Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries

The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density ad...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 3; pp. e202113315 - n/a
Main Authors Guo, Can, Liu, Ming, Gao, Guang‐Kuo, Tian, Xi, Zhou, Jie, Dong, Long‐Zhang, Li, Qi, Chen, Yifa, Li, Shun‐Li, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.01.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. Covalent organic frameworks could have implications as microadditives of binders (≈1 wt % in cathode) and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives to obtain a high‐performance binder in Li−S batteries.
AbstractList The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. Covalent organic frameworks could have implications as microadditives of binders (≈1 wt % in cathode) and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives to obtain a high‐performance binder in Li−S batteries.
Author Zhou, Jie
Chen, Yifa
Liu, Ming
Lan, Ya‐Qian
Li, Qi
Dong, Long‐Zhang
Guo, Can
Gao, Guang‐Kuo
Li, Shun‐Li
Tian, Xi
Author_xml – sequence: 1
  givenname: Can
  surname: Guo
  fullname: Guo, Can
  organization: South China Normal University
– sequence: 2
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Nanjing Normal University
– sequence: 3
  givenname: Guang‐Kuo
  surname: Gao
  fullname: Gao, Guang‐Kuo
  organization: South China Normal University
– sequence: 4
  givenname: Xi
  surname: Tian
  fullname: Tian, Xi
  organization: Nanjing Normal University
– sequence: 5
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: South China Normal University
– sequence: 6
  givenname: Long‐Zhang
  surname: Dong
  fullname: Dong, Long‐Zhang
  organization: Nanjing Normal University
– sequence: 7
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: Nanjing Normal University
– sequence: 8
  givenname: Yifa
  surname: Chen
  fullname: Chen, Yifa
  email: chyf927821@163.com
  organization: Nanjing Normal University
– sequence: 9
  givenname: Shun‐Li
  surname: Li
  fullname: Li, Shun‐Li
  organization: Nanjing Normal University
– sequence: 10
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34716649$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEURi0URH6gpUSWaGhmsX1nxuNys0pIpA0pCLVle--Aw6yd2DNZ5Q2oeUSeBK82CVIkRGVLPufz1f0OyV6IAQl5y9mMMyY-muBxJpjgHIA3L8gBbwSvQErYK_caoJJdw_fJYc7Xhe861r4i-1BL3ra1OiB2HsbvydxOfhtMF_HODBhGepm-lWhHT5NZ4yamH_QsDkPc0KvJYqYm02MfVpjohXcpmtXKj_6uPPhAl_73z19f6LEZR0we82vysjdDxjcP5xH5enpytTirlpefzhfzZeVAQlMJrIGDUayXvTW2QbBWNi0IkE5Zx3sEdNjyTjEj-k4qAwyEY7ZuO7tyCo7Ih13uTYq3E-ZRr312OAwmYJyyFo1iTCrJWEHfP0Ov45RCmU6L8gNvWaOgUO8eqMmucaVvkl-bdK8ft1eAegeUFeScsNfOj2b0MYzJ-EFzprcl6W1J-qmkos2eaY_J_xTUTtj4Ae__Q-v55_OTv-4fO8SktA
CitedBy_id crossref_primary_10_1039_D4QM00180J
crossref_primary_10_1002_smm2_1309
crossref_primary_10_1002_adfm_202406985
crossref_primary_10_1073_pnas_2401175121
crossref_primary_10_1002_adma_202207074
crossref_primary_10_1039_D3IM00089C
crossref_primary_10_1002_adma_202310052
crossref_primary_10_1002_cnl2_31
crossref_primary_10_1002_anie_202209289
crossref_primary_10_1002_adma_202208846
crossref_primary_10_1002_anie_202206012
crossref_primary_10_1021_acsnano_2c04273
crossref_primary_10_1002_anie_202405920
crossref_primary_10_1039_D4NJ04982A
crossref_primary_10_26599_NRE_2023_9120094
crossref_primary_10_1002_smsc_202300056
crossref_primary_10_1016_j_jcis_2023_07_096
crossref_primary_10_1002_ange_202309046
crossref_primary_10_1002_adfm_202205031
crossref_primary_10_1021_acs_chemmater_3c02105
crossref_primary_10_1039_D3CE01318A
crossref_primary_10_1002_ange_202216073
crossref_primary_10_1016_j_arabjc_2023_105263
crossref_primary_10_1021_acsnano_3c01758
crossref_primary_10_1002_smll_202406731
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1002_adfm_202414159
crossref_primary_10_1002_anie_202210871
crossref_primary_10_1021_acsami_4c01160
crossref_primary_10_1039_D2QM01301K
crossref_primary_10_1021_jacs_4c04183
crossref_primary_10_1002_ange_202405920
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1149_1945_7111_acd816
crossref_primary_10_1002_ange_202211933
crossref_primary_10_1016_j_cej_2023_145056
crossref_primary_10_1039_D4TA00451E
crossref_primary_10_1021_jacs_2c10534
crossref_primary_10_1016_j_ensm_2024_103551
crossref_primary_10_1002_anie_202216073
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1002_adfm_202212759
crossref_primary_10_1002_ange_202206012
crossref_primary_10_1021_acsami_3c01558
crossref_primary_10_1021_acs_chemmater_4c02120
crossref_primary_10_1016_j_ccr_2022_214953
crossref_primary_10_1039_D4CC03563A
crossref_primary_10_1002_smll_202206616
crossref_primary_10_1002_cjoc_202401245
crossref_primary_10_1021_jacs_3c14833
crossref_primary_10_1002_anie_202211933
crossref_primary_10_1002_ange_202210871
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1002_sus2_110
crossref_primary_10_1002_smll_202306295
crossref_primary_10_1021_acs_chemmater_3c00983
crossref_primary_10_1039_D2TA06500B
crossref_primary_10_1002_smll_202405823
crossref_primary_10_1002_aenm_202202600
crossref_primary_10_1038_s41467_024_46291_y
crossref_primary_10_1002_bte2_20220010
crossref_primary_10_1002_adfm_202306990
crossref_primary_10_1007_s11426_023_1808_2
crossref_primary_10_1016_j_jcis_2023_04_115
crossref_primary_10_1002_ange_202209289
crossref_primary_10_1021_acsami_2c16133
crossref_primary_10_3390_ma16041635
crossref_primary_10_1002_anie_202309046
crossref_primary_10_1002_adma_202307786
crossref_primary_10_1016_j_mattod_2023_03_019
Cites_doi 10.1021/jacs.0c06485
10.1021/acs.chemrev.8b00241
10.1016/j.joule.2018.12.018
10.1002/aenm.202002271
10.1039/C4CP02475C
10.1039/D0CS00199F
10.1016/j.nanoen.2016.04.052
10.1002/adma.201905658
10.1126/science.1120411
10.1038/s41467-020-19070-8
10.1126/science.aal4373
10.1002/advs.201903168
10.1021/acs.chemmater.8b05365
10.1016/j.matchemphys.2019.01.032
10.1021/acs.chemrev.9b00550
10.1039/D0EE03181J
10.1002/anie.201209596
10.1016/j.scib.2021.05.001
10.1002/adfm.201907931
10.1038/s41565-020-00797-w
10.1002/aenm.202002508
10.1002/aenm.201802107
10.1002/adma.201606802
10.1021/acsami.0c13792
10.1021/acs.nanolett.9b04719
10.1002/aelm.201700098
10.1021/jacs.0c00553
10.1021/ja206846p
10.1002/adfm.201703947
10.1002/adfm.201808756
10.1021/acsami.5b04842
10.1002/ange.201209596
10.1038/s41467-021-23349-9
10.1016/j.ensm.2020.11.009
10.1002/adma.202100810
10.1002/adma.201605160
10.1021/acsami.0c08984
10.1038/s41467-018-03116-z
10.1038/nmat3238
10.1002/aenm.201702889
10.1021/nn405887k
10.1021/jacs.9b11169
10.1002/anie.201908513
10.1021/acsami.9b17458
10.1039/C9EE02049G
10.1002/aenm.202003054
10.1002/adma.201707483
10.1002/aenm.201601250
10.1016/j.jechem.2019.02.001
10.1021/jacs.9b08147
10.1002/smtd.201900338
10.1038/nmat2460
10.1038/nchem.1802
10.1002/adma.202007549
10.1038/nenergy.2016.132
10.1002/ange.201908513
10.1021/acscentsci.9b00846
10.1038/nenergy.2016.94
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202113315
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 34716649
10_1002_anie_202113315
ANIE202113315
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-2e4313a90f7fbab5e3bb7563237c9bc1fe3ece61890a2f879a3032c0b468bdc93
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:39:46 EDT 2025
Fri Jul 25 10:33:23 EDT 2025
Wed Feb 19 02:26:47 EST 2025
Tue Jul 01 01:18:11 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Wed Jan 22 16:27:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords microadditives
anthraquinone
covalent organic frameworks
Li−S batteries
batteries
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-2e4313a90f7fbab5e3bb7563237c9bc1fe3ece61890a2f879a3032c0b468bdc93
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PMID 34716649
PQID 2618160593
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2590079700
proquest_journals_2618160593
pubmed_primary_34716649
crossref_citationtrail_10_1002_anie_202113315
crossref_primary_10_1002_anie_202113315
wiley_primary_10_1002_anie_202113315_ANIE202113315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 17, 2022
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: January 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 3
2017; 3
2019; 5
2021; 66
2019; 31
2020; 20
2020; 120
2020; 142
2019; 11
2017; 27
2019; 39
2019; 226
2020; 13
2017; 29
2020; 12
2020; 11
2020; 10
2020; 32
2013; 5
2015; 7
2012; 11
2017; 357
2011; 133
2019 2019; 58 131
2013 2013; 52 125
2021; 14
2020; 7
2021; 35
2021; 16
2016; 6
2018; 9
2018; 8
2016; 1
2021; 12
2021; 33
2021; 11
2020; 30
2021
2018; 118
2015; 310
2014; 16
2020; 49
2009; 8
2019; 29
2018; 30
2014; 8
2016; 26
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_70_1
e_1_2_6_30_2
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_62_2
e_1_2_6_64_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_1
e_1_2_6_26_2
e_1_2_6_68_2
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_1
e_1_2_6_31_1
e_1_2_6_71_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_61_2
e_1_2_6_63_1
e_1_2_6_42_2
e_1_2_6_65_1
e_1_2_6_40_2
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_67_2
e_1_2_6_69_1
e_1_2_6_25_2
Sun T. (e_1_2_6_45_1)
References_xml – volume: 118
  start-page: 8936
  year: 2018
  end-page: 8982
  publication-title: Chem. Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 48957
  year: 2020
  end-page: 48968
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 241
  year: 2012
  end-page: 249
  publication-title: Nat. Mater.
– volume: 58 131
  start-page: 16795 16951
  year: 2019 2019
  end-page: 16799 16955
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16132
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 872
  year: 2019
  end-page: 884
  publication-title: Joule
– volume: 11
  start-page: 5215
  year: 2020
  publication-title: Nat. Commun.
– volume: 16
  start-page: 20347
  year: 2014
  end-page: 20359
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 1590
  year: 2014
  end-page: 1600
  publication-title: ACS Nano
– volume: 26
  start-page: 43
  year: 2016
  end-page: 46
  publication-title: Nano Energy
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  publication-title: Nat. Mater.
– volume: 11
  start-page: 47956
  year: 2019
  end-page: 47962
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  publication-title: J. Am. Chem. Soc.
– start-page: 2
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16094
  year: 2016
  publication-title: Nat. Energy
– volume: 14
  start-page: 1835
  year: 2021
  end-page: 1853
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  publication-title: Chem. Rev.
– volume: 142
  start-page: 4621
  year: 2020
  end-page: 4630
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 279
  year: 2017
  end-page: 283
  publication-title: Science
– volume: 142
  start-page: 16
  year: 2020
  end-page: 20
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 166
  year: 2021
  end-page: 173
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 3102
  year: 2021
  publication-title: Nat. Commun.
– year: 2021
  publication-title: Adv. Mater.
– volume: 310
  start-page: 1166
  year: 2015
  end-page: 1170
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 34990
  year: 2020
  end-page: 34998
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 18508
  year: 2015
  end-page: 18518
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 2852
  year: 2020
  end-page: 2868
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 705
  year: 2018
  publication-title: Nat. Commun.
– volume: 52 125
  start-page: 1654 1698
  year: 2013 2013
  end-page: 1659 1703
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 1042
  year: 2013
  end-page: 1048
  publication-title: Nat. Chem.
– volume: 31
  start-page: 3929
  year: 2019
  end-page: 3940
  publication-title: Chem. Mater.
– volume: 66
  start-page: 1659
  year: 2021
  end-page: 1668
  publication-title: Sci. Bull.
– volume: 5
  start-page: 1876
  year: 2019
  end-page: 1883
  publication-title: ACS Cent. Sci.
– volume: 13
  start-page: 1049
  year: 2020
  end-page: 1075
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 35
  start-page: 88
  year: 2021
  end-page: 98
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 39
  start-page: 88
  year: 2019
  end-page: 100
  publication-title: J. Energy Chem.
– volume: 226
  start-page: 244
  year: 2019
  end-page: 249
  publication-title: Mater. Chem. Phys.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 142
  start-page: 4932
  year: 2020
  end-page: 4943
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 13334
  year: 2020
  end-page: 13338
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1252
  year: 2020
  end-page: 1261
  publication-title: Nano Lett.
– ident: e_1_2_6_44_2
  doi: 10.1021/jacs.0c06485
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.chemrev.8b00241
– ident: e_1_2_6_31_1
– start-page: 2
  ident: e_1_2_6_45_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_6_73_2
  doi: 10.1016/j.joule.2018.12.018
– ident: e_1_2_6_65_1
  doi: 10.1002/aenm.202002271
– ident: e_1_2_6_18_2
  doi: 10.1039/C4CP02475C
– ident: e_1_2_6_29_2
  doi: 10.1039/D0CS00199F
– ident: e_1_2_6_25_2
  doi: 10.1016/j.nanoen.2016.04.052
– ident: e_1_2_6_62_2
  doi: 10.1002/adma.201905658
– ident: e_1_2_6_71_1
– ident: e_1_2_6_28_2
  doi: 10.1126/science.1120411
– ident: e_1_2_6_11_2
  doi: 10.1038/s41467-020-19070-8
– ident: e_1_2_6_21_2
  doi: 10.1126/science.aal4373
– ident: e_1_2_6_36_1
– ident: e_1_2_6_64_1
  doi: 10.1002/advs.201903168
– ident: e_1_2_6_53_2
  doi: 10.1021/acs.chemmater.8b05365
– ident: e_1_2_6_50_2
  doi: 10.1016/j.matchemphys.2019.01.032
– ident: e_1_2_6_30_2
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_6_33_2
  doi: 10.1039/D0EE03181J
– ident: e_1_2_6_59_1
  doi: 10.1002/anie.201209596
– ident: e_1_2_6_51_2
  doi: 10.1016/j.scib.2021.05.001
– ident: e_1_2_6_66_1
– ident: e_1_2_6_17_2
  doi: 10.1002/adfm.201907931
– ident: e_1_2_6_4_2
  doi: 10.1038/s41565-020-00797-w
– ident: e_1_2_6_23_1
  doi: 10.1002/aenm.202002508
– ident: e_1_2_6_20_2
  doi: 10.1002/aenm.201802107
– ident: e_1_2_6_68_2
  doi: 10.1002/adma.201606802
– ident: e_1_2_6_42_2
  doi: 10.1021/acsami.0c13792
– ident: e_1_2_6_67_2
  doi: 10.1021/acs.nanolett.9b04719
– ident: e_1_2_6_56_1
  doi: 10.1002/aelm.201700098
– ident: e_1_2_6_70_1
  doi: 10.1021/jacs.0c00553
– ident: e_1_2_6_43_2
  doi: 10.1021/ja206846p
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.201703947
– ident: e_1_2_6_63_1
  doi: 10.1002/adfm.201808756
– ident: e_1_2_6_54_2
  doi: 10.1021/acsami.5b04842
– ident: e_1_2_6_59_2
  doi: 10.1002/ange.201209596
– ident: e_1_2_6_9_2
  doi: 10.1038/s41467-021-23349-9
– ident: e_1_2_6_72_2
  doi: 10.1016/j.ensm.2020.11.009
– ident: e_1_2_6_10_2
  doi: 10.1002/adma.202100810
– ident: e_1_2_6_1_1
– ident: e_1_2_6_26_2
  doi: 10.1002/adma.201605160
– ident: e_1_2_6_38_2
  doi: 10.1021/acsami.0c08984
– ident: e_1_2_6_69_1
  doi: 10.1038/s41467-018-03116-z
– ident: e_1_2_6_58_1
  doi: 10.1038/nmat3238
– ident: e_1_2_6_15_2
  doi: 10.1002/aenm.201702889
– ident: e_1_2_6_57_1
  doi: 10.1021/nn405887k
– ident: e_1_2_6_34_2
  doi: 10.1021/jacs.9b11169
– ident: e_1_2_6_60_1
– ident: e_1_2_6_55_1
  doi: 10.1002/anie.201908513
– ident: e_1_2_6_52_1
– ident: e_1_2_6_61_2
  doi: 10.1021/acsami.9b17458
– ident: e_1_2_6_6_2
  doi: 10.1039/C9EE02049G
– ident: e_1_2_6_32_2
  doi: 10.1002/aenm.202003054
– ident: e_1_2_6_41_1
– ident: e_1_2_6_48_1
  doi: 10.1002/adma.201707483
– ident: e_1_2_6_19_1
– ident: e_1_2_6_37_2
  doi: 10.1002/aenm.201601250
– ident: e_1_2_6_5_1
– ident: e_1_2_6_47_1
  doi: 10.1016/j.jechem.2019.02.001
– ident: e_1_2_6_27_1
– ident: e_1_2_6_35_2
  doi: 10.1021/jacs.9b08147
– ident: e_1_2_6_24_1
– ident: e_1_2_6_40_2
  doi: 10.1002/smtd.201900338
– ident: e_1_2_6_2_2
  doi: 10.1038/nmat2460
– ident: e_1_2_6_22_2
  doi: 10.1038/nchem.1802
– ident: e_1_2_6_13_1
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.202007549
– ident: e_1_2_6_16_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_7_2
  doi: 10.1038/nenergy.2016.132
– ident: e_1_2_6_55_2
  doi: 10.1002/ange.201908513
– ident: e_1_2_6_39_2
  doi: 10.1021/acscentsci.9b00846
– ident: e_1_2_6_3_2
  doi: 10.1038/nenergy.2016.94
– ident: e_1_2_6_49_1
SSID ssj0028806
Score 2.6195107
Snippet The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high...
The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202113315
SubjectTerms Anthraquinone
Anthraquinones
Basic converters
batteries
Binders
Cathodes
covalent organic frameworks
Density
Lithium
Li−S batteries
Low conductivity
microadditives
Portable equipment
Sulfur
Tubes
Title Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202113315
https://www.ncbi.nlm.nih.gov/pubmed/34716649
https://www.proquest.com/docview/2618160593
https://www.proquest.com/docview/2590079700
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvdALr_IIFORKlTi59SOx42NZdbVUbQ_QSr1FtteRVqAsNBsh8Qs48xP5JXjiTcqCEBIck9iKY894ZpyZ7wM4ULUpnBeaGlFamms3pzbeo3MuEQ-s5HUfKJ5fqNlVfnpdXP9UxZ_wIcYDN9SMfr9GBbeuPboFDcUK7BjfxQBGyr7KHBO20Ct6O-JHiSicqbxISoos9ANqIxNHm903rdJvruam59qbnuk9sMOgU8bJ-8Nu5Q79l1_wHP_nq-7D3bVfSo6TID2ArdA8hDuTgQ5uF1xPqWA_dYtm2QQyWUYRjQaLpGJOT6ZDlheZRdFafiaXnQstsS15jYiMN-QcU_8wfQk32JYsGnK2-P712zuSID5jxP4IrqYnl5MZXRM0UC-1LKgI0f2Q1rBa1866IkjndKGkkNob53kdZPBB8dIwK-pSGxsNpvDM5ap0c2_kY9jGMT8FwgvvleBSc17nuWTWlvncaeFzJZkpbQZ0WKDKr9HLkUTjQ5Vwl0WFM1eNM5fBq7H9x4Tb8ceWe8N6V2v9basYV5ZcId1hBvvj4zjj-DvFNmHZxTZIuKqNZiyDJ0lOxlfJaPOVyk0Gol_tv4yhOr54czJePfuXTs9hR2BlBuOU6z3YXt104UX0l1buZa8TPwBPdAtT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5bBceD8CCxgJiZN3_Ujs-LhUW3Wh7QG6ErfIdh2pAqWwbYTEL-DMT-SX4ImboIIQEhyT2Ipjz3hmnJnvA3iualM4LzQ1orQ0125JbbxHl1wiHljJ6y5QnM3V5CJ_9a7oswmxFibhQwwHbqgZ3X6NCo4H0ic_UUOxBDsGeDGCkRLLzK8irXcXVb0ZEKREFM9UYCQlRR76HreRiZP9_vt26Tdnc9937YzP-Aa4ftgp5-T9cbt1x_7LL4iO__VdN-H6zjUlp0mWbsGV0NyGw1HPCHcHXMeqYD-1q2bdBDJaRymNNoukek5Pxn2iF5lE6Vp_JovWhQ2xG_ISQRkvyQyz_zCDCffYDVk1ZLr6_vXbW5JQPmPQfhcuxmeL0YTuOBqol1oWVITogUhrWK1rZ10RpHO6UFJI7Y3zvA4y-KB4aZgVdamNjTZTeOZyVbqlN_IeHOCYHwDhhfdKcKk5r_NcMmvLfOm08LmSzJQ2A9qvUOV3AObIo_GhStDLosKZq4aZy-DF0P5jgu74Y8ujfsGrnQpvqhhallwh42EGz4bHccbxj4ptwrqNbZBzVRvNWAb3k6AMr5LR7CuVmwxEt9x_GUN1Oj8_G64e_kunp3A4Wcym1fR8_voRXBNYqME45foIDraXbXgc3aete9IpyA8Exg9u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALlHeggJGQOLn1I_Hj2G672kK7QtBKvUW240grULZ0N0LqL-iZn8gvwRNvAgtCSHBMYiuOPeOZcWa-D6FXsjaF81wRw7UluXIVsfEeqZgAPDDN6i5QPJ7KyWn-5qw4-6mKP-FDDAduoBndfg0Kfl7VOz9AQ6ECO8Z3MYARAqrMr-eSapDr_fcDgBSP0pnqi4QgQEPfwzZSvrPef90s_eZrrruune0Z30G2H3VKOfm43S7dtr_8BdDxfz5rE91eOaZ4N0nSXXQtNPfQzVHPB3cfuY5TwX5uZ828CXg0jzIaLRZO1Zwej_s0LzyJsjX_gk9aFxbYLvAeQDJe4GPI_YP8JdhhF3jW4KPZt6uvH3DC-Iwh-wN0Oj44GU3IiqGBeKFEQXiI_oewhtaqdtYVQTinCim4UN44z-oggg-SaUMtr7UyNlpM7qnLpXaVN-Ih2oAxP0aYFd5LzoRirM5zQa3VeeUU97kU1GibIdIvUOlX8OXAovGpTMDLvISZK4eZy9Drof15Au74Y8utfr3LlQIvyhhYaiaB7zBDL4fHccbhf4ptwryNbYBxVRlFaYYeJTkZXiWi0ZcyNxni3Wr_ZQzl7vTwYLh68i-dXqAb7_bH5dHh9O1TdItDlQZlhKkttLG8aMOz6Dst3fNOPb4D3mcOJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthraquinone+Covalent+Organic+Framework+Hollow+Tubes+as+Binder+Microadditives+in+Li-S+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Can&rft.au=Liu%2C+Ming&rft.au=Gao%2C+Guang-Kuo&rft.au=Tian%2C+Xi&rft.date=2022-01-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=3&rft.spage=e202113315&rft_id=info:doi/10.1002%2Fanie.202113315&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon