Template‐Directed Growth of Bimetallic Prussian Blue‐Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction

Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures i...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 21; pp. 3708 - 3713
Main Authors Cao, Li‐Ming, Hu, Yu‐Wen, Zhong, Di‐Chang, Lu, Tong‐Bu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. A piece of art: Well‐ordered 3D bimetallic Prussian blue analogue nanosheet arrays are fabricated by etching Ni(OH)2 nanosheet arrays with potassium ferricyanide. The derived porous electrocatalyst exhibits excellent electrochemical activity and stability for the oxygen evolution reaction with overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH solution, respectively.
AbstractList Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.
Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm-2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm-2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.
Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion. A piece of art: Well‐ordered 3D bimetallic Prussian blue analogue nanosheet arrays are fabricated by etching Ni(OH)2 nanosheet arrays with potassium ferricyanide. The derived porous electrocatalyst exhibits excellent electrochemical activity and stability for the oxygen evolution reaction with overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm−2 in 1.0 m KOH solution, respectively.
Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well‐ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well‐aligned three‐dimensional (3D) bimetallic Prussian blue‐analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe–NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm −2 in 1.0  m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe–NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.
Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates, greatly reducing the electrical conductivity and active sites of their derived catalysts. The construction of well-ordered CP nanostructures is a promising strategy for alleviating the above issue, but it remains challenging. Here, a facile chemical etching approach is developed for the fabrication of well-aligned three-dimensional (3D) bimetallic Prussian blue-analogue nanosheet arrays. Impressively, the derived porous metal oxide (Fe-NiO) acts as a remarkable oxygen evolution reaction (OER) catalyst, which merely requires overpotentials as low as 218 and 270 mV to achieve 10 and 100 mA cm in 1.0 m KOH aqueous solution, respectively. The excellent electrocatalytic performance of Fe-NiO is ascribed to the 3D porous nanosheet array architecture, which endows the bimetallic catalyst with abundant electrocatalytic active sites, enhanced surface permeability, and high electronic conductivity. It is expected that the proposed strategy can pave a new way for fabricating highly efficient electrocatalysts for energy storage and conversion.
Author Cao, Li‐Ming
Hu, Yu‐Wen
Zhong, Di‐Chang
Lu, Tong‐Bu
Author_xml – sequence: 1
  givenname: Li‐Ming
  surname: Cao
  fullname: Cao, Li‐Ming
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Yu‐Wen
  surname: Hu
  fullname: Hu, Yu‐Wen
  organization: Sun Yat-Sen University
– sequence: 3
  givenname: Di‐Chang
  orcidid: 0000-0002-5504-249X
  surname: Zhong
  fullname: Zhong, Di‐Chang
  email: zhong_dichang@hotmail.com
  organization: Tianjin University of Technology
– sequence: 4
  givenname: Tong‐Bu
  surname: Lu
  fullname: Lu, Tong‐Bu
  email: lutongbu@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30179309$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4sIlwV6v9-OYpqUgFVrRIHFbTbyzjSuvndreltz4CZz4gfwSvEoJUiWEZMlzeJ7X45lDsmedRUJecjbljGVvVQhqmjFejUc-IQe8KvKJLPKve7ta8H1yGMINYwWri-IZ2ReMl7Vg9QH5ucB-bSDir-8_TrRHFbGlZ97dxxV1HT3WPUYwRit66YcQNFh6bIaRnlkw7npA-gmsCyvESGfewyZQsC1drFB7eoJe36XAS-fdEOjHMYtefNMtBto5n8rNNVp6eufMELWz9DOCGovn5GkHJuCLh_uIfHl3upi_n5xfnH2Yz84nSpRCTqRgbSbT9yVCxnJWQ9FVDJZQ1zlULSCWqpVc5DlgK6ASwGTWQcVqvky-EkfkzTZ37d3tgCE2vQ4KjQGLqeMmYykp6UWZ0NeP0Bs3-DSERHHBKylLNlKvHqhh2WPbrL3uwW-aPxNPwHQLKO9C8NjtEM6acaXNuNJmt9Ik5I8EpSOMQ4oetPm3Vm-1e21w859HmvnV1fyv-xvQi7kk
CitedBy_id crossref_primary_10_1039_D0NR00607F
crossref_primary_10_1002_slct_202301102
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_mtchem_2024_102063
crossref_primary_10_1042_BSR20182254
crossref_primary_10_1016_j_inoche_2021_108605
crossref_primary_10_1016_S1872_2067_21_63833_0
crossref_primary_10_1039_D1TA00122A
crossref_primary_10_1016_j_electacta_2021_139278
crossref_primary_10_1002_smll_202107249
crossref_primary_10_1021_acs_inorgchem_2c03929
crossref_primary_10_1002_cssc_201901153
crossref_primary_10_1021_acsanm_3c03801
crossref_primary_10_1002_cctc_202300026
crossref_primary_10_1039_D0QI00700E
crossref_primary_10_2139_ssrn_3985304
crossref_primary_10_1021_acsaem_2c02543
crossref_primary_10_1039_D2QM00183G
crossref_primary_10_1016_j_jpowsour_2020_228621
crossref_primary_10_1016_j_ccr_2019_213156
crossref_primary_10_1016_j_jallcom_2022_164052
crossref_primary_10_1016_j_apsusc_2021_151194
crossref_primary_10_1039_C9QI01367A
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1016_j_mcat_2021_111835
crossref_primary_10_1039_C9NR01804B
crossref_primary_10_1016_j_jcis_2022_07_148
crossref_primary_10_1002_asia_201901810
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1016_j_ijhydene_2021_09_037
crossref_primary_10_1039_D4QI02325K
crossref_primary_10_1039_D2DT03857A
crossref_primary_10_1039_D2DT03332A
crossref_primary_10_1016_j_jcis_2022_02_007
crossref_primary_10_1002_adma_202304494
crossref_primary_10_1016_j_jallcom_2019_152332
crossref_primary_10_1016_j_partic_2022_12_012
crossref_primary_10_1021_acs_langmuir_2c01079
Cites_doi 10.1038/nchem.2886
10.1021/acsnano.6b04252
10.1002/anie.201303495
10.1002/adma.201506315
10.1021/jacs.6b09778
10.1002/cssc.201601140
10.1038/s41565-018-0216-x
10.1016/j.chempr.2017.04.016
10.1002/adma.201604437
10.1002/adma.201703870
10.1002/anie.201603197
10.1002/anie.201502226
10.1039/C5CS00434A
10.1002/ange.201612635
10.1039/C6EE03145E
10.1002/ange.201701998
10.1126/science.aad4998
10.1002/smll.201600976
10.1021/jacs.6b01606
10.1021/jacs.7b02622
10.1002/anie.201803587
10.1039/C3CS60472A
10.1021/ja407115p
10.1021/jacs.6b05196
10.1002/ange.201603197
10.1002/adma.201700017
10.1002/anie.201701998
10.1002/anie.201308013
10.1021/ja511572q
10.1021/ja406242y
10.1038/ncomms8261
10.1002/chem.201703712
10.1021/jacs.5b07788
10.1002/ange.201502226
10.1038/ncomms5345
10.1021/jacs.6b12250
10.1002/aenm.201700467
10.1126/science.aaf1525
10.1021/ar2003013
10.1002/cssc.201701358
10.1002/cssc.201600850
10.1002/ange.201803587
10.1039/C5EE00762C
10.1038/nchem.2695
10.1002/adma.201502315
10.1007/s12274-017-1611-6
10.1002/ange.201505320
10.1038/ncomms11204
10.1002/aenm.201600116
10.1002/smll.201702109
10.1038/nature19763
10.1002/ange.201308013
10.1002/anie.201710809
10.1021/nn505582e
10.1039/C5EE03453A
10.1002/cssc.201301030
10.1126/science.aad1920
10.1021/ja4094764
10.1021/ja5082553
10.1021/ja5084128
10.1002/ange.201303495
10.1038/nenergy.2016.53
10.1126/science.1212858
10.1021/ja507269n
10.1002/anie.201505320
10.1002/cssc.201501599
10.1002/adma.201600979
10.1002/ange.201710809
10.1002/cssc.201700113
10.1021/ja4027715
10.1002/anie.201612635
10.1126/science.1162018
10.1016/j.electacta.2018.06.185
10.1039/C7TA09734D
10.1021/jz2016507
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201801805
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3713
ExternalDocumentID 30179309
10_1002_cssc_201801805
CSSC201801805
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21331007; 21790052
– fundername: National Key R&D Program of China
  funderid: 2017YFA0700104
– fundername: National Key R&D Program of China
  grantid: 2017YFA0700104
– fundername: National Natural Science Foundation of China
  grantid: 21331007
– fundername: National Natural Science Foundation of China
  grantid: 21790052
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c3735-530d252015ea20409a6f80aba994a8daee7cd51344aed3a83a052fa8091b735c3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 12:19:27 EDT 2025
Fri Jul 25 12:04:49 EDT 2025
Wed Feb 19 02:34:14 EST 2025
Tue Jul 01 00:36:05 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Wed Jan 22 16:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords coordination polymers
electrocatalytic reactions
Prussian blue analogues
oxygen evolution reaction
iron-nickel
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-530d252015ea20409a6f80aba994a8daee7cd51344aed3a83a052fa8091b735c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5504-249X
PMID 30179309
PQID 2131855707
PQPubID 986333
PageCount 6
ParticipantIDs proquest_miscellaneous_2099434467
proquest_journals_2131855707
pubmed_primary_30179309
crossref_primary_10_1002_cssc_201801805
crossref_citationtrail_10_1002_cssc_201801805
wiley_primary_10_1002_cssc_201801805_CSSC201801805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 9, 2018
PublicationDateYYYYMMDD 2018-11-09
PublicationDate_xml – month: 11
  year: 2018
  text: November 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2011; 334
2017; 7
2015; 6
2017; 2
2018; 283
2017; 23
2016; 10
2017; 29
2017 2017; 56 129
2008; 321
2017; 355
2015; 8
2017; 9
2014; 136
2017; 139
2014; 43
2016; 12
2013 2013; 52 125
2018; 6
2016; 6
2016; 7
2014; 5
2016; 1
2012; 3
2015; 27
2016 2016; 55 128
2015; 137
2016; 539
2018 2018; 57 130
2017; 10
2015 2015; 54 127
2018
2013; 135
2016; 352
2016; 138
2014; 8
2016; 28
2012; 45
2014; 7
2018; 10
2016; 351
2016; 9
2016; 45
2018; 14
2018; 13
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_1
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_8_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_81_2
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_74_2
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_74_3
e_1_2_2_76_1
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_78_2
e_1_2_2_32_3
e_1_2_2_53_3
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_1
e_1_2_2_70_3
e_1_2_2_72_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_65_1
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_42_3
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_82_2
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_3
e_1_2_2_50_2
e_1_2_2_75_2
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_31_3
e_1_2_2_56_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_79_2
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_35_2
Sun J. (e_1_2_2_37_2) 2018
e_1_2_2_71_2
e_1_2_2_71_1
References_xml – volume: 9
  start-page: 3012
  year: 2016
  publication-title: ChemSusChem
– year: 2018
  publication-title: Adv. Energy Mater.
– volume: 55 128
  start-page: 9055 9201
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 7399 7507
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 7261
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 149
  year: 2018
  publication-title: Nat. Chem.
– volume: 23
  start-page: 16862
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 3228
  year: 2017
  publication-title: Nano Res.
– volume: 10
  start-page: 893
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 6517
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 539
  start-page: 76
  year: 2016
  publication-title: Nature
– volume: 135
  start-page: 13270
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1700467
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 6391
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604437
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16053
  year: 2016
  publication-title: Nat. Energy
– volume: 321
  start-page: 1072
  year: 2008
  publication-title: Science
– volume: 3
  start-page: 399
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 138
  start-page: 8946
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 13983
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4601
  year: 2016
  publication-title: Adv. Mater.
– volume: 137
  start-page: 13031
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1370
  year: 2017
  publication-title: ChemSusChem
– volume: 351
  start-page: 1920
  year: 2016
  publication-title: Science
– volume: 45
  start-page: 767
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 457
  year: 2017
  publication-title: Nat. Chem.
– volume: 2
  start-page: 791
  year: 2017
  publication-title: Chem
– volume: 10
  start-page: 4004
  year: 2017
  publication-title: ChemSusChem
– volume: 57 130
  start-page: 1241 1255
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 473
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 472
  year: 2016
  publication-title: ChemSusChem
– volume: 139
  start-page: 2070
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3224
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 355
  start-page: 4998
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 8738
  year: 2016
  publication-title: ACS Nano
– volume: 6
  start-page: 1600116
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 17699
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 9660 9808
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 3897 3955
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  start-page: 1700017
  year: 2017
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 12660
  year: 2014
  publication-title: ACS Nano
– volume: 29
  start-page: 1703870
  year: 2017
  publication-title: Adv. Mater.
– volume: 52 125
  start-page: 8546 8708
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 11204
  year: 2016
  publication-title: Nat. Commun.
– volume: 13
  start-page: 642
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 136
  start-page: 14385
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 1404 1428
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1837
  year: 2015
  end-page: 1866
  publication-title: Energy Environ. Sci.
– volume: 54 127
  start-page: 11231 11383
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 16037
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 4345
  year: 2014
  publication-title: Nat. Commun.
– volume: 136
  start-page: 13925
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1702109
  year: 2018
  publication-title: Small
– volume: 283
  start-page: 548
  year: 2018
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 4669
  year: 2016
  publication-title: small
– volume: 139
  start-page: 6270
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1372
  year: 2014
  publication-title: ChemSusChem
– volume: 10
  start-page: 87
  year: 2017
  publication-title: ChemSusChem
– volume: 137
  start-page: 1587
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16977
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 43
  start-page: 5468
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 7769 7877
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_21_2
  doi: 10.1038/nchem.2886
– ident: e_1_2_2_63_2
  doi: 10.1021/acsnano.6b04252
– ident: e_1_2_2_40_1
– ident: e_1_2_2_77_1
– ident: e_1_2_2_71_1
  doi: 10.1002/anie.201303495
– ident: e_1_2_2_67_2
  doi: 10.1002/adma.201506315
– ident: e_1_2_2_69_2
  doi: 10.1021/jacs.6b09778
– ident: e_1_2_2_5_2
  doi: 10.1002/cssc.201601140
– ident: e_1_2_2_18_2
  doi: 10.1038/s41565-018-0216-x
– ident: e_1_2_2_54_1
  doi: 10.1016/j.chempr.2017.04.016
– ident: e_1_2_2_55_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_2_66_2
  doi: 10.1002/adma.201703870
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.201603197
– ident: e_1_2_2_32_2
  doi: 10.1002/anie.201502226
– ident: e_1_2_2_9_2
  doi: 10.1039/C5CS00434A
– ident: e_1_2_2_53_3
  doi: 10.1002/ange.201612635
– ident: e_1_2_2_80_1
– ident: e_1_2_2_59_2
  doi: 10.1039/C6EE03145E
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201701998
– ident: e_1_2_2_20_2
  doi: 10.1126/science.aad4998
– ident: e_1_2_2_60_2
  doi: 10.1002/smll.201600976
– ident: e_1_2_2_76_1
  doi: 10.1021/jacs.6b01606
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.7b02622
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.201803587
– year: 2018
  ident: e_1_2_2_37_2
  publication-title: Adv. Energy Mater.
– ident: e_1_2_2_46_2
  doi: 10.1039/C3CS60472A
– ident: e_1_2_2_14_1
– ident: e_1_2_2_24_2
  doi: 10.1021/ja407115p
– ident: e_1_2_2_26_2
  doi: 10.1021/jacs.6b05196
– ident: e_1_2_2_22_1
– ident: e_1_2_2_30_1
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.201603197
– ident: e_1_2_2_78_2
  doi: 10.1002/adma.201700017
– ident: e_1_2_2_58_1
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201701998
– ident: e_1_2_2_42_2
  doi: 10.1002/anie.201308013
– ident: e_1_2_2_44_1
– ident: e_1_2_2_11_2
  doi: 10.1021/ja511572q
– ident: e_1_2_2_68_2
  doi: 10.1021/ja406242y
– ident: e_1_2_2_4_2
  doi: 10.1038/ncomms8261
– ident: e_1_2_2_39_2
  doi: 10.1002/chem.201703712
– ident: e_1_2_2_75_2
  doi: 10.1021/jacs.5b07788
– ident: e_1_2_2_32_3
  doi: 10.1002/ange.201502226
– ident: e_1_2_2_34_2
  doi: 10.1038/ncomms5345
– ident: e_1_2_2_64_2
  doi: 10.1021/jacs.6b12250
– ident: e_1_2_2_82_2
  doi: 10.1002/aenm.201700467
– ident: e_1_2_2_62_2
  doi: 10.1126/science.aaf1525
– ident: e_1_2_2_3_2
  doi: 10.1021/ar2003013
– ident: e_1_2_2_27_2
  doi: 10.1002/cssc.201701358
– ident: e_1_2_2_7_2
  doi: 10.1002/cssc.201600850
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.201803587
– ident: e_1_2_2_52_2
  doi: 10.1039/C5EE00762C
– ident: e_1_2_2_16_2
  doi: 10.1038/nchem.2695
– ident: e_1_2_2_48_2
  doi: 10.1002/adma.201502315
– ident: e_1_2_2_49_2
  doi: 10.1007/s12274-017-1611-6
– ident: e_1_2_2_51_1
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201505320
– ident: e_1_2_2_12_2
  doi: 10.1038/ncomms11204
– ident: e_1_2_2_13_2
  doi: 10.1002/aenm.201600116
– ident: e_1_2_2_36_2
  doi: 10.1002/smll.201702109
– ident: e_1_2_2_43_2
  doi: 10.1038/nature19763
– ident: e_1_2_2_42_3
  doi: 10.1002/ange.201308013
– ident: e_1_2_2_70_2
  doi: 10.1002/anie.201710809
– ident: e_1_2_2_65_1
– ident: e_1_2_2_45_2
  doi: 10.1021/nn505582e
– ident: e_1_2_2_73_2
  doi: 10.1039/C5EE03453A
– ident: e_1_2_2_6_2
  doi: 10.1002/cssc.201301030
– ident: e_1_2_2_1_1
  doi: 10.1126/science.aad1920
– ident: e_1_2_2_10_2
  doi: 10.1021/ja4094764
– ident: e_1_2_2_61_1
– ident: e_1_2_2_56_1
  doi: 10.1021/ja5082553
– ident: e_1_2_2_57_1
  doi: 10.1021/ja5084128
– ident: e_1_2_2_71_2
  doi: 10.1002/ange.201303495
– ident: e_1_2_2_23_2
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_2_33_2
  doi: 10.1126/science.1212858
– ident: e_1_2_2_41_2
  doi: 10.1021/ja507269n
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201505320
– ident: e_1_2_2_72_1
– ident: e_1_2_2_17_2
  doi: 10.1002/cssc.201501599
– ident: e_1_2_2_8_1
– ident: e_1_2_2_47_2
  doi: 10.1002/adma.201600979
– ident: e_1_2_2_70_3
  doi: 10.1002/ange.201710809
– ident: e_1_2_2_28_2
  doi: 10.1002/cssc.201700113
– ident: e_1_2_2_79_2
  doi: 10.1021/ja4027715
– ident: e_1_2_2_19_1
– ident: e_1_2_2_53_2
  doi: 10.1002/anie.201612635
– ident: e_1_2_2_15_2
  doi: 10.1126/science.1162018
– ident: e_1_2_2_2_1
– ident: e_1_2_2_38_2
  doi: 10.1016/j.electacta.2018.06.185
– ident: e_1_2_2_81_2
  doi: 10.1039/C7TA09734D
– ident: e_1_2_2_29_1
  doi: 10.1021/jz2016507
SSID ssj0060966
Score 2.4180906
Snippet Coordination polymers (CPs) are ideal precursors for synthesizing porous catalysts. However, the direct thermolysis of CPs is prone to generate agglomerates,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3708
SubjectTerms Agglomerates
Arrays
Bimetals
Catalysis
Catalysts
Chemical etching
Chemical synthesis
Coordination polymers
Electrical resistivity
Electrocatalysts
electrocatalytic reactions
Energy storage
Iron
iron-nickel
Metal oxides
Nanosheets
Nanostructure
Nickel oxides
Organic chemistry
oxygen evolution reaction
Oxygen evolution reactions
Pigments
Prussian blue analogues
Well construction
Title Template‐Directed Growth of Bimetallic Prussian Blue‐Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801805
https://www.ncbi.nlm.nih.gov/pubmed/30179309
https://www.proquest.com/docview/2131855707
https://www.proquest.com/docview/2099434467
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UClOdCqYyExCltHrZjH-m2pUICqnYr9RZNHEdddZtUm6SinPgJnPiB_BJm8oIFISSQcnCScRzbM-MvjuczYy99yLRRQnl5KKwnYiU9bU3qgY2tb4VROmsXyL5Xh6fi7Zk8-ymKv-OHGCfcyDJaf00GDmm184M01FYVURAGmg6KMqcFW4SKjkf-KIX4vA0v0kp4UkXBwNrohzur2VdHpd-g5ipybYeeg7sMhpfuVpxcbDd1um0__cLn-D-1usfu9LiUv-4UaYPdcsV9tj4dtoN7wL7O3OXVApHpt89fOj_pMv4GP-Lrc17mfHd-6RDHL-aWHy2bikIz-e6iIWniPaEJIo6evKzOnauxmCXcVByKjM_oTwXfQ0O4xgcelcuyqfg7ehb_8HGeuYojrMbkDWo637_uLYUfuy4i4yE7PdifTQ-9flMHz0ZxJD0Z-VkosYbSQYgexIDKtQ8pGCNAZ-BcbDMZREKAyyLQEfgyzEEjrkkxv40esbWiLNwTxvFrJ4Bc5RZhhzDOaAWIvkO8ZFMnnZwwb-jUxPaM57TxxiLpuJrDhFo7GVt7wl6N8lcd18cfJTcHHUl6m6-SMKBIdBn78YS9GG9jL9EvGCgcNl9CgcoC66ZQ5nGnW2NRUessfTNhYashf3mHZHpyMh3Pnv5LpmfsNqXb0EqzydbqZeOeI8aq063Wjr4DIpEhEA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKOZQL78dCASOBOKVNHNuxDxzobsuWPqjardRb6jiOumKbVEm2ZTnxEzjxP_gr_AR-CeO80IIQElIPSDkkjh_JeMYzY3s-I_TcVbGQnHInIVQ7NODMEVpGjtKBdjWVXMTVBtldPjykb4_Y0QL62sbC1PgQ3YSblYxqvLYCbiekV3-ihuqisBiEnrBXu69yy8wuwGsrXm0OoItfELKxPuoPneZgAUf7gc8c5rsxYVCUGUWAi6XiiXBVpKSkSsTKmEDHzPMpVSb2lfCVy0iiBOjWCMprH-q9gq7aY8QtXP9gv0Os4uARVAFNglOHcd9rcSJdsjr_vfN68Dfjdt5WrpTdxg30rSVTvcfl_cq0jFb0x18QJP8rOt5E1xvTG7-uZeUWWjDpbbTUb0-8u4O-jMzp2QSM7--fPteqwMT4TZ5dlCc4S_Da-NSAqzIZa7yXTwsbfYrXJlOb20K72DkwDMoqK06MKaGZXM0KrNIYj-xiDB6ArJ9DhXtZnk0LvGPrwu8-jGNTYPAc4HYGwozXz5vBAO-bOujkLjq8FLLcQ4tplpoHCIND56mEJxosKyqNFFyBg0EgSUeGGdZDTstFoW5A3e3ZIpOwhqMmoe3dsOvdHnrZ5T-r4Uz-mHO5ZcqwGdaKkHg22J4FbtBDz7rX0Et2lUmlBsgX2lhsCv_GIc_9mpm7pvxKH7iyh0jFkn_5hrB_cNDvnh7-S6GnaGk42tkOtzd3tx6haza9iiSVy2ixzKfmMZiUZfSkEmKMji-b238Ajg998A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkaAX_qELBYwE4pQ2cWwnPnCgu11aCmXVbqXeUsdx1BXbZJWfluXEI3DiOXgVXoEnYZw_tCCEhNQDUg6J459kPOOZsT2fEXpqy8gXnHIrJlRZ1OPM8pUILak8ZSsquB9VG2T3-PYhfX3EjpbQ1zYWpsaH6CbcjGRU47UR8FkUb_wEDVV5biAIHd9c7bbKXT0_B6ctf7EzgB5-Rshwa9zftppzBSzlei6zmGtHhEFRpiUBJhaSx74tQykElX4ktfZUxByXUqkjV_qutBmJpQ-qNYTyyoV6L6HLlNvCHBYx2O8AqyClWh11fE4txl2nhYm0ycbi9y6qwd9s20VTudJ1w-voW0uleovL-_WyCNfVx18AJP8nMt5A1xrDG7-sJeUmWtLJLXS13553dxt9GevT2RRM7--fPteKQEf4VZaeFyc4jfHm5FSDozKdKDzKytzEnuLNaWlyG2AXMwOGQVWl-YnWBTSTyXmOZRLhsVmKwQOQ9DOocJRmaZnjt6Yu_O7DJNI5Br8BbucgynjrrBkK8L6uQ07uoMMLIctdtJykiV5FGNw5R8Y8VmBXUaGFzyW4FwSSVKiZZj1ktUwUqAbS3ZwsMg1qMGoSmN4Nut7toedd_lkNZvLHnGstTwbNoJYHxDGh9syzvR560r2GXjJrTDLRQL7ARGJT-DcOee7VvNw15VbawBY9RCqO_Ms3BP2Dg373dP9fCj1GV0aDYfBmZ2_3AVoxyVUYqVhDy0VW6odgTxbho0qEMTq-aGb_AYBufJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template%E2%80%90Directed+Growth+of+Bimetallic+Prussian+Blue%E2%80%90Analogue+Nanosheet+Arrays+and+Their+Derived+Porous+Metal+Oxides+for+Oxygen+Evolution+Reaction&rft.jtitle=ChemSusChem&rft.au=Li%E2%80%90Ming+Cao&rft.au=Yu%E2%80%90Wen+Hu&rft.au=Di%E2%80%90Chang+Zhong&rft.au=Tong%E2%80%90Bu+Lu&rft.date=2018-11-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=21&rft.spage=3708&rft.epage=3713&rft_id=info:doi/10.1002%2Fcssc.201801805&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon