Competitive Doping Chemistry for Nickel‐Rich Layered Oxide Cathode Materials

Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 21; pp. e202116865 - n/a
Main Authors Guo, Yu‐Jie, Zhang, Chao‐Hui, Xin, Sen, Shi, Ji‐Lei, Wang, Wen‐Peng, Fan, Min, Chang, Yu‐Xin, He, Wei‐Huan, Wang, Enhui, Zou, Yu‐Gang, Yang, Xin'an, Meng, Fanqi, Zhang, Yu‐Ying, Lei, Zhou‐Quan, Yin, Ya‐Xia, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.05.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. A model study has been performed on Group IIIA element (boron and aluminum) co‐doped high‐nickel layered oxide cathode materials to understand competitive doping chemistry. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen, resulting in the formation of a B‐rich surface and an Al‐rich bulk.
AbstractList Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.
Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than B . In the case of Al-preoccupation, the bulk diffusion of B is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.
Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than B III . In the case of Al‐preoccupation, the bulk diffusion of B III is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.
Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. A model study has been performed on Group IIIA element (boron and aluminum) co‐doped high‐nickel layered oxide cathode materials to understand competitive doping chemistry. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen, resulting in the formation of a B‐rich surface and an Al‐rich bulk.
Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.
Author Wang, Wen‐Peng
Chang, Yu‐Xin
Wang, Enhui
Zou, Yu‐Gang
Zhang, Chao‐Hui
Guo, Yu‐Guo
Shi, Ji‐Lei
Xin, Sen
Yang, Xin'an
Guo, Yu‐Jie
Fan, Min
Yin, Ya‐Xia
Lei, Zhou‐Quan
Zhang, Yu‐Ying
He, Wei‐Huan
Meng, Fanqi
Author_xml – sequence: 1
  givenname: Yu‐Jie
  surname: Guo
  fullname: Guo, Yu‐Jie
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chao‐Hui
  surname: Zhang
  fullname: Zhang, Chao‐Hui
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Sen
  surname: Xin
  fullname: Xin, Sen
  email: xinsen08@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Ji‐Lei
  surname: Shi
  fullname: Shi, Ji‐Lei
  organization: Chinese Academy of Sciences (CAS)
– sequence: 5
  givenname: Wen‐Peng
  surname: Wang
  fullname: Wang, Wen‐Peng
  organization: Chinese Academy of Sciences (CAS)
– sequence: 6
  givenname: Min
  surname: Fan
  fullname: Fan, Min
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Yu‐Xin
  surname: Chang
  fullname: Chang, Yu‐Xin
  organization: Chinese Academy of Sciences (CAS)
– sequence: 8
  givenname: Wei‐Huan
  surname: He
  fullname: He, Wei‐Huan
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Enhui
  surname: Wang
  fullname: Wang, Enhui
  organization: Chinese Academy of Sciences (CAS)
– sequence: 10
  givenname: Yu‐Gang
  surname: Zou
  fullname: Zou, Yu‐Gang
  organization: Chinese Academy of Sciences (CAS)
– sequence: 11
  givenname: Xin'an
  surname: Yang
  fullname: Yang, Xin'an
  organization: Institute of Physics, CAS
– sequence: 12
  givenname: Fanqi
  surname: Meng
  fullname: Meng, Fanqi
  organization: Institute of Physics, CAS
– sequence: 13
  givenname: Yu‐Ying
  surname: Zhang
  fullname: Zhang, Yu‐Ying
  organization: University of Chinese Academy of Sciences
– sequence: 14
  givenname: Zhou‐Quan
  surname: Lei
  fullname: Lei, Zhou‐Quan
  organization: University of Chinese Academy of Sciences
– sequence: 15
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  email: yxyin@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 16
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35132759$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVxSJzLtssy0E024-gyuszSTNM24DgQkrXQaM7USscjVyM39a6PkGfMk1TBuYAhdPVL8H2Hw_kP0aj3PSD0keAJwZiemd7BhGJKiFCCf0BjwinJmZRslN4FY7lUnBygw2G4S7xSWOyjA8YJo5KXYzSv_HIF0UX3G7IvfuX6H1m1gKUbYthkrQ_Z3Nmf0D3-fbh2dpHNzAYCNNnVH9dAVpm48CkvTYTgTDcco702BZw85xG6_Xp-U33PZ1ffLqrpLLdMMp5zVgheS6OYLTHmjRWqxpI1gtqaUChqXtSlIqwtwHKZPgoaUuPWSk6BE8WO0Ol27ir4X2sYok4bW-g604NfD5oKKlRJpMQJ_byD3vl16NN2iRK4LARmNFGfnql1vYRGr4JbmrDRL5dKQLEFbPDDEKDV1kUTne9jMK7TBOunQvRTIfq1kKRNdrSXye8K5Va4dx1s_kPr6fzi_M39B3OpnLQ
CitedBy_id crossref_primary_10_1016_j_ensm_2023_103050
crossref_primary_10_1142_S1793604722510390
crossref_primary_10_1002_smll_202307377
crossref_primary_10_1002_aenm_202304529
crossref_primary_10_1021_acsenergylett_3c02072
crossref_primary_10_1002_adfm_202301490
crossref_primary_10_1002_adfm_202300081
crossref_primary_10_1021_acsami_3c00636
crossref_primary_10_1016_j_cej_2023_144051
crossref_primary_10_1002_bte2_20230030
crossref_primary_10_1007_s11581_023_05191_9
crossref_primary_10_1002_adma_202411311
crossref_primary_10_1039_D2TA08969F
crossref_primary_10_1039_D4CS00415A
crossref_primary_10_1002_ange_202314457
crossref_primary_10_1002_smtd_202301162
crossref_primary_10_1007_s12598_022_02252_2
crossref_primary_10_1021_acs_iecr_3c04271
crossref_primary_10_1039_D4EE03673E
crossref_primary_10_1039_D4EE01254B
crossref_primary_10_1002_adfm_202312762
crossref_primary_10_1016_j_cej_2023_143390
crossref_primary_10_3866_PKU_WHXB202308051
crossref_primary_10_1016_j_jelechem_2023_117923
crossref_primary_10_1002_adma_202412360
crossref_primary_10_1002_adma_202303612
crossref_primary_10_1002_adfm_202210731
crossref_primary_10_1039_D3CC01099F
crossref_primary_10_1021_acsaem_3c02784
crossref_primary_10_1002_aenm_202401123
crossref_primary_10_1002_anie_202314457
crossref_primary_10_1002_adma_202312292
crossref_primary_10_1002_anie_202300209
crossref_primary_10_1021_acsnano_3c07655
crossref_primary_10_1021_acsami_2c18423
crossref_primary_10_1002_adfm_202307126
crossref_primary_10_1039_D3CS00741C
crossref_primary_10_3390_nano12111888
crossref_primary_10_1002_anie_202302547
crossref_primary_10_1016_j_pmatsci_2024_101247
crossref_primary_10_1002_smll_202307678
crossref_primary_10_1002_anie_202300962
crossref_primary_10_1002_eem2_12831
crossref_primary_10_1021_acsami_2c12889
crossref_primary_10_1007_s42765_023_00347_8
crossref_primary_10_1021_acsenergylett_3c01840
crossref_primary_10_1002_adfm_202401300
crossref_primary_10_1002_adfm_202300127
crossref_primary_10_1002_adfm_202425698
crossref_primary_10_1002_adfm_202301336
crossref_primary_10_1039_D4TA06100D
crossref_primary_10_1002_aenm_202401037
crossref_primary_10_1002_aenm_202201510
crossref_primary_10_1002_asia_202200213
crossref_primary_10_1007_s10853_022_07763_y
crossref_primary_10_1002_ange_202300962
crossref_primary_10_1002_ange_202302547
crossref_primary_10_1007_s40843_023_2512_1
crossref_primary_10_1021_acs_nanolett_4c01816
crossref_primary_10_1002_adma_202417353
crossref_primary_10_1007_s12598_023_02386_x
crossref_primary_10_1016_j_cej_2024_152298
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1016_j_pnsc_2022_12_004
crossref_primary_10_1021_acsami_2c14195
crossref_primary_10_1002_ange_202300209
crossref_primary_10_1016_j_jcis_2024_11_209
crossref_primary_10_1021_acsaem_3c00565
crossref_primary_10_1126_sciadv_ado4472
crossref_primary_10_1002_adfm_202212849
crossref_primary_10_1002_cssc_202401666
crossref_primary_10_1126_sciadv_adl4842
crossref_primary_10_1021_acsami_3c06928
crossref_primary_10_1021_acsami_3c17457
crossref_primary_10_1039_D3YA00631J
crossref_primary_10_1002_celc_202300653
crossref_primary_10_1021_jacs_4c11645
Cites_doi 10.1021/acscentsci.7b00288
10.1002/ange.201801533
10.1016/j.ensm.2019.08.013
10.1021/cm901452z
10.1021/acssuschemeng.9b01312
10.1016/j.electacta.2010.06.040
10.1016/j.jpowsour.2019.227017
10.1002/anie.201801533
10.1002/anie.202111954
10.1021/acs.energyfuels.0c03967
10.1002/aenm.201801202
10.1021/cr020731c
10.1002/adfm.201400436
10.1038/natrevmats.2016.103
10.1021/acs.chemmater.8b00619
10.1021/jacs.7b00164
10.1039/C6CS00875E
10.1021/acsenergylett.0c00191
10.1021/ja3091438
10.1016/j.xcrp.2021.100665
10.1016/j.jmst.2020.10.047
10.1038/s41560-021-00782-0
10.1002/ange.202111954
10.1002/adma.201402962
10.1016/j.nanoen.2020.105365
10.1002/adma.201606715
10.1021/acs.chemmater.7b05269
10.1002/adfm.201808825
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202116865
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35132759
10_1002_anie_202116865
ANIE202116865
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Basic Science Center Project of National Natural Science Foundation of China
  funderid: 51788104
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA 21070300
– fundername: Natural Science Foundation of Beijing
  funderid: 2222089
– fundername: National Key R&D Program of China
  funderid: 2019YFA0705602
– fundername: National Natural Science Foundation of China
  funderid: 22075299; 21975266; 22179133; 22109165
– fundername: National Natural Science Foundation of China
  grantid: 21975266
– fundername: National Natural Science Foundation of China
  grantid: 22109165
– fundername: National Natural Science Foundation of China
  grantid: 22075299
– fundername: Basic Science Center Project of National Natural Science Foundation of China
  grantid: 51788104
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA 21070300
– fundername: National Natural Science Foundation of China
  grantid: 22179133
– fundername: National Key R&D Program of China
  grantid: 2019YFA0705602
– fundername: Natural Science Foundation of Beijing
  grantid: 2222089
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-53465b7a83c9005dc68b073d62cb12e4b54b9813f4ec5754b8ed1b0fc752e5183
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:20:22 EDT 2025
Fri Jul 25 10:28:02 EDT 2025
Thu Apr 03 07:07:36 EDT 2025
Tue Jul 01 01:18:16 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Jan 22 16:25:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Ion Diffusion
Electron Configuration
Lithium-Ion Battery
Doping Chemistry
Nickel-Rich Cathode
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-53465b7a83c9005dc68b073d62cb12e4b54b9813f4ec5754b8ed1b0fc752e5183
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0322-8476
PMID 35132759
PQID 2660946032
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2626891770
proquest_journals_2660946032
pubmed_primary_35132759
crossref_citationtrail_10_1002_anie_202116865
crossref_primary_10_1002_anie_202116865
wiley_primary_10_1002_anie_202116865_ANIE202116865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 16, 2022
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 05
  year: 2022
  text: May 16, 2022
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2010; 55
2021; 6
2019; 2019
2004; 104
2017; 2
2017; 3
2021; 2
2017; 46
2014; 24
2020; 78
2017; 29
2017; 139
2010; 22
2021; 35
2020; 5
2018; 8
2015; 27
2021; 78
2018 2018; 57 130
2021 2021; 60 133
2013; 135
2019; 29
2018; 30
2019; 438
2020; 24
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_5_2
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_4_2
e_1_2_3_17_1
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_18_1
e_1_2_3_2_2
e_1_2_3_19_1
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_12_1
e_1_2_3_8_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_14_1
e_1_2_3_15_1
e_1_2_3_30_1
Tang Z. (e_1_2_3_26_2) 2019; 2019
e_1_2_3_33_1
e_1_2_3_10_2
e_1_2_3_32_1
Li W. D. (e_1_2_3_31_1) 2018; 8
e_1_2_3_27_2
e_1_2_3_28_2
e_1_2_3_29_1
e_1_2_3_23_2
e_1_2_3_24_2
e_1_2_3_25_1
e_1_2_3_20_1
e_1_2_3_21_1
e_1_2_3_22_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 5
  start-page: 1136
  year: 2020
  end-page: 1146
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 3006
  year: 2017
  end-page: 3059
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 26535 26739
  year: 2021 2021
  end-page: 26539 26743
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  start-page: 1155
  year: 2018
  end-page: 1163
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 35
  start-page: 1842
  year: 2021
  end-page: 1850
  publication-title: Energy Fuels
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  publication-title: Chem. Mater.
– volume: 24
  start-page: 247
  year: 2020
  end-page: 254
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 1808
  year: 2018
  end-page: 1814
  publication-title: Chem. Mater.
– volume: 139
  start-page: 4835
  year: 2017
  end-page: 4845
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 176
  year: 2021
  end-page: 182
  publication-title: J. Mater. Sci. Technol.
– volume: 3
  start-page: 1063
  year: 2017
  end-page: 1069
  publication-title: ACS Cent. Sci.
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 6440
  year: 2010
  end-page: 6449
  publication-title: Electrochim. Acta
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 24
  start-page: 5112
  year: 2014
  end-page: 5118
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 527
  year: 2015
  end-page: 545
  publication-title: Adv. Mater.
– volume: 6
  start-page: 362
  year: 2021
  end-page: 371
  publication-title: Nat. Energy
– volume: 7
  start-page: 10661
  year: 2019
  end-page: 10669
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  start-page: 11
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 57 130
  start-page: 6480 6590
  year: 2018 2018
  end-page: 6485 6595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4301
  publication-title: Chem. Rev.
– volume: 438
  year: 2019
  publication-title: J. Power Sources
– ident: e_1_2_3_1_1
– ident: e_1_2_3_4_2
  doi: 10.1021/acscentsci.7b00288
– ident: e_1_2_3_17_2
  doi: 10.1002/ange.201801533
– ident: e_1_2_3_33_1
  doi: 10.1016/j.ensm.2019.08.013
– ident: e_1_2_3_5_2
  doi: 10.1021/cm901452z
– ident: e_1_2_3_12_1
– ident: e_1_2_3_18_1
  doi: 10.1021/acssuschemeng.9b01312
– ident: e_1_2_3_27_2
  doi: 10.1016/j.electacta.2010.06.040
– ident: e_1_2_3_16_1
  doi: 10.1016/j.jpowsour.2019.227017
– ident: e_1_2_3_17_1
  doi: 10.1002/anie.201801533
– ident: e_1_2_3_19_1
  doi: 10.1002/anie.202111954
– ident: e_1_2_3_29_1
  doi: 10.1021/acs.energyfuels.0c03967
– ident: e_1_2_3_23_2
  doi: 10.1002/aenm.201801202
– ident: e_1_2_3_3_2
  doi: 10.1021/cr020731c
– ident: e_1_2_3_22_1
– ident: e_1_2_3_32_1
  doi: 10.1002/adfm.201400436
– ident: e_1_2_3_8_2
  doi: 10.1038/natrevmats.2016.103
– volume: 8
  start-page: 11
  year: 2018
  ident: e_1_2_3_31_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_3_20_1
  doi: 10.1021/acs.chemmater.8b00619
– ident: e_1_2_3_30_1
  doi: 10.1021/jacs.7b00164
– volume: 2019
  start-page: 2198906
  year: 2019
  ident: e_1_2_3_26_2
  publication-title: Research
– ident: e_1_2_3_7_2
  doi: 10.1039/C6CS00875E
– ident: e_1_2_3_15_1
  doi: 10.1021/acsenergylett.0c00191
– ident: e_1_2_3_2_2
  doi: 10.1021/ja3091438
– ident: e_1_2_3_10_2
  doi: 10.1016/j.xcrp.2021.100665
– ident: e_1_2_3_25_1
– ident: e_1_2_3_11_2
  doi: 10.1016/j.jmst.2020.10.047
– ident: e_1_2_3_13_2
  doi: 10.1038/s41560-021-00782-0
– ident: e_1_2_3_6_1
– ident: e_1_2_3_19_2
  doi: 10.1002/ange.202111954
– ident: e_1_2_3_9_2
  doi: 10.1002/adma.201402962
– ident: e_1_2_3_24_2
  doi: 10.1016/j.nanoen.2020.105365
– ident: e_1_2_3_28_2
  doi: 10.1002/adma.201606715
– ident: e_1_2_3_14_1
  doi: 10.1021/acs.chemmater.7b05269
– ident: e_1_2_3_21_1
  doi: 10.1002/adfm.201808825
SSID ssj0028806
Score 2.6488094
Snippet Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202116865
SubjectTerms Aluminum
Atomic radius
Boron
Cathodes
Chemical bonds
Chemical interactions
Chemical modification
Chemistry
Configurations
Density functional theory
Diffusion barriers
Dopants
Doping
Doping Chemistry
Electrode materials
Electron Configuration
Ion Diffusion
Lithium
Lithium-Ion Battery
Nickel
Nickel-Rich Cathode
Oxygen
Rechargeable batteries
Storage batteries
Surface chemistry
Title Competitive Doping Chemistry for Nickel‐Rich Layered Oxide Cathode Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202116865
https://www.ncbi.nlm.nih.gov/pubmed/35132759
https://www.proquest.com/docview/2660946032
https://www.proquest.com/docview/2626891770
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ei15cH7tu1gctLOwpmvQrnaOMiorOwrKCt5B-BESZkXUG1JM_wd_oL7EqmUTHRYTdUwjdTZLuqu6v0v19BfBdVXlpcV2LHRcZbTOmsVVWxpnWua9yb1QtpH3a14dn8vhcnb9i8Tf6EN0PN_KMer4mBy_tzc6LaCgxsDG-wwBGG00sczqwRajoV6cfxdE4G3qREDFloW9VGxO-M918elX6C2pOI9d66Tn4BGX70s2Jk8vt8chuu_s3eo7_81WLsDDBpWy3MaQlmAmDZZjrtengVqDfqxF2fdSI7dU0K9YVM4S-DI3qMlw9PTwSWZ-dlHeUBpT9vL3wgRHRcIjX03LUmPxnODvY_907jCfJGGInMqFiJaRWNiuNcDl6rnfaWJwevObOpjxIq6TNTSoqGRxCQGlN8KlNKpcpHhROHF9gdjAchK_A0tKHxKeZcRLxkK2M4t5X3FQ2pDqRaQRxOxiFmyiVU8KMq6LRWOYF9VLR9VIEP7r6141Gx7s119uxLSa-elMgRMEYVyeCR7DVFWP30dZJOQjDMdXh2mBkmyURrDY20T1KKIzoM5VHwOuR_eAdit3-0X539-1fGq3BPCcWBonI6nWYHf0Zhw3ERiO7Wdv_M5lJBDc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9lAuQPkNLWAkEKe08W-cA4dqt9Vuu7tIqJV6C_FPJNRqt2p3BeXEI_RVeBUegSdhnGxSLRVCqtQDpyiykzieGfsb2_MNwBtZZoXBeS22jKdhm5HGRhoRp0plrsyclhWR9nCkeodi70geLcGPJham5odoF9yCZVTjdTDwsCC9dcUaGkKw0cFDD0Zp1Zyr3PcXX9BrO3_f76KI3zK2u3PQ6cXzxAKx5SmXseRCSZMWmtsMtdBZpQ2qulPMGsq8MFKYTFNeCm8RzgijvaMmKW0qmZdoBPjeO7AS0ogHuv7ux5axiqE51AFNnMch733DE5mwrcX2Ls6D18DtIlauJrvd-_Cz6ab6jMvx5mxqNu23Pxgk_6t-fAD35tCbbNe2sgZLfvwQVjtNxrtHMOpUTkR1mop0q0gy0hYTRPcE7ebYn_z6fhn4CMiguAiZTsmHr5-dJyGWcoLXYTGtrfoxHN7K7zyB5fFk7J8BoYXziaOptgIhnym1ZM6VTJfGU5UIGkHcSD-3czL2kBPkJK9ppFkepJK3UongXVv_tKYh-WvNjUaZ8vlwdJ4jCkM3XiWcRfC6LcbuC7tDxdhPZqEOUxqd9zSJ4GmthO2nuKScpTKLgFWq9I825Nuj_k579_wmD72C1d7BcJAP-qP9dbjLQtBJ4MxVG7A8PZv5FwgFp-ZlZXwEPt22lv4GPF1gVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD5BTNQbEX8rKGOi8arQ-e30gguyy4blZzVGEu5K56eJgewS2Y3CFY_Ao_AqvoJPwpl2W7MaQ2LChVdN02k7nTnfzHc6c74D8FaWWWFwXost42lYZqSxkUbEqVKZKzOnZSWkvTdQW_ti-0AezMFVEwtT60O0P9wCMqrxOgD8xJVrv0RDQwQ2-nfowCitmm2VO_7sGzptp-v9LvbwO8Z6m587W_E0r0BsecplLLlQ0qSF5jZDI3RWaYOW7hSzhjIvjBQm05SXwltkM8Jo76hJSptK5iViAJ97B-4KlWQhWUT3UytYxRANdTwT53FIe9_IRCZsbba-s9PgH9x2lipXc11vAX40rVRvcTlanYzNqj3_TUDyf2rGR_BwSrzJRo2URZjzw8dwv9Pku3sCg07lQlR7qUi3iiMj7WWC3J4gao788c-Ly6BGQHaLs5DnlHz4_sV5EiIpR3jcK8Y1pp_C_q18zjOYH46G_gUQWjifOJpqK5DwmVJL5lzJdGk8VYmgEcRN5-d2KsUeMoIc57WINMtDr-Rtr0Twvi1_UouQ_LXkcmNL-XQwOs2Rg6ETrxLOInjTXsbmC2tDxdCPJqEMUxpd9zSJ4Hltg-2ruKScpTKLgFWWdEMd8o1Bf7M9e_kvN63AvY_dXr7bH-wswQMWIk6CYK5ahvnx14l_hTxwbF5X0CNweNtGeg2SBF8G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Doping+Chemistry+for+Nickel%E2%80%90Rich+Layered+Oxide+Cathode+Materials&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Yu%E2%80%90Jie&rft.au=Zhang%2C+Chao%E2%80%90Hui&rft.au=Xin%2C+Sen&rft.au=Shi%2C+Ji%E2%80%90Lei&rft.date=2022-05-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202116865&rft.externalDBID=10.1002%252Fanie.202116865&rft.externalDocID=ANIE202116865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon