Combinatorial Coordination Self‐Assembly for Organopalladium Cages with Fine‐Tuned Structure and Function
Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavi...
Saved in:
Published in | Chemistry : a European journal Vol. 29; no. 28; pp. e202300195 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions.
Combinatorial coordination self‐assembly is a powerful tool to create the lower‐symmetric coordination cages with increasing structural complexities and advanced functions. In this concept article, we define and summarized the strategy for the combinatorial self‐assembled PdII coordination cages. Emergent functions on some selected PdII coordination cages were also introduced with an aim of emphasizing the advantages of the heteroleptic cages. |
---|---|
AbstractList | Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions. Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self-assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine-tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions.Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self-assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine-tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions. Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to enzymatic catalysis. While many of the known organopalladium cages are homoleptic structures with regular polyhedral shapes and symmetric inner cavities, heteroleptic cages with complex architectures and new functions coming from their anisotropic cavities have received an increasing attention recently. In this concept article, we discuss a powerful combinatorial coordination self‐assembly strategy toward the construction of a family of organopalladium cages, including both homoleptic and heteroleptic ones, from a given library of ligands. Within such a cage family, the heteroleptic cages often feature systematically fine‐tuned structures and emergent properties, distinct from their parent homoleptic counterparts. We hope the concepts and examples provided in this article can offer some rational guidance for the design of new coordination cages toward advanced functions. Combinatorial coordination self‐assembly is a powerful tool to create the lower‐symmetric coordination cages with increasing structural complexities and advanced functions. In this concept article, we define and summarized the strategy for the combinatorial self‐assembled PdII coordination cages. Emergent functions on some selected PdII coordination cages were also introduced with an aim of emphasizing the advantages of the heteroleptic cages. |
Author | Tian, Chong‐Bin Sun, Qing‐Fu |
Author_xml | – sequence: 1 givenname: Chong‐Bin orcidid: 0000-0002-3771-1530 surname: Tian fullname: Tian, Chong‐Bin organization: Chinese Academy of Sciences – sequence: 2 givenname: Qing‐Fu orcidid: 0000-0002-6419-8904 surname: Sun fullname: Sun, Qing‐Fu email: qfsun@fjirsm.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36813740$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9LHDEYh0Ox1FV77bEEeull1vydzBxlcGvB4kE9h2zmHY3MJNtkguytH6GfsZ-k2a61IEhPIfA8b978fkfowAcPCH2gZEkJYaf2HqYlI4wTQlv5Bi2oZLTiqpYHaEFaoapa8vYQHaX0QAhpa87foUNeN5QrQRZo6sK0dt7MIToz4i6E2O-uLnh8DePw68fPs5RgWo9bPISIr-Kd8WFjxtH0Lk-4M3eQ8KOb7_HKeSj4TfbQ4-s5ZjvnCNj4Hq-yt7uRJ-jtYMYE75_OY3S7Or_pLqrLqy9fu7PLynLFZSVUL0EyGLhkpBeGNkCUaYzgogE21HbNjKl72g4t6y1poPyeU2l4wwQ1gvBj9Hk_dxPD9wxp1pNLFsrSHkJOminVcsFprQr66QX6EHL0ZTvNSkiNKBnSQn18ovJ6gl5voptM3Oq_QRZguQdsDClFGJ4RSvSuKb1rSj83VQTxQrBu_pP7HI0bX9favfboRtj-5xHdXZx_--f-BpAPqbQ |
CitedBy_id | crossref_primary_10_1080_10610278_2024_2324822 crossref_primary_10_1007_s11426_023_1979_8 crossref_primary_10_1039_D3DT00248A crossref_primary_10_1016_j_trechm_2024_03_002 crossref_primary_10_1039_D4SC08176E crossref_primary_10_1002_ange_202315451 crossref_primary_10_1021_acs_inorgchem_3c04033 crossref_primary_10_1002_ange_202314378 crossref_primary_10_1021_jacs_3c11320 crossref_primary_10_3390_molecules28104068 crossref_primary_10_1002_anie_202314378 crossref_primary_10_1002_anie_202315451 crossref_primary_10_1002_chem_202403336 crossref_primary_10_1021_acs_orglett_4c01438 crossref_primary_10_1039_D4SC01078G crossref_primary_10_1039_D3DT01139A |
Cites_doi | 10.1039/c3cc43191f 10.1039/C9CC07130J 10.1021/jacs.9b00131 10.1002/anie.202205725 10.1002/ange.201812926 10.1021/jacs.9b03776 10.1038/378469a0 10.1021/ar040153h 10.1021/ja00170a042 10.1002/anie.201000380 10.1038/s41557-020-0455-y 10.1002/chem.202101057 10.1038/s41570-020-00246-1 10.1021/jacs.9b03924 10.1021/ja00110a026 10.1002/1521-3757(20010601)113:11<2076::AID-ANGE2076>3.0.CO;2-S 10.1021/ar800025w 10.1039/D2CC04464A 10.1021/ja0657915 10.1002/chem.202103781 10.1002/anie.200461422 10.1016/j.ccr.2021.214396 10.1002/anie.202012425 10.3389/fchem.2018.00623 10.1039/C9DT01814J 10.1021/ar970224v 10.1039/c2cc16345d 10.1021/jacs.1c06390 10.1038/nchem.744 10.1016/j.jorganchem.2005.06.022 10.1021/ja043953w 10.1021/ja047612u 10.1002/anie.202003220 10.1002/ange.201104670 10.1039/c2cc37377g 10.1002/anie.201800432 10.1002/asia.202000603 10.1016/j.ccr.2021.213820 10.1002/ange.201408068 10.1016/j.ccr.2020.213656 10.1002/cplu.202000153 10.1002/anie.201812926 10.1021/jacs.1c01931 10.1021/ja077783 10.1002/chem.201802188 10.1039/b008684n 10.1039/C7CC03379F 10.1021/ja308101a 10.1002/anie.201408652 10.1021/ic101139s 10.1039/D1SC01226F 10.1038/s41578-020-00257-w 10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D 10.1021/jacs.5b12237 10.1002/ange.201800432 10.1039/D0CS00038H 10.1002/chem.201802817 10.1038/s41570-019-0085-3 10.1002/anie.201700832 10.1039/C9SC05534G 10.1002/ange.202012425 10.1093/nsr/nwab045 10.1021/cr020452p 10.1002/ange.201702573 10.1021/jacs.0c12793 10.1002/ange.202003220 10.1002/chem.201102963 10.1002/ange.201000380 10.1039/B616752G 10.1021/ja103180z 10.1021/jacs.6b08694 10.1021/acs.chemrev.1c00811 10.1007/s12274-020-2777-x 10.1002/anie.201408068 10.1021/ar200240m 10.1002/chem.201900831 10.1021/ar980101q 10.1002/ange.200461422 10.1002/asia.200600029 10.1002/chem.202200310 10.1073/pnas.0810319106 10.1002/asia.202200093 10.1002/anie.202204732 10.1038/s41467-020-14703-4 10.1007/12_2013_244 10.1021/jacs.8b00394 10.1002/ange.201408652 10.1021/acs.chemrev.1c00602 10.1021/jacs.0c07131 10.1126/science.1175313 10.1002/anie.201104670 10.1002/chem.202000122 10.1038/21861 10.1039/D2CS00323F 10.1021/acs.chemrev.1c00763 10.1002/anie.201702573 10.1002/ange.201700832 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202300195 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | n/a |
ExternalDocumentID | 36813740 10_1002_chem_202300195 CHEM202300195 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science Foundation of Fujian Province funderid: 2021J02016; 2022J01507 – fundername: National Natural Science Foundation of China funderid: 21971237; 21825107; 22171264 – fundername: National Key Research and Development Program of China funderid: 2021YFA1500400 – fundername: Science Foundation of Fujian Province grantid: 2021J02016 – fundername: National Natural Science Foundation of China grantid: 21825107 – fundername: National Key Research and Development Program of China grantid: 2021YFA1500400 – fundername: Science Foundation of Fujian Province grantid: 2022J01507 – fundername: National Natural Science Foundation of China grantid: 21971237 – fundername: National Natural Science Foundation of China grantid: 22171264 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3735-47d5e52ef3520d4a18e07a8a4348e2f6cb2aa6d19f92dc08e300315a38241a403 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 00:19:33 EDT 2025 Fri Jul 25 12:03:12 EDT 2025 Mon Jul 21 06:02:32 EDT 2025 Tue Jul 01 00:43:47 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Wed Jan 22 16:23:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | self-assembly combinatorial chemistry organopalladium cages supramolecular chemistry multicomponent |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-47d5e52ef3520d4a18e07a8a4348e2f6cb2aa6d19f92dc08e300315a38241a403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3771-1530 0000-0002-6419-8904 |
PMID | 36813740 |
PQID | 2813849471 |
PQPubID | 986340 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2779343167 proquest_journals_2813849471 pubmed_primary_36813740 crossref_primary_10_1002_chem_202300195 crossref_citationtrail_10_1002_chem_202300195 wiley_primary_10_1002_chem_202300195_CHEM202300195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 16, 2023 |
PublicationDateYYYYMMDD | 2023-05-16 |
PublicationDate_xml | – month: 05 year: 2023 text: May 16, 2023 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2021; 27 2004; 126 2005; 690 2019; 55 2020 2020; 59 132 2020; 15 1995; 378 2012; 18 2020; 12 1999; 400 2020; 11 2022; 456 2022; 28 2007; 36 2022; 122 2018; 6 2012; 134 2001 2021; 434 2018 2018; 57 130 2019; 25 2020; 49 2015 2015; 54 127 2021; 430 2010; 2 2005; 38 2006; 128 2009; 324 2021; 8 2021; 6 2021; 5 2004 2004; 43 116 2019; 3 2018; 140 2013; 49 2020; 85 2020; 142 2022; 51 1995; 117 2013; 261 2006; 1 2021; 143 2017 2017; 56 129 2019; 141 2019 2019; 58 131 2018; 24 2021; 14 2017; 53 2010; 49 2021; 12 2022; 61 2005; 127 2019; 48 2010; 132 2021 2021; 60 133 2022; 58 2020; 26 1999; 32 2011 2011; 50 123 2016; 138 2008; 41 2012; 48 1990; 112 2001 2001; 40 113 2012; 45 2006; 106 2008; 130 2022; 17 2009; 106 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_74_2 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_2 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_82_2 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_86_2 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_25_2 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_75_1 e_1_2_10_75_2 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Cosialls R. (e_1_2_10_19_1) 2022; 28 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_11_2 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_80_2 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_84_2 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_46_2 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_2 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_2 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_47_1 |
References_xml | – volume: 141 start-page: 5112 year: 2019 end-page: 5115 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2021 publication-title: Nat. Sci. Rev. – volume: 112 start-page: 5645 year: 1990 end-page: 5647 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 9172 year: 2004 end-page: 9173 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 615 year: 2010 end-page: 621 publication-title: Nat. Chem. – volume: 58 131 start-page: 5562 5618 year: 2019 2019 end-page: 5566 5622 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 430 year: 2021 publication-title: Coord. Chem. Rev. – volume: 117 start-page: 1649 year: 1995 end-page: 1650 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 11070 year: 2019 end-page: 11075 publication-title: Dalton Trans. – volume: 53 start-page: 8506 year: 2017 end-page: 8516 publication-title: Chem. Commun. – volume: 18 start-page: 3199 year: 2012 end-page: 3209 publication-title: Chem. Eur. J. – volume: 50 123 start-page: 114 118 year: 2011 2011 end-page: 137 142 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 6703 year: 2013 end-page: 6712 publication-title: Chem. Commun. – volume: 85 start-page: 815 year: 2020 end-page: 827 publication-title: ChemPlusChem – volume: 6 start-page: 145 year: 2021 end-page: 167 publication-title: Nat. Rev. Mater. – volume: 134 start-page: 17420 year: 2012 end-page: 17423 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 204 year: 2019 end-page: 222 publication-title: Nat. Chem. Rev. – volume: 59 132 start-page: 11101 11194 year: 2020 2020 end-page: 11107 11200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 2298 year: 2012 end-page: 2300 publication-title: Chem. Commun. – volume: 54 127 start-page: 2796 2838 year: 2015 2015 end-page: 2800 2842 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 15137 year: 2020 end-page: 15145 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 3652 year: 2006 end-page: 3711 publication-title: Chem. Rev. – volume: 143 start-page: 1773 year: 2021 end-page: 1778 publication-title: J. Am. Chem. Soc. – volume: 378 start-page: 469 year: 1995 end-page: 471 publication-title: Nature – volume: 14 start-page: 398 year: 2021 end-page: 403 publication-title: Nano Res. – volume: 27 start-page: 9439 year: 2021 end-page: 9445 publication-title: Chem. Eur. J. – volume: 57 130 start-page: 3706 3768 year: 2018 2018 end-page: 3710 3772 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 123 start-page: 10318 10502 year: 2011 2011 end-page: 10321 10505 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 106 start-page: 10435 year: 2009 end-page: 10437 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 2218 year: 2020 end-page: 2230 publication-title: Chem. Asian J. – volume: 143 start-page: 16087 year: 2021 end-page: 16094 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 825 year: 2005 end-page: 837 publication-title: Acc. Chem. Res. – volume: 6 start-page: 623 year: 2018 end-page: 643 publication-title: Front. Chem. – volume: 127 start-page: 2798 year: 2005 end-page: 2799 publication-title: J. Am. Chem. Soc. – volume: 690 start-page: 5383 year: 2005 end-page: 5388 publication-title: J. Organomet. Chem. – volume: 28 year: 2022 publication-title: Chem. Eur. J. – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 143 start-page: 6339 year: 2021 end-page: 6344 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 12241 year: 2019 end-page: 12269 publication-title: Chem. Eur. J. – volume: 434 year: 2021 publication-title: Coord. Chem. Rev. – volume: 128 start-page: 14464 year: 2006 end-page: 14465 publication-title: J. Am. Chem. Soc. – volume: 40 113 start-page: 2022 2076 year: 2001 2001 end-page: 2043 2097 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 574 year: 2020 end-page: 578 publication-title: Nat. Chem. – volume: 49 start-page: 3889 year: 2020 end-page: 3919 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 677 year: 2020 end-page: 683 publication-title: Chem. Sci. – volume: 138 start-page: 13750 year: 2016 end-page: 13755 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 9087 year: 2019 end-page: 9095 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 122 start-page: 12244 year: 2022 end-page: 12307 publication-title: Chem. Rev. – volume: 45 start-page: 2211 year: 2012 end-page: 2221 publication-title: Acc. Chem. Res. – volume: 56 129 start-page: 8285 8399 year: 2017 2017 end-page: 8289 8404 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 12976 year: 2018 end-page: 12982 publication-title: Chem. Eur. J. – volume: 55 start-page: 13271 year: 2019 end-page: 13274 publication-title: Chem. Commun. – volume: 11 start-page: 880 year: 2020 end-page: 891 publication-title: Nat. Commun. – volume: 140 start-page: 4869 year: 2018 end-page: 4876 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 4307 year: 2013 end-page: 4309 publication-title: Chem. Commun. – volume: 25 start-page: 662 year: 2019 end-page: 672 publication-title: Chem. Eur. J. – volume: 456 year: 2022 publication-title: Coord. Chem. Rev. – volume: 122 start-page: 10393 year: 2022 end-page: 10437 publication-title: Chem. Rev. – volume: 1 start-page: 82 year: 2006 end-page: 90 publication-title: Chem. Asian J. – volume: 324 start-page: 1697 year: 2009 end-page: 1699 publication-title: Science – volume: 261 start-page: 229 year: 2013 end-page: 248 publication-title: Adv. Polym. Sci. – volume: 36 start-page: 151 year: 2007 end-page: 160 publication-title: Chem. Soc. Rev. – start-page: 509 year: 2001 end-page: 518 publication-title: Chem. Commun. – volume: 122 start-page: 6374 year: 2022 end-page: 6458 publication-title: Chem. Rev. – volume: 26 start-page: 4842 year: 2020 end-page: 4849 publication-title: Chem. Eur. J. – volume: 400 start-page: 52 year: 1999 end-page: 55 publication-title: Nature – volume: 5 start-page: 168 year: 2021 end-page: 182 publication-title: Nat. Chem. Rev. – volume: 49 start-page: 7647 year: 2010 end-page: 7649 publication-title: Inorg. Chem. – volume: 38 start-page: 369 year: 2005 end-page: 378 publication-title: Acc. Chem. Res. – volume: 53 126 start-page: 13510 13728 year: 2014 2014 end-page: 13513 13731 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 7779 year: 2022 end-page: 7809 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 4930 5012 year: 2017 2017 end-page: 4935 5017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 7269 year: 2021 end-page: 7293 publication-title: Chem. Sci. – volume: 43 116 start-page: 5621 5739 year: 2004 2004 end-page: 5625 5743 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 6403 6473 year: 2021 2021 end-page: 6407 6478 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 975 year: 1999 end-page: 982 publication-title: Acc. Chem. Res. – volume: 58 start-page: 11637 year: 2022 end-page: 11648 publication-title: Chem. Commun. – volume: 130 start-page: 5832 year: 2008 end-page: 5833 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 1618 year: 2008 end-page: 1629 publication-title: Acc. Chem. Res. – volume: 138 start-page: 1668 year: 2016 end-page: 1676 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 8638 year: 2019 end-page: 8645 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 9555 year: 2010 end-page: 9557 publication-title: J. Am. Chem. Soc. – ident: e_1_2_10_8_1 doi: 10.1039/c3cc43191f – ident: e_1_2_10_29_1 doi: 10.1039/C9CC07130J – ident: e_1_2_10_39_1 doi: 10.1021/jacs.9b00131 – ident: e_1_2_10_79_1 doi: 10.1002/anie.202205725 – ident: e_1_2_10_80_2 doi: 10.1002/ange.201812926 – ident: e_1_2_10_42_1 doi: 10.1021/jacs.9b03776 – ident: e_1_2_10_58_1 doi: 10.1038/378469a0 – ident: e_1_2_10_26_1 doi: 10.1021/ar040153h – ident: e_1_2_10_63_1 doi: 10.1021/ja00170a042 – ident: e_1_2_10_11_1 doi: 10.1002/anie.201000380 – ident: e_1_2_10_35_1 doi: 10.1038/s41557-020-0455-y – ident: e_1_2_10_77_1 doi: 10.1002/chem.202101057 – ident: e_1_2_10_13_1 doi: 10.1038/s41570-020-00246-1 – ident: e_1_2_10_43_1 doi: 10.1021/jacs.9b03924 – ident: e_1_2_10_59_1 doi: 10.1021/ja00110a026 – ident: e_1_2_10_25_2 doi: 10.1002/1521-3757(20010601)113:11<2076::AID-ANGE2076>3.0.CO;2-S – ident: e_1_2_10_23_1 doi: 10.1021/ar800025w – ident: e_1_2_10_49_1 doi: 10.1039/D2CC04464A – ident: e_1_2_10_37_1 doi: 10.1021/ja0657915 – ident: e_1_2_10_21_1 doi: 10.1002/chem.202103781 – ident: e_1_2_10_74_1 doi: 10.1002/anie.200461422 – ident: e_1_2_10_44_1 doi: 10.1016/j.ccr.2021.214396 – ident: e_1_2_10_86_1 doi: 10.1002/anie.202012425 – ident: e_1_2_10_40_1 doi: 10.3389/fchem.2018.00623 – ident: e_1_2_10_81_1 doi: 10.1039/C9DT01814J – ident: e_1_2_10_28_1 doi: 10.1021/ar970224v – ident: e_1_2_10_70_1 doi: 10.1039/c2cc16345d – ident: e_1_2_10_12_1 doi: 10.1021/jacs.1c06390 – ident: e_1_2_10_10_1 doi: 10.1038/nchem.744 – ident: e_1_2_10_64_1 doi: 10.1016/j.jorganchem.2005.06.022 – ident: e_1_2_10_33_1 doi: 10.1021/ja043953w – ident: e_1_2_10_34_1 doi: 10.1021/ja047612u – ident: e_1_2_10_46_1 doi: 10.1002/anie.202003220 – ident: e_1_2_10_75_2 doi: 10.1002/ange.201104670 – ident: e_1_2_10_71_1 doi: 10.1039/c2cc37377g – ident: e_1_2_10_36_1 doi: 10.1002/anie.201800432 – ident: e_1_2_10_67_1 doi: 10.1002/asia.202000603 – ident: e_1_2_10_18_1 doi: 10.1016/j.ccr.2021.213820 – ident: e_1_2_10_84_2 doi: 10.1002/ange.201408068 – ident: e_1_2_10_15_1 doi: 10.1016/j.ccr.2020.213656 – ident: e_1_2_10_45_1 doi: 10.1002/cplu.202000153 – ident: e_1_2_10_80_1 doi: 10.1002/anie.201812926 – ident: e_1_2_10_78_1 doi: 10.1021/jacs.1c01931 – ident: e_1_2_10_62_1 doi: 10.1021/ja077783 – ident: e_1_2_10_87_1 doi: 10.1002/chem.201802188 – ident: e_1_2_10_27_1 doi: 10.1039/b008684n – ident: e_1_2_10_52_1 doi: 10.1039/C7CC03379F – ident: e_1_2_10_38_1 doi: 10.1021/ja308101a – ident: e_1_2_10_51_1 doi: 10.1002/anie.201408652 – ident: e_1_2_10_68_1 doi: 10.1021/ic101139s – ident: e_1_2_10_7_1 doi: 10.1039/D1SC01226F – ident: e_1_2_10_3_1 doi: 10.1038/s41578-020-00257-w – ident: e_1_2_10_25_1 doi: 10.1002/1521-3773(20010601)40:11<2022::AID-ANIE2022>3.0.CO;2-D – volume: 28 year: 2022 ident: e_1_2_10_19_1 publication-title: Chem. Eur. J. – ident: e_1_2_10_73_1 doi: 10.1021/jacs.5b12237 – ident: e_1_2_10_36_2 doi: 10.1002/ange.201800432 – ident: e_1_2_10_2_1 doi: 10.1039/D0CS00038H – ident: e_1_2_10_16_1 doi: 10.1002/chem.201802817 – ident: e_1_2_10_30_1 doi: 10.1038/s41570-019-0085-3 – ident: e_1_2_10_31_1 doi: 10.1002/anie.201700832 – ident: e_1_2_10_47_1 doi: 10.1039/C9SC05534G – ident: e_1_2_10_86_2 doi: 10.1002/ange.202012425 – ident: e_1_2_10_17_1 doi: 10.1093/nsr/nwab045 – ident: e_1_2_10_56_1 doi: 10.1021/cr020452p – ident: e_1_2_10_82_2 doi: 10.1002/ange.201702573 – ident: e_1_2_10_50_1 doi: 10.1021/jacs.0c12793 – ident: e_1_2_10_46_2 doi: 10.1002/ange.202003220 – ident: e_1_2_10_69_1 doi: 10.1002/chem.201102963 – ident: e_1_2_10_11_2 doi: 10.1002/ange.201000380 – ident: e_1_2_10_55_1 doi: 10.1039/B616752G – ident: e_1_2_10_66_1 doi: 10.1021/ja103180z – ident: e_1_2_10_41_1 – ident: e_1_2_10_83_1 doi: 10.1021/jacs.6b08694 – ident: e_1_2_10_14_1 doi: 10.1021/acs.chemrev.1c00811 – ident: e_1_2_10_5_1 doi: 10.1007/s12274-020-2777-x – ident: e_1_2_10_84_1 doi: 10.1002/anie.201408068 – ident: e_1_2_10_54_1 doi: 10.1021/ar200240m – ident: e_1_2_10_9_1 doi: 10.1002/chem.201900831 – ident: e_1_2_10_24_1 doi: 10.1021/ar980101q – ident: e_1_2_10_74_2 doi: 10.1002/ange.200461422 – ident: e_1_2_10_76_1 doi: 10.1002/asia.200600029 – ident: e_1_2_10_20_1 doi: 10.1002/chem.202200310 – ident: e_1_2_10_65_1 doi: 10.1073/pnas.0810319106 – ident: e_1_2_10_72_1 doi: 10.1002/asia.202200093 – ident: e_1_2_10_53_1 doi: 10.1002/anie.202204732 – ident: e_1_2_10_48_1 doi: 10.1038/s41467-020-14703-4 – ident: e_1_2_10_22_1 doi: 10.1007/12_2013_244 – ident: e_1_2_10_85_1 doi: 10.1021/jacs.8b00394 – ident: e_1_2_10_51_2 doi: 10.1002/ange.201408652 – ident: e_1_2_10_4_1 doi: 10.1021/acs.chemrev.1c00602 – ident: e_1_2_10_57_1 doi: 10.1021/jacs.0c07131 – ident: e_1_2_10_32_1 doi: 10.1126/science.1175313 – ident: e_1_2_10_75_1 doi: 10.1002/anie.201104670 – ident: e_1_2_10_61_1 doi: 10.1002/chem.202000122 – ident: e_1_2_10_60_1 doi: 10.1038/21861 – ident: e_1_2_10_1_1 doi: 10.1039/D2CS00323F – ident: e_1_2_10_6_1 doi: 10.1021/acs.chemrev.1c00763 – ident: e_1_2_10_82_1 doi: 10.1002/anie.201702573 – ident: e_1_2_10_31_2 doi: 10.1002/ange.201700832 |
SSID | ssj0009633 |
Score | 2.4825919 |
Snippet | Discrete organopalladium coordination cages have shown great potential in applications ranging from molecular recognition and sensing, drug delivery to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300195 |
SubjectTerms | Cages Catalysis Cavities Chemistry Combinatorial analysis combinatorial chemistry Coordination Drug delivery multicomponent organopalladium cages Self-assembly Structure-function relationships supramolecular chemistry |
Title | Combinatorial Coordination Self‐Assembly for Organopalladium Cages with Fine‐Tuned Structure and Function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202300195 https://www.ncbi.nlm.nih.gov/pubmed/36813740 https://www.proquest.com/docview/2813849471 https://www.proquest.com/docview/2779343167 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuBSyjulIFdC4uQ2fsY5ohWrqhIc-pB6i2zHK1XsZhHbHODET-A38kuYSTZpl6pCordEsR3bMx5_fsw3AO-sCSI4k3MRgubapoKXeYrclgHRURTBd9EbPn22R-f6-MJc3PDi7_khxg03GhmdvaYB7sPq8Jo0FNtEnuQIocnnDY0wXdgiVHRyzR-F2tXHktcFJw7WgbUxl4eb2TdnpVtQcxO5dlPP9DH4odL9jZMvB-1VOIg__uJzvE-rdmB7jUvZh16RnsCD1DyFh5MhHNwzWKDlwFU0rdFRZdlkiavWy34rkZ2m-ez3z190gLwI8-8MgTDrnDxxRY5qVl-2CzZBw7VitO3LplhLTH7Woolnpx2BbfstMd_UbIrTLBX5HM6nH88mR3wdq4FHVSjDdVGbZGSaIaDLa-2FS3nhnddKuyRnNgbpva1FOStlHXOXFJkT45VDCOF1rl7AVrNs0itgJkVjkgvCBqtDWYdUlrFWQSgTjXQ-Az7IqoprInOKpzGvegpmWVEnVmMnZvB-TP-1p_C4M-XeIPpqPZRXlXRCOY0aJDLYHz9j59PJim_SssU0BZq5jlQgg5e9yoy_UhYLKHSegewE_486VESFMb7t_k-m1_CInumOg7B7sIVyTG8QOl2Ft93w-AM52hG7 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3o9AASOBOKWNn3EOHNCW1ZY-DnQr9RZsxyut2M1WbCNUTvwE_gp_hZ_AL2GcV7UghITUA8ckE8ePmfGXsf0NwHMlLbVaJjG1VsRC-TTOEu9ilVlER45aU2dvODhUo2Px9kSerMG37ixMww_RB9yCZdT-Ohh4CEhvX7CGYqPCUXLE0OHQW7uvcs-ff8K_tuWr3R0c4heMDd-MB6O4TSwQO55yGYu0kF4yP0H0kRTCUO2T1GgjuNCeTZSzzBhV0GySscIl2vOg-9JwjfOdEQnHcq_A1ZBGPND177y7YKxCfW6y14s0DqyvHU9kwrZX67s6D_4Gblexcj3ZDW_A966bmj0uH7aqM7vlPv_CIPlf9eNNuN5Cb_K6sZVbsObL27Ax6DLe3YE5Okc7LUMYAq2SDBZYtWkTLSVHfjb58eVrWCOf29k5QaxP6nOsi9OwFFFMqzkZoG9ekhDZJkPsFhQfVziLkaOao7f66IkpCzJEJBGKvAvHl9Lae7BeLkr_AIj0TkqvLVVWCZsV1meZK7ilXDrJtIkg7pQjdy1Xe0gZMssblmmWh0HL-0GL4GUvf9qwlPxRcrPTtbz1Vsucacq1QJWlETzrH2Pnh8UjU_pFhTIpevKaNyGC-42O9p_iCgtIRRIBqzXtL3XIA9tHf_XwX156Chuj8cF-vr97uPcIroX7YUsHVZuwjmPqHyNSPLNPatsk8P6ylfgnSOJtig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRQI2vB-BAkYCsUobP-MsWKAZopZChWgrdZfaiSONmMmMmEaorPgEPoVf4Rf4Eq7zqgaEkJC6YJnEcWzfh09s33MBnippqdUyCqm1IhTKxWESuTxUiUV0lFNrmuwNb_fU9qF4fSSP1uBbHwvT8kMMC27eMhp_7Q18UZRbZ6Sh2CcfSY4Q2se8dccqd93pJ_xpW77YGaOEnzGWvjoYbYddXoEw5zGXoYgL6SRzJYKPqBCGahfFRhvBhXasVLllxqiCJmXCijzSjnvVl4ZrnO6MiDjWewEuChUlPlnE-P0ZYRWqc5u8XsShJ33taSIjtrXa3tVp8DdsuwqVm7kuvQbf-1Fqj7h82KxP7Gb--RcCyf9pGK_D1Q54k5etpdyANVfdhMujPt_dLZiha7STyi9CoE2S0RybNmnXSsm-m5Y_vnz1O-QzOz0liPRJE8U6X_iNiGJSz8gIPfOS-HVtkuKoYPGDGucwst8w9NYfHTFVQVLEEb7K23B4Lr29A-vVvHL3gEiXS-m0pcoqYZPCuiTJC24pl7lk2gQQ9rqR5R1Tu08YMs1ajmmWeaFlg9ACeD6UX7QcJX8sudGrWtb5qmXGNOVaoMbSAJ4Mj3Hw_daRqdy8xjIx-vGGNSGAu62KDp_iCiuIRRQAaxTtL23IPNfHcHX_X156DJfejdPszc7e7gO44m_78xxUbcA6itQ9RJh4Yh81lkng-Lx1-Cdy6Gw5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+Coordination+Self%E2%80%90Assembly+for+Organopalladium+Cages+with+Fine%E2%80%90Tuned+Structure+and+Function&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Tian%2C+Chong%E2%80%90Bin&rft.au=Sun%2C+Qing%E2%80%90Fu&rft.date=2023-05-16&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=28&rft_id=info:doi/10.1002%2Fchem.202300195&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202300195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |