Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 12; pp. e2207875 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody‐based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular‐antibody‐based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane‐coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next‐generation antibodies for enhanced therapeutics.
Recent breakthroughs in membrane‐derived vesicle nanotechnology have enabled vesicular‐antibody‐based therapy. By proposing the concept of vesicular antibodies, reviewing their engineering strategies and biomedical applications, and highlighting their unique advantages, this perspective intends to provide new insights on the development of vesicular antibodies. |
---|---|
AbstractList | The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics. The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody‐based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular‐antibody‐based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane‐coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next‐generation antibodies for enhanced therapeutics. Recent breakthroughs in membrane‐derived vesicle nanotechnology have enabled vesicular‐antibody‐based therapy. By proposing the concept of vesicular antibodies, reviewing their engineering strategies and biomedical applications, and highlighting their unique advantages, this perspective intends to provide new insights on the development of vesicular antibodies. The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics. |
Author | Yu, Guocan Zhao, Xing‐Zhong Zhao, Chenchen Chen, Xiaoyuan Pan, Yuanwei Rao, Lang |
Author_xml | – sequence: 1 givenname: Chenchen surname: Zhao fullname: Zhao, Chenchen organization: Wuhan University – sequence: 2 givenname: Yuanwei surname: Pan fullname: Pan, Yuanwei organization: National University of Singapore – sequence: 3 givenname: Guocan surname: Yu fullname: Yu, Guocan email: guocanyu@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 4 givenname: Xing‐Zhong surname: Zhao fullname: Zhao, Xing‐Zhong organization: Wuhan University – sequence: 5 givenname: Xiaoyuan orcidid: 0000-0002-9622-0870 surname: Chen fullname: Chen, Xiaoyuan email: chen.shawn@nus.edu.sg organization: and Research (ASTAR) – sequence: 6 givenname: Lang surname: Rao fullname: Rao, Lang email: lrao@szbl.ac.cn organization: Shenzhen Bay Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36721058$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vGyEQxVGVqnGSXnuskHrpxe7ALrD0Zjn9kpz00KRXxLLYS7QLLrCK_N8Xy0kqRapyGg38HryZd4ZOfPAWoXcEFgSAftLdqBcUKAXRCPYKzQijZF6DZCdoBrJic8nr5hSdpXQHAJIDf4NOKy4oAdbMkPptkzPToCNe-uza0DmbPuNfve0657d47bZ9xsE_3u7xTW-j3tkpO5Pwvcs9XtlhwFd2bKP2Fl9rH7I1vQ9D2O4v0OuNHpJ9-1DP0e3XLzer7_P1z28_Vsv13FSimKzNBoRhjMlDaStpDBfQUdIyu6GlbUULzNRUcFqbrimzdxUV1HJoyoGuztHH47u7GP5MNmU1umSKsWIpTElRIQivZJm5oB-eoXdhir64K1QjOWEN0EK9f6CmdrSd2kU36rhXj6srwOIImBhSinbzhBBQh2zUIRv1lE0R1M8ExmWdXfA5ajf8XyaPsns32P0Ln6jl5dXyn_Yvn1CiEw |
CitedBy_id | crossref_primary_10_1186_s12951_024_02458_9 crossref_primary_10_1002_smll_202309031 crossref_primary_10_1002_smll_202401117 crossref_primary_10_1002_adfm_202400507 crossref_primary_10_1039_D4BM00827H crossref_primary_10_1016_j_mtbio_2025_101595 crossref_primary_10_1007_s00259_024_06793_9 crossref_primary_10_1002_advs_202303053 crossref_primary_10_1021_acsami_4c12567 crossref_primary_10_1186_s12951_024_02514_4 crossref_primary_10_1002_ange_202404889 crossref_primary_10_1038_s41392_024_01826_z crossref_primary_10_1007_s12274_023_5840_6 crossref_primary_10_1021_acsami_4c11370 crossref_primary_10_1016_j_addr_2023_115176 crossref_primary_10_1002_mba2_106 crossref_primary_10_1186_s12951_024_02428_1 crossref_primary_10_1002_adhm_202402103 crossref_primary_10_1002_smll_202311702 crossref_primary_10_1021_acsnano_4c01229 crossref_primary_10_34133_bmef_0047 crossref_primary_10_1002_advs_202302131 crossref_primary_10_1016_j_jhazmat_2024_134877 crossref_primary_10_1002_mog2_67 crossref_primary_10_1002_anie_202404889 crossref_primary_10_2174_0115748855238869231002073717 |
Cites_doi | 10.1002/adma.201705350 10.1021/nl500618u 10.1021/acsnano.0c01665 10.1002/anie.201807212 10.1002/adfm.202003559 10.1021/jacs.1c07798 10.1126/science.aah6157 10.1038/nrmicro3503 10.1002/adma.202106265 10.1021/acsnano.7b04955 10.1021/acs.nanolett.0c01654 10.1038/s41375-021-01432-w 10.1002/adtp.201800016 10.1016/j.biomaterials.2018.08.018 10.1021/acs.nanolett.0c02278 10.1186/2049-9957-4-8 10.1038/s41467-020-18626-y 10.1002/adma.201503323 10.1021/acs.nanolett.8b03913 10.1002/adma.202108817 10.1039/D0CS00152J 10.1186/s12951-021-00926-0 10.1002/adfm.201803531 10.1016/j.biomaterials.2018.10.029 10.1038/s41565-018-0254-4 10.1038/nrrheum.2015.8 10.1002/smll.201804994 10.1038/nrclinonc.2016.25 10.1126/science.abc2241 10.1002/adma.202004853 10.1002/adma.202001808 10.1073/pnas.1412420111 10.1021/acsnano.8b03788 10.1021/acsnano.8b02446 10.1002/adma.201808294 10.1007/s40259-019-00392-z 10.1016/j.jconrel.2019.05.008 10.1002/adma.202002054 10.1002/adma.201902530 10.1186/s12951-021-01148-0 10.1073/pnas.1505799112 10.1038/nnano.2013.54 10.1021/nn402232g 10.1002/adma.201606209 10.1021/acsnano.0c03776 10.1038/s41467-018-02996-5 10.1038/s41551-016-0011 10.3389/fphar.2017.00477 10.1016/j.xphs.2019.05.031 10.1002/adhm.201701366 10.1002/advs.201900605 10.1038/s41551-021-00815-9 10.1002/adma.202107719 10.1073/pnas.1106634108 10.1021/acsnano.0c06836 10.1021/acs.nanolett.9b03753 10.1002/adma.202100012 10.1097/COC.0000000000000239 10.1021/acs.biochem.0c00343 10.1038/ni.2703 10.1126/scitranslmed.aad7118 10.1039/D0BM01397H 10.1016/j.actbio.2019.11.025 10.7150/thno.48868 10.1634/theoncologist.2015-0282 10.1016/j.cell.2012.02.034 10.1002/anie.202108342 10.4049/jimmunol.1100608 10.1038/s41565-021-00972-7 10.1016/j.nantod.2020.100896 10.1021/acs.nanolett.9b00145 10.1073/pnas.1714267114 10.1002/adma.201501071 10.1002/adma.201707112 10.1016/j.nantod.2011.04.001 10.1186/s12951-022-01266-3 10.1038/nrd.2017.227 10.1126/sciadv.aaw6870 10.7150/thno.48407 10.1021/acsnano.5b02997 10.1038/nmat4644 10.1038/s41467-020-16439-7 10.1038/nature21363 10.7150/thno.38583 10.1016/j.cell.2020.05.028 10.1016/j.biomaterials.2017.02.041 10.1016/j.cell.2015.02.010 10.1016/j.biomaterials.2015.03.024 10.1002/jobm.202100008 10.1073/pnas.2014352117 10.1002/advs.202100460 10.1038/s41551-018-0310-2 10.1038/s41467-019-11157-1 10.1002/ctm2.292 10.7150/thno.15095 10.1021/acscentsci.9b00060 10.1021/acs.nanolett.8b02321 10.1021/acsami.8b22309 10.1002/adma.201907692 10.1021/jacs.1c11554 10.1002/anie.201906280 10.2147/IJN.S253125 10.1002/adma.201703969 10.1002/adma.201802233 10.1016/j.jconrel.2020.01.054 10.1021/acs.nanolett.1c00238 10.1038/s41467-021-22674-3 10.1021/acsnano.5b02132 10.1002/advs.201700449 10.3727/000000004773301861 10.1039/C9BM02088H 10.1126/sciadv.abl6432 10.1126/science.1114016 10.1016/j.ccell.2017.03.009 10.4161/mabs.2.3.11779 10.1128/mSphere.00335-17 10.1021/acsnano.8b05292 10.1182/blood-2013-04-495119 10.1016/j.biomaterials.2016.10.003 10.1038/s41565-022-01098-0 10.1126/sciadv.abf7820 10.1002/adma.201706759 10.1002/adma.201704800 10.1128/mBio.00903-20 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202207875 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36721058 10_1002_adma_202207875 ADMA202207875 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82222035 – fundername: National Medical Research Council funderid: CG21APR1005 – fundername: Shenzhen Bay Laboratory Open‐Ended Fund funderid: SZBL2020090501009 – fundername: National University of Singapore funderid: NUHSRO/2020/133/Startup/08; NUHSRO/2021/034/TRP/09/ – fundername: Science and Technology Innovation Commission of Shenzhen funderid: JSGG20220606141002004 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515111036 – fundername: National University of Singapore grantid: NUHSRO/2020/133/Startup/08 – fundername: National Natural Science Foundation of China grantid: 82222035 – fundername: Science and Technology Innovation Commission of Shenzhen grantid: JSGG20220606141002004 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515111036 – fundername: National University of Singapore grantid: NUHSRO/2021/034/TRP/09/ – fundername: National Medical Research Council grantid: CG21APR1005 – fundername: Shenzhen Bay Laboratory Open-Ended Fund grantid: SZBL2020090501009 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3735-4cf07c555907c5b39cc670d21b5ef239cb7b05c427624cd8100d3272e60824ca3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:26:17 EDT 2025 Fri Jul 25 05:56:39 EDT 2025 Wed Feb 19 02:24:44 EST 2025 Tue Jul 01 02:33:28 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Wed Jan 22 16:28:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cell membranes antibodies nanoparticles biomaterials vesicles |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-4cf07c555907c5b39cc670d21b5ef239cb7b05c427624cd8100d3272e60824ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9622-0870 |
PMID | 36721058 |
PQID | 2789615802 |
PQPubID | 2045203 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2771639058 proquest_journals_2789615802 pubmed_primary_36721058 crossref_primary_10_1002_adma_202207875 crossref_citationtrail_10_1002_adma_202207875 wiley_primary_10_1002_adma_202207875_ADMA202207875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 20 2019; 11 2019; 10 2019; 13 2019; 15 2013; 122 2019; 19 2020; 15 2020; 14 2022; 20 2020; 320 2020; 11 2013; 7 2016; 39 2013; 8 2018; 7 2018; 9 2018; 2 2018; 5 2018; 1 2022; 34 2014; 14 2018; 30 2010; 2 2018; 185 2018; 28 2019; 9 2019; 6 2019; 5 2019; 31 2015; 54 2020; 34 2021; 143 2020; 32 2021; 50 2011; 6 2016; 15 2016; 13 2019; 189 2016; 11 2016; 6 2018; 18 2018; 17 2020; 30 2015; 112 2016; 21 2018; 12 2021; 61 2021; 60 2017; 542 2016; 8 2022; 17 2018; 13 2017; 8 2017; 1 2021; 21 2017; 2 2019; 58 2020; 368 2017; 114 2021; 36 2020; 8 2017; 31 2013; 14 2021; 34 2021; 33 2016; 353 2016; 111 2005; 309 2017; 128 2015; 13 2021; 9 2021; 8 2021; 7 2015; 160 2015; 4 2015; 11 2020; 182 2017; 29 2019; 304 2020; 102 2015; 9 2012; 148 2014; 111 2020; 109 2022; 144 2021; 16 2021; 15 2011; 108 2015; 27 2021; 12 2021; 11 2022 2021 2017; 11 2021; 19 2004; 13 2020; 117 2011; 187 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 Chhabria V. (e_1_2_8_97_1) 2016; 11 e_1_2_8_29_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 Jung M. (e_1_2_8_25_1) 2021 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 8 start-page: 1575 year: 2020 publication-title: Biomater. Sci. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 185 start-page: 360 year: 2018 publication-title: Biomaterials – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 336 year: 2013 publication-title: Nat. Nanotechnol. – volume: 36 start-page: 994 year: 2021 publication-title: Leukemia – volume: 10 start-page: 3199 year: 2019 publication-title: Nat. Commun. – volume: 320 start-page: 304 year: 2020 publication-title: J. Controlled Release – volume: 27 start-page: 3437 year: 2015 publication-title: Adv. Mater. – volume: 20 start-page: 5570 year: 2020 publication-title: Nano Lett. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 20 start-page: 61 year: 2022 publication-title: J. Nanobiotechnol. – volume: 9 start-page: 826 year: 2021 publication-title: Biomater. Sci. – volume: 50 start-page: 945 year: 2021 publication-title: Chem. Soc. Rev. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 2569 year: 2020 publication-title: ACS Nano – year: 2022 publication-title: Adv. Mater. – volume: 8 year: 2016 publication-title: Sci. Transl. Med. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2773 year: 2021 publication-title: Nat. Commun. – volume: 19 start-page: 173 year: 2021 publication-title: J. Nanobiotechnol. – volume: 19 start-page: 391 year: 2021 publication-title: J. Nanobiotechnol. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 144 start-page: 5702 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 531 year: 2022 publication-title: Nat. Nanotechnol. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 21 start-page: 233 year: 2016 publication-title: Oncologist – volume: 7 start-page: 7698 year: 2013 publication-title: ACS Nano – volume: 54 start-page: 177 year: 2015 publication-title: Biomaterials – volume: 1 year: 2018 publication-title: Adv. Ther. – volume: 19 start-page: 2993 year: 2019 publication-title: Nano Lett. – volume: 13 start-page: 471 year: 2015 publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 2215 year: 2019 publication-title: Nano Lett. – volume: 4 start-page: 8 year: 2015 publication-title: Infect. Dis. Poverty – volume: 6 start-page: 1012 year: 2016 publication-title: Theranostics – volume: 17 start-page: 197 year: 2018 publication-title: Nat. Rev. Drug Discovery – volume: 34 start-page: 11 year: 2020 publication-title: BioDrugs – year: 2021 publication-title: Adv. Mater. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 544 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 8977 year: 2018 publication-title: ACS Nano – volume: 20 start-page: 242 year: 2020 publication-title: Nano Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 34 year: 2020 publication-title: Nano Today – volume: 9 start-page: 6450 year: 2015 publication-title: ACS Nano – volume: 14 start-page: 1014 year: 2013 publication-title: Nat. Immunol. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 year: 2017 publication-title: mSphere – volume: 11 start-page: 7850 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 6340 year: 2021 publication-title: ACS Nano – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 6033 year: 2021 publication-title: Theranostics – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 8 start-page: 477 year: 2017 publication-title: Front. Pharmacol. – volume: 187 start-page: 5090 year: 2011 publication-title: J. Immunol. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 16 start-page: 1271 year: 2021 publication-title: Nat. Nanotechnol. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 304 start-page: 233 year: 2019 publication-title: J. Controlled Release – volume: 13 start-page: 2849 year: 2019 publication-title: ACS Nano – volume: 122 year: 2013 publication-title: Blood – volume: 148 start-page: 1081 year: 2012 publication-title: Cell – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 2797 year: 2016 publication-title: Nanomedicine – volume: 353 start-page: 1129 year: 2016 publication-title: Science – volume: 182 start-page: 85 year: 2020 publication-title: Cell – volume: 13 start-page: 273 year: 2016 publication-title: Nat. Rev. Clin. Oncol. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 21 start-page: 2603 year: 2021 publication-title: Nano Lett. – volume: 111 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 year: 2020 publication-title: mBio – volume: 128 start-page: 69 year: 2017 publication-title: Biomaterials – volume: 2 start-page: 347 year: 2010 publication-title: mAbs – volume: 11 start-page: 4909 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 2622 year: 2020 publication-title: Nat. Commun. – volume: 160 start-page: 816 year: 2015 publication-title: Cell – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 15 start-page: 4125 year: 2020 publication-title: Int. J. Nanomed. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 542 start-page: 177 year: 2017 publication-title: Nature – volume: 33 year: 2021 publication-title: Adv. Mater. – start-page: 882 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 20 start-page: 4051 year: 2020 publication-title: Nano Lett. – volume: 61 start-page: 430 year: 2021 publication-title: J. Basic Microbiol. – volume: 189 start-page: 60 year: 2019 publication-title: Biomaterials – volume: 11 start-page: 2349 year: 2021 publication-title: Theranostics – volume: 1 start-page: 0011 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1037 year: 2016 publication-title: Nat. Mater. – volume: 309 start-page: 623 year: 2005 publication-title: Science – volume: 18 start-page: 5716 year: 2018 publication-title: Nano Lett. – volume: 27 start-page: 7043 year: 2015 publication-title: Adv. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 102 start-page: 416 year: 2020 publication-title: Acta Biomater. – volume: 13 start-page: 179 year: 2004 publication-title: Cell Transplant. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 1182 year: 2018 publication-title: Nat. Nanotechnol. – volume: 60 start-page: 941 year: 2021 publication-title: Biochemistry – volume: 6 start-page: 309 year: 2011 publication-title: Nano Today – volume: 39 start-page: 98 year: 2016 publication-title: Am. J. Clin. Oncol. – volume: 5 start-page: 796 year: 2019 publication-title: ACS Cent. Sci. – volume: 15 year: 2019 publication-title: Small – volume: 12 year: 2018 publication-title: ACS Nano – volume: 2 start-page: 831 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 368 start-page: 1274 year: 2020 publication-title: Science – volume: 11 year: 2021 publication-title: Clin. Transl. Med. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 111 start-page: 116 year: 2016 publication-title: Biomaterials – volume: 14 start-page: 2181 year: 2014 publication-title: Nano Lett. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 109 start-page: 74 year: 2020 publication-title: J. Pharm. Sci. – volume: 11 start-page: 276 year: 2015 publication-title: Nat. Rev. Rheumatol. – volume: 9 start-page: 7889 year: 2019 publication-title: Theranostics – volume: 31 start-page: 469 year: 2017 publication-title: Cancer Cell – ident: e_1_2_8_87_1 doi: 10.1002/adma.201705350 – ident: e_1_2_8_111_1 doi: 10.1021/nl500618u – ident: e_1_2_8_60_1 doi: 10.1021/acsnano.0c01665 – ident: e_1_2_8_7_1 doi: 10.1002/anie.201807212 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.202003559 – ident: e_1_2_8_18_1 doi: 10.1021/jacs.1c07798 – ident: e_1_2_8_59_1 doi: 10.1126/science.aah6157 – ident: e_1_2_8_61_1 doi: 10.1038/nrmicro3503 – ident: e_1_2_8_77_1 doi: 10.1002/adma.202106265 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.7b04955 – ident: e_1_2_8_106_1 doi: 10.1021/acs.nanolett.0c01654 – ident: e_1_2_8_114_1 doi: 10.1038/s41375-021-01432-w – ident: e_1_2_8_16_1 doi: 10.1002/adtp.201800016 – ident: e_1_2_8_78_1 doi: 10.1016/j.biomaterials.2018.08.018 – ident: e_1_2_8_15_1 doi: 10.1021/acs.nanolett.0c02278 – ident: e_1_2_8_82_1 doi: 10.1186/2049-9957-4-8 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-020-18626-y – ident: e_1_2_8_116_1 doi: 10.1002/adma.201503323 – ident: e_1_2_8_63_1 doi: 10.1021/acs.nanolett.8b03913 – ident: e_1_2_8_108_1 doi: 10.1002/adma.202108817 – ident: e_1_2_8_29_1 doi: 10.1039/D0CS00152J – ident: e_1_2_8_55_1 doi: 10.1186/s12951-021-00926-0 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.201803531 – ident: e_1_2_8_103_1 doi: 10.1016/j.biomaterials.2018.10.029 – ident: e_1_2_8_54_1 doi: 10.1038/s41565-018-0254-4 – ident: e_1_2_8_53_1 doi: 10.1038/nrrheum.2015.8 – ident: e_1_2_8_98_1 doi: 10.1002/smll.201804994 – ident: e_1_2_8_39_1 doi: 10.1038/nrclinonc.2016.25 – ident: e_1_2_8_67_1 doi: 10.1126/science.abc2241 – ident: e_1_2_8_31_1 doi: 10.1002/adma.202004853 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202001808 – ident: e_1_2_8_75_1 doi: 10.1073/pnas.1412420111 – ident: e_1_2_8_112_1 doi: 10.1021/acsnano.8b03788 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.8b02446 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201808294 – ident: e_1_2_8_3_1 doi: 10.1007/s40259-019-00392-z – ident: e_1_2_8_23_1 doi: 10.1016/j.jconrel.2019.05.008 – ident: e_1_2_8_48_1 doi: 10.1002/adma.202002054 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201902530 – ident: e_1_2_8_66_1 doi: 10.1186/s12951-021-01148-0 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.1505799112 – ident: e_1_2_8_70_1 doi: 10.1038/nnano.2013.54 – ident: e_1_2_8_85_1 doi: 10.1021/nn402232g – ident: e_1_2_8_36_1 doi: 10.1002/adma.201606209 – ident: e_1_2_8_123_1 doi: 10.1021/acsnano.0c03776 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-018-02996-5 – ident: e_1_2_8_22_1 doi: 10.1038/s41551-016-0011 – ident: e_1_2_8_95_1 doi: 10.3389/fphar.2017.00477 – ident: e_1_2_8_2_1 doi: 10.1016/j.xphs.2019.05.031 – ident: e_1_2_8_93_1 doi: 10.1002/adhm.201701366 – ident: e_1_2_8_52_1 doi: 10.1002/advs.201900605 – ident: e_1_2_8_56_1 doi: 10.1038/s41551-021-00815-9 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202107719 – ident: e_1_2_8_83_1 doi: 10.1073/pnas.1106634108 – ident: e_1_2_8_117_1 doi: 10.1021/acsnano.0c06836 – ident: e_1_2_8_101_1 doi: 10.1021/acs.nanolett.9b03753 – ident: e_1_2_8_64_1 doi: 10.1002/adma.202100012 – ident: e_1_2_8_46_1 doi: 10.1097/COC.0000000000000239 – ident: e_1_2_8_4_1 doi: 10.1021/acs.biochem.0c00343 – ident: e_1_2_8_47_1 doi: 10.1038/ni.2703 – ident: e_1_2_8_43_1 doi: 10.1126/scitranslmed.aad7118 – ident: e_1_2_8_94_1 doi: 10.1039/D0BM01397H – ident: e_1_2_8_105_1 doi: 10.1016/j.actbio.2019.11.025 – ident: e_1_2_8_45_1 doi: 10.7150/thno.48868 – ident: e_1_2_8_42_1 doi: 10.1634/theoncologist.2015-0282 – ident: e_1_2_8_40_1 doi: 10.1016/j.cell.2012.02.034 – volume: 11 start-page: 2797 year: 2016 ident: e_1_2_8_97_1 publication-title: Nanomedicine – ident: e_1_2_8_49_1 doi: 10.1002/anie.202108342 – ident: e_1_2_8_90_1 doi: 10.4049/jimmunol.1100608 – ident: e_1_2_8_120_1 doi: 10.1038/s41565-021-00972-7 – ident: e_1_2_8_9_1 doi: 10.1016/j.nantod.2020.100896 – ident: e_1_2_8_79_1 doi: 10.1021/acs.nanolett.9b00145 – ident: e_1_2_8_72_1 doi: 10.1073/pnas.1714267114 – year: 2021 ident: e_1_2_8_25_1 publication-title: Adv. Mater. – ident: e_1_2_8_99_1 doi: 10.1002/adma.201501071 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201707112 – ident: e_1_2_8_32_1 doi: 10.1016/j.nantod.2011.04.001 – ident: e_1_2_8_121_1 doi: 10.1186/s12951-022-01266-3 – ident: e_1_2_8_1_1 doi: 10.1038/nrd.2017.227 – ident: e_1_2_8_37_1 doi: 10.1126/sciadv.aaw6870 – ident: e_1_2_8_107_1 doi: 10.7150/thno.48407 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.5b02997 – ident: e_1_2_8_84_1 doi: 10.1038/nmat4644 – ident: e_1_2_8_104_1 doi: 10.1038/s41467-020-16439-7 – ident: e_1_2_8_51_1 doi: 10.1038/nature21363 – ident: e_1_2_8_41_1 doi: 10.7150/thno.38583 – ident: e_1_2_8_91_1 doi: 10.1016/j.cell.2020.05.028 – ident: e_1_2_8_8_1 doi: 10.1016/j.biomaterials.2017.02.041 – ident: e_1_2_8_50_1 doi: 10.1016/j.cell.2015.02.010 – ident: e_1_2_8_125_1 doi: 10.1016/j.biomaterials.2015.03.024 – ident: e_1_2_8_88_1 doi: 10.1002/jobm.202100008 – ident: e_1_2_8_65_1 doi: 10.1073/pnas.2014352117 – ident: e_1_2_8_5_1 doi: 10.1002/advs.202100460 – ident: e_1_2_8_24_1 doi: 10.1038/s41551-018-0310-2 – ident: e_1_2_8_126_1 doi: 10.1038/s41467-019-11157-1 – ident: e_1_2_8_19_1 doi: 10.1002/ctm2.292 – ident: e_1_2_8_20_1 doi: 10.7150/thno.15095 – ident: e_1_2_8_26_1 doi: 10.1021/acscentsci.9b00060 – ident: e_1_2_8_44_1 doi: 10.1021/acs.nanolett.8b02321 – ident: e_1_2_8_113_1 doi: 10.1021/acsami.8b22309 – ident: e_1_2_8_119_1 doi: 10.1002/adma.201907692 – ident: e_1_2_8_92_1 doi: 10.1021/jacs.1c11554 – ident: e_1_2_8_115_1 doi: 10.1002/anie.201906280 – ident: e_1_2_8_102_1 doi: 10.2147/IJN.S253125 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201703969 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201802233 – ident: e_1_2_8_124_1 doi: 10.1016/j.jconrel.2020.01.054 – ident: e_1_2_8_73_1 doi: 10.1021/acs.nanolett.1c00238 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-021-22674-3 – ident: e_1_2_8_74_1 doi: 10.1021/acsnano.5b02132 – ident: e_1_2_8_11_1 doi: 10.1002/advs.201700449 – ident: e_1_2_8_89_1 doi: 10.3727/000000004773301861 – ident: e_1_2_8_118_1 doi: 10.1039/C9BM02088H – ident: e_1_2_8_14_1 doi: 10.1126/sciadv.abl6432 – ident: e_1_2_8_58_1 doi: 10.1126/science.1114016 – ident: e_1_2_8_81_1 doi: 10.1016/j.ccell.2017.03.009 – ident: e_1_2_8_80_1 doi: 10.4161/mabs.2.3.11779 – ident: e_1_2_8_96_1 doi: 10.1128/mSphere.00335-17 – ident: e_1_2_8_110_1 doi: 10.1021/acsnano.8b05292 – ident: e_1_2_8_122_1 doi: 10.1182/blood-2013-04-495119 – ident: e_1_2_8_76_1 doi: 10.1016/j.biomaterials.2016.10.003 – ident: e_1_2_8_86_1 doi: 10.1038/s41565-022-01098-0 – ident: e_1_2_8_57_1 doi: 10.1126/sciadv.abf7820 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201706759 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201704800 – ident: e_1_2_8_109_1 doi: 10.1128/mBio.00903-20 |
SSID | ssj0009606 |
Score | 2.5366664 |
Snippet | The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207875 |
SubjectTerms | Antibodies Antibodies - therapeutic use Antigens biomaterials Biomedical materials Cell Membrane Cell membranes Materials science Nanoparticles Nanotechnology Protein Engineering Proteins Receptors vesicles |
Title | Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207875 https://www.ncbi.nlm.nih.gov/pubmed/36721058 https://www.proquest.com/docview/2789615802 https://www.proquest.com/docview/2771639058 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hnOBQSqGQkqJFQuLkxN6X7d6ilCpChEPboNysfVlUDTZqnEP59Z2xY6ehqirByY_dlWdnd3Zm1jPfEvIpMgac_1wHxmhwUNIoDYxTYSBMzqRWSS4d5jvPvqvpXHxdyMW9LP4GH6LbcEPJqNdrFHBtVqMtaKh2NW4QY6DkYswyx4AttIrOt_hRaJ7XYHtcBqkSSYvaGLLRbvNdrfTA1Ny1XGvVc_aS6JboJuLkeriuzND--QvP8X96tU_2NnYpHTcT6RV55osD8uIeWuFrkv3wq6s6bJWOi-rKlBiAeEIvfnqHCpB-Qz-flkVbeksvt8ldK4o7vnTil0s687-AxMJTWNrLqtvbf0PmZ18uJ9Ngcz5DYHkMHBU2D2MrwSfBi-GptSoOHYuM9DmDRxObUFrBYMEV1iXQRcdZzLwCu0NYzQ9JrygL_45QIUwU2cTBy1RIHmolpFQpT3KWa-6SPgna8cnsBrwcz9BYZg3sMsuQcVnHuD753NX_3cB2PFpz0A53thHfVYbpwWDqJSHrk49dMQge_k0B_pRrrAOuJk9DCcS9baZJ9ymuwLGuS1g92E_QkI1PZ-Pu6ehfGr0nz-GeN9FxA9Krbtb-GMylynyoReIO0LAKmA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcKK_CtgWMhMQpbeJXkt5WhWqB3R5gi7hZ8SNq1SVBbPZAf33HzibLglAleooc28p47LFnJjOfAd4kWqPxXxaR1gUaKHmSR9rKOOK6pKKQWSmsz3eenMrRGf_4TXTRhD4XpsWH6B1uXjLCfu0F3DukD1eooYUNwEGU4imXijuw5a_1DlbV5xWClFfQA9weE1EuedbhNsb0cL3_-rn0l7K5rruGw-dkG3RHdhtzcnmwaPSBufoD0fFW43oID5aqKRm2a-kRbLjqMdz_DbDwCaivbn4RIlfJsGoudO1jEI_Il3Nn_RlIxt7UJ3XV1f4i01V-15x4py85drMZmbjvSGPlCO7uddO795_C2cn76fEoWl7REBmWIku5KePUCDRL_EOz3BiZxpYmWriSYlGnOhaGU9xzubEZDtEymlInUfXgpmA7sFnVlXsOhHOdJCaz-DLngsWF5ELInGUlLQtmswFE3QQps8Qv99dozFSLvEyVZ5zqGTeAt337Hy1yxz9b7nfzrZYSPFc-Qxi1vSymA3jdV6Ps-R8qyJ964dugtcnyWCBxz9p10n-KSbStQw0Ns30DDWr4bjLsS7v_0-kV3B1NJ2M1_nD6aQ_u4XvWBsvtw2bzc-FeoPbU6JdBPq4BftEOsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiE4AOW50FIjIXFK6_iVpLdVt6sC3QpBi3qz4kdE1W1SsdkD_PqOk022C6qQ4BT5EWU847FnnJnPAO9iY9D5L_LImBwdlCzOIuMUjYQpmMxVWkgX8p0nx-rwVHw8k2c3svhbfIj-wC1oRrNeBwW_csXuEjQ0dw1uEGO4ySXyDtwViqZhXo--LAGkgn3eoO1xGWVKpB1sI2W7q--vbkt_2Jqrpmuz94wfQd5R3YacXOzMa7Njf_0G6Pg_w3oMDxeGKRm2M2kD1nz5BB7cgCt8Cvqbn503catkWNbnpgoRiHvk63fvwg5IjoKjT6qya_1JTpbZXTMSjnzJvp9OycRfIomlJ7i2V3V_uP8MTscHJ_uH0eKChsjyBDkqbEETK9EpCQ_DM2tVQh2LjfQFw6JJDJVWMFxxhXUpDtFxljCPksKKnD-H9bIq_UsgQpg4tqnDykxITnMlpFQZTwtW5NylA4g6-Wi7QC8Pl2hMdYu7zHRgnO4ZN4D3ff-rFrfj1p6bnbj1Qn9nOuQHo62XUjaAt30zal74nYL8qeahD_qaPKMSiXvRTpP-U1yhZ920sEbYf6FBD0eTYV969S8vbcO9z6OxPvpw_Ok13Mdq3kbKbcJ6_WPut9B0qs2bRjuuAVhpDWs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vesicular+Antibodies%3A+Shedding+Light+on+Antibody+Therapeutics+with+Cell+Membrane+Nanotechnology&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chenchen&rft.au=Pan%2C+Yuanwei&rft.au=Yu%2C+Guocan&rft.au=Zhao%2C+Xing-Zhong&rft.date=2023-03-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=12&rft.spage=e2207875&rft_id=info:doi/10.1002%2Fadma.202207875&rft_id=info%3Apmid%2F36721058&rft.externalDocID=36721058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |