Template‐Directed Growth of Bimetallic Prussian Blue‐Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction
Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures i...
Saved in:
Published in | ChemSusChem Vol. 11; no. 21; pp. 3708 - 3713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.
A piece of art: Well‐ordered 3D bimetallic Prussian blue analogue nanosheet arrays are fabricated by etching Ni(OH)2 nanosheet arrays with potassium ferricyanide. The derived porous electrocatalyst exhibits excellent electrochemical activity and stability for the oxygen evolution reaction with overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH solution, respectively. |
---|---|
AbstractList | Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm-2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm-2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. A piece of art: Well‐ordered 3D bimetallic Prussian blue analogue nanosheet arrays are fabricated by etching Ni(OH)2 nanosheet arrays with potassium ferricyanide. The derived porous electrocatalyst exhibits excellent electrochemical activity and stability for the oxygen evolution reaction with overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH solution, respectively. Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm −2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. |
Author | Cao, Li‐Ming Hu, Yu‐Wen Zhong, Di‐Chang Lu, Tong‐Bu |
Author_xml | – sequence: 1 givenname: Li‐Ming surname: Cao fullname: Cao, Li‐Ming organization: Sun Yat-Sen University – sequence: 2 givenname: Yu‐Wen surname: Hu fullname: Hu, Yu‐Wen organization: Sun Yat-Sen University – sequence: 3 givenname: Di‐Chang orcidid: 0000-0002-5504-249X surname: Zhong fullname: Zhong, Di‐Chang email: zhong_dichang@hotmail.com organization: Tianjin University of Technology – sequence: 4 givenname: Tong‐Bu surname: Lu fullname: Lu, Tong‐Bu email: lutongbu@mail.sysu.edu.cn organization: Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30179309$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4sIlwV6v9-OYpqUgFVrRIHFbTbyzjSuvndreltz4CZz4gfwSvEoJUiWEZMlzeJ7X45lDsmedRUJecjbljGVvVQhqmjFejUc-IQe8KvKJLPKve7ta8H1yGMINYwWri-IZ2ReMl7Vg9QH5ucB-bSDir-8_TrRHFbGlZ97dxxV1HT3WPUYwRit66YcQNFh6bIaRnlkw7npA-gmsCyvESGfewyZQsC1drFB7eoJe36XAS-fdEOjHMYtefNMtBto5n8rNNVp6eufMELWz9DOCGovn5GkHJuCLh_uIfHl3upi_n5xfnH2Yz84nSpRCTqRgbSbT9yVCxnJWQ9FVDJZQ1zlULSCWqpVc5DlgK6ASwGTWQcVqvky-EkfkzTZ37d3tgCE2vQ4KjQGLqeMmYykp6UWZ0NeP0Bs3-DSERHHBKylLNlKvHqhh2WPbrL3uwW-aPxNPwHQLKO9C8NjtEM6acaXNuNJmt9Ik5I8EpSOMQ4oetPm3Vm-1e21w859HmvnV1fyv-xvQi7kk |
CitedBy_id | crossref_primary_10_1039_D0NR00607F crossref_primary_10_1002_slct_202301102 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1016_j_mtchem_2024_102063 crossref_primary_10_1042_BSR20182254 crossref_primary_10_1016_j_inoche_2021_108605 crossref_primary_10_1016_S1872_2067_21_63833_0 crossref_primary_10_1039_D1TA00122A crossref_primary_10_1016_j_electacta_2021_139278 crossref_primary_10_1002_smll_202107249 crossref_primary_10_1021_acs_inorgchem_2c03929 crossref_primary_10_1002_cssc_201901153 crossref_primary_10_1021_acsanm_3c03801 crossref_primary_10_1002_cctc_202300026 crossref_primary_10_1039_D0QI00700E crossref_primary_10_2139_ssrn_3985304 crossref_primary_10_1021_acsaem_2c02543 crossref_primary_10_1039_D2QM00183G crossref_primary_10_1016_j_jpowsour_2020_228621 crossref_primary_10_1016_j_ccr_2019_213156 crossref_primary_10_1016_j_jallcom_2022_164052 crossref_primary_10_1016_j_apsusc_2021_151194 crossref_primary_10_1039_C9QI01367A crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1016_j_mcat_2021_111835 crossref_primary_10_1039_C9NR01804B crossref_primary_10_1016_j_jcis_2022_07_148 crossref_primary_10_1002_asia_201901810 crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1016_j_ijhydene_2021_09_037 crossref_primary_10_1039_D4QI02325K crossref_primary_10_1039_D2DT03857A crossref_primary_10_1039_D2DT03332A crossref_primary_10_1016_j_jcis_2022_02_007 crossref_primary_10_1002_adma_202304494 crossref_primary_10_1016_j_jallcom_2019_152332 crossref_primary_10_1016_j_partic_2022_12_012 crossref_primary_10_1021_acs_langmuir_2c01079 |
Cites_doi | 10.1038/nchem.2886 10.1021/acsnano.6b04252 10.1002/anie.201303495 10.1002/adma.201506315 10.1021/jacs.6b09778 10.1002/cssc.201601140 10.1038/s41565-018-0216-x 10.1016/j.chempr.2017.04.016 10.1002/adma.201604437 10.1002/adma.201703870 10.1002/anie.201603197 10.1002/anie.201502226 10.1039/C5CS00434A 10.1002/ange.201612635 10.1039/C6EE03145E 10.1002/ange.201701998 10.1126/science.aad4998 10.1002/smll.201600976 10.1021/jacs.6b01606 10.1021/jacs.7b02622 10.1002/anie.201803587 10.1039/C3CS60472A 10.1021/ja407115p 10.1021/jacs.6b05196 10.1002/ange.201603197 10.1002/adma.201700017 10.1002/anie.201701998 10.1002/anie.201308013 10.1021/ja511572q 10.1021/ja406242y 10.1038/ncomms8261 10.1002/chem.201703712 10.1021/jacs.5b07788 10.1002/ange.201502226 10.1038/ncomms5345 10.1021/jacs.6b12250 10.1002/aenm.201700467 10.1126/science.aaf1525 10.1021/ar2003013 10.1002/cssc.201701358 10.1002/cssc.201600850 10.1002/ange.201803587 10.1039/C5EE00762C 10.1038/nchem.2695 10.1002/adma.201502315 10.1007/s12274-017-1611-6 10.1002/ange.201505320 10.1038/ncomms11204 10.1002/aenm.201600116 10.1002/smll.201702109 10.1038/nature19763 10.1002/ange.201308013 10.1002/anie.201710809 10.1021/nn505582e 10.1039/C5EE03453A 10.1002/cssc.201301030 10.1126/science.aad1920 10.1021/ja4094764 10.1021/ja5082553 10.1021/ja5084128 10.1002/ange.201303495 10.1038/nenergy.2016.53 10.1126/science.1212858 10.1021/ja507269n 10.1002/anie.201505320 10.1002/cssc.201501599 10.1002/adma.201600979 10.1002/ange.201710809 10.1002/cssc.201700113 10.1021/ja4027715 10.1002/anie.201612635 10.1126/science.1162018 10.1016/j.electacta.2018.06.185 10.1039/C7TA09734D 10.1021/jz2016507 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201801805 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 3713 |
ExternalDocumentID | 30179309 10_1002_cssc_201801805 CSSC201801805 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21331007; 21790052 – fundername: National Key R&D Program of China funderid: 2017YFA0700104 – fundername: National Key R&D Program of China grantid: 2017YFA0700104 – fundername: National Natural Science Foundation of China grantid: 21331007 – fundername: National Natural Science Foundation of China grantid: 21790052 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3735-530d252015ea20409a6f80aba994a8daee7cd51344aed3a83a052fa8091b735c3 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 12:19:27 EDT 2025 Fri Jul 25 12:04:49 EDT 2025 Wed Feb 19 02:34:14 EST 2025 Tue Jul 01 00:36:05 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Wed Jan 22 16:26:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | coordination polymers electrocatalytic reactions Prussian blue analogues oxygen evolution reaction iron-nickel |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-530d252015ea20409a6f80aba994a8daee7cd51344aed3a83a052fa8091b735c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5504-249X |
PMID | 30179309 |
PQID | 2131855707 |
PQPubID | 986333 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2099434467 proquest_journals_2131855707 pubmed_primary_30179309 crossref_primary_10_1002_cssc_201801805 crossref_citationtrail_10_1002_cssc_201801805 wiley_primary_10_1002_cssc_201801805_CSSC201801805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 9, 2018 |
PublicationDateYYYYMMDD | 2018-11-09 |
PublicationDate_xml | – month: 11 year: 2018 text: November 9, 2018 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2011; 334 2017; 7 2015; 6 2017; 2 2018; 283 2017; 23 2016; 10 2017; 29 2017 2017; 56 129 2008; 321 2017; 355 2015; 8 2017; 9 2014; 136 2017; 139 2014; 43 2016; 12 2013 2013; 52 125 2018; 6 2016; 6 2016; 7 2014; 5 2016; 1 2012; 3 2015; 27 2016 2016; 55 128 2015; 137 2016; 539 2018 2018; 57 130 2017; 10 2015 2015; 54 127 2018 2013; 135 2016; 352 2016; 138 2014; 8 2016; 28 2012; 45 2014; 7 2018; 10 2016; 351 2016; 9 2016; 45 2018; 14 2018; 13 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_1 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_8_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_81_2 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_74_2 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_74_3 e_1_2_2_76_1 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_78_2 e_1_2_2_32_3 e_1_2_2_53_3 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_1 e_1_2_2_70_3 e_1_2_2_72_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_65_1 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_29_1 e_1_2_2_42_3 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_82_2 e_1_2_2_61_1 e_1_2_2_80_1 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_3 e_1_2_2_50_2 e_1_2_2_75_2 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_31_3 e_1_2_2_56_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_79_2 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_35_2 Sun J. (e_1_2_2_37_2) 2018 e_1_2_2_71_2 e_1_2_2_71_1 |
References_xml | – volume: 9 start-page: 3012 year: 2016 publication-title: ChemSusChem – year: 2018 publication-title: Adv. Energy Mater. – volume: 55 128 start-page: 9055 9201 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 7399 7507 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 7261 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 149 year: 2018 publication-title: Nat. Chem. – volume: 23 start-page: 16862 year: 2017 publication-title: Chem. Eur. J. – volume: 10 start-page: 3228 year: 2017 publication-title: Nano Res. – volume: 10 start-page: 893 year: 2017 publication-title: Energy Environ. Sci. – volume: 138 start-page: 6517 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 539 start-page: 76 year: 2016 publication-title: Nature – volume: 135 start-page: 13270 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1700467 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 6391 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1604437 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 16053 year: 2016 publication-title: Nat. Energy – volume: 321 start-page: 1072 year: 2008 publication-title: Science – volume: 3 start-page: 399 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 138 start-page: 8946 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 13983 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4601 year: 2016 publication-title: Adv. Mater. – volume: 137 start-page: 13031 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1370 year: 2017 publication-title: ChemSusChem – volume: 351 start-page: 1920 year: 2016 publication-title: Science – volume: 45 start-page: 767 year: 2012 publication-title: Acc. Chem. Res. – volume: 9 start-page: 457 year: 2017 publication-title: Nat. Chem. – volume: 2 start-page: 791 year: 2017 publication-title: Chem – volume: 10 start-page: 4004 year: 2017 publication-title: ChemSusChem – volume: 57 130 start-page: 1241 1255 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 473 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 472 year: 2016 publication-title: ChemSusChem – volume: 139 start-page: 2070 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3224 year: 2018 publication-title: J. Mater. Chem. A – volume: 355 start-page: 4998 year: 2017 publication-title: Science – volume: 10 start-page: 8738 year: 2016 publication-title: ACS Nano – volume: 6 start-page: 1600116 year: 2016 publication-title: Adv. Energy Mater. – volume: 135 start-page: 17699 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 9660 9808 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 3897 3955 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 1700017 year: 2017 publication-title: Adv. Mater. – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 12660 year: 2014 publication-title: ACS Nano – volume: 29 start-page: 1703870 year: 2017 publication-title: Adv. Mater. – volume: 52 125 start-page: 8546 8708 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 11204 year: 2016 publication-title: Nat. Commun. – volume: 13 start-page: 642 year: 2018 publication-title: Nat. Nanotechnol. – volume: 136 start-page: 14385 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 1404 1428 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1837 year: 2015 end-page: 1866 publication-title: Energy Environ. Sci. – volume: 54 127 start-page: 11231 11383 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 16037 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 5 start-page: 4345 year: 2014 publication-title: Nat. Commun. – volume: 136 start-page: 13925 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1702109 year: 2018 publication-title: Small – volume: 283 start-page: 548 year: 2018 publication-title: Electrochim. Acta – volume: 12 start-page: 4669 year: 2016 publication-title: small – volume: 139 start-page: 6270 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1372 year: 2014 publication-title: ChemSusChem – volume: 10 start-page: 87 year: 2017 publication-title: ChemSusChem – volume: 137 start-page: 1587 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16977 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 43 start-page: 5468 year: 2014 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 7769 7877 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_21_2 doi: 10.1038/nchem.2886 – ident: e_1_2_2_63_2 doi: 10.1021/acsnano.6b04252 – ident: e_1_2_2_40_1 – ident: e_1_2_2_77_1 – ident: e_1_2_2_71_1 doi: 10.1002/anie.201303495 – ident: e_1_2_2_67_2 doi: 10.1002/adma.201506315 – ident: e_1_2_2_69_2 doi: 10.1021/jacs.6b09778 – ident: e_1_2_2_5_2 doi: 10.1002/cssc.201601140 – ident: e_1_2_2_18_2 doi: 10.1038/s41565-018-0216-x – ident: e_1_2_2_54_1 doi: 10.1016/j.chempr.2017.04.016 – ident: e_1_2_2_55_1 doi: 10.1002/adma.201604437 – ident: e_1_2_2_66_2 doi: 10.1002/adma.201703870 – ident: e_1_2_2_74_2 doi: 10.1002/anie.201603197 – ident: e_1_2_2_32_2 doi: 10.1002/anie.201502226 – ident: e_1_2_2_9_2 doi: 10.1039/C5CS00434A – ident: e_1_2_2_53_3 doi: 10.1002/ange.201612635 – ident: e_1_2_2_80_1 – ident: e_1_2_2_59_2 doi: 10.1039/C6EE03145E – ident: e_1_2_2_35_3 doi: 10.1002/ange.201701998 – ident: e_1_2_2_20_2 doi: 10.1126/science.aad4998 – ident: e_1_2_2_60_2 doi: 10.1002/smll.201600976 – ident: e_1_2_2_76_1 doi: 10.1021/jacs.6b01606 – ident: e_1_2_2_25_2 doi: 10.1021/jacs.7b02622 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201803587 – year: 2018 ident: e_1_2_2_37_2 publication-title: Adv. Energy Mater. – ident: e_1_2_2_46_2 doi: 10.1039/C3CS60472A – ident: e_1_2_2_14_1 – ident: e_1_2_2_24_2 doi: 10.1021/ja407115p – ident: e_1_2_2_26_2 doi: 10.1021/jacs.6b05196 – ident: e_1_2_2_22_1 – ident: e_1_2_2_30_1 – ident: e_1_2_2_74_3 doi: 10.1002/ange.201603197 – ident: e_1_2_2_78_2 doi: 10.1002/adma.201700017 – ident: e_1_2_2_58_1 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201701998 – ident: e_1_2_2_42_2 doi: 10.1002/anie.201308013 – ident: e_1_2_2_44_1 – ident: e_1_2_2_11_2 doi: 10.1021/ja511572q – ident: e_1_2_2_68_2 doi: 10.1021/ja406242y – ident: e_1_2_2_4_2 doi: 10.1038/ncomms8261 – ident: e_1_2_2_39_2 doi: 10.1002/chem.201703712 – ident: e_1_2_2_75_2 doi: 10.1021/jacs.5b07788 – ident: e_1_2_2_32_3 doi: 10.1002/ange.201502226 – ident: e_1_2_2_34_2 doi: 10.1038/ncomms5345 – ident: e_1_2_2_64_2 doi: 10.1021/jacs.6b12250 – ident: e_1_2_2_82_2 doi: 10.1002/aenm.201700467 – ident: e_1_2_2_62_2 doi: 10.1126/science.aaf1525 – ident: e_1_2_2_3_2 doi: 10.1021/ar2003013 – ident: e_1_2_2_27_2 doi: 10.1002/cssc.201701358 – ident: e_1_2_2_7_2 doi: 10.1002/cssc.201600850 – ident: e_1_2_2_50_3 doi: 10.1002/ange.201803587 – ident: e_1_2_2_52_2 doi: 10.1039/C5EE00762C – ident: e_1_2_2_16_2 doi: 10.1038/nchem.2695 – ident: e_1_2_2_48_2 doi: 10.1002/adma.201502315 – ident: e_1_2_2_49_2 doi: 10.1007/s12274-017-1611-6 – ident: e_1_2_2_51_1 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201505320 – ident: e_1_2_2_12_2 doi: 10.1038/ncomms11204 – ident: e_1_2_2_13_2 doi: 10.1002/aenm.201600116 – ident: e_1_2_2_36_2 doi: 10.1002/smll.201702109 – ident: e_1_2_2_43_2 doi: 10.1038/nature19763 – ident: e_1_2_2_42_3 doi: 10.1002/ange.201308013 – ident: e_1_2_2_70_2 doi: 10.1002/anie.201710809 – ident: e_1_2_2_65_1 – ident: e_1_2_2_45_2 doi: 10.1021/nn505582e – ident: e_1_2_2_73_2 doi: 10.1039/C5EE03453A – ident: e_1_2_2_6_2 doi: 10.1002/cssc.201301030 – ident: e_1_2_2_1_1 doi: 10.1126/science.aad1920 – ident: e_1_2_2_10_2 doi: 10.1021/ja4094764 – ident: e_1_2_2_61_1 – ident: e_1_2_2_56_1 doi: 10.1021/ja5082553 – ident: e_1_2_2_57_1 doi: 10.1021/ja5084128 – ident: e_1_2_2_71_2 doi: 10.1002/ange.201303495 – ident: e_1_2_2_23_2 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_2_33_2 doi: 10.1126/science.1212858 – ident: e_1_2_2_41_2 doi: 10.1021/ja507269n – ident: e_1_2_2_31_2 doi: 10.1002/anie.201505320 – ident: e_1_2_2_72_1 – ident: e_1_2_2_17_2 doi: 10.1002/cssc.201501599 – ident: e_1_2_2_8_1 – ident: e_1_2_2_47_2 doi: 10.1002/adma.201600979 – ident: e_1_2_2_70_3 doi: 10.1002/ange.201710809 – ident: e_1_2_2_28_2 doi: 10.1002/cssc.201700113 – ident: e_1_2_2_79_2 doi: 10.1021/ja4027715 – ident: e_1_2_2_19_1 – ident: e_1_2_2_53_2 doi: 10.1002/anie.201612635 – ident: e_1_2_2_15_2 doi: 10.1126/science.1162018 – ident: e_1_2_2_2_1 – ident: e_1_2_2_38_2 doi: 10.1016/j.electacta.2018.06.185 – ident: e_1_2_2_81_2 doi: 10.1039/C7TA09734D – ident: e_1_2_2_29_1 doi: 10.1021/jz2016507 |
SSID | ssj0060966 |
Score | 2.4180906 |
Snippet | Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3708 |
SubjectTerms | Agglomerates Arrays Bimetals Catalysis Catalysts Chemical etching Chemical synthesis Coordination polymers Electrical resistivity Electrocatalysts electrocatalytic reactions Energy storage Iron iron-nickel Metal oxides Nanosheets Nanostructure Nickel oxides Organic chemistry oxygen evolution reaction Oxygen evolution reactions Pigments Prussian blue analogues Well construction |
Title | Template‐Directed Growth of Bimetallic Prussian Blue‐Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801805 https://www.ncbi.nlm.nih.gov/pubmed/30179309 https://www.proquest.com/docview/2131855707 https://www.proquest.com/docview/2099434467 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UClOdCqYyExCltHrZjH-m2pUICqnYr9RZNHEdddZtUm6SinPgJnPiB_BJm8oIFISSQcnCScRzbM-MvjuczYy99yLRRQnl5KKwnYiU9bU3qgY2tb4VROmsXyL5Xh6fi7Zk8-ymKv-OHGCfcyDJaf00GDmm184M01FYVURAGmg6KMqcFW4SKjkf-KIX4vA0v0kp4UkXBwNrohzur2VdHpd-g5ipybYeeg7sMhpfuVpxcbDd1um0__cLn-D-1usfu9LiUv-4UaYPdcsV9tj4dtoN7wL7O3OXVApHpt89fOj_pMv4GP-Lrc17mfHd-6RDHL-aWHy2bikIz-e6iIWniPaEJIo6evKzOnauxmCXcVByKjM_oTwXfQ0O4xgcelcuyqfg7ehb_8HGeuYojrMbkDWo637_uLYUfuy4i4yE7PdifTQ-9flMHz0ZxJD0Z-VkosYbSQYgexIDKtQ8pGCNAZ-BcbDMZREKAyyLQEfgyzEEjrkkxv40esbWiLNwTxvFrJ4Bc5RZhhzDOaAWIvkO8ZFMnnZwwb-jUxPaM57TxxiLpuJrDhFo7GVt7wl6N8lcd18cfJTcHHUl6m6-SMKBIdBn78YS9GG9jL9EvGCgcNl9CgcoC66ZQ5nGnW2NRUessfTNhYashf3mHZHpyMh3Pnv5LpmfsNqXb0EqzydbqZeOeI8aq063Wjr4DIpEhEA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKOZQL78dCASOBOKVNHNuxDxzobsuWPqjardRb6jiOumKbVEm2ZTnxEzjxP_gr_AR-CeO80IIQElIPSDkkjh_JeMYzY3s-I_TcVbGQnHInIVQ7NODMEVpGjtKBdjWVXMTVBtldPjykb4_Y0QL62sbC1PgQ3YSblYxqvLYCbiekV3-ihuqisBiEnrBXu69yy8wuwGsrXm0OoItfELKxPuoPneZgAUf7gc8c5rsxYVCUGUWAi6XiiXBVpKSkSsTKmEDHzPMpVSb2lfCVy0iiBOjWCMprH-q9gq7aY8QtXP9gv0Os4uARVAFNglOHcd9rcSJdsjr_vfN68Dfjdt5WrpTdxg30rSVTvcfl_cq0jFb0x18QJP8rOt5E1xvTG7-uZeUWWjDpbbTUb0-8u4O-jMzp2QSM7--fPteqwMT4TZ5dlCc4S_Da-NSAqzIZa7yXTwsbfYrXJlOb20K72DkwDMoqK06MKaGZXM0KrNIYj-xiDB6ArJ9DhXtZnk0LvGPrwu8-jGNTYPAc4HYGwozXz5vBAO-bOujkLjq8FLLcQ4tplpoHCIND56mEJxosKyqNFFyBg0EgSUeGGdZDTstFoW5A3e3ZIpOwhqMmoe3dsOvdHnrZ5T-r4Uz-mHO5ZcqwGdaKkHg22J4FbtBDz7rX0Et2lUmlBsgX2lhsCv_GIc_9mpm7pvxKH7iyh0jFkn_5hrB_cNDvnh7-S6GnaGk42tkOtzd3tx6haza9iiSVy2ixzKfmMZiUZfSkEmKMji-b238Ajg998A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkaAX_qELBYwE4pQ2cWwnPnCgu11aCmXVbqXeUsdx1BXbZJWfluXEI3DiOXgVXoEnYZw_tCCEhNQDUg6J459kPOOZsT2fEXpqy8gXnHIrJlRZ1OPM8pUILak8ZSsquB9VG2T3-PYhfX3EjpbQ1zYWpsaH6CbcjGRU47UR8FkUb_wEDVV5biAIHd9c7bbKXT0_B6ctf7EzgB5-Rshwa9zftppzBSzlei6zmGtHhEFRpiUBJhaSx74tQykElX4ktfZUxByXUqkjV_qutBmJpQ-qNYTyyoV6L6HLlNvCHBYx2O8AqyClWh11fE4txl2nhYm0ycbi9y6qwd9s20VTudJ1w-voW0uleovL-_WyCNfVx18AJP8nMt5A1xrDG7-sJeUmWtLJLXS13553dxt9GevT2RRM7--fPteKQEf4VZaeFyc4jfHm5FSDozKdKDzKytzEnuLNaWlyG2AXMwOGQVWl-YnWBTSTyXmOZRLhsVmKwQOQ9DOocJRmaZnjt6Yu_O7DJNI5Br8BbucgynjrrBkK8L6uQ07uoMMLIctdtJykiV5FGNw5R8Y8VmBXUaGFzyW4FwSSVKiZZj1ktUwUqAbS3ZwsMg1qMGoSmN4Nut7toedd_lkNZvLHnGstTwbNoJYHxDGh9syzvR560r2GXjJrTDLRQL7ARGJT-DcOee7VvNw15VbawBY9RCqO_Ms3BP2Dg373dP9fCj1GV0aDYfBmZ2_3AVoxyVUYqVhDy0VW6odgTxbho0qEMTq-aGb_AYBufJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template%E2%80%90Directed+Growth+of+Bimetallic+Prussian+Blue%E2%80%90Analogue+Nanosheet+Arrays+and+Their+Derived+Porous+Metal+Oxides+for+Oxygen+Evolution+Reaction&rft.jtitle=ChemSusChem&rft.au=Li%E2%80%90Ming+Cao&rft.au=Yu%E2%80%90Wen+Hu&rft.au=Di%E2%80%90Chang+Zhong&rft.au=Tong%E2%80%90Bu+Lu&rft.date=2018-11-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=21&rft.spage=3708&rft.epage=3713&rft_id=info:doi/10.1002%2Fcssc.201801805&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |