Research Progress of Intramolecular π‐Stacked Small Molecules for Device Applications

Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can sta...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 22; pp. e2104125 - n/a
Main Authors Yang, Sheng‐Yi, Qu, Yang‐Kun, Liao, Liang‐Sheng, Jiang, Zuo‐Quan, Lee, Shuit‐Tong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors. Unlike traditional covalent bond‐connected conjugated molecules, π‐stacked small molecules have special advantages in organic semiconductors. This review mainly focuses on the research development of π‐stacked molecular systems and introduces the new characteristics brought by the special molecular configuration and its application in organic semiconductors.
AbstractList Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction (TSI) occurs in π‐stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π‐stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation‐induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room‐temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π‐stacked molecules have exhibited very promising performance, with some of them exceeding π‐conjugated analogues. Recently, reports on various organic π‐stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π‐stacked systems could stimulate more attention on through‐space charge transfer the well‐known through‐bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors. Unlike traditional covalent bond‐connected conjugated molecules, π‐stacked small molecules have special advantages in organic semiconductors. This review mainly focuses on the research development of π‐stacked molecular systems and introduces the new characteristics brought by the special molecular configuration and its application in organic semiconductors.
Author Jiang, Zuo‐Quan
Yang, Sheng‐Yi
Liao, Liang‐Sheng
Lee, Shuit‐Tong
Qu, Yang‐Kun
Author_xml – sequence: 1
  givenname: Sheng‐Yi
  surname: Yang
  fullname: Yang, Sheng‐Yi
  organization: Soochow University
– sequence: 2
  givenname: Yang‐Kun
  surname: Qu
  fullname: Qu, Yang‐Kun
  organization: Soochow University
– sequence: 3
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Macau University of Science and Technology
– sequence: 4
  givenname: Zuo‐Quan
  orcidid: 0000-0003-4447-2408
  surname: Jiang
  fullname: Jiang, Zuo‐Quan
  email: zqjiang@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Shuit‐Tong
  surname: Lee
  fullname: Lee, Shuit‐Tong
  organization: Macau University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34595783$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMoOl62LiXgxs2MSdok7XLwOjCieAF3IZOeajVtxqRV3PkIvpnv4JMYHS8giKuzyPfn_Of_l9F84xpAaJ2SASWEbeui1gNGGCUpZXwO9ShntJ-SnM-jHskT3s9Fmi2h5RBuCCG5IGIRLSUpz7nMkh66PIUA2ptrfOLdlYcQsCvxqGm9rp0F01nt8cvT69PzWavNLRT4rNbW4qPZIwRcOo934b4ygIfTqa2MbivXhFW0UGobYO1zrqCL_b3zncP--PhgtDMc900iozsuC8FKzuUkM1pmTAtJJCkybngxiXaNoVIakgkGmY4QL5jOxSSTBXAOMk9W0Nbs36l3dx2EVtVVMGCtbsB1QbF4p5Tx3DSim7_QG9f5JrpTTEjGmKBERmrjk-omNRRq6qta-0f1lVkEBjPAeBeCh_IboUS9l6LeS1HfpURB-ktgqvYjpZhyZf-W5TPZQ2Xh8Z8larh7NPzRvgE-IKEY
CitedBy_id crossref_primary_10_1002_anie_202418008
crossref_primary_10_1002_anie_202501895
crossref_primary_10_1021_acs_jpca_2c09106
crossref_primary_10_1021_acsami_2c22266
crossref_primary_10_1002_adom_202201071
crossref_primary_10_1002_adfm_202201512
crossref_primary_10_1002_adom_202300432
crossref_primary_10_1002_anie_202408712
crossref_primary_10_3390_molecules27134048
crossref_primary_10_1002_adfm_202412267
crossref_primary_10_1007_s11426_024_2026_2
crossref_primary_10_1021_acs_jpcc_4c02935
crossref_primary_10_1002_chem_202403203
crossref_primary_10_1039_D1TC05711A
crossref_primary_10_1007_s40843_023_2563_2
crossref_primary_10_1002_anie_202201886
crossref_primary_10_1039_D3QM01106B
crossref_primary_10_3390_molecules28247994
crossref_primary_10_1002_agt2_624
crossref_primary_10_1002_anie_202413129
crossref_primary_10_1021_acs_jpca_2c03114
crossref_primary_10_1016_j_dyepig_2024_112597
crossref_primary_10_1021_acsmaterialslett_3c00310
crossref_primary_10_1007_s11426_022_1249_7
crossref_primary_10_1002_adom_202300017
crossref_primary_10_1002_ange_202500923
crossref_primary_10_1002_adfm_202422927
crossref_primary_10_1039_D3TC01632C
crossref_primary_10_1038_s41467_023_42028_5
crossref_primary_10_1021_jacs_4c14818
crossref_primary_10_1002_advs_202412260
crossref_primary_10_1002_ange_202200290
crossref_primary_10_1039_D4CP03970J
crossref_primary_10_1021_jacs_3c08627
crossref_primary_10_1021_acs_jpca_4c01667
crossref_primary_10_1002_cplu_202400354
crossref_primary_10_1002_adfm_202404148
crossref_primary_10_1021_acs_orglett_3c04093
crossref_primary_10_1038_s41467_022_31184_9
crossref_primary_10_1002_anie_202206861
crossref_primary_10_1021_acs_macromol_3c01977
crossref_primary_10_1039_D4TC05428H
crossref_primary_10_1002_ange_202201886
crossref_primary_10_1002_ange_202310047
crossref_primary_10_1002_bmm2_12009
crossref_primary_10_1039_D3QI02342G
crossref_primary_10_1002_ange_202305404
crossref_primary_10_1002_ange_202300353
crossref_primary_10_1021_acsaom_3c00446
crossref_primary_10_1002_ange_202418008
crossref_primary_10_1016_j_cej_2023_146326
crossref_primary_10_3390_molecules27249068
crossref_primary_10_1063_5_0227631
crossref_primary_10_1002_ange_202312571
crossref_primary_10_1021_acs_macromol_3c00876
crossref_primary_10_1002_ange_202312297
crossref_primary_10_1021_acs_jpcc_4c04350
crossref_primary_10_1002_anie_202201464
crossref_primary_10_1016_j_dyepig_2023_111858
crossref_primary_10_1039_D1QM01588E
crossref_primary_10_1038_s41598_024_84769_3
crossref_primary_10_1002_anie_202212079
crossref_primary_10_1002_ange_202413129
crossref_primary_10_1039_D2QM01379G
crossref_primary_10_70401_smd_2025_0001
crossref_primary_10_1002_anie_202305404
crossref_primary_10_1002_anie_202300353
crossref_primary_10_1002_adma_202210772
crossref_primary_10_1002_adma_202407882
crossref_primary_10_1021_acsaom_4c00527
crossref_primary_10_1002_ange_202201464
crossref_primary_10_1002_adma_202210085
crossref_primary_10_1021_jacs_5c02567
crossref_primary_10_1039_D3QI02559D
crossref_primary_10_1021_acs_inorgchem_4c02223
crossref_primary_10_1021_acs_jpcc_4c01369
crossref_primary_10_1002_asia_202401488
crossref_primary_10_1002_anie_202312571
crossref_primary_10_1002_anie_202500923
crossref_primary_10_1002_anie_202312297
crossref_primary_10_1021_acs_langmuir_4c00504
crossref_primary_10_1038_s41528_022_00212_5
crossref_primary_10_1002_ange_202212079
crossref_primary_10_1016_j_dyepig_2023_111572
crossref_primary_10_1039_D4TC03810J
crossref_primary_10_1002_adma_202403329
crossref_primary_10_1002_ange_202501895
crossref_primary_10_1021_acsmaterialslett_2c00889
crossref_primary_10_1002_ange_202206861
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1002_adma_202415951
crossref_primary_10_1021_acs_cgd_2c00120
crossref_primary_10_1002_adma_202209088
crossref_primary_10_1039_D1TB02738G
crossref_primary_10_1002_anie_202310047
crossref_primary_10_3390_molecules28124642
crossref_primary_10_1039_D2TC04403J
crossref_primary_10_1002_ange_202408712
crossref_primary_10_1016_j_jlumin_2023_120087
crossref_primary_10_1002_agt2_70024
crossref_primary_10_1002_adfm_202209708
crossref_primary_10_1021_acs_langmuir_4c04715
crossref_primary_10_1039_D2CC06763C
crossref_primary_10_1002_anie_202413295
crossref_primary_10_1002_agt2_310
crossref_primary_10_1039_D3CP02553E
crossref_primary_10_1016_j_cej_2023_148314
crossref_primary_10_1002_ange_202402704
crossref_primary_10_1002_anie_202117872
crossref_primary_10_1016_j_dyepig_2024_112484
crossref_primary_10_1002_adom_202202224
crossref_primary_10_1002_smll_202407480
crossref_primary_10_1039_D5CC00059A
crossref_primary_10_1002_advs_202200374
crossref_primary_10_1021_acsaom_3c00370
crossref_primary_10_1007_s11426_022_1382_5
crossref_primary_10_1021_acs_langmuir_3c03947
crossref_primary_10_1021_jacs_2c13843
crossref_primary_10_1021_jacs_4c15216
crossref_primary_10_1039_D3QM00210A
crossref_primary_10_1039_D4CS00218K
crossref_primary_10_1002_anie_202200290
crossref_primary_10_1016_j_orgel_2024_107072
crossref_primary_10_1002_adom_202400860
crossref_primary_10_1021_acs_inorgchem_4c05326
crossref_primary_10_1021_acsami_3c14230
crossref_primary_10_1002_anie_202301896
crossref_primary_10_1002_cptc_202400162
crossref_primary_10_1002_adfm_202411957
crossref_primary_10_1002_ange_202413295
crossref_primary_10_1002_ange_202117872
crossref_primary_10_1002_adma_202306617
crossref_primary_10_1002_smll_202311087
crossref_primary_10_1002_adfm_202407721
crossref_primary_10_1002_adfm_202208082
crossref_primary_10_1016_j_cej_2023_144505
crossref_primary_10_1007_s11426_023_1669_9
crossref_primary_10_1039_D1TC04875A
crossref_primary_10_1002_adma_202208378
crossref_primary_10_1039_D4QM00720D
crossref_primary_10_1088_1361_6633_ace06a
crossref_primary_10_1002_ange_202301896
crossref_primary_10_1021_jacsau_3c00845
crossref_primary_10_1002_anie_202402704
crossref_primary_10_59717_j_xinn_mater_2023_100026
crossref_primary_10_1016_j_saa_2025_125827
crossref_primary_10_1039_D4TC05181E
crossref_primary_10_1002_adma_202304032
crossref_primary_10_1002_pol_20210870
Cites_doi 10.1038/nphoton.2011.288
10.1038/s41578-020-00254-z
10.1016/j.joule.2019.01.004
10.1002/adma.201502772
10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
10.1038/nature04645
10.1021/acs.jpca.8b06535
10.1039/b901261n
10.1002/anie.202105628
10.1038/s41566-020-0668-z
10.1039/D1SC02335G
10.1002/9783527621309
10.1016/j.cclet.2020.08.045
10.1021/acs.jpcc.0c05980
10.1126/science.1228604
10.1063/1.2244560
10.1038/s41570-017-0045
10.1039/C9TC01585J
10.1557/mrs2008.142
10.1039/C6CS00368K
10.1021/jacs.7b00873
10.1002/3527603964
10.31635/ccschem.021.202000677
10.1038/176915a0
10.1021/jo101999b
10.1038/natrevmats.2016.2
10.1039/C7CC05198K
10.1021/acs.jpcc.9b01900
10.1063/1.1712006
10.1016/j.ccr.2018.08.015
10.31635/ccschem.019.20180020
10.1002/adma.201402532
10.1002/asia.201900401
10.1063/1.2834918
10.1002/adma.201304373
10.1021/acsenergylett.9b00528
10.1039/D1CS00198A
10.1021/jacs.7b10257
10.1039/C4CS00143E
10.1126/science.270.5243.1789
10.1021/cr050149z
10.1002/adma.201701248
10.1002/adma.201700553
10.1021/ja100936w
10.1038/ncomms9476
10.1038/s41467-019-11467-4
10.1021/ar990114j
10.1021/acs.chemrev.6b00354
10.1021/cr200087r
10.1021/acs.accounts.6b00305
10.1002/anie.201709125
10.1038/s41586-020-1937-1
10.1002/adma.201801830
10.1002/adfm.202010281
10.1002/anie.201915433
10.1039/C8TC05612A
10.1016/0263-7855(96)00018-5
10.1038/347539a0
10.1002/adma.201601675
10.1002/9783527685172
10.1002/adom.202002204
10.1002/adfm.201903112
10.1038/natrevmats.2017.43
10.1002/adma.202003885
10.1002/chem.201403811
10.1002/adom.201800538
10.1021/acscatal.5b02204
10.1038/nmat4154
10.1039/C6TC00825A
10.1002/anie.202013051
10.1063/1.98799
10.1021/ja3066623
10.1002/adma.201602127
10.1021/jo100688m
10.1002/anie.201705945
10.1039/c0cs00160k
10.1016/j.cej.2020.125648
10.1016/j.xcrp.2021.100364
10.1039/D1CC02311J
10.1021/acs.chemrev.8b00016
10.1038/s41566-020-0667-0
10.1016/S0379-6779(98)80049-0
10.1021/acs.chemrev.0c01017
10.1002/anie.202104145
10.1039/C4NJ00955J
10.1021/acs.chemrev.1c00078
10.1002/anie.202011384
10.1038/s41467-020-20311-z
10.1002/adma.202008071
10.1038/nphoton.2012.31
10.1039/C6TA09049D
10.1039/C9MH00130A
10.1021/j100887a008
10.1039/C9TA00343F
10.1002/adma.201907539
10.1063/1.3558906
10.1038/nature11687
10.1039/C7CS00803A
10.1039/C7TC04626J
10.1021/acsami.6b14285
10.1063/1.1306639
10.1016/j.ccr.2017.07.016
10.1038/nature13829
10.1021/jacs.9b00053
10.1021/accountsmr.1c00045
10.1021/ja111320n
10.1002/chem.201103131
10.1038/s41566-019-0415-5
10.1038/s41563-020-0710-z
10.1021/cr0501386
10.1021/acsnano.9b02940
10.1016/j.cej.2020.126173
10.1021/jacs.9b13019
10.1002/anie.201909076
10.1038/nmat4259
10.1039/C5CP07883K
10.1016/j.cej.2021.129366
10.3389/fchem.2019.00199
10.1021/ja909084e
10.1246/cl.200337
10.1021/jacs.6b02004
10.1039/C9SC01686D
10.1002/adma.200401373
10.1016/j.chempr.2017.10.005
10.1021/acs.jpclett.1c00265
10.1021/ja035626e
10.1002/advs.201700989
10.1021/jacs.0c11053
10.1021/j100168a018
10.1021/ja01156a059
10.1038/nmat2317
10.1038/s42254-019-0022-x
10.31635/ccschem.020.202000355
10.1039/C7CP02110K
10.1016/j.cclet.2016.06.031
10.1039/C5DT00231A
10.1039/C6QO00204H
10.1039/C5CS00424A
10.1016/j.mser.2020.100581
10.1002/anie.202000061
10.1007/s11426-015-5415-9
10.1039/C4SC01404A
10.1002/adma.201404317
10.1021/jacs.8b00809
10.31635/ccschem.020.202000243
10.1002/agt2.4
10.1063/1.3382344
10.1039/D0CC01738H
10.1002/adpr.202000136
10.1021/cr400704v
10.1038/ncomms2083
10.1021/acs.accounts.0c00677
10.1038/171737a0
10.1021/acs.orglett.8b02995
10.1021/acsami.8b16784
10.1002/anie.201709874
10.1093/nsr/nwz203
10.1002/anie.201603232
10.1063/1.1675677
10.1039/C8SC04991B
10.1021/jacs.7b08592
10.1021/acs.chemmater.9b02712
10.1039/c3sc53442a
10.1039/C9CC07169E
10.1039/C8CC04594A
10.1021/acsenergylett.0c02384
10.1038/s41563-020-0797-2
10.1002/ejoc.201900061
10.1002/anie.201902264
10.1002/chem.201704182
10.1021/ja00170a016
10.1039/C9TC06204A
10.1039/c2sc20045g
10.1063/1.3692184
10.1021/ar7000638
10.1039/C6TC03767D
10.1038/ncomms15195
10.1021/om4011406
10.1002/chem.201100254
10.1002/advs.201902087
10.1039/b904665h
10.1021/jacs.7b05082
10.3390/ijms9081527
10.1038/nphoton.2014.12
10.1002/anie.201813604
10.1039/c39850000474
10.1038/nature08003
10.1039/C8CS00157J
10.1002/adfm.202010547
10.1063/1.1383587
10.1002/adom.201800385
10.1002/bbpc.19630670810
10.1126/science.7802858
10.1126/science.aat2612
10.1021/cr100380z
10.1039/C4CS00325J
10.1039/D0TC00975J
10.1021/acs.chemrev.5b00680
10.1002/jcc.22885
10.1039/c3dt52465e
10.1002/adma.201807577
10.1039/D0QM00420K
10.1038/s41377-021-00516-7
10.1039/D0NJ00905A
10.1021/ja00784a066
10.1007/s40242-021-0381-6
10.1016/j.cplett.2004.06.011
10.1038/natrevmats.2018.20
10.1038/25954
10.1039/D0TC04547K
10.1021/ja01652a081
10.1002/adma.201204724
10.1021/acsami.0c09139
10.1039/D0CS00084A
10.1039/C4CS00262H
10.1021/acs.nanolett.8b01082
10.1039/C9SC01821B
10.1007/s11426-020-9841-5
10.1007/978-4-431-54129-5
10.1039/C9SC02282A
10.1021/acsami.1c04779
10.1021/acs.chemrev.9b00033
10.1002/adfm.201700986
10.1021/jacs.6b02463
10.1039/b105159h
10.1021/acs.jpclett.6b02492
10.1002/chem.200701036
10.1021/jacs.9b13956
10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
10.1002/anie.201411909
10.1021/jacs.1c03882
10.1002/adma.201102804
10.1002/adma.201601737
10.1002/adma.201201124
10.1016/j.dyepig.2016.11.037
10.1002/anie.201609459
10.1039/c3cs60471c
10.1039/b810189b
10.1021/acs.jpclett.9b01040
10.1002/asia.201300002
10.1021/ja300278e
10.1002/anie.202004361
10.1039/c39770000578
10.1039/D0TA00047G
10.1002/adma.201900110
10.1021/ja109745a
10.1016/j.jlumin.2011.06.027
10.1021/ja3019065
10.1039/b822665m
10.1039/C5CC05022G
10.1021/acs.chemrev.6b00144
10.1002/anie.202011830
10.1039/C6TA06978A
10.1021/acs.jpclett.9b03363
10.1002/adma.202007811
10.1021/acsami.7b05615
10.1039/D1TC02316K
10.1021/acs.joc.0c01200
10.1021/acs.chemrev.5b00263
10.1002/adfm.201505014
10.1021/ja0702824
10.1039/C5CS00620A
10.1021/jacs.0c08980
10.1007/978-981-15-2309-0
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104125
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34595783
10_1002_adma_202104125
ADMA202104125
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51773141; 51873139; 61961160731; 51821002
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: Joint International Research Laboratory of Carbon‐Based Functional Materials and Devices
– fundername: Natural Science Foundation of Jiangsu Province of China
  funderid: BK20181442
– fundername: National Natural Science Foundation of China
  grantid: 61961160731
– fundername: National Natural Science Foundation of China
  grantid: 51821002
– fundername: National Natural Science Foundation of China
  grantid: 51773141
– fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20181442
– fundername: Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
– fundername: National Natural Science Foundation of China
  grantid: 51873139
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3735-57d62f557b8ca782a67070d85c5db096cc177c0862e8a7b85d2a96b87de55e793
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:02:18 EDT 2025
Mon Jul 14 10:41:16 EDT 2025
Wed Feb 19 02:23:38 EST 2025
Thu Apr 24 22:50:21 EDT 2025
Tue Jul 01 02:33:08 EDT 2025
Wed Jan 22 16:24:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords small molecule
through-space interaction
π-stacked configuration
optoelectronics
organic semiconductor
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-57d62f557b8ca782a67070d85c5db096cc177c0862e8a7b85d2a96b87de55e793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4447-2408
PMID 34595783
PQID 2672226107
PQPubID 2045203
PageCount 25
ParticipantIDs proquest_miscellaneous_2578775954
proquest_journals_2672226107
pubmed_primary_34595783
crossref_primary_10_1002_adma_202104125
crossref_citationtrail_10_1002_adma_202104125
wiley_primary_10_1002_adma_202104125_ADMA202104125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1953 1993 2019; 171 262 48
2021 2020; 9 1
2014 2015; 26 6
1985 1991 2009 2021 2007 2014; 95 8 6 40 43
2019; 10
2016 2019 2020; 4 7 8
2021 2020; 32 3
2019; 13
1990 2010; 112 132
2019; 14
2019; 58
1987 1990 1998 2006 2012 2009 1997 2018 2016 2015 2020 2019 2016 2012 2013 2013 2017 2016 2019 2017; 51 347 395 440 492 459 3 28 115 32 29 26 24 8 25 29 28 11 56
2016 2019; 116 1
2020; 14
2008; 33
2018 2019; 47 10
2020 2020 2020 2019 2019 2020 2020 2021; 49 402 44 31 123 56 399 9
2015 2016; 27 138
2017; 9
2012 2011 2016; 18 131 18
2019 2019 2021; 10 7 57
1977
2020 2017 2016 2021; 578 139 6 50
2012 2015; 134 44
2020; 8
2018; 6
2020 2021; 85 64
2019 2012 2012 2010 2017; 1 3 134 39 56
2012; 134
2018; 5
2019 2019; 3 31
2015; 44
2011 2014; 76 38
2011; 23
2019 2019 2019 2020 2015 2021; 58 6 10 8 14 20
2001; 18
2020 2021 2021 2021 2017 2020 2021; 11 60 33 33 56 59 60
2016 2014; 1 43
2017 2019 2021; 5 141 54
2003; 125
2020 2016 2021 2021; 2 55
2019 2020; 2019 7
2012; 338
2016 2011 2008 2019 2015 2013
2006; 125
1963 1967 1971 1973 2007 2020; 67 47 55 95 129 4
2021; 9
2011 2020; 98 142
2010; 75
2019 2020 2018; 7 124 355
2014 2012 2017 2015 2017; 8 6 27 14 46
2014 2017 2020 2020 2021; 139 14 19 60
2015; 51
2014 1995 2018 2017 2017 2007 2020 2019 2021 2021; 26 270 361 2 107 49 4 6 121
2018 2016 2021 2014 2009; 140 116 12 43 38
2008; 128
2008; 10
2019 2017 2016 2020; 7 138 4 142
1996; 14
1955 2004 1954 1951 2012 2019; 76 73 136
2018; 20
2012; 33
2017; 139
2012; 3
2021 2016 2016 2017 2017; 3 4 3 5 23
2020 2020 2021 2020; 7 32 60 142
2017 2021 2018 2020 2015 2015 2021 2011 2011 2016 2017; 8 2 18 59 54 58 12 133 133 49 29
2004; 393
1998 2001 2019 2002 2007 2019 2018 2017 2012; 10 34 119 14 107 119 30 3 112
2017; 56
2011 2005 2008 2011 2021 2000 2015 2011 2007 2019 2017 2019; 5 17 9 40 77 44 17 13 55 9 58
2010; 132
2016 2021 2017 2015 2015 2014 2009 2021; 27 37 139 115 44 20
2017 2021 2021 2020 2016 2020; 1 12 31 32 116 142
2017; 19
2015
2017 2018 2019 2020 2021 2016 2012 2020 2018 2021 2021 2021 2016 2019 2019 2020; 8 122 119 142 121 45 112 6 2 10 13 138 10 13 12
2014 2021; 33 418
2018 2014 2017 2014 2020; 376 5 53 5 59
2016; 28
2018; 54
2001; 115
1965 1997 2014; 69 91 515
e_1_2_9_79_1
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_10_1
e_1_2_9_33_3
e_1_2_9_56_1
e_1_2_9_10_3
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_56_4
e_1_2_9_56_3
e_1_2_9_18_2
e_1_2_9_18_1
e_1_2_9_18_3
e_1_2_9_19_11
e_1_2_9_19_10
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_83_2
e_1_2_9_22_3
e_1_2_9_22_2
e_1_2_9_6_3
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_6_6
e_1_2_9_6_5
e_1_2_9_6_4
e_1_2_9_72_2
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_11_3
e_1_2_9_11_2
e_1_2_9_3_20
e_1_2_9_19_5
e_1_2_9_19_4
e_1_2_9_19_7
e_1_2_9_19_6
Sun S.‐S. (e_1_2_9_1_1) 2016
e_1_2_9_19_9
e_1_2_9_19_8
e_1_2_9_57_2
e_1_2_9_19_1
e_1_2_9_19_3
e_1_2_9_19_2
e_1_2_9_3_14
e_1_2_9_3_15
e_1_2_9_3_12
e_1_2_9_3_13
e_1_2_9_61_1
e_1_2_9_3_18
e_1_2_9_3_19
e_1_2_9_84_1
e_1_2_9_3_16
e_1_2_9_23_2
e_1_2_9_84_2
e_1_2_9_3_17
e_1_2_9_23_1
e_1_2_9_5_3
e_1_2_9_5_2
e_1_2_9_5_1
e_1_2_9_3_10
e_1_2_9_3_11
Yersin H. (e_1_2_9_1_4) 2019
e_1_2_9_5_9
e_1_2_9_5_8
e_1_2_9_5_7
Israelachvili J. N. (e_1_2_9_70_1) 2015
e_1_2_9_5_6
e_1_2_9_5_5
e_1_2_9_46_2
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_31_4
e_1_2_9_31_5
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_31_3
e_1_2_9_54_1
e_1_2_9_16_8
e_1_2_9_16_7
e_1_2_9_16_9
e_1_2_9_31_8
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_31_6
e_1_2_9_16_1
e_1_2_9_31_7
e_1_2_9_16_4
e_1_2_9_39_4
e_1_2_9_16_3
e_1_2_9_16_6
e_1_2_9_39_2
e_1_2_9_16_5
e_1_2_9_39_3
e_1_2_9_20_1
e_1_2_9_20_3
e_1_2_9_43_3
e_1_2_9_20_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_20_4
e_1_2_9_43_2
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_5_10
e_1_2_9_8_5
e_1_2_9_8_4
e_1_2_9_8_3
Brütting W. (e_1_2_9_1_6) 2013
e_1_2_9_8_2
e_1_2_9_28_1
e_1_2_9_55_3
e_1_2_9_55_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Miyata S. (e_1_2_9_3_7) 1997
e_1_2_9_17_6
e_1_2_9_55_7
e_1_2_9_55_6
e_1_2_9_17_1
e_1_2_9_55_5
e_1_2_9_55_4
e_1_2_9_17_3
e_1_2_9_17_2
e_1_2_9_17_5
e_1_2_9_55_9
e_1_2_9_17_4
e_1_2_9_55_8
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_21_1
e_1_2_9_44_3
e_1_2_9_67_1
e_1_2_9_21_4
e_1_2_9_21_3
e_1_2_9_44_1
Sun S.‐S. (e_1_2_9_5_4) 2017
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_29_5
e_1_2_9_44_6
e_1_2_9_21_5
e_1_2_9_44_4
e_1_2_9_44_5
e_1_2_9_29_2
e_1_2_9_29_1
e_1_2_9_29_4
e_1_2_9_29_3
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_14_4
e_1_2_9_14_3
e_1_2_9_37_1
e_1_2_9_14_6
e_1_2_9_14_5
e_1_2_9_14_8
e_1_2_9_14_7
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_49_2
e_1_2_9_16_16
e_1_2_9_16_14
e_1_2_9_49_5
e_1_2_9_16_15
e_1_2_9_16_12
e_1_2_9_49_3
e_1_2_9_16_13
e_1_2_9_49_4
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_38_2
e_1_2_9_15_3
e_1_2_9_15_2
e_1_2_9_38_5
e_1_2_9_15_4
e_1_2_9_38_3
e_1_2_9_38_4
e_1_2_9_42_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_5
e_1_2_9_1_3
e_1_2_9_9_6
e_1_2_9_9_5
e_1_2_9_9_4
e_1_2_9_9_3
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_50_3
e_1_2_9_50_4
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_50_7
e_1_2_9_35_1
e_1_2_9_12_2
e_1_2_9_50_5
e_1_2_9_12_1
e_1_2_9_50_6
Wu G. (e_1_2_9_46_1) 2019; 2019
e_1_2_9_35_2
e_1_2_9_58_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_5
e_1_2_9_4_4
e_1_2_9_4_3
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_4_9
e_1_2_9_4_8
e_1_2_9_4_7
e_1_2_9_4_6
Kampen T. U. (e_1_2_9_1_2) 2011
e_1_2_9_24_2
e_1_2_9_47_1
e_1_2_9_16_10
e_1_2_9_51_2
e_1_2_9_16_11
e_1_2_9_51_3
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_55_11
e_1_2_9_55_12
e_1_2_9_55_10
e_1_2_9_13_3
e_1_2_9_13_2
e_1_2_9_13_5
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_13_4
e_1_2_9_36_2
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_3_6
e_1_2_9_3_5
e_1_2_9_3_4
e_1_2_9_3_3
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_3_9
e_1_2_9_3_8
e_1_2_9_25_2
e_1_2_9_25_1
e_1_2_9_25_4
e_1_2_9_25_3
e_1_2_9_48_1
e_1_2_9_25_6
e_1_2_9_25_5
References_xml – volume: 14
  start-page: 1921
  year: 2019
  publication-title: Chem.‐ Asian J.
– volume: 33 418
  start-page: 964
  year: 2014 2021
  publication-title: Organometallics Chem. Eng. J.
– volume: 26 6
  start-page: 7931 8476
  year: 2014 2015
  publication-title: Adv. Mater. Nat. Commun.
– volume: 10 34 119 14 107 119 30 3 112
  start-page: 365 359 3 99 1066 3 724 2208
  year: 1998 2001 2019 2002 2007 2019 2018 2017 2012
  publication-title: Adv. Mater. Acc. Chem. Res. Chem. Rev. Adv. Mater. Chem. Rev. Chem. Rev. Adv. Mater. Chem Chem. Rev.
– volume: 116 1
  start-page: 4318 211
  year: 2016 2019
  publication-title: Chem. Rev. Nat. Rev. Phys.
– volume: 7 124 355
  start-page: 1198 101
  year: 2019 2020 2018
  publication-title: J. Mater. Chem. C J. Phys. Chem. C Coord. Chem. Rev.
– volume: 10 7 57
  start-page: 2915 199 7144
  year: 2019 2019 2021
  publication-title: Chem. Sci. Front. Chem. Chem. Commun.
– volume: 134
  start-page: 4080
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 698
  year: 2008
  publication-title: MRS Bull.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 1740
  year: 2001
  publication-title: Chem. Commun.
– volume: 58 6 10 8 14 20
  start-page: 1215 7352 7384 685 175
  year: 2019 2019 2019 2020 2015 2021
  publication-title: Angew. Chem., Int. Ed. Mater. Horiz. Chem. Sci. J. Mater. Chem. C Nat. Mater. Nat. Mater.
– volume: 140 116 12 43 38
  start-page: 4884 9565 2820 4978 1714
  year: 2018 2016 2021 2014 2009
  publication-title: J. Am. Chem. Soc. Chem. Rev. J. Phys. Chem. Lett. Dalton Trans. Chem. Soc. Rev.
– volume: 75
  start-page: 6104
  year: 2010
  publication-title: J. Org. Chem.
– year: 2016 2011 2008 2019 2015 2013
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 139 14 19 60
  start-page: 4894 643 1332 3994
  year: 2014 2017 2020 2020 2021
  publication-title: J. Am. Chem. Soc. Nat. Photonics Nat. Mater. Angew. Chem., Int. Ed.
– volume: 32 3
  start-page: 1245 1757
  year: 2021 2020
  publication-title: Chin. Chem. Lett. CCS Chem.
– volume: 11 60 33 33 56 59 60
  start-page: 6191 2058
  year: 2020 2021 2021 2021 2017 2020 2021
  publication-title: J. Phys. Chem. Lett. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 5 17 9 40 77 44 17 13 55 9 58
  start-page: 716 285 1527 2943 904 8484 5800 6194 3848
  year: 2011 2005 2008 2011 2021 2000 2015 2011 2007 2019 2017 2019
  publication-title: Nat. Photonics Adv. Mater. Int. J. Mol. Sci. Chem. Soc. Rev. Adv. Funct. Mater. Appl. Phys. Lett. Chem. Soc. Rev. Chem. ‐ Eur. J. Chem. ‐ Eur. J. Chem. Commun. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 28
  start-page: 6976
  year: 2016
  publication-title: Adv. Mater.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 8129
  year: 2019
  publication-title: Chem. Sci.
– volume: 27 37 139 115 44 20
  start-page: 1115 1 4228 4332 9565
  year: 2016 2021 2017 2015 2015 2014 2009 2021
  publication-title: Chin. Chem. Lett. Chem. Res. Chin. Univ. J. Am. Chem. Soc. Chem. Rev. Chem. Soc. Rev. Chem. ‐ Eur. J. Chem. Commun. J. Am. Chem. Soc.
– volume: 8 6 27 14 46
  start-page: 326 253 330 915
  year: 2014 2012 2017 2015 2017
  publication-title: Nat. Photonics Nat. Photonics Adv. Funct. Mater. Nat. Mater. Chem. Soc. Rev.
– volume: 8 122 119 142 121 45 112 6 2 10 13 138 10 13 12
  start-page: 42 7455 8846 2373 1542 1463 76 9743 6689 8099
  year: 2017 2018 2019 2020 2021 2016 2012 2020 2018 2021 2021 2021 2016 2019 2019 2020
  publication-title: J. Phys. Chem. Lett. J. Phys. Chem. A Chem. Rev. J. Am. Chem. Soc. Chem. Rev. Chem. Soc. Rev. Chem. Rev. Adv. Opt. Mater. Adv. Photonics Res. Light: Sci. Appl. ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Chem. Sci. ACS Nano ACS Appl. Mater. Interfaces
– volume: 2 55
  start-page: 1268 7171 501
  year: 2020 2016 2021 2021
  publication-title: CCS Chem. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Acc. Mater. Res.
– volume: 5 141 54
  start-page: 3475 5402 961
  year: 2017 2019 2021
  publication-title: J. Mater. Chem. A J. Am. Chem. Soc. Acc. Chem. Res.
– volume: 76 38
  start-page: 316 5686
  year: 2011 2014
  publication-title: J. Org. Chem. New J. Chem.
– volume: 58
  start-page: 8405
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 67 47 55 95 129 4
  start-page: 791 1183 5344 948 6839 3623
  year: 1963 1967 1971 1973 2007 2020
  publication-title: Ber. Bunsen‐Ges. Phys. Chem. J. Chem. Phys. J. Chem. Phys. J. Am. Chem. Soc. J. Am. Chem. Soc. Mater. Chem. Front.
– volume: 13
  start-page: 540
  year: 2019
  publication-title: Nat. Photonics
– volume: 49 402 44 31 123 56 399 9
  start-page: 932 9743 5981 5957 8819
  year: 2020 2020 2020 2019 2019 2020 2020 2021
  publication-title: Chem. Lett. Chem. Eng. J. New J. Chem. Chem. Mater. J. Phys. Chem. C Chem. Commun. Chem. Eng. J. J. Mater. Chem. C
– volume: 18 131 18
  start-page: 3765 2775 9702
  year: 2012 2011 2016
  publication-title: Chem. ‐ Eur. J. J. Lumin. Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 2191
  year: 2012
  publication-title: Chem. Sci.
– volume: 132
  start-page: 6498
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 1 43
  start-page: 7378
  year: 2016 2014
  publication-title: Nat. Rev. Mater. Chem. Soc. Rev.
– year: 2015
– volume: 134 44
  start-page: 5939
  year: 2012 2015
  publication-title: J. Am. Chem. Soc. Dalton Trans.
– volume: 10
  start-page: 3576
  year: 2019
  publication-title: Nat. Commun.
– volume: 47 10
  start-page: 6947 2648
  year: 2018 2019
  publication-title: Chem. Soc. Rev. J. Phys. Chem. Lett.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– start-page: 578
  year: 1977
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 44
  start-page: 988
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 3 4 3 5 23
  start-page: 633 9316 1091
  year: 2021 2016 2016 2017 2017
  publication-title: CCS Chem. J. Mater. Chem. C Org. Chem. Front. J. Mater. Chem. C Chem. ‐ Eur. J.
– volume: 578 139 6 50
  start-page: 403 9799 873 7587
  year: 2020 2017 2016 2021
  publication-title: Nature J. Am. Chem. Soc. ACS Catal. Chem. Soc. Rev.
– volume: 2019 7
  start-page: 588
  year: 2019 2020
  publication-title: Research Natl. Sci. Rev.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 376 5 53 5 59
  start-page: 533 1915 9210 3680
  year: 2018 2014 2017 2014 2020
  publication-title: Coord. Chem. Rev. Chem. Sci. Chem. Commun. Chem. Sci. Angew. Chem., Int. Ed.
– volume: 10
  start-page: 6615
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27 138
  start-page: 1170 4955
  year: 2015 2016
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 125
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 636
  year: 2020
  publication-title: Nat. Photonics
– volume: 125
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 4 7 8
  start-page: 8136 6501
  year: 2016 2019 2020
  publication-title: J. Mater. Chem. A J. Mater. Chem. A J. Mater. Chem. A
– volume: 112 132
  start-page: 5525 5735
  year: 1990 2010
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 393
  start-page: 51
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  start-page: 6868
  year: 2018
  publication-title: Org. Lett.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 69 91 515
  start-page: 755 311 96
  year: 1965 1997 2014
  publication-title: J. Phys. Chem. Synth. Met. Nature
– volume: 3 31
  start-page: 1140
  year: 2019 2019
  publication-title: Joule Adv. Mater.
– volume: 51 347 395 440 492 459 3 28 115 32 29 26 24 8 25 29 28 11 56
  start-page: 913 539 151 908 234 234 8449 2002 3410 1253 2205 479 1096 1571
  year: 1987 1990 1998 2006 2012 2009 1997 2018 2016 2015 2020 2019 2016 2012 2013 2013 2017 2016 2019 2017
  publication-title: Appl. Phys. Lett. Nature Nature Nature Nature Nature Nat. Rev. Mater. Adv. Mater. Chem. Rev. Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Adv. Mater. Chem. Asian J. Adv. Mater. Adv. Mater. Adv. Mater. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 23
  start-page: 5430
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4253
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 115
  start-page: 3540
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 95 8 6 40 43
  start-page: 474 5802 76 168 543 4084
  year: 1985 1991 2009 2021 2007 2014
  publication-title: J. Chem. Soc., Chem. Commun. J. Phys. Chem. Nat. Mater. Nat. Rev. Mater. Acc. Chem. Res. Chem. Soc. Rev.
– volume: 1 3 134 39 56
  start-page: 181 1086 7176 4195
  year: 2019 2012 2012 2010 2017
  publication-title: CCS Chem. Nat. Commun. J. Am. Chem. Soc. Chem. Soc. Rev. Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1678
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 171 262 48
  start-page: 737 1025 971
  year: 1953 1993 2019
  publication-title: Nature Science Chem. Soc. Rev.
– volume: 128
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 76 73 136
  start-page: 915 6132 5691 3073
  year: 1955 2004 1954 1951 2012 2019
  publication-title: Nature J. Am. Chem. Soc. J. Am. Chem. Soc. J. Chem. Phys. Eur. J. Org. Chem.
– volume: 26 270 361 2 107 49 4 6 121
  start-page: 10 1789 1094 1324 2828 1241 598 8234
  year: 2014 1995 2018 2017 2017 2007 2020 2019 2021 2021
  publication-title: Adv. Mater. Science Science Nat. Rev. Mater. Chem. Rev. Chem. Soc. Rev. ACS Energy Lett. ACS Energy Lett. Chem. Rev.
– volume: 1 12 31 32 116 142
  start-page: 0045 8589 2059
  year: 2017 2021 2021 2020 2016 2020
  publication-title: Nat. Rev. Chem. Chem. Sci. Adv. Funct. Mater. Adv. Mater. Chem. Rev. J. Am. Chem. Soc.
– volume: 85 64
  start-page: 165
  year: 2020 2021
  publication-title: J. Org. Chem. Sci. China: Chem.
– volume: 7 32 60 142
  start-page: 5213
  year: 2020 2020 2021 2020
  publication-title: Adv. Sci. Adv. Mater. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 8 2 18 59 54 58 12 133 133 49 29
  start-page: 4200 4581 4231 831 167 2136 2370 1852
  year: 2017 2021 2018 2020 2015 2015 2021 2011 2011 2016 2017
  publication-title: Nat. Commun. Cell Rep. Phys. Sci. Nano Lett. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Sci. China: Chem. Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. Acc. Chem. Res. Adv. Mater.
– volume: 54
  start-page: 9278
  year: 2018
  publication-title: Chem. Commun.
– volume: 28
  start-page: 7620
  year: 2016
  publication-title: Adv. Mater.
– volume: 7 138 4 142
  start-page: 5910 162 6007 7469
  year: 2019 2017 2016 2020
  publication-title: J. Mater. Chem. C Dyes Pigm. J. Mater. Chem. C J. Am. Chem. Soc.
– volume: 9 1
  start-page: 45
  year: 2021 2020
  publication-title: Adv. Opt. Mater. Aggregate.
– volume: 98 142
  year: 2011 2020
  publication-title: Appl. Phys. Lett. Mater. Sci. Eng., R
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_9_55_1
  doi: 10.1038/nphoton.2011.288
– ident: e_1_2_9_6_4
  doi: 10.1038/s41578-020-00254-z
– ident: e_1_2_9_84_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_9_3_18
  doi: 10.1002/adma.201502772
– ident: e_1_2_9_4_1
  doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
– volume-title: Low Molecular Weight Organic Semiconductors
  year: 2011
  ident: e_1_2_9_1_2
– ident: e_1_2_9_3_4
  doi: 10.1038/nature04645
– ident: e_1_2_9_16_2
  doi: 10.1021/acs.jpca.8b06535
– ident: e_1_2_9_21_5
  doi: 10.1039/b901261n
– ident: e_1_2_9_50_2
  doi: 10.1002/anie.202105628
– ident: e_1_2_9_62_1
  doi: 10.1038/s41566-020-0668-z
– ident: e_1_2_9_44_2
  doi: 10.1039/D1SC02335G
– ident: e_1_2_9_1_3
  doi: 10.1002/9783527621309
– ident: e_1_2_9_30_1
  doi: 10.1016/j.cclet.2020.08.045
– ident: e_1_2_9_22_2
  doi: 10.1021/acs.jpcc.0c05980
– ident: e_1_2_9_86_1
  doi: 10.1126/science.1228604
– ident: e_1_2_9_76_1
  doi: 10.1063/1.2244560
– ident: e_1_2_9_44_1
  doi: 10.1038/s41570-017-0045
– ident: e_1_2_9_56_1
  doi: 10.1039/C9TC01585J
– ident: e_1_2_9_7_1
  doi: 10.1557/mrs2008.142
– ident: e_1_2_9_38_5
  doi: 10.1039/C6CS00368K
– ident: e_1_2_9_8_2
  doi: 10.1021/jacs.7b00873
– ident: e_1_2_9_25_2
  doi: 10.1002/3527603964
– ident: e_1_2_9_29_1
  doi: 10.31635/ccschem.021.202000677
– ident: e_1_2_9_25_1
  doi: 10.1038/176915a0
– ident: e_1_2_9_35_1
  doi: 10.1021/jo101999b
– ident: e_1_2_9_52_1
  doi: 10.1038/natrevmats.2016.2
– ident: e_1_2_9_49_3
  doi: 10.1039/C7CC05198K
– ident: e_1_2_9_31_5
  doi: 10.1021/acs.jpcc.9b01900
– ident: e_1_2_9_9_2
  doi: 10.1063/1.1712006
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ccr.2018.08.015
– ident: e_1_2_9_13_1
  doi: 10.31635/ccschem.019.20180020
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201402532
– ident: e_1_2_9_42_1
  doi: 10.1002/asia.201900401
– ident: e_1_2_9_77_1
  doi: 10.1063/1.2834918
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201304373
– ident: e_1_2_9_5_8
  doi: 10.1021/acsenergylett.9b00528
– ident: e_1_2_9_39_4
  doi: 10.1039/D1CS00198A
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.7b10257
– ident: e_1_2_9_52_2
  doi: 10.1039/C4CS00143E
– ident: e_1_2_9_5_2
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_9_5_6
  doi: 10.1021/cr050149z
– ident: e_1_2_9_19_11
  doi: 10.1002/adma.201701248
– ident: e_1_2_9_3_17
  doi: 10.1002/adma.201700553
– ident: e_1_2_9_79_1
  doi: 10.1021/ja100936w
– ident: e_1_2_9_37_2
  doi: 10.1038/ncomms9476
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-019-11467-4
– ident: e_1_2_9_4_2
  doi: 10.1021/ar990114j
– ident: e_1_2_9_44_5
  doi: 10.1021/acs.chemrev.6b00354
– ident: e_1_2_9_16_7
  doi: 10.1021/cr200087r
– ident: e_1_2_9_19_10
  doi: 10.1021/acs.accounts.6b00305
– ident: e_1_2_9_58_1
  doi: 10.1002/anie.201709125
– ident: e_1_2_9_39_1
  doi: 10.1038/s41586-020-1937-1
– ident: e_1_2_9_4_7
  doi: 10.1002/adma.201801830
– ident: e_1_2_9_44_3
  doi: 10.1002/adfm.202010281
– ident: e_1_2_9_50_6
  doi: 10.1002/anie.201915433
– ident: e_1_2_9_22_1
  doi: 10.1039/C8TC05612A
– ident: e_1_2_9_82_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_9_3_2
  doi: 10.1038/347539a0
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.201601675
– volume-title: Organic Photovoltaics: Mechanisms, Materials, and Devices
  year: 2017
  ident: e_1_2_9_5_4
– ident: e_1_2_9_1_5
  doi: 10.1002/9783527685172
– ident: e_1_2_9_57_1
  doi: 10.1002/adom.202002204
– ident: e_1_2_9_3_12
  doi: 10.1002/adfm.201903112
– ident: e_1_2_9_5_5
  doi: 10.1038/natrevmats.2017.43
– volume-title: Highly Efficient OLEDs: Materials Based on Thermally Activated Delayed Fluorescence
  year: 2019
  ident: e_1_2_9_1_4
– ident: e_1_2_9_15_2
  doi: 10.1002/adma.202003885
– ident: e_1_2_9_14_6
  doi: 10.1002/chem.201403811
– ident: e_1_2_9_16_9
  doi: 10.1002/adom.201800538
– ident: e_1_2_9_39_3
  doi: 10.1021/acscatal.5b02204
– ident: e_1_2_9_38_4
  doi: 10.1038/nmat4154
– ident: e_1_2_9_56_3
  doi: 10.1039/C6TC00825A
– ident: e_1_2_9_8_5
  doi: 10.1002/anie.202013051
– ident: e_1_2_9_3_1
  doi: 10.1063/1.98799
– ident: e_1_2_9_34_1
  doi: 10.1021/ja3066623
– ident: e_1_2_9_69_1
  doi: 10.1002/adma.201602127
– ident: e_1_2_9_26_1
  doi: 10.1021/jo100688m
– ident: e_1_2_9_50_5
  doi: 10.1002/anie.201705945
– ident: e_1_2_9_55_4
  doi: 10.1039/c0cs00160k
– ident: e_1_2_9_31_7
  doi: 10.1016/j.cej.2020.125648
– ident: e_1_2_9_19_2
  doi: 10.1016/j.xcrp.2021.100364
– ident: e_1_2_9_43_3
  doi: 10.1039/D1CC02311J
– ident: e_1_2_9_4_6
  doi: 10.1021/acs.chemrev.8b00016
– ident: e_1_2_9_8_3
  doi: 10.1038/s41566-020-0667-0
– ident: e_1_2_9_10_2
  doi: 10.1016/S0379-6779(98)80049-0
– ident: e_1_2_9_16_5
  doi: 10.1021/acs.chemrev.0c01017
– ident: e_1_2_9_20_3
  doi: 10.1002/anie.202104145
– ident: e_1_2_9_35_2
  doi: 10.1039/C4NJ00955J
– ident: e_1_2_9_5_10
  doi: 10.1021/acs.chemrev.1c00078
– ident: e_1_2_9_15_3
  doi: 10.1002/anie.202011384
– ident: e_1_2_9_19_7
  doi: 10.1038/s41467-020-20311-z
– ident: e_1_2_9_50_4
  doi: 10.1002/adma.202008071
– ident: e_1_2_9_38_2
  doi: 10.1038/nphoton.2012.31
– ident: e_1_2_9_51_1
  doi: 10.1039/C6TA09049D
– ident: e_1_2_9_17_2
  doi: 10.1039/C9MH00130A
– ident: e_1_2_9_10_1
  doi: 10.1021/j100887a008
– ident: e_1_2_9_18_2
  doi: 10.1039/C9TA00343F
– ident: e_1_2_9_3_11
  doi: 10.1002/adma.201907539
– ident: e_1_2_9_36_1
  doi: 10.1063/1.3558906
– ident: e_1_2_9_3_5
  doi: 10.1038/nature11687
– ident: e_1_2_9_12_1
  doi: 10.1039/C7CS00803A
– ident: e_1_2_9_29_4
  doi: 10.1039/C7TC04626J
– volume-title: Introduction to Organic Electronic and Optoelectronic Materials and Devices
  year: 2016
  ident: e_1_2_9_1_1
– ident: e_1_2_9_55_11
  doi: 10.1021/acsami.6b14285
– ident: e_1_2_9_55_6
  doi: 10.1063/1.1306639
– ident: e_1_2_9_22_3
  doi: 10.1016/j.ccr.2017.07.016
– ident: e_1_2_9_10_3
  doi: 10.1038/nature13829
– ident: e_1_2_9_51_2
  doi: 10.1021/jacs.9b00053
– ident: e_1_2_9_20_4
  doi: 10.1021/accountsmr.1c00045
– ident: e_1_2_9_19_8
  doi: 10.1021/ja111320n
– ident: e_1_2_9_33_1
  doi: 10.1002/chem.201103131
– ident: e_1_2_9_68_1
  doi: 10.1038/s41566-019-0415-5
– ident: e_1_2_9_8_4
  doi: 10.1038/s41563-020-0710-z
– ident: e_1_2_9_4_5
  doi: 10.1021/cr0501386
– ident: e_1_2_9_16_15
  doi: 10.1021/acsnano.9b02940
– ident: e_1_2_9_31_2
  doi: 10.1016/j.cej.2020.126173
– ident: e_1_2_9_44_6
  doi: 10.1021/jacs.9b13019
– ident: e_1_2_9_17_1
  doi: 10.1002/anie.201909076
– ident: e_1_2_9_17_5
  doi: 10.1038/nmat4259
– ident: e_1_2_9_33_3
  doi: 10.1039/C5CP07883K
– ident: e_1_2_9_23_2
  doi: 10.1016/j.cej.2021.129366
– ident: e_1_2_9_43_2
  doi: 10.3389/fchem.2019.00199
– ident: e_1_2_9_72_2
  doi: 10.1021/ja909084e
– ident: e_1_2_9_31_1
  doi: 10.1246/cl.200337
– ident: e_1_2_9_83_2
  doi: 10.1021/jacs.6b02004
– ident: e_1_2_9_63_1
  doi: 10.1039/C9SC01686D
– ident: e_1_2_9_55_2
  doi: 10.1002/adma.200401373
– ident: e_1_2_9_4_8
  doi: 10.1016/j.chempr.2017.10.005
– ident: e_1_2_9_21_3
  doi: 10.1021/acs.jpclett.1c00265
– ident: e_1_2_9_47_1
  doi: 10.1021/ja035626e
– ident: e_1_2_9_66_1
  doi: 10.1002/advs.201700989
– ident: e_1_2_9_16_4
  doi: 10.1021/jacs.0c11053
– ident: e_1_2_9_6_2
  doi: 10.1021/j100168a018
– ident: e_1_2_9_25_4
  doi: 10.1021/ja01156a059
– ident: e_1_2_9_6_3
  doi: 10.1038/nmat2317
– volume-title: Physics of Organic Semiconductors
  year: 2013
  ident: e_1_2_9_1_6
– ident: e_1_2_9_53_2
  doi: 10.1038/s42254-019-0022-x
– volume-title: Intermolecular and Surface Forces
  year: 2015
  ident: e_1_2_9_70_1
– ident: e_1_2_9_30_2
  doi: 10.31635/ccschem.020.202000355
– ident: e_1_2_9_80_1
  doi: 10.1039/C7CP02110K
– volume: 2019
  start-page: 6717104
  year: 2019
  ident: e_1_2_9_46_1
  publication-title: Research
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cclet.2016.06.031
– ident: e_1_2_9_34_2
  doi: 10.1039/C5DT00231A
– ident: e_1_2_9_29_3
  doi: 10.1039/C6QO00204H
– ident: e_1_2_9_55_7
  doi: 10.1039/C5CS00424A
– ident: e_1_2_9_36_2
  doi: 10.1016/j.mser.2020.100581
– ident: e_1_2_9_19_4
  doi: 10.1002/anie.202000061
– ident: e_1_2_9_19_6
  doi: 10.1007/s11426-015-5415-9
– ident: e_1_2_9_49_4
  doi: 10.1039/C4SC01404A
– ident: e_1_2_9_83_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_9_21_1
  doi: 10.1021/jacs.8b00809
– ident: e_1_2_9_20_1
  doi: 10.31635/ccschem.020.202000243
– ident: e_1_2_9_57_2
  doi: 10.1002/agt2.4
– ident: e_1_2_9_73_1
  doi: 10.1063/1.3382344
– ident: e_1_2_9_31_6
  doi: 10.1039/D0CC01738H
– ident: e_1_2_9_16_10
  doi: 10.1002/adpr.202000136
– ident: e_1_2_9_3_10
  doi: 10.1021/cr400704v
– ident: e_1_2_9_13_2
  doi: 10.1038/ncomms2083
– ident: e_1_2_9_51_3
  doi: 10.1021/acs.accounts.0c00677
– ident: e_1_2_9_11_1
  doi: 10.1038/171737a0
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.orglett.8b02995
– ident: e_1_2_9_3_19
  doi: 10.1021/acsami.8b16784
– ident: e_1_2_9_4_3
  doi: 10.1021/acs.chemrev.8b00016
– ident: e_1_2_9_13_5
  doi: 10.1002/anie.201709874
– ident: e_1_2_9_46_2
  doi: 10.1093/nsr/nwz203
– ident: e_1_2_9_20_2
  doi: 10.1002/anie.201603232
– ident: e_1_2_9_9_3
  doi: 10.1063/1.1675677
– ident: e_1_2_9_43_1
  doi: 10.1039/C8SC04991B
– ident: e_1_2_9_14_3
  doi: 10.1021/jacs.7b08592
– ident: e_1_2_9_31_4
  doi: 10.1021/acs.chemmater.9b02712
– ident: e_1_2_9_49_2
  doi: 10.1039/c3sc53442a
– ident: e_1_2_9_55_10
  doi: 10.1039/C9CC07169E
– ident: e_1_2_9_41_1
  doi: 10.1039/C8CC04594A
– ident: e_1_2_9_5_9
  doi: 10.1021/acsenergylett.0c02384
– ident: e_1_2_9_17_6
  doi: 10.1038/s41563-020-0797-2
– ident: e_1_2_9_25_6
  doi: 10.1002/ejoc.201900061
– ident: e_1_2_9_85_1
  doi: 10.1002/anie.201902264
– ident: e_1_2_9_29_5
  doi: 10.1002/chem.201704182
– ident: e_1_2_9_72_1
  doi: 10.1021/ja00170a016
– ident: e_1_2_9_61_1
  doi: 10.1039/C9TC06204A
– ident: e_1_2_9_71_1
  doi: 10.1039/c2sc20045g
– ident: e_1_2_9_25_5
  doi: 10.1063/1.3692184
– ident: e_1_2_9_6_5
  doi: 10.1021/ar7000638
– ident: e_1_2_9_29_2
  doi: 10.1039/C6TC03767D
– ident: e_1_2_9_19_1
  doi: 10.1038/ncomms15195
– ident: e_1_2_9_23_1
  doi: 10.1021/om4011406
– ident: e_1_2_9_55_8
  doi: 10.1002/chem.201100254
– ident: e_1_2_9_15_1
  doi: 10.1002/advs.201902087
– ident: e_1_2_9_14_7
  doi: 10.1039/b904665h
– ident: e_1_2_9_39_2
  doi: 10.1021/jacs.7b05082
– ident: e_1_2_9_55_3
  doi: 10.3390/ijms9081527
– ident: e_1_2_9_38_1
  doi: 10.1038/nphoton.2014.12
– ident: e_1_2_9_55_12
  doi: 10.1002/anie.201813604
– ident: e_1_2_9_6_1
  doi: 10.1039/c39850000474
– ident: e_1_2_9_3_6
  doi: 10.1038/nature08003
– ident: e_1_2_9_11_3
  doi: 10.1039/C8CS00157J
– ident: e_1_2_9_55_5
  doi: 10.1002/adfm.202010547
– ident: e_1_2_9_74_1
  doi: 10.1063/1.1383587
– ident: e_1_2_9_60_1
  doi: 10.1002/adom.201800385
– ident: e_1_2_9_9_1
  doi: 10.1002/bbpc.19630670810
– ident: e_1_2_9_11_2
  doi: 10.1126/science.7802858
– ident: e_1_2_9_5_3
  doi: 10.1126/science.aat2612
– ident: e_1_2_9_4_9
  doi: 10.1021/cr100380z
– ident: e_1_2_9_14_5
  doi: 10.1039/C4CS00325J
– ident: e_1_2_9_17_4
  doi: 10.1039/D0TC00975J
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.chemrev.5b00680
– ident: e_1_2_9_81_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_9_21_4
  doi: 10.1039/c3dt52465e
– ident: e_1_2_9_84_2
  doi: 10.1002/adma.201807577
– ident: e_1_2_9_9_6
  doi: 10.1039/D0QM00420K
– ident: e_1_2_9_16_11
  doi: 10.1038/s41377-021-00516-7
– ident: e_1_2_9_31_3
  doi: 10.1039/D0NJ00905A
– ident: e_1_2_9_9_4
  doi: 10.1021/ja00784a066
– ident: e_1_2_9_14_2
  doi: 10.1007/s40242-021-0381-6
– ident: e_1_2_9_75_1
  doi: 10.1016/j.cplett.2004.06.011
– ident: e_1_2_9_3_8
  doi: 10.1038/natrevmats.2018.20
– ident: e_1_2_9_3_3
  doi: 10.1038/25954
– ident: e_1_2_9_64_1
  doi: 10.1039/D0TC04547K
– ident: e_1_2_9_25_3
  doi: 10.1021/ja01652a081
– ident: e_1_2_9_3_16
  doi: 10.1002/adma.201204724
– ident: e_1_2_9_16_16
  doi: 10.1021/acsami.0c09139
– ident: e_1_2_9_5_7
  doi: 10.1039/D0CS00084A
– ident: e_1_2_9_54_1
  doi: 10.1039/C4CS00262H
– ident: e_1_2_9_19_3
  doi: 10.1021/acs.nanolett.8b01082
– ident: e_1_2_9_16_14
  doi: 10.1039/C9SC01821B
– ident: e_1_2_9_24_2
  doi: 10.1007/s11426-020-9841-5
– ident: e_1_2_9_8_1
  doi: 10.1007/978-4-431-54129-5
– ident: e_1_2_9_17_3
  doi: 10.1039/C9SC02282A
– ident: e_1_2_9_16_12
  doi: 10.1021/acsami.1c04779
– ident: e_1_2_9_16_3
  doi: 10.1021/acs.chemrev.9b00033
– ident: e_1_2_9_38_3
  doi: 10.1002/adfm.201700986
– ident: e_1_2_9_16_13
  doi: 10.1021/jacs.6b02463
– ident: e_1_2_9_32_1
  doi: 10.1039/b105159h
– ident: e_1_2_9_16_1
  doi: 10.1021/acs.jpclett.6b02492
– ident: e_1_2_9_55_9
  doi: 10.1002/chem.200701036
– ident: e_1_2_9_56_4
  doi: 10.1021/jacs.9b13956
– ident: e_1_2_9_4_4
  doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
– ident: e_1_2_9_19_5
  doi: 10.1002/anie.201411909
– ident: e_1_2_9_14_8
  doi: 10.1021/jacs.1c03882
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.201102804
– ident: e_1_2_9_3_9
  doi: 10.1002/adma.201601737
– ident: e_1_2_9_3_14
  doi: 10.1002/adma.201201124
– ident: e_1_2_9_56_2
  doi: 10.1016/j.dyepig.2016.11.037
– ident: e_1_2_9_3_20
  doi: 10.1002/anie.201609459
– ident: e_1_2_9_6_6
  doi: 10.1039/c3cs60471c
– ident: e_1_2_9_78_1
  doi: 10.1039/b810189b
– ident: e_1_2_9_12_2
  doi: 10.1021/acs.jpclett.9b01040
– volume-title: Organic Electroluminescent Materials and Devices
  year: 1997
  ident: e_1_2_9_3_7
– ident: e_1_2_9_3_15
  doi: 10.1002/asia.201300002
– ident: e_1_2_9_48_1
  doi: 10.1021/ja300278e
– ident: e_1_2_9_49_5
  doi: 10.1002/anie.202004361
– ident: e_1_2_9_2_1
  doi: 10.1039/c39770000578
– ident: e_1_2_9_18_3
  doi: 10.1039/D0TA00047G
– ident: e_1_2_9_44_4
  doi: 10.1002/adma.201900110
– ident: e_1_2_9_19_9
  doi: 10.1021/ja109745a
– ident: e_1_2_9_33_2
  doi: 10.1016/j.jlumin.2011.06.027
– ident: e_1_2_9_13_3
  doi: 10.1021/ja3019065
– ident: e_1_2_9_13_4
  doi: 10.1039/b822665m
– ident: e_1_2_9_67_1
  doi: 10.1039/C5CC05022G
– ident: e_1_2_9_21_2
  doi: 10.1021/acs.chemrev.6b00144
– ident: e_1_2_9_50_7
  doi: 10.1002/anie.202011830
– ident: e_1_2_9_18_1
  doi: 10.1039/C6TA06978A
– ident: e_1_2_9_50_1
  doi: 10.1021/acs.jpclett.9b03363
– ident: e_1_2_9_50_3
  doi: 10.1002/adma.202007811
– ident: e_1_2_9_59_1
  doi: 10.1021/acsami.7b05615
– ident: e_1_2_9_31_8
  doi: 10.1039/D1TC02316K
– ident: e_1_2_9_24_1
  doi: 10.1021/acs.joc.0c01200
– ident: e_1_2_9_14_4
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_9_3_13
  doi: 10.1002/adfm.201505014
– ident: e_1_2_9_9_5
  doi: 10.1021/ja0702824
– ident: e_1_2_9_16_6
  doi: 10.1039/C5CS00620A
– ident: e_1_2_9_15_4
  doi: 10.1021/jacs.0c08980
– ident: e_1_2_9_16_8
  doi: 10.1007/978-981-15-2309-0
SSID ssj0009606
Score 2.6787767
SecondaryResourceType review_article
Snippet Organic semiconductors can be designed and constructed in π‐stacked structures instead of the conventional π‐conjugated structures. Through‐space interaction...
Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104125
SubjectTerms Charge transfer
Chemists
Circular polarization
Coupling (molecular)
Functional groups
Materials science
Optoelectronic devices
optoelectronics
organic semiconductor
Organic semiconductors
Phosphorescence
Semiconductors
small molecule
Space charge
through‐space interaction
π‐stacked configuration
Title Research Progress of Intramolecular π‐Stacked Small Molecules for Device Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104125
https://www.ncbi.nlm.nih.gov/pubmed/34595783
https://www.proquest.com/docview/2672226107
https://www.proquest.com/docview/2578775954
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2hnuDAvgQKMhISp9DWtWPnWLEIkECIReot8pYLXRBtL5z6CfwZ_8CXME6a0IIQEhwTjxVnxjN-tsfPAAfCMiuETkNtUhsyh7aQ1DVCLk3KOFU0dVm2xXV0_sAu27w9dYo_54coF9y8Z2Tx2ju40oPaJ2moshlvEE5ZGA7SGIR9wpZHRbef_FEenmdke00exhGTBWtjndZmq8-OSt-g5ixyzYaesyVQRaPzjJPHo9FQH5mXL3yO__mrZVic4FLSyjvSCsy53iosTLEVrkG7yNIjNz6pC0Mk6afkwq8Od4tLdsnb-H38iggWg4Mld13V6ZCrvNANCAJkcuJ8bCKtqY3zdXg4O70_Pg8nFzOEpilQlVzYiKacCy2NQoihIoGRw0puuNWodGMaQhg_WXJSoRC3VMWRlsI6zh1GhA2o9Po9twVEI0DQsbSGccbSeqrqkUFzydjfCBJHjQDCwjCJmbCW-8szOknOt0wTr7Gk1FgAh6X8U87X8aNktbBzMvHbQUIjgYAJIaUIYL8sRo_z2yiq5_ojlPFBTvCYswA28_5RfqrJ8L2QzQBoZuVf2pC0Tq5a5dP2XyrtwDz1JzKyhaEqVIbPI7eLOGmo9zJf-AA0UgkY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qygJYlHcZKGAkEKtpE8ceexYsIkKV0KZC0ErZDX7NhjSpSKKqrPoJ_ApfUqmfwJdw77zagBASUhcsZ8Yje3xfx57rcwFeKC-8UjaPrct9LALKQvPQjqV2uZDc8DwU2RZ7Sf9AvBvJ0Qp8r8_ClPwQzYYbWUbhr8nAaUN664I11PiCOAjXLAKjdJVXuRNOjnHVNns96KGIX3K-_Xb_TT-uCgvErqM6MpbKJzyXUlntDIZIkyjUfK-lk94ipneurZQjsB-0wUbSc5MmVisfpAyK-JfQ61-jMuJE19_7cMFYRQuCgt4Pu0kToWueyBbfWh7vchz8DdwuY-Ui2G3fgvN6msocl8-bi7nddF9_YZD8r-bxNqxV0Jt1S1u5AythchduXiJkvAejOhGRvae8NYwCbJqzAW2AH9Z1hNnZ6Y_TbwjS0f959vHQjMdsWD4MM4ZrANYL5H5Z91JuwH04uJJPewCrk-kkPARmEQPZVHsnpBB5KzetxKF-6JSKnqRJO4K41oTMVcTsVB9knJWU0jwjCWWNhCJ41bQ_KilJ_thyo1asrHJNs4wnCjEhomYVwfPmMToV-lNkJmG6wDbkx5VMpYhgvVTIpquOwPtKdyLghVr9ZQxZtzfsNleP_uWlZ3C9vz_czXYHezuP4QanAyjFPtgGrM6_LMIThIVz-7QwRAafrlpjfwLmXmWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qioRgwZsyUMBIIFbTJo5fs-giYogaSqsKqJTd4OeGNKlIIgSrfgKf0j-p-gt8CdfzagNCSEhdsJwZj-zxfR17rs8FeC4dc1KakBobXMo8ykJR3025soFxqmnwZbbFntg-YG9GfLQCJ81ZmIofot1wi5ZR-uto4EcubJ6ThmpX8gbhkoVhkK7TKnf81y-4aJttDXOU8AtKB68_vNpO67oCqe3JHk-5dIIGzqVRVmOE1EKi4jvFLXcGIb21XSltxPpeaWzEHdWZMEo6z7mXkX4Jnf4VJjpZLBaRvzsnrIrrgZLdD7vJBFMNTWSHbi6PdzkM_oZtl6FyGesGN-GsmaUqxeXTxmJuNuy3Xwgk_6dpvAU3auBN-pWl3IYVP7kD1y_QMd6FUZOGSPZj1hrGADINZBi3vw-bKsLk9PjH8XeE6Oj9HHl_qMdjsls99DOCKwCS--h8Sf9CZsA9OLiUT7sPq5PpxD8AYhABmUw5yzhjoRN0R1hUD5XFkieZ6CaQNopQ2JqWPVYHGRcVoTQtooSKVkIJvGzbH1WEJH9sud7oVVE7pllBhUREiJhZJvCsfYwuJf4n0hM_XWCb6MUlzzhLYK3Sx7arHsP7UvUSoKVW_WUMRT_f7bdXD__lpadwdT8fFG-HezuP4BqNp0_KTbB1WJ1_XvjHiAnn5klphgQ-XrbC_gQpQWRf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+of+Intramolecular+%CF%80-Stacked+Small+Molecules+for+Device+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Sheng-Yi&rft.au=Qu%2C+Yang-Kun&rft.au=Liao%2C+Liang-Sheng&rft.au=Jiang%2C+Zuo-Quan&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=22&rft.spage=e2104125&rft_id=info:doi/10.1002%2Fadma.202104125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon