Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology

The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 12; pp. e2207875 - n/a
Main Authors Zhao, Chenchen, Pan, Yuanwei, Yu, Guocan, Zhao, Xing‐Zhong, Chen, Xiaoyuan, Rao, Lang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody‐based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular‐antibody‐based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane‐coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next‐generation antibodies for enhanced therapeutics. Recent breakthroughs in membrane‐derived vesicle nanotechnology have enabled vesicular‐antibody‐based therapy. By proposing the concept of vesicular antibodies, reviewing their engineering strategies and biomedical applications, and highlighting their unique advantages, this perspective intends to provide new insights on the development of vesicular antibodies.
AbstractList The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody‐based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody‐based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular‐antibody‐based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane‐coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next‐generation antibodies for enhanced therapeutics. Recent breakthroughs in membrane‐derived vesicle nanotechnology have enabled vesicular‐antibody‐based therapy. By proposing the concept of vesicular antibodies, reviewing their engineering strategies and biomedical applications, and highlighting their unique advantages, this perspective intends to provide new insights on the development of vesicular antibodies.
The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein engineering, enable antibody-based therapeutics to be widely applied in cancer, inflammation, infection, and other disorders. Nevertheless, the application of traditional antibody-based therapeutics has certain limitations, such as high price, limited permeability, and protein engineering complexity. Recent breakthroughs in cell membrane nanotechnology have deepened the understanding of the critical role of membrane protein receptors in disease treatment, enabling vesicular-antibody-based therapeutics. Here, the concept of vesicular antibodies that are obtained by modifying target antibodies onto cell membranes for biomedical applications is proposed. Given that an antibody is basically a protein, as an extension of this concept, vesicles or membrane-coated nanoparticles that use surface antibodies and protein receptors on cell membranes for biomedical applications as vesicular antibodies are defined. Furthermore, several engineering strategies for vesicular antibodies are summarized and how vesicular antibodies can be used in a variety of situations is highlighted. In addition, current challenges and future prospects of vesicular antibodies are also discussed. It is anticipated this perspective will provide new insights on the development of next-generation antibodies for enhanced therapeutics.
Author Yu, Guocan
Zhao, Xing‐Zhong
Zhao, Chenchen
Chen, Xiaoyuan
Pan, Yuanwei
Rao, Lang
Author_xml – sequence: 1
  givenname: Chenchen
  surname: Zhao
  fullname: Zhao, Chenchen
  organization: Wuhan University
– sequence: 2
  givenname: Yuanwei
  surname: Pan
  fullname: Pan, Yuanwei
  organization: National University of Singapore
– sequence: 3
  givenname: Guocan
  surname: Yu
  fullname: Yu, Guocan
  email: guocanyu@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 4
  givenname: Xing‐Zhong
  surname: Zhao
  fullname: Zhao, Xing‐Zhong
  organization: Wuhan University
– sequence: 5
  givenname: Xiaoyuan
  orcidid: 0000-0002-9622-0870
  surname: Chen
  fullname: Chen, Xiaoyuan
  email: chen.shawn@nus.edu.sg
  organization: and Research (ASTAR)
– sequence: 6
  givenname: Lang
  surname: Rao
  fullname: Rao, Lang
  email: lrao@szbl.ac.cn
  organization: Shenzhen Bay Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36721058$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vGyEQxVGVqnGSXnuskHrpxe7ALrD0Zjn9kpz00KRXxLLYS7QLLrCK_N8Xy0kqRapyGg38HryZd4ZOfPAWoXcEFgSAftLdqBcUKAXRCPYKzQijZF6DZCdoBrJic8nr5hSdpXQHAJIDf4NOKy4oAdbMkPptkzPToCNe-uza0DmbPuNfve0657d47bZ9xsE_3u7xTW-j3tkpO5Pwvcs9XtlhwFd2bKP2Fl9rH7I1vQ9D2O4v0OuNHpJ9-1DP0e3XLzer7_P1z28_Vsv13FSimKzNBoRhjMlDaStpDBfQUdIyu6GlbUULzNRUcFqbrimzdxUV1HJoyoGuztHH47u7GP5MNmU1umSKsWIpTElRIQivZJm5oB-eoXdhir64K1QjOWEN0EK9f6CmdrSd2kU36rhXj6srwOIImBhSinbzhBBQh2zUIRv1lE0R1M8ExmWdXfA5ajf8XyaPsns32P0Ln6jl5dXyn_Yvn1CiEw
CitedBy_id crossref_primary_10_1186_s12951_024_02458_9
crossref_primary_10_1002_smll_202309031
crossref_primary_10_1002_smll_202401117
crossref_primary_10_1002_adfm_202400507
crossref_primary_10_1039_D4BM00827H
crossref_primary_10_1016_j_mtbio_2025_101595
crossref_primary_10_1007_s00259_024_06793_9
crossref_primary_10_1002_advs_202303053
crossref_primary_10_1021_acsami_4c12567
crossref_primary_10_1186_s12951_024_02514_4
crossref_primary_10_1002_ange_202404889
crossref_primary_10_1038_s41392_024_01826_z
crossref_primary_10_1007_s12274_023_5840_6
crossref_primary_10_1021_acsami_4c11370
crossref_primary_10_1016_j_addr_2023_115176
crossref_primary_10_1002_mba2_106
crossref_primary_10_1186_s12951_024_02428_1
crossref_primary_10_1002_adhm_202402103
crossref_primary_10_1002_smll_202311702
crossref_primary_10_1021_acsnano_4c01229
crossref_primary_10_34133_bmef_0047
crossref_primary_10_1002_advs_202302131
crossref_primary_10_1016_j_jhazmat_2024_134877
crossref_primary_10_1002_mog2_67
crossref_primary_10_1002_anie_202404889
crossref_primary_10_2174_0115748855238869231002073717
Cites_doi 10.1002/adma.201705350
10.1021/nl500618u
10.1021/acsnano.0c01665
10.1002/anie.201807212
10.1002/adfm.202003559
10.1021/jacs.1c07798
10.1126/science.aah6157
10.1038/nrmicro3503
10.1002/adma.202106265
10.1021/acsnano.7b04955
10.1021/acs.nanolett.0c01654
10.1038/s41375-021-01432-w
10.1002/adtp.201800016
10.1016/j.biomaterials.2018.08.018
10.1021/acs.nanolett.0c02278
10.1186/2049-9957-4-8
10.1038/s41467-020-18626-y
10.1002/adma.201503323
10.1021/acs.nanolett.8b03913
10.1002/adma.202108817
10.1039/D0CS00152J
10.1186/s12951-021-00926-0
10.1002/adfm.201803531
10.1016/j.biomaterials.2018.10.029
10.1038/s41565-018-0254-4
10.1038/nrrheum.2015.8
10.1002/smll.201804994
10.1038/nrclinonc.2016.25
10.1126/science.abc2241
10.1002/adma.202004853
10.1002/adma.202001808
10.1073/pnas.1412420111
10.1021/acsnano.8b03788
10.1021/acsnano.8b02446
10.1002/adma.201808294
10.1007/s40259-019-00392-z
10.1016/j.jconrel.2019.05.008
10.1002/adma.202002054
10.1002/adma.201902530
10.1186/s12951-021-01148-0
10.1073/pnas.1505799112
10.1038/nnano.2013.54
10.1021/nn402232g
10.1002/adma.201606209
10.1021/acsnano.0c03776
10.1038/s41467-018-02996-5
10.1038/s41551-016-0011
10.3389/fphar.2017.00477
10.1016/j.xphs.2019.05.031
10.1002/adhm.201701366
10.1002/advs.201900605
10.1038/s41551-021-00815-9
10.1002/adma.202107719
10.1073/pnas.1106634108
10.1021/acsnano.0c06836
10.1021/acs.nanolett.9b03753
10.1002/adma.202100012
10.1097/COC.0000000000000239
10.1021/acs.biochem.0c00343
10.1038/ni.2703
10.1126/scitranslmed.aad7118
10.1039/D0BM01397H
10.1016/j.actbio.2019.11.025
10.7150/thno.48868
10.1634/theoncologist.2015-0282
10.1016/j.cell.2012.02.034
10.1002/anie.202108342
10.4049/jimmunol.1100608
10.1038/s41565-021-00972-7
10.1016/j.nantod.2020.100896
10.1021/acs.nanolett.9b00145
10.1073/pnas.1714267114
10.1002/adma.201501071
10.1002/adma.201707112
10.1016/j.nantod.2011.04.001
10.1186/s12951-022-01266-3
10.1038/nrd.2017.227
10.1126/sciadv.aaw6870
10.7150/thno.48407
10.1021/acsnano.5b02997
10.1038/nmat4644
10.1038/s41467-020-16439-7
10.1038/nature21363
10.7150/thno.38583
10.1016/j.cell.2020.05.028
10.1016/j.biomaterials.2017.02.041
10.1016/j.cell.2015.02.010
10.1016/j.biomaterials.2015.03.024
10.1002/jobm.202100008
10.1073/pnas.2014352117
10.1002/advs.202100460
10.1038/s41551-018-0310-2
10.1038/s41467-019-11157-1
10.1002/ctm2.292
10.7150/thno.15095
10.1021/acscentsci.9b00060
10.1021/acs.nanolett.8b02321
10.1021/acsami.8b22309
10.1002/adma.201907692
10.1021/jacs.1c11554
10.1002/anie.201906280
10.2147/IJN.S253125
10.1002/adma.201703969
10.1002/adma.201802233
10.1016/j.jconrel.2020.01.054
10.1021/acs.nanolett.1c00238
10.1038/s41467-021-22674-3
10.1021/acsnano.5b02132
10.1002/advs.201700449
10.3727/000000004773301861
10.1039/C9BM02088H
10.1126/sciadv.abl6432
10.1126/science.1114016
10.1016/j.ccell.2017.03.009
10.4161/mabs.2.3.11779
10.1128/mSphere.00335-17
10.1021/acsnano.8b05292
10.1182/blood-2013-04-495119
10.1016/j.biomaterials.2016.10.003
10.1038/s41565-022-01098-0
10.1126/sciadv.abf7820
10.1002/adma.201706759
10.1002/adma.201704800
10.1128/mBio.00903-20
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202207875
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36721058
10_1002_adma_202207875
ADMA202207875
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82222035
– fundername: National Medical Research Council
  funderid: CG21APR1005
– fundername: Shenzhen Bay Laboratory Open‐Ended Fund
  funderid: SZBL2020090501009
– fundername: National University of Singapore
  funderid: NUHSRO/2020/133/Startup/08; NUHSRO/2021/034/TRP/09/
– fundername: Science and Technology Innovation Commission of Shenzhen
  funderid: JSGG20220606141002004
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515111036
– fundername: National University of Singapore
  grantid: NUHSRO/2020/133/Startup/08
– fundername: National Natural Science Foundation of China
  grantid: 82222035
– fundername: Science and Technology Innovation Commission of Shenzhen
  grantid: JSGG20220606141002004
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515111036
– fundername: National University of Singapore
  grantid: NUHSRO/2021/034/TRP/09/
– fundername: National Medical Research Council
  grantid: CG21APR1005
– fundername: Shenzhen Bay Laboratory Open-Ended Fund
  grantid: SZBL2020090501009
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3735-4cf07c555907c5b39cc670d21b5ef239cb7b05c427624cd8100d3272e60824ca3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:26:17 EDT 2025
Fri Jul 25 05:56:39 EDT 2025
Wed Feb 19 02:24:44 EST 2025
Tue Jul 01 02:33:28 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Jan 22 16:28:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cell membranes
antibodies
nanoparticles
biomaterials
vesicles
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-4cf07c555907c5b39cc670d21b5ef239cb7b05c427624cd8100d3272e60824ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9622-0870
PMID 36721058
PQID 2789615802
PQPubID 2045203
PageCount 20
ParticipantIDs proquest_miscellaneous_2771639058
proquest_journals_2789615802
pubmed_primary_36721058
crossref_primary_10_1002_adma_202207875
crossref_citationtrail_10_1002_adma_202207875
wiley_primary_10_1002_adma_202207875_ADMA202207875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 20
2019; 11
2019; 10
2019; 13
2019; 15
2013; 122
2019; 19
2020; 15
2020; 14
2022; 20
2020; 320
2020; 11
2013; 7
2016; 39
2013; 8
2018; 7
2018; 9
2018; 2
2018; 5
2018; 1
2022; 34
2014; 14
2018; 30
2010; 2
2018; 185
2018; 28
2019; 9
2019; 6
2019; 5
2019; 31
2015; 54
2020; 34
2021; 143
2020; 32
2021; 50
2011; 6
2016; 15
2016; 13
2019; 189
2016; 11
2016; 6
2018; 18
2018; 17
2020; 30
2015; 112
2016; 21
2018; 12
2021; 61
2021; 60
2017; 542
2016; 8
2022; 17
2018; 13
2017; 8
2017; 1
2021; 21
2017; 2
2019; 58
2020; 368
2017; 114
2021; 36
2020; 8
2017; 31
2013; 14
2021; 34
2021; 33
2016; 353
2016; 111
2005; 309
2017; 128
2015; 13
2021; 9
2021; 8
2021; 7
2015; 160
2015; 4
2015; 11
2020; 182
2017; 29
2019; 304
2020; 102
2015; 9
2012; 148
2014; 111
2020; 109
2022; 144
2021; 16
2021; 15
2011; 108
2015; 27
2021; 12
2021; 11
2022
2021
2017; 11
2021; 19
2004; 13
2020; 117
2011; 187
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
Chhabria V. (e_1_2_8_97_1) 2016; 11
e_1_2_8_29_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
Jung M. (e_1_2_8_25_1) 2021
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 8
  start-page: 1575
  year: 2020
  publication-title: Biomater. Sci.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 185
  start-page: 360
  year: 2018
  publication-title: Biomaterials
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 336
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 36
  start-page: 994
  year: 2021
  publication-title: Leukemia
– volume: 10
  start-page: 3199
  year: 2019
  publication-title: Nat. Commun.
– volume: 320
  start-page: 304
  year: 2020
  publication-title: J. Controlled Release
– volume: 27
  start-page: 3437
  year: 2015
  publication-title: Adv. Mater.
– volume: 20
  start-page: 5570
  year: 2020
  publication-title: Nano Lett.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 20
  start-page: 61
  year: 2022
  publication-title: J. Nanobiotechnol.
– volume: 9
  start-page: 826
  year: 2021
  publication-title: Biomater. Sci.
– volume: 50
  start-page: 945
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 2569
  year: 2020
  publication-title: ACS Nano
– year: 2022
  publication-title: Adv. Mater.
– volume: 8
  year: 2016
  publication-title: Sci. Transl. Med.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2773
  year: 2021
  publication-title: Nat. Commun.
– volume: 19
  start-page: 173
  year: 2021
  publication-title: J. Nanobiotechnol.
– volume: 19
  start-page: 391
  year: 2021
  publication-title: J. Nanobiotechnol.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 144
  start-page: 5702
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 531
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 21
  start-page: 233
  year: 2016
  publication-title: Oncologist
– volume: 7
  start-page: 7698
  year: 2013
  publication-title: ACS Nano
– volume: 54
  start-page: 177
  year: 2015
  publication-title: Biomaterials
– volume: 1
  year: 2018
  publication-title: Adv. Ther.
– volume: 19
  start-page: 2993
  year: 2019
  publication-title: Nano Lett.
– volume: 13
  start-page: 471
  year: 2015
  publication-title: Nat. Rev. Microbiol.
– volume: 19
  start-page: 2215
  year: 2019
  publication-title: Nano Lett.
– volume: 4
  start-page: 8
  year: 2015
  publication-title: Infect. Dis. Poverty
– volume: 6
  start-page: 1012
  year: 2016
  publication-title: Theranostics
– volume: 17
  start-page: 197
  year: 2018
  publication-title: Nat. Rev. Drug Discovery
– volume: 34
  start-page: 11
  year: 2020
  publication-title: BioDrugs
– year: 2021
  publication-title: Adv. Mater.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 544
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 8977
  year: 2018
  publication-title: ACS Nano
– volume: 20
  start-page: 242
  year: 2020
  publication-title: Nano Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 34
  year: 2020
  publication-title: Nano Today
– volume: 9
  start-page: 6450
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: 1014
  year: 2013
  publication-title: Nat. Immunol.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  year: 2017
  publication-title: mSphere
– volume: 11
  start-page: 7850
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 6340
  year: 2021
  publication-title: ACS Nano
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 6033
  year: 2021
  publication-title: Theranostics
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 477
  year: 2017
  publication-title: Front. Pharmacol.
– volume: 187
  start-page: 5090
  year: 2011
  publication-title: J. Immunol.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 16
  start-page: 1271
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 304
  start-page: 233
  year: 2019
  publication-title: J. Controlled Release
– volume: 13
  start-page: 2849
  year: 2019
  publication-title: ACS Nano
– volume: 122
  year: 2013
  publication-title: Blood
– volume: 148
  start-page: 1081
  year: 2012
  publication-title: Cell
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2797
  year: 2016
  publication-title: Nanomedicine
– volume: 353
  start-page: 1129
  year: 2016
  publication-title: Science
– volume: 182
  start-page: 85
  year: 2020
  publication-title: Cell
– volume: 13
  start-page: 273
  year: 2016
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 21
  start-page: 2603
  year: 2021
  publication-title: Nano Lett.
– volume: 111
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  year: 2020
  publication-title: mBio
– volume: 128
  start-page: 69
  year: 2017
  publication-title: Biomaterials
– volume: 2
  start-page: 347
  year: 2010
  publication-title: mAbs
– volume: 11
  start-page: 4909
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2622
  year: 2020
  publication-title: Nat. Commun.
– volume: 160
  start-page: 816
  year: 2015
  publication-title: Cell
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4125
  year: 2020
  publication-title: Int. J. Nanomed.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 542
  start-page: 177
  year: 2017
  publication-title: Nature
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– start-page: 882
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 20
  start-page: 4051
  year: 2020
  publication-title: Nano Lett.
– volume: 61
  start-page: 430
  year: 2021
  publication-title: J. Basic Microbiol.
– volume: 189
  start-page: 60
  year: 2019
  publication-title: Biomaterials
– volume: 11
  start-page: 2349
  year: 2021
  publication-title: Theranostics
– volume: 1
  start-page: 0011
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1037
  year: 2016
  publication-title: Nat. Mater.
– volume: 309
  start-page: 623
  year: 2005
  publication-title: Science
– volume: 18
  start-page: 5716
  year: 2018
  publication-title: Nano Lett.
– volume: 27
  start-page: 7043
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 102
  start-page: 416
  year: 2020
  publication-title: Acta Biomater.
– volume: 13
  start-page: 179
  year: 2004
  publication-title: Cell Transplant.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1182
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 60
  start-page: 941
  year: 2021
  publication-title: Biochemistry
– volume: 6
  start-page: 309
  year: 2011
  publication-title: Nano Today
– volume: 39
  start-page: 98
  year: 2016
  publication-title: Am. J. Clin. Oncol.
– volume: 5
  start-page: 796
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 2
  start-page: 831
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 368
  start-page: 1274
  year: 2020
  publication-title: Science
– volume: 11
  year: 2021
  publication-title: Clin. Transl. Med.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 111
  start-page: 116
  year: 2016
  publication-title: Biomaterials
– volume: 14
  start-page: 2181
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 109
  start-page: 74
  year: 2020
  publication-title: J. Pharm. Sci.
– volume: 11
  start-page: 276
  year: 2015
  publication-title: Nat. Rev. Rheumatol.
– volume: 9
  start-page: 7889
  year: 2019
  publication-title: Theranostics
– volume: 31
  start-page: 469
  year: 2017
  publication-title: Cancer Cell
– ident: e_1_2_8_87_1
  doi: 10.1002/adma.201705350
– ident: e_1_2_8_111_1
  doi: 10.1021/nl500618u
– ident: e_1_2_8_60_1
  doi: 10.1021/acsnano.0c01665
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201807212
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.202003559
– ident: e_1_2_8_18_1
  doi: 10.1021/jacs.1c07798
– ident: e_1_2_8_59_1
  doi: 10.1126/science.aah6157
– ident: e_1_2_8_61_1
  doi: 10.1038/nrmicro3503
– ident: e_1_2_8_77_1
  doi: 10.1002/adma.202106265
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.7b04955
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.nanolett.0c01654
– ident: e_1_2_8_114_1
  doi: 10.1038/s41375-021-01432-w
– ident: e_1_2_8_16_1
  doi: 10.1002/adtp.201800016
– ident: e_1_2_8_78_1
  doi: 10.1016/j.biomaterials.2018.08.018
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.nanolett.0c02278
– ident: e_1_2_8_82_1
  doi: 10.1186/2049-9957-4-8
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-020-18626-y
– ident: e_1_2_8_116_1
  doi: 10.1002/adma.201503323
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.nanolett.8b03913
– ident: e_1_2_8_108_1
  doi: 10.1002/adma.202108817
– ident: e_1_2_8_29_1
  doi: 10.1039/D0CS00152J
– ident: e_1_2_8_55_1
  doi: 10.1186/s12951-021-00926-0
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.201803531
– ident: e_1_2_8_103_1
  doi: 10.1016/j.biomaterials.2018.10.029
– ident: e_1_2_8_54_1
  doi: 10.1038/s41565-018-0254-4
– ident: e_1_2_8_53_1
  doi: 10.1038/nrrheum.2015.8
– ident: e_1_2_8_98_1
  doi: 10.1002/smll.201804994
– ident: e_1_2_8_39_1
  doi: 10.1038/nrclinonc.2016.25
– ident: e_1_2_8_67_1
  doi: 10.1126/science.abc2241
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.202004853
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202001808
– ident: e_1_2_8_75_1
  doi: 10.1073/pnas.1412420111
– ident: e_1_2_8_112_1
  doi: 10.1021/acsnano.8b03788
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.8b02446
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201808294
– ident: e_1_2_8_3_1
  doi: 10.1007/s40259-019-00392-z
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jconrel.2019.05.008
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.202002054
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201902530
– ident: e_1_2_8_66_1
  doi: 10.1186/s12951-021-01148-0
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.1505799112
– ident: e_1_2_8_70_1
  doi: 10.1038/nnano.2013.54
– ident: e_1_2_8_85_1
  doi: 10.1021/nn402232g
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201606209
– ident: e_1_2_8_123_1
  doi: 10.1021/acsnano.0c03776
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-018-02996-5
– ident: e_1_2_8_22_1
  doi: 10.1038/s41551-016-0011
– ident: e_1_2_8_95_1
  doi: 10.3389/fphar.2017.00477
– ident: e_1_2_8_2_1
  doi: 10.1016/j.xphs.2019.05.031
– ident: e_1_2_8_93_1
  doi: 10.1002/adhm.201701366
– ident: e_1_2_8_52_1
  doi: 10.1002/advs.201900605
– ident: e_1_2_8_56_1
  doi: 10.1038/s41551-021-00815-9
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202107719
– ident: e_1_2_8_83_1
  doi: 10.1073/pnas.1106634108
– ident: e_1_2_8_117_1
  doi: 10.1021/acsnano.0c06836
– ident: e_1_2_8_101_1
  doi: 10.1021/acs.nanolett.9b03753
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.202100012
– ident: e_1_2_8_46_1
  doi: 10.1097/COC.0000000000000239
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.biochem.0c00343
– ident: e_1_2_8_47_1
  doi: 10.1038/ni.2703
– ident: e_1_2_8_43_1
  doi: 10.1126/scitranslmed.aad7118
– ident: e_1_2_8_94_1
  doi: 10.1039/D0BM01397H
– ident: e_1_2_8_105_1
  doi: 10.1016/j.actbio.2019.11.025
– ident: e_1_2_8_45_1
  doi: 10.7150/thno.48868
– ident: e_1_2_8_42_1
  doi: 10.1634/theoncologist.2015-0282
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cell.2012.02.034
– volume: 11
  start-page: 2797
  year: 2016
  ident: e_1_2_8_97_1
  publication-title: Nanomedicine
– ident: e_1_2_8_49_1
  doi: 10.1002/anie.202108342
– ident: e_1_2_8_90_1
  doi: 10.4049/jimmunol.1100608
– ident: e_1_2_8_120_1
  doi: 10.1038/s41565-021-00972-7
– ident: e_1_2_8_9_1
  doi: 10.1016/j.nantod.2020.100896
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.nanolett.9b00145
– ident: e_1_2_8_72_1
  doi: 10.1073/pnas.1714267114
– year: 2021
  ident: e_1_2_8_25_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_99_1
  doi: 10.1002/adma.201501071
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201707112
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nantod.2011.04.001
– ident: e_1_2_8_121_1
  doi: 10.1186/s12951-022-01266-3
– ident: e_1_2_8_1_1
  doi: 10.1038/nrd.2017.227
– ident: e_1_2_8_37_1
  doi: 10.1126/sciadv.aaw6870
– ident: e_1_2_8_107_1
  doi: 10.7150/thno.48407
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.5b02997
– ident: e_1_2_8_84_1
  doi: 10.1038/nmat4644
– ident: e_1_2_8_104_1
  doi: 10.1038/s41467-020-16439-7
– ident: e_1_2_8_51_1
  doi: 10.1038/nature21363
– ident: e_1_2_8_41_1
  doi: 10.7150/thno.38583
– ident: e_1_2_8_91_1
  doi: 10.1016/j.cell.2020.05.028
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biomaterials.2017.02.041
– ident: e_1_2_8_50_1
  doi: 10.1016/j.cell.2015.02.010
– ident: e_1_2_8_125_1
  doi: 10.1016/j.biomaterials.2015.03.024
– ident: e_1_2_8_88_1
  doi: 10.1002/jobm.202100008
– ident: e_1_2_8_65_1
  doi: 10.1073/pnas.2014352117
– ident: e_1_2_8_5_1
  doi: 10.1002/advs.202100460
– ident: e_1_2_8_24_1
  doi: 10.1038/s41551-018-0310-2
– ident: e_1_2_8_126_1
  doi: 10.1038/s41467-019-11157-1
– ident: e_1_2_8_19_1
  doi: 10.1002/ctm2.292
– ident: e_1_2_8_20_1
  doi: 10.7150/thno.15095
– ident: e_1_2_8_26_1
  doi: 10.1021/acscentsci.9b00060
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.nanolett.8b02321
– ident: e_1_2_8_113_1
  doi: 10.1021/acsami.8b22309
– ident: e_1_2_8_119_1
  doi: 10.1002/adma.201907692
– ident: e_1_2_8_92_1
  doi: 10.1021/jacs.1c11554
– ident: e_1_2_8_115_1
  doi: 10.1002/anie.201906280
– ident: e_1_2_8_102_1
  doi: 10.2147/IJN.S253125
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201703969
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201802233
– ident: e_1_2_8_124_1
  doi: 10.1016/j.jconrel.2020.01.054
– ident: e_1_2_8_73_1
  doi: 10.1021/acs.nanolett.1c00238
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-021-22674-3
– ident: e_1_2_8_74_1
  doi: 10.1021/acsnano.5b02132
– ident: e_1_2_8_11_1
  doi: 10.1002/advs.201700449
– ident: e_1_2_8_89_1
  doi: 10.3727/000000004773301861
– ident: e_1_2_8_118_1
  doi: 10.1039/C9BM02088H
– ident: e_1_2_8_14_1
  doi: 10.1126/sciadv.abl6432
– ident: e_1_2_8_58_1
  doi: 10.1126/science.1114016
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ccell.2017.03.009
– ident: e_1_2_8_80_1
  doi: 10.4161/mabs.2.3.11779
– ident: e_1_2_8_96_1
  doi: 10.1128/mSphere.00335-17
– ident: e_1_2_8_110_1
  doi: 10.1021/acsnano.8b05292
– ident: e_1_2_8_122_1
  doi: 10.1182/blood-2013-04-495119
– ident: e_1_2_8_76_1
  doi: 10.1016/j.biomaterials.2016.10.003
– ident: e_1_2_8_86_1
  doi: 10.1038/s41565-022-01098-0
– ident: e_1_2_8_57_1
  doi: 10.1126/sciadv.abf7820
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201706759
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201704800
– ident: e_1_2_8_109_1
  doi: 10.1128/mBio.00903-20
SSID ssj0009606
Score 2.5366664
Snippet The high stability of antibodies and their ability to precisely bind to antigens and endogenous immune receptors, as well as their susceptibility to protein...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207875
SubjectTerms Antibodies
Antibodies - therapeutic use
Antigens
biomaterials
Biomedical materials
Cell Membrane
Cell membranes
Materials science
Nanoparticles
Nanotechnology
Protein Engineering
Proteins
Receptors
vesicles
Title Vesicular Antibodies: Shedding Light on Antibody Therapeutics with Cell Membrane Nanotechnology
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207875
https://www.ncbi.nlm.nih.gov/pubmed/36721058
https://www.proquest.com/docview/2789615802
https://www.proquest.com/docview/2771639058
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hnOBQSqGQkqJFQuLkxN6X7d6ilCpChEPboNysfVlUDTZqnEP59Z2xY6ehqirByY_dlWdnd3Zm1jPfEvIpMgac_1wHxmhwUNIoDYxTYSBMzqRWSS4d5jvPvqvpXHxdyMW9LP4GH6LbcEPJqNdrFHBtVqMtaKh2NW4QY6DkYswyx4AttIrOt_hRaJ7XYHtcBqkSSYvaGLLRbvNdrfTA1Ny1XGvVc_aS6JboJuLkeriuzND--QvP8X96tU_2NnYpHTcT6RV55osD8uIeWuFrkv3wq6s6bJWOi-rKlBiAeEIvfnqHCpB-Qz-flkVbeksvt8ldK4o7vnTil0s687-AxMJTWNrLqtvbf0PmZ18uJ9Ngcz5DYHkMHBU2D2MrwSfBi-GptSoOHYuM9DmDRxObUFrBYMEV1iXQRcdZzLwCu0NYzQ9JrygL_45QIUwU2cTBy1RIHmolpFQpT3KWa-6SPgna8cnsBrwcz9BYZg3sMsuQcVnHuD753NX_3cB2PFpz0A53thHfVYbpwWDqJSHrk49dMQge_k0B_pRrrAOuJk9DCcS9baZJ9ymuwLGuS1g92E_QkI1PZ-Pu6ehfGr0nz-GeN9FxA9Krbtb-GMylynyoReIO0LAKmA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcKK_CtgWMhMQpbeJXkt5WhWqB3R5gi7hZ8SNq1SVBbPZAf33HzibLglAleooc28p47LFnJjOfAd4kWqPxXxaR1gUaKHmSR9rKOOK6pKKQWSmsz3eenMrRGf_4TXTRhD4XpsWH6B1uXjLCfu0F3DukD1eooYUNwEGU4imXijuw5a_1DlbV5xWClFfQA9weE1EuedbhNsb0cL3_-rn0l7K5rruGw-dkG3RHdhtzcnmwaPSBufoD0fFW43oID5aqKRm2a-kRbLjqMdz_DbDwCaivbn4RIlfJsGoudO1jEI_Il3Nn_RlIxt7UJ3XV1f4i01V-15x4py85drMZmbjvSGPlCO7uddO795_C2cn76fEoWl7REBmWIku5KePUCDRL_EOz3BiZxpYmWriSYlGnOhaGU9xzubEZDtEymlInUfXgpmA7sFnVlXsOhHOdJCaz-DLngsWF5ELInGUlLQtmswFE3QQps8Qv99dozFSLvEyVZ5zqGTeAt337Hy1yxz9b7nfzrZYSPFc-Qxi1vSymA3jdV6Ps-R8qyJ964dugtcnyWCBxz9p10n-KSbStQw0Ns30DDWr4bjLsS7v_0-kV3B1NJ2M1_nD6aQ_u4XvWBsvtw2bzc-FeoPbU6JdBPq4BftEOsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiE4AOW50FIjIXFK6_iVpLdVt6sC3QpBi3qz4kdE1W1SsdkD_PqOk022C6qQ4BT5EWU847FnnJnPAO9iY9D5L_LImBwdlCzOIuMUjYQpmMxVWkgX8p0nx-rwVHw8k2c3svhbfIj-wC1oRrNeBwW_csXuEjQ0dw1uEGO4ySXyDtwViqZhXo--LAGkgn3eoO1xGWVKpB1sI2W7q--vbkt_2Jqrpmuz94wfQd5R3YacXOzMa7Njf_0G6Pg_w3oMDxeGKRm2M2kD1nz5BB7cgCt8Cvqbn503catkWNbnpgoRiHvk63fvwg5IjoKjT6qya_1JTpbZXTMSjnzJvp9OycRfIomlJ7i2V3V_uP8MTscHJ_uH0eKChsjyBDkqbEETK9EpCQ_DM2tVQh2LjfQFw6JJDJVWMFxxhXUpDtFxljCPksKKnD-H9bIq_UsgQpg4tqnDykxITnMlpFQZTwtW5NylA4g6-Wi7QC8Pl2hMdYu7zHRgnO4ZN4D3ff-rFrfj1p6bnbj1Qn9nOuQHo62XUjaAt30zal74nYL8qeahD_qaPKMSiXvRTpP-U1yhZ920sEbYf6FBD0eTYV969S8vbcO9z6OxPvpw_Ok13Mdq3kbKbcJ6_WPut9B0qs2bRjuuAVhpDWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vesicular+Antibodies%3A+Shedding+Light+on+Antibody+Therapeutics+with+Cell+Membrane+Nanotechnology&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Chenchen&rft.au=Pan%2C+Yuanwei&rft.au=Yu%2C+Guocan&rft.au=Zhao%2C+Xing-Zhong&rft.date=2023-03-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=12&rft.spage=e2207875&rft_id=info:doi/10.1002%2Fadma.202207875&rft_id=info%3Apmid%2F36721058&rft.externalDocID=36721058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon