Competitive Doping Chemistry for Nickel‐Rich Layered Oxide Cathode Materials
Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 21; pp. e202116865 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.05.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.
A model study has been performed on Group IIIA element (boron and aluminum) co‐doped high‐nickel layered oxide cathode materials to understand competitive doping chemistry. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen, resulting in the formation of a B‐rich surface and an Al‐rich bulk. |
---|---|
AbstractList | Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than B . In the case of Al-preoccupation, the bulk diffusion of B is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than B III . In the case of Al‐preoccupation, the bulk diffusion of B III is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel‐rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII. In the case of Al‐preoccupation, the bulk diffusion of BIII is hindered. In this way, a B‐rich surface and Al‐rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. A model study has been performed on Group IIIA element (boron and aluminum) co‐doped high‐nickel layered oxide cathode materials to understand competitive doping chemistry. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen, resulting in the formation of a B‐rich surface and an Al‐rich bulk. Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode.Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model. A notable difference between the atomic radii of B and Al accounts for different spatial configurations of the hybridized orbital in bonding with lattice oxygen. Density functional theory calculations reveal, Al is preferentially bonded to oxygen and vice versa, and shows a much lower diffusion barrier than BIII . In the case of Al-preoccupation, the bulk diffusion of BIII is hindered. In this way, a B-rich surface and Al-rich bulk is formed, which helps to synergistically stabilize the structural evolution and surface chemistry of the cathode. |
Author | Wang, Wen‐Peng Chang, Yu‐Xin Wang, Enhui Zou, Yu‐Gang Zhang, Chao‐Hui Guo, Yu‐Guo Shi, Ji‐Lei Xin, Sen Yang, Xin'an Guo, Yu‐Jie Fan, Min Yin, Ya‐Xia Lei, Zhou‐Quan Zhang, Yu‐Ying He, Wei‐Huan Meng, Fanqi |
Author_xml | – sequence: 1 givenname: Yu‐Jie surname: Guo fullname: Guo, Yu‐Jie organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Chao‐Hui surname: Zhang fullname: Zhang, Chao‐Hui organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Sen surname: Xin fullname: Xin, Sen email: xinsen08@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Ji‐Lei surname: Shi fullname: Shi, Ji‐Lei organization: Chinese Academy of Sciences (CAS) – sequence: 5 givenname: Wen‐Peng surname: Wang fullname: Wang, Wen‐Peng organization: Chinese Academy of Sciences (CAS) – sequence: 6 givenname: Min surname: Fan fullname: Fan, Min organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Yu‐Xin surname: Chang fullname: Chang, Yu‐Xin organization: Chinese Academy of Sciences (CAS) – sequence: 8 givenname: Wei‐Huan surname: He fullname: He, Wei‐Huan organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Enhui surname: Wang fullname: Wang, Enhui organization: Chinese Academy of Sciences (CAS) – sequence: 10 givenname: Yu‐Gang surname: Zou fullname: Zou, Yu‐Gang organization: Chinese Academy of Sciences (CAS) – sequence: 11 givenname: Xin'an surname: Yang fullname: Yang, Xin'an organization: Institute of Physics, CAS – sequence: 12 givenname: Fanqi surname: Meng fullname: Meng, Fanqi organization: Institute of Physics, CAS – sequence: 13 givenname: Yu‐Ying surname: Zhang fullname: Zhang, Yu‐Ying organization: University of Chinese Academy of Sciences – sequence: 14 givenname: Zhou‐Quan surname: Lei fullname: Lei, Zhou‐Quan organization: University of Chinese Academy of Sciences – sequence: 15 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia email: yxyin@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 16 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35132759$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVxSJzLtssy0E024-gyuszSTNM24DgQkrXQaM7USscjVyM39a6PkGfMk1TBuYAhdPVL8H2Hw_kP0aj3PSD0keAJwZiemd7BhGJKiFCCf0BjwinJmZRslN4FY7lUnBygw2G4S7xSWOyjA8YJo5KXYzSv_HIF0UX3G7IvfuX6H1m1gKUbYthkrQ_Z3Nmf0D3-fbh2dpHNzAYCNNnVH9dAVpm48CkvTYTgTDcco702BZw85xG6_Xp-U33PZ1ffLqrpLLdMMp5zVgheS6OYLTHmjRWqxpI1gtqaUChqXtSlIqwtwHKZPgoaUuPWSk6BE8WO0Ol27ir4X2sYok4bW-g604NfD5oKKlRJpMQJ_byD3vl16NN2iRK4LARmNFGfnql1vYRGr4JbmrDRL5dKQLEFbPDDEKDV1kUTne9jMK7TBOunQvRTIfq1kKRNdrSXye8K5Va4dx1s_kPr6fzi_M39B3OpnLQ |
CitedBy_id | crossref_primary_10_1016_j_ensm_2023_103050 crossref_primary_10_1142_S1793604722510390 crossref_primary_10_1002_smll_202307377 crossref_primary_10_1002_aenm_202304529 crossref_primary_10_1021_acsenergylett_3c02072 crossref_primary_10_1002_adfm_202301490 crossref_primary_10_1002_adfm_202300081 crossref_primary_10_1021_acsami_3c00636 crossref_primary_10_1016_j_cej_2023_144051 crossref_primary_10_1002_bte2_20230030 crossref_primary_10_1007_s11581_023_05191_9 crossref_primary_10_1002_adma_202411311 crossref_primary_10_1039_D2TA08969F crossref_primary_10_1039_D4CS00415A crossref_primary_10_1002_ange_202314457 crossref_primary_10_1002_smtd_202301162 crossref_primary_10_1007_s12598_022_02252_2 crossref_primary_10_1021_acs_iecr_3c04271 crossref_primary_10_1039_D4EE03673E crossref_primary_10_1039_D4EE01254B crossref_primary_10_1002_adfm_202312762 crossref_primary_10_1016_j_cej_2023_143390 crossref_primary_10_3866_PKU_WHXB202308051 crossref_primary_10_1016_j_jelechem_2023_117923 crossref_primary_10_1002_adma_202412360 crossref_primary_10_1002_adma_202303612 crossref_primary_10_1002_adfm_202210731 crossref_primary_10_1039_D3CC01099F crossref_primary_10_1021_acsaem_3c02784 crossref_primary_10_1002_aenm_202401123 crossref_primary_10_1002_anie_202314457 crossref_primary_10_1002_adma_202312292 crossref_primary_10_1002_anie_202300209 crossref_primary_10_1021_acsnano_3c07655 crossref_primary_10_1021_acsami_2c18423 crossref_primary_10_1002_adfm_202307126 crossref_primary_10_1039_D3CS00741C crossref_primary_10_3390_nano12111888 crossref_primary_10_1002_anie_202302547 crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1002_smll_202307678 crossref_primary_10_1002_anie_202300962 crossref_primary_10_1002_eem2_12831 crossref_primary_10_1021_acsami_2c12889 crossref_primary_10_1007_s42765_023_00347_8 crossref_primary_10_1021_acsenergylett_3c01840 crossref_primary_10_1002_adfm_202401300 crossref_primary_10_1002_adfm_202300127 crossref_primary_10_1002_adfm_202425698 crossref_primary_10_1002_adfm_202301336 crossref_primary_10_1039_D4TA06100D crossref_primary_10_1002_aenm_202401037 crossref_primary_10_1002_aenm_202201510 crossref_primary_10_1002_asia_202200213 crossref_primary_10_1007_s10853_022_07763_y crossref_primary_10_1002_ange_202300962 crossref_primary_10_1002_ange_202302547 crossref_primary_10_1007_s40843_023_2512_1 crossref_primary_10_1021_acs_nanolett_4c01816 crossref_primary_10_1002_adma_202417353 crossref_primary_10_1007_s12598_023_02386_x crossref_primary_10_1016_j_cej_2024_152298 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1016_j_pnsc_2022_12_004 crossref_primary_10_1021_acsami_2c14195 crossref_primary_10_1002_ange_202300209 crossref_primary_10_1016_j_jcis_2024_11_209 crossref_primary_10_1021_acsaem_3c00565 crossref_primary_10_1126_sciadv_ado4472 crossref_primary_10_1002_adfm_202212849 crossref_primary_10_1002_cssc_202401666 crossref_primary_10_1126_sciadv_adl4842 crossref_primary_10_1021_acsami_3c06928 crossref_primary_10_1021_acsami_3c17457 crossref_primary_10_1039_D3YA00631J crossref_primary_10_1002_celc_202300653 crossref_primary_10_1021_jacs_4c11645 |
Cites_doi | 10.1021/acscentsci.7b00288 10.1002/ange.201801533 10.1016/j.ensm.2019.08.013 10.1021/cm901452z 10.1021/acssuschemeng.9b01312 10.1016/j.electacta.2010.06.040 10.1016/j.jpowsour.2019.227017 10.1002/anie.201801533 10.1002/anie.202111954 10.1021/acs.energyfuels.0c03967 10.1002/aenm.201801202 10.1021/cr020731c 10.1002/adfm.201400436 10.1038/natrevmats.2016.103 10.1021/acs.chemmater.8b00619 10.1021/jacs.7b00164 10.1039/C6CS00875E 10.1021/acsenergylett.0c00191 10.1021/ja3091438 10.1016/j.xcrp.2021.100665 10.1016/j.jmst.2020.10.047 10.1038/s41560-021-00782-0 10.1002/ange.202111954 10.1002/adma.201402962 10.1016/j.nanoen.2020.105365 10.1002/adma.201606715 10.1021/acs.chemmater.7b05269 10.1002/adfm.201808825 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202116865 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35132759 10_1002_anie_202116865 ANIE202116865 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Basic Science Center Project of National Natural Science Foundation of China funderid: 51788104 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA 21070300 – fundername: Natural Science Foundation of Beijing funderid: 2222089 – fundername: National Key R&D Program of China funderid: 2019YFA0705602 – fundername: National Natural Science Foundation of China funderid: 22075299; 21975266; 22179133; 22109165 – fundername: National Natural Science Foundation of China grantid: 21975266 – fundername: National Natural Science Foundation of China grantid: 22109165 – fundername: National Natural Science Foundation of China grantid: 22075299 – fundername: Basic Science Center Project of National Natural Science Foundation of China grantid: 51788104 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA 21070300 – fundername: National Natural Science Foundation of China grantid: 22179133 – fundername: National Key R&D Program of China grantid: 2019YFA0705602 – fundername: Natural Science Foundation of Beijing grantid: 2222089 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-53465b7a83c9005dc68b073d62cb12e4b54b9813f4ec5754b8ed1b0fc752e5183 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:20:22 EDT 2025 Fri Jul 25 10:28:02 EDT 2025 Thu Apr 03 07:07:36 EDT 2025 Tue Jul 01 01:18:16 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Wed Jan 22 16:25:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Ion Diffusion Electron Configuration Lithium-Ion Battery Doping Chemistry Nickel-Rich Cathode |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-53465b7a83c9005dc68b073d62cb12e4b54b9813f4ec5754b8ed1b0fc752e5183 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0322-8476 |
PMID | 35132759 |
PQID | 2660946032 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2626891770 proquest_journals_2660946032 pubmed_primary_35132759 crossref_citationtrail_10_1002_anie_202116865 crossref_primary_10_1002_anie_202116865 wiley_primary_10_1002_anie_202116865_ANIE202116865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 16, 2022 |
PublicationDateYYYYMMDD | 2022-05-16 |
PublicationDate_xml | – month: 05 year: 2022 text: May 16, 2022 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2010; 55 2021; 6 2019; 2019 2004; 104 2017; 2 2017; 3 2021; 2 2017; 46 2014; 24 2020; 78 2017; 29 2017; 139 2010; 22 2021; 35 2020; 5 2018; 8 2015; 27 2021; 78 2018 2018; 57 130 2021 2021; 60 133 2013; 135 2019; 29 2018; 30 2019; 438 2020; 24 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_5_2 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_4_2 e_1_2_3_17_1 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_18_1 e_1_2_3_2_2 e_1_2_3_19_1 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_12_1 e_1_2_3_8_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_14_1 e_1_2_3_15_1 e_1_2_3_30_1 Tang Z. (e_1_2_3_26_2) 2019; 2019 e_1_2_3_33_1 e_1_2_3_10_2 e_1_2_3_32_1 Li W. D. (e_1_2_3_31_1) 2018; 8 e_1_2_3_27_2 e_1_2_3_28_2 e_1_2_3_29_1 e_1_2_3_23_2 e_1_2_3_24_2 e_1_2_3_25_1 e_1_2_3_20_1 e_1_2_3_21_1 e_1_2_3_22_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 5 start-page: 1136 year: 2020 end-page: 1146 publication-title: ACS Energy Lett. – volume: 46 start-page: 3006 year: 2017 end-page: 3059 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 26535 26739 year: 2021 2021 end-page: 26539 26743 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 start-page: 1155 year: 2018 end-page: 1163 publication-title: Chem. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 35 start-page: 1842 year: 2021 end-page: 1850 publication-title: Energy Fuels – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 22 start-page: 587 year: 2010 end-page: 603 publication-title: Chem. Mater. – volume: 24 start-page: 247 year: 2020 end-page: 254 publication-title: Energy Storage Mater. – volume: 30 start-page: 1808 year: 2018 end-page: 1814 publication-title: Chem. Mater. – volume: 139 start-page: 4835 year: 2017 end-page: 4845 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 1167 year: 2013 end-page: 1176 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 176 year: 2021 end-page: 182 publication-title: J. Mater. Sci. Technol. – volume: 3 start-page: 1063 year: 2017 end-page: 1069 publication-title: ACS Cent. Sci. – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 6440 year: 2010 end-page: 6449 publication-title: Electrochim. Acta – volume: 2019 year: 2019 publication-title: Research – volume: 24 start-page: 5112 year: 2014 end-page: 5118 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 527 year: 2015 end-page: 545 publication-title: Adv. Mater. – volume: 6 start-page: 362 year: 2021 end-page: 371 publication-title: Nat. Energy – volume: 7 start-page: 10661 year: 2019 end-page: 10669 publication-title: ACS Sustainable Chem. Eng. – volume: 8 start-page: 11 year: 2018 publication-title: Adv. Energy Mater. – volume: 57 130 start-page: 6480 6590 year: 2018 2018 end-page: 6485 6595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 4271 year: 2004 end-page: 4301 publication-title: Chem. Rev. – volume: 438 year: 2019 publication-title: J. Power Sources – ident: e_1_2_3_1_1 – ident: e_1_2_3_4_2 doi: 10.1021/acscentsci.7b00288 – ident: e_1_2_3_17_2 doi: 10.1002/ange.201801533 – ident: e_1_2_3_33_1 doi: 10.1016/j.ensm.2019.08.013 – ident: e_1_2_3_5_2 doi: 10.1021/cm901452z – ident: e_1_2_3_12_1 – ident: e_1_2_3_18_1 doi: 10.1021/acssuschemeng.9b01312 – ident: e_1_2_3_27_2 doi: 10.1016/j.electacta.2010.06.040 – ident: e_1_2_3_16_1 doi: 10.1016/j.jpowsour.2019.227017 – ident: e_1_2_3_17_1 doi: 10.1002/anie.201801533 – ident: e_1_2_3_19_1 doi: 10.1002/anie.202111954 – ident: e_1_2_3_29_1 doi: 10.1021/acs.energyfuels.0c03967 – ident: e_1_2_3_23_2 doi: 10.1002/aenm.201801202 – ident: e_1_2_3_3_2 doi: 10.1021/cr020731c – ident: e_1_2_3_22_1 – ident: e_1_2_3_32_1 doi: 10.1002/adfm.201400436 – ident: e_1_2_3_8_2 doi: 10.1038/natrevmats.2016.103 – volume: 8 start-page: 11 year: 2018 ident: e_1_2_3_31_1 publication-title: Adv. Energy Mater. – ident: e_1_2_3_20_1 doi: 10.1021/acs.chemmater.8b00619 – ident: e_1_2_3_30_1 doi: 10.1021/jacs.7b00164 – volume: 2019 start-page: 2198906 year: 2019 ident: e_1_2_3_26_2 publication-title: Research – ident: e_1_2_3_7_2 doi: 10.1039/C6CS00875E – ident: e_1_2_3_15_1 doi: 10.1021/acsenergylett.0c00191 – ident: e_1_2_3_2_2 doi: 10.1021/ja3091438 – ident: e_1_2_3_10_2 doi: 10.1016/j.xcrp.2021.100665 – ident: e_1_2_3_25_1 – ident: e_1_2_3_11_2 doi: 10.1016/j.jmst.2020.10.047 – ident: e_1_2_3_13_2 doi: 10.1038/s41560-021-00782-0 – ident: e_1_2_3_6_1 – ident: e_1_2_3_19_2 doi: 10.1002/ange.202111954 – ident: e_1_2_3_9_2 doi: 10.1002/adma.201402962 – ident: e_1_2_3_24_2 doi: 10.1016/j.nanoen.2020.105365 – ident: e_1_2_3_28_2 doi: 10.1002/adma.201606715 – ident: e_1_2_3_14_1 doi: 10.1021/acs.chemmater.7b05269 – ident: e_1_2_3_21_1 doi: 10.1002/adfm.201808825 |
SSID | ssj0028806 |
Score | 2.6488094 |
Snippet | Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202116865 |
SubjectTerms | Aluminum Atomic radius Boron Cathodes Chemical bonds Chemical interactions Chemical modification Chemistry Configurations Density functional theory Diffusion barriers Dopants Doping Doping Chemistry Electrode materials Electron Configuration Ion Diffusion Lithium Lithium-Ion Battery Nickel Nickel-Rich Cathode Oxygen Rechargeable batteries Storage batteries Surface chemistry |
Title | Competitive Doping Chemistry for Nickel‐Rich Layered Oxide Cathode Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202116865 https://www.ncbi.nlm.nih.gov/pubmed/35132759 https://www.proquest.com/docview/2660946032 https://www.proquest.com/docview/2626891770 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ei15cH7tu1gctLOwpmvQrnaOMiorOwrKCt5B-BESZkXUG1JM_wd_oL7EqmUTHRYTdUwjdTZLuqu6v0v19BfBdVXlpcV2LHRcZbTOmsVVWxpnWua9yb1QtpH3a14dn8vhcnb9i8Tf6EN0PN_KMer4mBy_tzc6LaCgxsDG-wwBGG00sczqwRajoV6cfxdE4G3qREDFloW9VGxO-M918elX6C2pOI9d66Tn4BGX70s2Jk8vt8chuu_s3eo7_81WLsDDBpWy3MaQlmAmDZZjrtengVqDfqxF2fdSI7dU0K9YVM4S-DI3qMlw9PTwSWZ-dlHeUBpT9vL3wgRHRcIjX03LUmPxnODvY_907jCfJGGInMqFiJaRWNiuNcDl6rnfaWJwevObOpjxIq6TNTSoqGRxCQGlN8KlNKpcpHhROHF9gdjAchK_A0tKHxKeZcRLxkK2M4t5X3FQ2pDqRaQRxOxiFmyiVU8KMq6LRWOYF9VLR9VIEP7r6141Gx7s119uxLSa-elMgRMEYVyeCR7DVFWP30dZJOQjDMdXh2mBkmyURrDY20T1KKIzoM5VHwOuR_eAdit3-0X539-1fGq3BPCcWBonI6nWYHf0Zhw3ERiO7Wdv_M5lJBDc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6V9lAuQPkNLWAkEKe08W-cA4dqt9Vuu7tIqJV6C_FPJNRqt2p3BeXEI_RVeBUegSdhnGxSLRVCqtQDpyiykzieGfsb2_MNwBtZZoXBeS22jKdhm5HGRhoRp0plrsyclhWR9nCkeodi70geLcGPJham5odoF9yCZVTjdTDwsCC9dcUaGkKw0cFDD0Zp1Zyr3PcXX9BrO3_f76KI3zK2u3PQ6cXzxAKx5SmXseRCSZMWmtsMtdBZpQ2qulPMGsq8MFKYTFNeCm8RzgijvaMmKW0qmZdoBPjeO7AS0ogHuv7ux5axiqE51AFNnMch733DE5mwrcX2Ls6D18DtIlauJrvd-_Cz6ab6jMvx5mxqNu23Pxgk_6t-fAD35tCbbNe2sgZLfvwQVjtNxrtHMOpUTkR1mop0q0gy0hYTRPcE7ebYn_z6fhn4CMiguAiZTsmHr5-dJyGWcoLXYTGtrfoxHN7K7zyB5fFk7J8BoYXziaOptgIhnym1ZM6VTJfGU5UIGkHcSD-3czL2kBPkJK9ppFkepJK3UongXVv_tKYh-WvNjUaZ8vlwdJ4jCkM3XiWcRfC6LcbuC7tDxdhPZqEOUxqd9zSJ4GmthO2nuKScpTKLgFWq9I825Nuj_k579_wmD72C1d7BcJAP-qP9dbjLQtBJ4MxVG7A8PZv5FwgFp-ZlZXwEPt22lv4GPF1gVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD5BTNQbEX8rKGOi8arQ-e30gguyy4blZzVGEu5K56eJgewS2Y3CFY_Ao_AqvoJPwpl2W7MaQ2LChVdN02k7nTnfzHc6c74D8FaWWWFwXost42lYZqSxkUbEqVKZKzOnZSWkvTdQW_ti-0AezMFVEwtT60O0P9wCMqrxOgD8xJVrv0RDQwQ2-nfowCitmm2VO_7sGzptp-v9LvbwO8Z6m587W_E0r0BsecplLLlQ0qSF5jZDI3RWaYOW7hSzhjIvjBQm05SXwltkM8Jo76hJSptK5iViAJ97B-4KlWQhWUT3UytYxRANdTwT53FIe9_IRCZsbba-s9PgH9x2lipXc11vAX40rVRvcTlanYzNqj3_TUDyf2rGR_BwSrzJRo2URZjzw8dwv9Pku3sCg07lQlR7qUi3iiMj7WWC3J4gao788c-Ly6BGQHaLs5DnlHz4_sV5EiIpR3jcK8Y1pp_C_q18zjOYH46G_gUQWjifOJpqK5DwmVJL5lzJdGk8VYmgEcRN5-d2KsUeMoIc57WINMtDr-Rtr0Twvi1_UouQ_LXkcmNL-XQwOs2Rg6ETrxLOInjTXsbmC2tDxdCPJqEMUxpd9zSJ4Hltg-2ruKScpTKLgFWWdEMd8o1Bf7M9e_kvN63AvY_dXr7bH-wswQMWIk6CYK5ahvnx14l_hTxwbF5X0CNweNtGeg2SBF8G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Doping+Chemistry+for+Nickel%E2%80%90Rich+Layered+Oxide+Cathode+Materials&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Yu%E2%80%90Jie&rft.au=Zhang%2C+Chao%E2%80%90Hui&rft.au=Xin%2C+Sen&rft.au=Shi%2C+Ji%E2%80%90Lei&rft.date=2022-05-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202116865&rft.externalDBID=10.1002%252Fanie.202116865&rft.externalDocID=ANIE202116865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |