Combinatorial Coordination Self‐Assembly for Organopalladium Cages with Fine‐Tuned Structure and Function

Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavi...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 28; pp. e202300195 - n/a
Main Authors Tian, Chong‐Bin, Sun, Qing‐Fu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions. Combinatorial coordination self‐assembly is a powerful tool to create the lower‐symmetric coordination cages with increasing structural complexities and advanced functions. In this concept article, we define and summarized the strategy for the combinatorial self‐assembled PdII coordination cages. Emergent functions on some selected PdII coordination cages were also introduced with an aim of emphasizing the advantages of the heteroleptic cages.
AbstractList Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions.
Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self-assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine-tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions.Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self-assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine-tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions.
Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions. Combinatorial coordination self‐assembly is a powerful tool to create the lower‐symmetric coordination cages with increasing structural complexities and advanced functions. In this concept article, we define and summarized the strategy for the combinatorial self‐assembled PdII coordination cages. Emergent functions on some selected PdII coordination cages were also introduced with an aim of emphasizing the advantages of the heteroleptic cages.
Author Tian, Chong‐Bin
Sun, Qing‐Fu
Author_xml – sequence: 1
  givenname: Chong‐Bin
  orcidid: 0000-0002-3771-1530
  surname: Tian
  fullname: Tian, Chong‐Bin
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Qing‐Fu
  orcidid: 0000-0002-6419-8904
  surname: Sun
  fullname: Sun, Qing‐Fu
  email: qfsun@fjirsm.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36813740$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHDEYh0Ox1FV77bEEeull1vydzBxlcGvB4kE9h2zmHY3MJNtkguytH6GfsZ-k2a61IEhPIfA8b978fkfowAcPCH2gZEkJYaf2HqYlI4wTQlv5Bi2oZLTiqpYHaEFaoapa8vYQHaX0QAhpa87foUNeN5QrQRZo6sK0dt7MIToz4i6E2O-uLnh8DePw68fPs5RgWo9bPISIr-Kd8WFjxtH0Lk-4M3eQ8KOb7_HKeSj4TfbQ4-s5ZjvnCNj4Hq-yt7uRJ-jtYMYE75_OY3S7Or_pLqrLqy9fu7PLynLFZSVUL0EyGLhkpBeGNkCUaYzgogE21HbNjKl72g4t6y1poPyeU2l4wwQ1gvBj9Hk_dxPD9wxp1pNLFsrSHkJOminVcsFprQr66QX6EHL0ZTvNSkiNKBnSQn18ovJ6gl5voptM3Oq_QRZguQdsDClFGJ4RSvSuKb1rSj83VQTxQrBu_pP7HI0bX9favfboRtj-5xHdXZx_--f-BpAPqbQ
CitedBy_id crossref_primary_10_1080_10610278_2024_2324822
crossref_primary_10_1007_s11426_023_1979_8
crossref_primary_10_1039_D3DT00248A
crossref_primary_10_1016_j_trechm_2024_03_002
crossref_primary_10_1039_D4SC08176E
crossref_primary_10_1002_ange_202315451
crossref_primary_10_1021_acs_inorgchem_3c04033
crossref_primary_10_1002_ange_202314378
crossref_primary_10_1021_jacs_3c11320
crossref_primary_10_3390_molecules28104068
crossref_primary_10_1002_anie_202314378
crossref_primary_10_1002_anie_202315451
crossref_primary_10_1002_chem_202403336
crossref_primary_10_1021_acs_orglett_4c01438
crossref_primary_10_1039_D4SC01078G
crossref_primary_10_1039_D3DT01139A
Cites_doi 10.1039/c3cc43191f
10.1039/C9CC07130J
10.1021/jacs.9b00131
10.1002/anie.202205725
10.1002/ange.201812926
10.1021/jacs.9b03776
10.1038/378469a0
10.1021/ar040153h
10.1021/ja00170a042
10.1002/anie.201000380
10.1038/s41557-020-0455-y
10.1002/chem.202101057
10.1038/s41570-020-00246-1
10.1021/jacs.9b03924
10.1021/ja00110a026
10.1002/1521-3757(20010601)113:11<2076::AID-ANGE2076>3.0.CO;2-S
10.1021/ar800025w
10.1039/D2CC04464A
10.1021/ja0657915
10.1002/chem.202103781
10.1002/anie.200461422
10.1016/j.ccr.2021.214396
10.1002/anie.202012425
10.3389/fchem.2018.00623
10.1039/C9DT01814J
10.1021/ar970224v
10.1039/c2cc16345d
10.1021/jacs.1c06390
10.1038/nchem.744
10.1016/j.jorganchem.2005.06.022
10.1021/ja043953w
10.1021/ja047612u
10.1002/anie.202003220
10.1002/ange.201104670
10.1039/c2cc37377g
10.1002/anie.201800432
10.1002/asia.202000603
10.1016/j.ccr.2021.213820
10.1002/ange.201408068
10.1016/j.ccr.2020.213656
10.1002/cplu.202000153
10.1002/anie.201812926
10.1021/jacs.1c01931
10.1021/ja077783
10.1002/chem.201802188
10.1039/b008684n
10.1039/C7CC03379F
10.1021/ja308101a
10.1002/anie.201408652
10.1021/ic101139s
10.1039/D1SC01226F
10.1038/s41578-020-00257-w
10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D
10.1021/jacs.5b12237
10.1002/ange.201800432
10.1039/D0CS00038H
10.1002/chem.201802817
10.1038/s41570-019-0085-3
10.1002/anie.201700832
10.1039/C9SC05534G
10.1002/ange.202012425
10.1093/nsr/nwab045
10.1021/cr020452p
10.1002/ange.201702573
10.1021/jacs.0c12793
10.1002/ange.202003220
10.1002/chem.201102963
10.1002/ange.201000380
10.1039/B616752G
10.1021/ja103180z
10.1021/jacs.6b08694
10.1021/acs.chemrev.1c00811
10.1007/s12274-020-2777-x
10.1002/anie.201408068
10.1021/ar200240m
10.1002/chem.201900831
10.1021/ar980101q
10.1002/ange.200461422
10.1002/asia.200600029
10.1002/chem.202200310
10.1073/pnas.0810319106
10.1002/asia.202200093
10.1002/anie.202204732
10.1038/s41467-020-14703-4
10.1007/12_2013_244
10.1021/jacs.8b00394
10.1002/ange.201408652
10.1021/acs.chemrev.1c00602
10.1021/jacs.0c07131
10.1126/science.1175313
10.1002/anie.201104670
10.1002/chem.202000122
10.1038/21861
10.1039/D2CS00323F
10.1021/acs.chemrev.1c00763
10.1002/anie.201702573
10.1002/ange.201700832
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202300195
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 36813740
10_1002_chem_202300195
CHEM202300195
Genre article
Journal Article
GrantInformation_xml – fundername: Science Foundation of Fujian Province
  funderid: 2021J02016; 2022J01507
– fundername: National Natural Science Foundation of China
  funderid: 21971237; 21825107; 22171264
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1500400
– fundername: Science Foundation of Fujian Province
  grantid: 2021J02016
– fundername: National Natural Science Foundation of China
  grantid: 21825107
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA1500400
– fundername: Science Foundation of Fujian Province
  grantid: 2022J01507
– fundername: National Natural Science Foundation of China
  grantid: 21971237
– fundername: National Natural Science Foundation of China
  grantid: 22171264
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3735-47d5e52ef3520d4a18e07a8a4348e2f6cb2aa6d19f92dc08e300315a38241a403
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 00:19:33 EDT 2025
Fri Jul 25 12:03:12 EDT 2025
Mon Jul 21 06:02:32 EDT 2025
Tue Jul 01 00:43:47 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Wed Jan 22 16:23:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords self-assembly
combinatorial chemistry
organopalladium cages
supramolecular chemistry
multicomponent
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-47d5e52ef3520d4a18e07a8a4348e2f6cb2aa6d19f92dc08e300315a38241a403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3771-1530
0000-0002-6419-8904
PMID 36813740
PQID 2813849471
PQPubID 986340
PageCount 11
ParticipantIDs proquest_miscellaneous_2779343167
proquest_journals_2813849471
pubmed_primary_36813740
crossref_primary_10_1002_chem_202300195
crossref_citationtrail_10_1002_chem_202300195
wiley_primary_10_1002_chem_202300195_CHEM202300195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 16, 2023
PublicationDateYYYYMMDD 2023-05-16
PublicationDate_xml – month: 05
  year: 2023
  text: May 16, 2023
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2021; 27
2004; 126
2005; 690
2019; 55
2020 2020; 59 132
2020; 15
1995; 378
2012; 18
2020; 12
1999; 400
2020; 11
2022; 456
2022; 28
2007; 36
2022; 122
2018; 6
2012; 134
2001
2021; 434
2018 2018; 57 130
2019; 25
2020; 49
2015 2015; 54 127
2021; 430
2010; 2
2005; 38
2006; 128
2009; 324
2021; 8
2021; 6
2021; 5
2004 2004; 43 116
2019; 3
2018; 140
2013; 49
2020; 85
2020; 142
2022; 51
1995; 117
2013; 261
2006; 1
2021; 143
2017 2017; 56 129
2019; 141
2019 2019; 58 131
2018; 24
2021; 14
2017; 53
2010; 49
2021; 12
2022; 61
2005; 127
2019; 48
2010; 132
2021 2021; 60 133
2022; 58
2020; 26
1999; 32
2011 2011; 50 123
2016; 138
2008; 41
2012; 48
1990; 112
2001 2001; 40 113
2012; 45
2006; 106
2008; 130
2022; 17
2009; 106
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_74_2
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_2
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_82_2
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_86_2
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_25_2
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_75_1
e_1_2_10_75_2
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Cosialls R. (e_1_2_10_19_1) 2022; 28
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_11_2
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_80_2
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_84_2
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_46_2
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_2
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_2
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_47_1
References_xml – volume: 141
  start-page: 5112
  year: 2019
  end-page: 5115
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2021
  publication-title: Nat. Sci. Rev.
– volume: 112
  start-page: 5645
  year: 1990
  end-page: 5647
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 9172
  year: 2004
  end-page: 9173
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 615
  year: 2010
  end-page: 621
  publication-title: Nat. Chem.
– volume: 58 131
  start-page: 5562 5618
  year: 2019 2019
  end-page: 5566 5622
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 430
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 117
  start-page: 1649
  year: 1995
  end-page: 1650
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 11070
  year: 2019
  end-page: 11075
  publication-title: Dalton Trans.
– volume: 53
  start-page: 8506
  year: 2017
  end-page: 8516
  publication-title: Chem. Commun.
– volume: 18
  start-page: 3199
  year: 2012
  end-page: 3209
  publication-title: Chem. Eur. J.
– volume: 50 123
  start-page: 114 118
  year: 2011 2011
  end-page: 137 142
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 6703
  year: 2013
  end-page: 6712
  publication-title: Chem. Commun.
– volume: 85
  start-page: 815
  year: 2020
  end-page: 827
  publication-title: ChemPlusChem
– volume: 6
  start-page: 145
  year: 2021
  end-page: 167
  publication-title: Nat. Rev. Mater.
– volume: 134
  start-page: 17420
  year: 2012
  end-page: 17423
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 204
  year: 2019
  end-page: 222
  publication-title: Nat. Chem. Rev.
– volume: 59 132
  start-page: 11101 11194
  year: 2020 2020
  end-page: 11107 11200
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 2298
  year: 2012
  end-page: 2300
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 2796 2838
  year: 2015 2015
  end-page: 2800 2842
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 15137
  year: 2020
  end-page: 15145
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 3652
  year: 2006
  end-page: 3711
  publication-title: Chem. Rev.
– volume: 143
  start-page: 1773
  year: 2021
  end-page: 1778
  publication-title: J. Am. Chem. Soc.
– volume: 378
  start-page: 469
  year: 1995
  end-page: 471
  publication-title: Nature
– volume: 14
  start-page: 398
  year: 2021
  end-page: 403
  publication-title: Nano Res.
– volume: 27
  start-page: 9439
  year: 2021
  end-page: 9445
  publication-title: Chem. Eur. J.
– volume: 57 130
  start-page: 3706 3768
  year: 2018 2018
  end-page: 3710 3772
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50 123
  start-page: 10318 10502
  year: 2011 2011
  end-page: 10321 10505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 106
  start-page: 10435
  year: 2009
  end-page: 10437
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 2218
  year: 2020
  end-page: 2230
  publication-title: Chem. Asian J.
– volume: 143
  start-page: 16087
  year: 2021
  end-page: 16094
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 825
  year: 2005
  end-page: 837
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 623
  year: 2018
  end-page: 643
  publication-title: Front. Chem.
– volume: 127
  start-page: 2798
  year: 2005
  end-page: 2799
  publication-title: J. Am. Chem. Soc.
– volume: 690
  start-page: 5383
  year: 2005
  end-page: 5388
  publication-title: J. Organomet. Chem.
– volume: 28
  year: 2022
  publication-title: Chem. Eur. J.
– volume: 17
  year: 2022
  publication-title: Chem. Asian J.
– volume: 143
  start-page: 6339
  year: 2021
  end-page: 6344
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 12241
  year: 2019
  end-page: 12269
  publication-title: Chem. Eur. J.
– volume: 434
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 128
  start-page: 14464
  year: 2006
  end-page: 14465
  publication-title: J. Am. Chem. Soc.
– volume: 40 113
  start-page: 2022 2076
  year: 2001 2001
  end-page: 2043 2097
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 574
  year: 2020
  end-page: 578
  publication-title: Nat. Chem.
– volume: 49
  start-page: 3889
  year: 2020
  end-page: 3919
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 677
  year: 2020
  end-page: 683
  publication-title: Chem. Sci.
– volume: 138
  start-page: 13750
  year: 2016
  end-page: 13755
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 9087
  year: 2019
  end-page: 9095
  publication-title: J. Am. Chem. Soc.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 122
  start-page: 12244
  year: 2022
  end-page: 12307
  publication-title: Chem. Rev.
– volume: 45
  start-page: 2211
  year: 2012
  end-page: 2221
  publication-title: Acc. Chem. Res.
– volume: 56 129
  start-page: 8285 8399
  year: 2017 2017
  end-page: 8289 8404
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 12976
  year: 2018
  end-page: 12982
  publication-title: Chem. Eur. J.
– volume: 55
  start-page: 13271
  year: 2019
  end-page: 13274
  publication-title: Chem. Commun.
– volume: 11
  start-page: 880
  year: 2020
  end-page: 891
  publication-title: Nat. Commun.
– volume: 140
  start-page: 4869
  year: 2018
  end-page: 4876
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 4307
  year: 2013
  end-page: 4309
  publication-title: Chem. Commun.
– volume: 25
  start-page: 662
  year: 2019
  end-page: 672
  publication-title: Chem. Eur. J.
– volume: 456
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 122
  start-page: 10393
  year: 2022
  end-page: 10437
  publication-title: Chem. Rev.
– volume: 1
  start-page: 82
  year: 2006
  end-page: 90
  publication-title: Chem. Asian J.
– volume: 324
  start-page: 1697
  year: 2009
  end-page: 1699
  publication-title: Science
– volume: 261
  start-page: 229
  year: 2013
  end-page: 248
  publication-title: Adv. Polym. Sci.
– volume: 36
  start-page: 151
  year: 2007
  end-page: 160
  publication-title: Chem. Soc. Rev.
– start-page: 509
  year: 2001
  end-page: 518
  publication-title: Chem. Commun.
– volume: 122
  start-page: 6374
  year: 2022
  end-page: 6458
  publication-title: Chem. Rev.
– volume: 26
  start-page: 4842
  year: 2020
  end-page: 4849
  publication-title: Chem. Eur. J.
– volume: 400
  start-page: 52
  year: 1999
  end-page: 55
  publication-title: Nature
– volume: 5
  start-page: 168
  year: 2021
  end-page: 182
  publication-title: Nat. Chem. Rev.
– volume: 49
  start-page: 7647
  year: 2010
  end-page: 7649
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 369
  year: 2005
  end-page: 378
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 13510 13728
  year: 2014 2014
  end-page: 13513 13731
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 7779
  year: 2022
  end-page: 7809
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 4930 5012
  year: 2017 2017
  end-page: 4935 5017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 7269
  year: 2021
  end-page: 7293
  publication-title: Chem. Sci.
– volume: 43 116
  start-page: 5621 5739
  year: 2004 2004
  end-page: 5625 5743
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 6403 6473
  year: 2021 2021
  end-page: 6407 6478
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  start-page: 975
  year: 1999
  end-page: 982
  publication-title: Acc. Chem. Res.
– volume: 58
  start-page: 11637
  year: 2022
  end-page: 11648
  publication-title: Chem. Commun.
– volume: 130
  start-page: 5832
  year: 2008
  end-page: 5833
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 1618
  year: 2008
  end-page: 1629
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 1668
  year: 2016
  end-page: 1676
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 8638
  year: 2019
  end-page: 8645
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 9555
  year: 2010
  end-page: 9557
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_10_8_1
  doi: 10.1039/c3cc43191f
– ident: e_1_2_10_29_1
  doi: 10.1039/C9CC07130J
– ident: e_1_2_10_39_1
  doi: 10.1021/jacs.9b00131
– ident: e_1_2_10_79_1
  doi: 10.1002/anie.202205725
– ident: e_1_2_10_80_2
  doi: 10.1002/ange.201812926
– ident: e_1_2_10_42_1
  doi: 10.1021/jacs.9b03776
– ident: e_1_2_10_58_1
  doi: 10.1038/378469a0
– ident: e_1_2_10_26_1
  doi: 10.1021/ar040153h
– ident: e_1_2_10_63_1
  doi: 10.1021/ja00170a042
– ident: e_1_2_10_11_1
  doi: 10.1002/anie.201000380
– ident: e_1_2_10_35_1
  doi: 10.1038/s41557-020-0455-y
– ident: e_1_2_10_77_1
  doi: 10.1002/chem.202101057
– ident: e_1_2_10_13_1
  doi: 10.1038/s41570-020-00246-1
– ident: e_1_2_10_43_1
  doi: 10.1021/jacs.9b03924
– ident: e_1_2_10_59_1
  doi: 10.1021/ja00110a026
– ident: e_1_2_10_25_2
  doi: 10.1002/1521-3757(20010601)113:11<2076::AID-ANGE2076>3.0.CO;2-S
– ident: e_1_2_10_23_1
  doi: 10.1021/ar800025w
– ident: e_1_2_10_49_1
  doi: 10.1039/D2CC04464A
– ident: e_1_2_10_37_1
  doi: 10.1021/ja0657915
– ident: e_1_2_10_21_1
  doi: 10.1002/chem.202103781
– ident: e_1_2_10_74_1
  doi: 10.1002/anie.200461422
– ident: e_1_2_10_44_1
  doi: 10.1016/j.ccr.2021.214396
– ident: e_1_2_10_86_1
  doi: 10.1002/anie.202012425
– ident: e_1_2_10_40_1
  doi: 10.3389/fchem.2018.00623
– ident: e_1_2_10_81_1
  doi: 10.1039/C9DT01814J
– ident: e_1_2_10_28_1
  doi: 10.1021/ar970224v
– ident: e_1_2_10_70_1
  doi: 10.1039/c2cc16345d
– ident: e_1_2_10_12_1
  doi: 10.1021/jacs.1c06390
– ident: e_1_2_10_10_1
  doi: 10.1038/nchem.744
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jorganchem.2005.06.022
– ident: e_1_2_10_33_1
  doi: 10.1021/ja043953w
– ident: e_1_2_10_34_1
  doi: 10.1021/ja047612u
– ident: e_1_2_10_46_1
  doi: 10.1002/anie.202003220
– ident: e_1_2_10_75_2
  doi: 10.1002/ange.201104670
– ident: e_1_2_10_71_1
  doi: 10.1039/c2cc37377g
– ident: e_1_2_10_36_1
  doi: 10.1002/anie.201800432
– ident: e_1_2_10_67_1
  doi: 10.1002/asia.202000603
– ident: e_1_2_10_18_1
  doi: 10.1016/j.ccr.2021.213820
– ident: e_1_2_10_84_2
  doi: 10.1002/ange.201408068
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ccr.2020.213656
– ident: e_1_2_10_45_1
  doi: 10.1002/cplu.202000153
– ident: e_1_2_10_80_1
  doi: 10.1002/anie.201812926
– ident: e_1_2_10_78_1
  doi: 10.1021/jacs.1c01931
– ident: e_1_2_10_62_1
  doi: 10.1021/ja077783
– ident: e_1_2_10_87_1
  doi: 10.1002/chem.201802188
– ident: e_1_2_10_27_1
  doi: 10.1039/b008684n
– ident: e_1_2_10_52_1
  doi: 10.1039/C7CC03379F
– ident: e_1_2_10_38_1
  doi: 10.1021/ja308101a
– ident: e_1_2_10_51_1
  doi: 10.1002/anie.201408652
– ident: e_1_2_10_68_1
  doi: 10.1021/ic101139s
– ident: e_1_2_10_7_1
  doi: 10.1039/D1SC01226F
– ident: e_1_2_10_3_1
  doi: 10.1038/s41578-020-00257-w
– ident: e_1_2_10_25_1
  doi: 10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D
– volume: 28
  year: 2022
  ident: e_1_2_10_19_1
  publication-title: Chem. Eur. J.
– ident: e_1_2_10_73_1
  doi: 10.1021/jacs.5b12237
– ident: e_1_2_10_36_2
  doi: 10.1002/ange.201800432
– ident: e_1_2_10_2_1
  doi: 10.1039/D0CS00038H
– ident: e_1_2_10_16_1
  doi: 10.1002/chem.201802817
– ident: e_1_2_10_30_1
  doi: 10.1038/s41570-019-0085-3
– ident: e_1_2_10_31_1
  doi: 10.1002/anie.201700832
– ident: e_1_2_10_47_1
  doi: 10.1039/C9SC05534G
– ident: e_1_2_10_86_2
  doi: 10.1002/ange.202012425
– ident: e_1_2_10_17_1
  doi: 10.1093/nsr/nwab045
– ident: e_1_2_10_56_1
  doi: 10.1021/cr020452p
– ident: e_1_2_10_82_2
  doi: 10.1002/ange.201702573
– ident: e_1_2_10_50_1
  doi: 10.1021/jacs.0c12793
– ident: e_1_2_10_46_2
  doi: 10.1002/ange.202003220
– ident: e_1_2_10_69_1
  doi: 10.1002/chem.201102963
– ident: e_1_2_10_11_2
  doi: 10.1002/ange.201000380
– ident: e_1_2_10_55_1
  doi: 10.1039/B616752G
– ident: e_1_2_10_66_1
  doi: 10.1021/ja103180z
– ident: e_1_2_10_41_1
– ident: e_1_2_10_83_1
  doi: 10.1021/jacs.6b08694
– ident: e_1_2_10_14_1
  doi: 10.1021/acs.chemrev.1c00811
– ident: e_1_2_10_5_1
  doi: 10.1007/s12274-020-2777-x
– ident: e_1_2_10_84_1
  doi: 10.1002/anie.201408068
– ident: e_1_2_10_54_1
  doi: 10.1021/ar200240m
– ident: e_1_2_10_9_1
  doi: 10.1002/chem.201900831
– ident: e_1_2_10_24_1
  doi: 10.1021/ar980101q
– ident: e_1_2_10_74_2
  doi: 10.1002/ange.200461422
– ident: e_1_2_10_76_1
  doi: 10.1002/asia.200600029
– ident: e_1_2_10_20_1
  doi: 10.1002/chem.202200310
– ident: e_1_2_10_65_1
  doi: 10.1073/pnas.0810319106
– ident: e_1_2_10_72_1
  doi: 10.1002/asia.202200093
– ident: e_1_2_10_53_1
  doi: 10.1002/anie.202204732
– ident: e_1_2_10_48_1
  doi: 10.1038/s41467-020-14703-4
– ident: e_1_2_10_22_1
  doi: 10.1007/12_2013_244
– ident: e_1_2_10_85_1
  doi: 10.1021/jacs.8b00394
– ident: e_1_2_10_51_2
  doi: 10.1002/ange.201408652
– ident: e_1_2_10_4_1
  doi: 10.1021/acs.chemrev.1c00602
– ident: e_1_2_10_57_1
  doi: 10.1021/jacs.0c07131
– ident: e_1_2_10_32_1
  doi: 10.1126/science.1175313
– ident: e_1_2_10_75_1
  doi: 10.1002/anie.201104670
– ident: e_1_2_10_61_1
  doi: 10.1002/chem.202000122
– ident: e_1_2_10_60_1
  doi: 10.1038/21861
– ident: e_1_2_10_1_1
  doi: 10.1039/D2CS00323F
– ident: e_1_2_10_6_1
  doi: 10.1021/acs.chemrev.1c00763
– ident: e_1_2_10_82_1
  doi: 10.1002/anie.201702573
– ident: e_1_2_10_31_2
  doi: 10.1002/ange.201700832
SSID ssj0009633
Score 2.4825919
Snippet Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300195
SubjectTerms Cages
Catalysis
Cavities
Chemistry
Combinatorial analysis
combinatorial chemistry
Coordination
Drug delivery
multicomponent
organopalladium cages
Self-assembly
Structure-function relationships
supramolecular chemistry
Title Combinatorial Coordination Self‐Assembly for Organopalladium Cages with Fine‐Tuned Structure and Function
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300195
https://www.ncbi.nlm.nih.gov/pubmed/36813740
https://www.proquest.com/docview/2813849471
https://www.proquest.com/docview/2779343167
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuBSyjulIFdC4uQ2fsY5ohWrqhIc-pB6i2zHK1XsZhHbHODET-A38kuYSTZpl6pCordEsR3bMx5_fsw3AO-sCSI4k3MRgubapoKXeYrclgHRURTBd9EbPn22R-f6-MJc3PDi7_khxg03GhmdvaYB7sPq8Jo0FNtEnuQIocnnDY0wXdgiVHRyzR-F2tXHktcFJw7WgbUxl4eb2TdnpVtQcxO5dlPP9DH4odL9jZMvB-1VOIg__uJzvE-rdmB7jUvZh16RnsCD1DyFh5MhHNwzWKDlwFU0rdFRZdlkiavWy34rkZ2m-ez3z190gLwI8-8MgTDrnDxxRY5qVl-2CzZBw7VitO3LplhLTH7Woolnpx2BbfstMd_UbIrTLBX5HM6nH88mR3wdq4FHVSjDdVGbZGSaIaDLa-2FS3nhnddKuyRnNgbpva1FOStlHXOXFJkT45VDCOF1rl7AVrNs0itgJkVjkgvCBqtDWYdUlrFWQSgTjXQ-Az7IqoprInOKpzGvegpmWVEnVmMnZvB-TP-1p_C4M-XeIPpqPZRXlXRCOY0aJDLYHz9j59PJim_SssU0BZq5jlQgg5e9yoy_UhYLKHSegewE_486VESFMb7t_k-m1_CInumOg7B7sIVyTG8QOl2Ft93w-AM52hG7
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKWNn3EOHNCW1ZY-DnQr9RZsxyut2M1WbCNUTvwE_gp_hZ_AL2GcV7UghITUA8ckE8ePmfGXsf0NwHMlLbVaJjG1VsRC-TTOEu9ilVlER45aU2dvODhUo2Px9kSerMG37ixMww_RB9yCZdT-Ohh4CEhvX7CGYqPCUXLE0OHQW7uvcs-ff8K_tuWr3R0c4heMDd-MB6O4TSwQO55yGYu0kF4yP0H0kRTCUO2T1GgjuNCeTZSzzBhV0GySscIl2vOg-9JwjfOdEQnHcq_A1ZBGPND177y7YKxCfW6y14s0DqyvHU9kwrZX67s6D_4Gblexcj3ZDW_A966bmj0uH7aqM7vlPv_CIPlf9eNNuN5Cb_K6sZVbsObL27Ax6DLe3YE5Okc7LUMYAq2SDBZYtWkTLSVHfjb58eVrWCOf29k5QaxP6nOsi9OwFFFMqzkZoG9ekhDZJkPsFhQfVziLkaOao7f66IkpCzJEJBGKvAvHl9Lae7BeLkr_AIj0TkqvLVVWCZsV1meZK7ilXDrJtIkg7pQjdy1Xe0gZMssblmmWh0HL-0GL4GUvf9qwlPxRcrPTtbz1Vsucacq1QJWlETzrH2Pnh8UjU_pFhTIpevKaNyGC-42O9p_iCgtIRRIBqzXtL3XIA9tHf_XwX156Chuj8cF-vr97uPcIroX7YUsHVZuwjmPqHyNSPLNPatsk8P6ylfgnSOJtig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vB-BAkYCsUobP-MsWKAZopZChWgrdZfaiSONmMmMmEaorPgEPoVf4Rf4Eq7zqgaEkJC6YJnEcWzfh09s33MBnippqdUyCqm1IhTKxWESuTxUiUV0lFNrmuwNb_fU9qF4fSSP1uBbHwvT8kMMC27eMhp_7Q18UZRbZ6Sh2CcfSY4Q2se8dccqd93pJ_xpW77YGaOEnzGWvjoYbYddXoEw5zGXoYgL6SRzJYKPqBCGahfFRhvBhXasVLllxqiCJmXCijzSjnvVl4ZrnO6MiDjWewEuChUlPlnE-P0ZYRWqc5u8XsShJ33taSIjtrXa3tVp8DdsuwqVm7kuvQbf-1Fqj7h82KxP7Gb--RcCyf9pGK_D1Q54k5etpdyANVfdhMujPt_dLZiha7STyi9CoE2S0RybNmnXSsm-m5Y_vnz1O-QzOz0liPRJE8U6X_iNiGJSz8gIPfOS-HVtkuKoYPGDGucwst8w9NYfHTFVQVLEEb7K23B4Lr29A-vVvHL3gEiXS-m0pcoqYZPCuiTJC24pl7lk2gQQ9rqR5R1Tu08YMs1ajmmWeaFlg9ACeD6UX7QcJX8sudGrWtb5qmXGNOVaoMbSAJ4Mj3Hw_daRqdy8xjIx-vGGNSGAu62KDp_iCiuIRRQAaxTtL23IPNfHcHX_X156DJfejdPszc7e7gO44m_78xxUbcA6itQ9RJh4Yh81lkng-Lx1-Cdy6Gw5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Coordination+Self%E2%80%90Assembly+for+Organopalladium+Cages+with+Fine%E2%80%90Tuned+Structure+and+Function&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Tian%2C+Chong%E2%80%90Bin&rft.au=Sun%2C+Qing%E2%80%90Fu&rft.date=2023-05-16&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=28&rft_id=info:doi/10.1002%2Fchem.202300195&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202300195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon