_19_7 doi: 10.1038/s41467-020-20311-z – ident: e_1_2_9_50_4 doi: 10.1002/adma.202008071 – ident: e_1_2_9_38_2 doi: 10.1038/nphoton.2012.31 – ident: e_1_2_9_51_1 doi: 10.1039/C6TA09049D – ident: e_1_2_9_17_2 doi: 10.1039/C9MH00130A – ident: e_1_2_9_10_1 doi: 10.1021/j100887a008 – ident: e_1_2_9_18_2 doi: 10.1039/C9TA00343F – ident: e_1_2_9_3_11 doi: 10.1002/adma.201907539 – ident: e_1_2_9_36_1 doi: 10.1063/1.3558906 – ident: e_1_2_9_3_5 doi: 10.1038/nature11687 – ident: e_1_2_9_12_1 doi: 10.1039/C7CS00803A – ident: e_1_2_9_29_4 doi: 10.1039/C7TC04626J – volume-title: Introduction to Organic Electronic and Optoelectronic Materials and Devices year: 2016 ident: e_1_2_9_1_1 – ident: e_1_2_9_55_11 doi: 10.1021/acsami.6b14285 – ident: e_1_2_9_55_6 doi: 10.1063/1.1306639 – ident: e_1_2_9_22_3 doi: 10.1016/j.ccr.2017.07.016 – ident: e_1_2_9_10_3 doi: 10.1038/nature13829 – ident: e_1_2_9_51_2 doi: 10.1021/jacs.9b00053 – ident: e_1_2_9_20_4 doi: 10.1021/accountsmr.1c00045 – ident: e_1_2_9_19_8 doi: 10.1021/ja111320n – ident: e_1_2_9_33_1 doi: 10.1002/chem.201103131 – ident: e_1_2_9_68_1 doi: 10.1038/s41566-019-0415-5 – ident: e_1_2_9_8_4 doi: 10.1038/s41563-020-0710-z – ident: e_1_2_9_4_5 doi: 10.1021/cr0501386 – ident: e_1_2_9_16_15 doi: 10.1021/acsnano.9b02940 – ident: e_1_2_9_31_2 doi: 10.1016/j.cej.2020.126173 – ident: e_1_2_9_44_6 doi: 10.1021/jacs.9b13019 – ident: e_1_2_9_17_1 doi: 10.1002/anie.201909076 – ident: e_1_2_9_17_5 doi: 10.1038/nmat4259 – ident: e_1_2_9_33_3 doi: 10.1039/C5CP07883K – ident: e_1_2_9_23_2 doi: 10.1016/j.cej.2021.129366 – ident: e_1_2_9_43_2 doi: 10.3389/fchem.2019.00199 – ident: e_1_2_9_72_2 doi: 10.1021/ja909084e – ident: e_1_2_9_31_1 doi: 10.1246/cl.200337 – ident: e_1_2_9_83_2 doi: 10.1021/jacs.6b02004 – ident: e_1_2_9_63_1 doi: 10.1039/C9SC01686D – ident: e_1_2_9_55_2 doi: 10.1002/adma.200401373 – ident: e_1_2_9_4_8 doi: 10.1016/j.chempr.2017.10.005 – ident: e_1_2_9_21_3 doi: 10.1021/acs.jpclett.1c00265 – ident: e_1_2_9_47_1 doi: 10.1021/ja035626e – ident: e_1_2_9_66_1 doi: 10.1002/advs.201700989 – ident: e_1_2_9_16_4 doi: 10.1021/jacs.0c11053 – ident: e_1_2_9_6_2 doi: 10.1021/j100168a018 – ident: e_1_2_9_25_4 doi: 10.1021/ja01156a059 – ident: e_1_2_9_6_3 doi: 10.1038/nmat2317 – volume-title: Physics of Organic Semiconductors year: 2013 ident: e_1_2_9_1_6 – ident: e_1_2_9_53_2 doi: 10.1038/s42254-019-0022-x – volume-title: Intermolecular and Surface Forces year: 2015 ident: e_1_2_9_70_1 – ident: e_1_2_9_30_2 doi: 10.31635/ccschem.020.202000355 – ident: e_1_2_9_80_1 doi: 10.1039/C7CP02110K – volume: 2019 start-page: 6717104 year: 2019 ident: e_1_2_9_46_1 publication-title: Research – ident: e_1_2_9_14_1 doi: 10.1016/j.cclet.2016.06.031 – ident: e_1_2_9_34_2 doi: 10.1039/C5DT00231A – ident: e_1_2_9_29_3 doi: 10.1039/C6QO00204H – ident: e_1_2_9_55_7 doi: 10.1039/C5CS00424A – ident: e_1_2_9_36_2 doi: 10.1016/j.mser.2020.100581 – ident: e_1_2_9_19_4 doi: 10.1002/anie.202000061 – ident: e_1_2_9_19_6 doi: 10.1007/s11426-015-5415-9 – ident: e_1_2_9_49_4 doi: 10.1039/C4SC01404A – ident: e_1_2_9_83_1 doi: 10.1002/adma.201404317 – ident: e_1_2_9_21_1 doi: 10.1021/jacs.8b00809 – ident: e_1_2_9_20_1 doi: 10.31635/ccschem.020.202000243 – ident: e_1_2_9_57_2 doi: 10.1002/agt2.4 – ident: e_1_2_9_73_1 doi: 10.1063/1.3382344 – ident: e_1_2_9_31_6 doi: 10.1039/D0CC01738H – ident: e_1_2_9_16_10 doi: 10.1002/adpr.202000136 – ident: e_1_2_9_3_10 doi: 10.1021/cr400704v – ident: e_1_2_9_13_2 doi: 10.1038/ncomms2083 – ident: e_1_2_9_51_3 doi: 10.1021/acs.accounts.0c00677 – ident: e_1_2_9_11_1 doi: 10.1038/171737a0 – ident: e_1_2_9_45_1 doi: 10.1021/acs.orglett.8b02995 – ident: e_1_2_9_3_19 doi: 10.1021/acsami.8b16784 – ident: e_1_2_9_4_3 doi: 10.1021/acs.chemrev.8b00016 – ident: e_1_2_9_13_5 doi: 10.1002/anie.201709874 – ident: e_1_2_9_46_2 doi: 10.1093/nsr/nwz203 – ident: e_1_2_9_20_2 doi: 10.1002/anie.201603232 – ident: e_1_2_9_9_3 doi: 10.1063/1.1675677 – ident: e_1_2_9_43_1 doi: 10.1039/C8SC04991B – ident: e_1_2_9_14_3 doi: 10.1021/jacs.7b08592 – ident: e_1_2_9_31_4 doi: 10.1021/acs.chemmater.9b02712 – ident: e_1_2_9_49_2 doi: 10.1039/c3sc53442a – ident: e_1_2_9_55_10 doi: 10.1039/C9CC07169E – ident: e_1_2_9_41_1 doi: 10.1039/C8CC04594A – ident: e_1_2_9_5_9 doi: 10.1021/acsenergylett.0c02384 – ident: e_1_2_9_17_6 doi: 10.1038/s41563-020-0797-2 – ident: e_1_2_9_25_6 doi: 10.1002/ejoc.201900061 – ident: e_1_2_9_85_1 doi: 10.1002/anie.201902264 – ident: e_1_2_9_29_5 doi: 10.1002/chem.201704182 – ident: e_1_2_9_72_1 doi: 10.1021/ja00170a016 – ident: e_1_2_9_61_1 doi: 10.1039/C9TC06204A – ident: e_1_2_9_71_1 doi: 10.1039/c2sc20045g – ident: e_1_2_9_25_5 doi: 10.1063/1.3692184 – ident: e_1_2_9_6_5 doi: 10.1021/ar7000638 – ident: e_1_2_9_29_2 doi: 10.1039/C6TC03767D – ident: e_1_2_9_19_1 doi: 10.1038/ncomms15195 – ident: e_1_2_9_23_1 doi: 10.1021/om4011406 – ident: e_1_2_9_55_8 doi: 10.1002/chem.201100254 – ident: e_1_2_9_15_1 doi: 10.1002/advs.201902087 – ident: e_1_2_9_14_7 doi: 10.1039/b904665h – ident: e_1_2_9_39_2 doi: 10.1021/jacs.7b05082 – ident: e_1_2_9_55_3 doi: 10.3390/ijms9081527 – ident: e_1_2_9_38_1 doi: 10.1038/nphoton.2014.12 – ident: e_1_2_9_55_12 doi: 10.1002/anie.201813604 – ident: e_1_2_9_6_1 doi: 10.1039/c39850000474 – ident: e_1_2_9_3_6 doi: 10.1038/nature08003 – ident: e_1_2_9_11_3 doi: 10.1039/C8CS00157J – ident: e_1_2_9_55_5 doi: 10.1002/adfm.202010547 – ident: e_1_2_9_74_1 doi: 10.1063/1.1383587 – ident: e_1_2_9_60_1 doi: 10.1002/adom.201800385 – ident: e_1_2_9_9_1 doi: 10.1002/bbpc.19630670810 – ident: e_1_2_9_11_2 doi: 10.1126/science.7802858 – ident: e_1_2_9_5_3 doi: 10.1126/science.aat2612 – ident: e_1_2_9_4_9 doi: 10.1021/cr100380z – ident: e_1_2_9_14_5 doi: 10.1039/C4CS00325J – ident: e_1_2_9_17_4 doi: 10.1039/D0TC00975J – ident: e_1_2_9_53_1 doi: 10.1021/acs.chemrev.5b00680 – ident: e_1_2_9_81_1 doi: 10.1002/jcc.22885 – ident: e_1_2_9_21_4 doi: 10.1039/c3dt52465e – ident: e_1_2_9_84_2 doi: 10.1002/adma.201807577 – ident: e_1_2_9_9_6 doi: 10.1039/D0QM00420K – ident: e_1_2_9_16_11 doi: 10.1038/s41377-021-00516-7 – ident: e_1_2_9_31_3 doi: 10.1039/D0NJ00905A – ident: e_1_2_9_9_4 doi: 10.1021/ja00784a066 – ident: e_1_2_9_14_2 doi: 10.1007/s40242-021-0381-6 – ident: e_1_2_9_75_1 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_9_3_8 doi: 10.1038/natrevmats.2018.20 – ident: e_1_2_9_3_3 doi: 10.1038/25954 – ident: e_1_2_9_64_1 doi: 10.1039/D0TC04547K – ident: e_1_2_9_25_3 doi: 10.1021/ja01652a081 – ident: e_1_2_9_3_16 doi: 10.1002/adma.201204724 – ident: e_1_2_9_16_16 doi: 10.1021/acsami.0c09139 – ident: e_1_2_9_5_7 doi: 10.1039/D0CS00084A – ident: e_1_2_9_54_1 doi: 10.1039/C4CS00262H – ident: e_1_2_9_19_3 doi: 10.1021/acs.nanolett.8b01082 – ident: e_1_2_9_16_14 doi: 10.1039/C9SC01821B – ident: e_1_2_9_24_2 doi: 10.1007/s11426-020-9841-5 – ident: e_1_2_9_8_1 doi: 10.1007/978-4-431-54129-5 – ident: e_1_2_9_17_3 doi: 10.1039/C9SC02282A – ident: e_1_2_9_16_12 doi: 10.1021/acsami.1c04779 – ident: e_1_2_9_16_3 doi: 10.1021/acs.chemrev.9b00033 – ident: e_1_2_9_38_3 doi: 10.1002/adfm.201700986 – ident: e_1_2_9_16_13 doi: 10.1021/jacs.6b02463 – ident: e_1_2_9_32_1 doi: 10.1039/b105159h – ident: e_1_2_9_16_1 doi: 10.1021/acs.jpclett.6b02492 – ident: e_1_2_9_55_9 doi: 10.1002/chem.200701036 – ident: e_1_2_9_56_4 doi: 10.1021/jacs.9b13956 – ident: e_1_2_9_4_4 doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 – ident: e_1_2_9_19_5 doi: 10.1002/anie.201411909 – ident: e_1_2_9_14_8 doi: 10.1021/jacs.1c03882 – ident: e_1_2_9_28_1 doi: 10.1002/adma.201102804 – ident: e_1_2_9_3_9 doi: 10.1002/adma.201601737 – ident: e_1_2_9_3_14 doi: 10.1002/adma.201201124 – ident: e_1_2_9_56_2 doi: 10.1016/j.dyepig.2016.11.037 – ident: e_1_2_9_3_20 doi: 10.1002/anie.201609459 – ident: e_1_2_9_6_6 doi: 10.1039/c3cs60471c – ident: e_1_2_9_78_1 doi: 10.1039/b810189b – ident: e_1_2_9_12_2 doi: 10.1021/acs.jpclett.9b01040 – volume-title: Organic Electroluminescent Materials and Devices year: 1997 ident: e_1_2_9_3_7 – ident: e_1_2_9_3_15 doi: 10.1002/asia.201300002 – ident: e_1_2_9_48_1 doi: 10.1021/ja300278e – ident: e_1_2_9_49_5 doi: 10.1002/anie.202004361 – ident: e_1_2_9_2_1 doi: 10.1039/c39770000578 – ident: e_1_2_9_18_3 doi: 10.1039/D0TA00047G – ident: e_1_2_9_44_4 doi: 10.1002/adma.201900110 – ident: e_1_2_9_19_9 doi: 10.1021/ja109745a – ident: e_1_2_9_33_2 doi: 10.1016/j.jlumin.2011.06.027 – ident: e_1_2_9_13_3 doi: 10.1021/ja3019065 – ident: e_1_2_9_13_4 doi: 10.1039/b822665m – ident: e_1_2_9_67_1 doi: 10.1039/C5CC05022G – ident: e_1_2_9_21_2 doi: 10.1021/acs.chemrev.6b00144 – ident: e_1_2_9_50_7 doi: 10.1002/anie.202011830 – ident: e_1_2_9_18_1 doi: 10.1039/C6TA06978A – ident: e_1_2_9_50_1 doi: 10.1021/acs.jpclett.9b03363 – ident: e_1_2_9_50_3 doi: 10.1002/adma.202007811 – ident: e_1_2_9_59_1 doi: 10.1021/acsami.7b05615 – ident: e_1_2_9_31_8 doi: 10.1039/D1TC02316K – ident: e_1_2_9_24_1 doi: 10.1021/acs.joc.0c01200 – ident: e_1_2_9_14_4 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_9_3_13 doi: 10.1002/adfm.201505014 – ident: e_1_2_9_9_5 doi: 10.1021/ja0702824 – ident: e_1_2_9_16_6 doi: 10.1039/C5CS00620A – ident: e_1_2_9_15_4 doi: 10.1021/jacs.0c08980 – ident: e_1_2_9_16_8 doi: 10.1007/978-981-15-2309-0 |
SSID | ssj0009606 |
Score | 2.6787767 |
SecondaryResourceType | review_article |
Snippet | Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction... Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2104125 |
SubjectTerms | Charge transfer Chemists Circular polarization Coupling (molecular) Functional groups Materials science Optoelectronic devices optoelectronics organic semiconductor Organic semiconductors Phosphorescence Semiconductors small molecule Space charge through‐space interaction π‐stacked configuration |
Title | Research Progress of Intramolecular π‐Stacked Small Molecules for Device Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104125 https://www.ncbi.nlm.nih.gov/pubmed/34595783 https://www.proquest.com/docview/2672226107 https://www.proquest.com/docview/2578775954 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hnuDAvgQKMhISp9DWtWPnWLEIkECIReot8pYLXRBtL5z6CfwZ_8CXME6a0IIQEhwTjxVnxjN-tsfPAAfCMiuETkNtUhsyh7aQ1DVCLk3KOFU0dVm2xXV0_sAu27w9dYo_54coF9y8Z2Tx2ju40oPaJ2moshlvEE5ZGA7SGIR9wpZHRbef_FEenmdke00exhGTBWtjndZmq8-OSt-g5ixyzYaesyVQRaPzjJPHo9FQH5mXL3yO__mrZVic4FLSyjvSCsy53iosTLEVrkG7yNIjNz6pC0Mk6afkwq8Od4tLdsnb-H38iggWg4Mld13V6ZCrvNANCAJkcuJ8bCKtqY3zdXg4O70_Pg8nFzOEpilQlVzYiKacCy2NQoihIoGRw0puuNWodGMaQhg_WXJSoRC3VMWRlsI6zh1GhA2o9Po9twVEI0DQsbSGccbSeqrqkUFzydjfCBJHjQDCwjCJmbCW-8szOknOt0wTr7Gk1FgAh6X8U87X8aNktbBzMvHbQUIjgYAJIaUIYL8sRo_z2yiq5_ojlPFBTvCYswA28_5RfqrJ8L2QzQBoZuVf2pC0Tq5a5dP2XyrtwDz1JzKyhaEqVIbPI7eLOGmo9zJf-AA0UgkY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qygJYlHcZKGAkEKtpE8ceexYsIkKV0KZC0ErZDX7NhjSpSKKqrPoJ_ApfUqmfwJdw77zagBASUhcsZ8Yje3xfx57rcwFeKC-8UjaPrct9LALKQvPQjqV2uZDc8DwU2RZ7Sf9AvBvJ0Qp8r8_ClPwQzYYbWUbhr8nAaUN664I11PiCOAjXLAKjdJVXuRNOjnHVNns96KGIX3K-_Xb_TT-uCgvErqM6MpbKJzyXUlntDIZIkyjUfK-lk94ipneurZQjsB-0wUbSc5MmVisfpAyK-JfQ61-jMuJE19_7cMFYRQuCgt4Pu0kToWueyBbfWh7vchz8DdwuY-Ui2G3fgvN6msocl8-bi7nddF9_YZD8r-bxNqxV0Jt1S1u5AythchduXiJkvAejOhGRvae8NYwCbJqzAW2AH9Z1hNnZ6Y_TbwjS0f959vHQjMdsWD4MM4ZrANYL5H5Z91JuwH04uJJPewCrk-kkPARmEQPZVHsnpBB5KzetxKF-6JSKnqRJO4K41oTMVcTsVB9knJWU0jwjCWWNhCJ41bQ_KilJ_thyo1asrHJNs4wnCjEhomYVwfPmMToV-lNkJmG6wDbkx5VMpYhgvVTIpquOwPtKdyLghVr9ZQxZtzfsNleP_uWlZ3C9vz_czXYHezuP4QanAyjFPtgGrM6_LMIThIVz-7QwRAafrlpjfwLmXmWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qioRgwZsyUMBIIFbTJo5fs-giYogaSqsKqJTd4OeGNKlIIgSrfgKf0j-p-gt8CdfzagNCSEhdsJwZj-zxfR17rs8FeC4dc1KakBobXMo8ykJR3025soFxqmnwZbbFntg-YG9GfLQCJ81ZmIofot1wi5ZR-uto4EcubJ6ThmpX8gbhkoVhkK7TKnf81y-4aJttDXOU8AtKB68_vNpO67oCqe3JHk-5dIIGzqVRVmOE1EKi4jvFLXcGIb21XSltxPpeaWzEHdWZMEo6z7mXkX4Jnf4VJjpZLBaRvzsnrIrrgZLdD7vJBFMNTWSHbi6PdzkM_oZtl6FyGesGN-GsmaUqxeXTxmJuNuy3Xwgk_6dpvAU3auBN-pWl3IYVP7kD1y_QMd6FUZOGSPZj1hrGADINZBi3vw-bKsLk9PjH8XeE6Oj9HHl_qMdjsls99DOCKwCS--h8Sf9CZsA9OLiUT7sPq5PpxD8AYhABmUw5yzhjoRN0R1hUD5XFkieZ6CaQNopQ2JqWPVYHGRcVoTQtooSKVkIJvGzbH1WEJH9sud7oVVE7pllBhUREiJhZJvCsfYwuJf4n0hM_XWCb6MUlzzhLYK3Sx7arHsP7UvUSoKVW_WUMRT_f7bdXD__lpadwdT8fFG-HezuP4BqNp0_KTbB1WJ1_XvjHiAnn5klphgQ-XrbC_gQpQWRf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+of+Intramolecular+%CF%80-Stacked+Small+Molecules+for+Device+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Sheng-Yi&rft.au=Qu%2C+Yang-Kun&rft.au=Liao%2C+Liang-Sheng&rft.au=Jiang%2C+Zuo-Quan&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=22&rft.spage=e2104125&rft_id=info:doi/10.1002%2Fadma.202104125&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |