Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries
The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density ad...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 3; pp. e202113315 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.01.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
Covalent organic frameworks could have implications as microadditives of binders (≈1 wt % in cathode) and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives to obtain a high‐performance binder in Li−S batteries. |
---|---|
AbstractList | The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low‐density advantage to obtain lightweight, portable, or high‐energy‐density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode. Covalent organic frameworks could have implications as microadditives of binders (≈1 wt % in cathode) and a series of anthraquinone‐COF based hollow tubes have been prepared as model microadditives to obtain a high‐performance binder in Li−S batteries. |
Author | Zhou, Jie Chen, Yifa Liu, Ming Lan, Ya‐Qian Li, Qi Dong, Long‐Zhang Guo, Can Gao, Guang‐Kuo Li, Shun‐Li Tian, Xi |
Author_xml | – sequence: 1 givenname: Can surname: Guo fullname: Guo, Can organization: South China Normal University – sequence: 2 givenname: Ming surname: Liu fullname: Liu, Ming organization: Nanjing Normal University – sequence: 3 givenname: Guang‐Kuo surname: Gao fullname: Gao, Guang‐Kuo organization: South China Normal University – sequence: 4 givenname: Xi surname: Tian fullname: Tian, Xi organization: Nanjing Normal University – sequence: 5 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: South China Normal University – sequence: 6 givenname: Long‐Zhang surname: Dong fullname: Dong, Long‐Zhang organization: Nanjing Normal University – sequence: 7 givenname: Qi surname: Li fullname: Li, Qi organization: Nanjing Normal University – sequence: 8 givenname: Yifa surname: Chen fullname: Chen, Yifa email: chyf927821@163.com organization: Nanjing Normal University – sequence: 9 givenname: Shun‐Li surname: Li fullname: Li, Shun‐Li organization: Nanjing Normal University – sequence: 10 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@njnu.edu.cn, yqlan@m.scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34716649$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEURi0URH6gpUSWaGhmsX1nxuNys0pIpA0pCLVle--Aw6yd2DNZ5Q2oeUSeBK82CVIkRGVLPufz1f0OyV6IAQl5y9mMMyY-muBxJpjgHIA3L8gBbwSvQErYK_caoJJdw_fJYc7Xhe861r4i-1BL3ra1OiB2HsbvydxOfhtMF_HODBhGepm-lWhHT5NZ4yamH_QsDkPc0KvJYqYm02MfVpjohXcpmtXKj_6uPPhAl_73z19f6LEZR0we82vysjdDxjcP5xH5enpytTirlpefzhfzZeVAQlMJrIGDUayXvTW2QbBWNi0IkE5Zx3sEdNjyTjEj-k4qAwyEY7ZuO7tyCo7Ih13uTYq3E-ZRr312OAwmYJyyFo1iTCrJWEHfP0Ov45RCmU6L8gNvWaOgUO8eqMmucaVvkl-bdK8ft1eAegeUFeScsNfOj2b0MYzJ-EFzprcl6W1J-qmkos2eaY_J_xTUTtj4Ae__Q-v55_OTv-4fO8SktA |
CitedBy_id | crossref_primary_10_1039_D4QM00180J crossref_primary_10_1002_smm2_1309 crossref_primary_10_1002_adfm_202406985 crossref_primary_10_1073_pnas_2401175121 crossref_primary_10_1002_adma_202207074 crossref_primary_10_1039_D3IM00089C crossref_primary_10_1002_adma_202310052 crossref_primary_10_1002_cnl2_31 crossref_primary_10_1002_anie_202209289 crossref_primary_10_1002_adma_202208846 crossref_primary_10_1002_anie_202206012 crossref_primary_10_1021_acsnano_2c04273 crossref_primary_10_1002_anie_202405920 crossref_primary_10_1039_D4NJ04982A crossref_primary_10_26599_NRE_2023_9120094 crossref_primary_10_1002_smsc_202300056 crossref_primary_10_1016_j_jcis_2023_07_096 crossref_primary_10_1002_ange_202309046 crossref_primary_10_1002_adfm_202205031 crossref_primary_10_1021_acs_chemmater_3c02105 crossref_primary_10_1039_D3CE01318A crossref_primary_10_1002_ange_202216073 crossref_primary_10_1016_j_arabjc_2023_105263 crossref_primary_10_1021_acsnano_3c01758 crossref_primary_10_1002_smll_202406731 crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1002_adfm_202414159 crossref_primary_10_1002_anie_202210871 crossref_primary_10_1021_acsami_4c01160 crossref_primary_10_1039_D2QM01301K crossref_primary_10_1021_jacs_4c04183 crossref_primary_10_1002_ange_202405920 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1149_1945_7111_acd816 crossref_primary_10_1002_ange_202211933 crossref_primary_10_1016_j_cej_2023_145056 crossref_primary_10_1039_D4TA00451E crossref_primary_10_1021_jacs_2c10534 crossref_primary_10_1016_j_ensm_2024_103551 crossref_primary_10_1002_anie_202216073 crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1002_adfm_202212759 crossref_primary_10_1002_ange_202206012 crossref_primary_10_1021_acsami_3c01558 crossref_primary_10_1021_acs_chemmater_4c02120 crossref_primary_10_1016_j_ccr_2022_214953 crossref_primary_10_1039_D4CC03563A crossref_primary_10_1002_smll_202206616 crossref_primary_10_1002_cjoc_202401245 crossref_primary_10_1021_jacs_3c14833 crossref_primary_10_1002_anie_202211933 crossref_primary_10_1002_ange_202210871 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1002_sus2_110 crossref_primary_10_1002_smll_202306295 crossref_primary_10_1021_acs_chemmater_3c00983 crossref_primary_10_1039_D2TA06500B crossref_primary_10_1002_smll_202405823 crossref_primary_10_1002_aenm_202202600 crossref_primary_10_1038_s41467_024_46291_y crossref_primary_10_1002_bte2_20220010 crossref_primary_10_1002_adfm_202306990 crossref_primary_10_1007_s11426_023_1808_2 crossref_primary_10_1016_j_jcis_2023_04_115 crossref_primary_10_1002_ange_202209289 crossref_primary_10_1021_acsami_2c16133 crossref_primary_10_3390_ma16041635 crossref_primary_10_1002_anie_202309046 crossref_primary_10_1002_adma_202307786 crossref_primary_10_1016_j_mattod_2023_03_019 |
Cites_doi | 10.1021/jacs.0c06485 10.1021/acs.chemrev.8b00241 10.1016/j.joule.2018.12.018 10.1002/aenm.202002271 10.1039/C4CP02475C 10.1039/D0CS00199F 10.1016/j.nanoen.2016.04.052 10.1002/adma.201905658 10.1126/science.1120411 10.1038/s41467-020-19070-8 10.1126/science.aal4373 10.1002/advs.201903168 10.1021/acs.chemmater.8b05365 10.1016/j.matchemphys.2019.01.032 10.1021/acs.chemrev.9b00550 10.1039/D0EE03181J 10.1002/anie.201209596 10.1016/j.scib.2021.05.001 10.1002/adfm.201907931 10.1038/s41565-020-00797-w 10.1002/aenm.202002508 10.1002/aenm.201802107 10.1002/adma.201606802 10.1021/acsami.0c13792 10.1021/acs.nanolett.9b04719 10.1002/aelm.201700098 10.1021/jacs.0c00553 10.1021/ja206846p 10.1002/adfm.201703947 10.1002/adfm.201808756 10.1021/acsami.5b04842 10.1002/ange.201209596 10.1038/s41467-021-23349-9 10.1016/j.ensm.2020.11.009 10.1002/adma.202100810 10.1002/adma.201605160 10.1021/acsami.0c08984 10.1038/s41467-018-03116-z 10.1038/nmat3238 10.1002/aenm.201702889 10.1021/nn405887k 10.1021/jacs.9b11169 10.1002/anie.201908513 10.1021/acsami.9b17458 10.1039/C9EE02049G 10.1002/aenm.202003054 10.1002/adma.201707483 10.1002/aenm.201601250 10.1016/j.jechem.2019.02.001 10.1021/jacs.9b08147 10.1002/smtd.201900338 10.1038/nmat2460 10.1038/nchem.1802 10.1002/adma.202007549 10.1038/nenergy.2016.132 10.1002/ange.201908513 10.1021/acscentsci.9b00846 10.1038/nenergy.2016.94 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202113315 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 34716649 10_1002_anie_202113315 ANIE202113315 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-2e4313a90f7fbab5e3bb7563237c9bc1fe3ece61890a2f879a3032c0b468bdc93 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:39:46 EDT 2025 Fri Jul 25 10:33:23 EDT 2025 Wed Feb 19 02:26:47 EST 2025 Tue Jul 01 01:18:11 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Wed Jan 22 16:27:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microadditives anthraquinone covalent organic frameworks Li−S batteries batteries |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-2e4313a90f7fbab5e3bb7563237c9bc1fe3ece61890a2f879a3032c0b468bdc93 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PMID | 34716649 |
PQID | 2618160593 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2590079700 proquest_journals_2618160593 pubmed_primary_34716649 crossref_citationtrail_10_1002_anie_202113315 crossref_primary_10_1002_anie_202113315 wiley_primary_10_1002_anie_202113315_ANIE202113315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 17, 2022 |
PublicationDateYYYYMMDD | 2022-01-17 |
PublicationDate_xml | – month: 01 year: 2022 text: January 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 3 2017; 3 2019; 5 2021; 66 2019; 31 2020; 20 2020; 120 2020; 142 2019; 11 2017; 27 2019; 39 2019; 226 2020; 13 2017; 29 2020; 12 2020; 11 2020; 10 2020; 32 2013; 5 2015; 7 2012; 11 2017; 357 2011; 133 2019 2019; 58 131 2013 2013; 52 125 2021; 14 2020; 7 2021; 35 2021; 16 2016; 6 2018; 9 2018; 8 2016; 1 2021; 12 2021; 33 2021; 11 2020; 30 2021 2018; 118 2015; 310 2014; 16 2020; 49 2009; 8 2019; 29 2018; 30 2014; 8 2016; 26 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_70_1 e_1_2_6_30_2 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_62_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_1 e_1_2_6_26_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_52_1 e_1_2_6_31_1 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_61_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_40_2 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_67_2 e_1_2_6_69_1 e_1_2_6_25_2 Sun T. (e_1_2_6_45_1) |
References_xml | – volume: 118 start-page: 8936 year: 2018 end-page: 8982 publication-title: Chem. Rev. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 48957 year: 2020 end-page: 48968 publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 241 year: 2012 end-page: 249 publication-title: Nat. Mater. – volume: 58 131 start-page: 16795 16951 year: 2019 2019 end-page: 16799 16955 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16132 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 872 year: 2019 end-page: 884 publication-title: Joule – volume: 11 start-page: 5215 year: 2020 publication-title: Nat. Commun. – volume: 16 start-page: 20347 year: 2014 end-page: 20359 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 1590 year: 2014 end-page: 1600 publication-title: ACS Nano – volume: 26 start-page: 43 year: 2016 end-page: 46 publication-title: Nano Energy – volume: 8 start-page: 500 year: 2009 end-page: 506 publication-title: Nat. Mater. – volume: 11 start-page: 47956 year: 2019 end-page: 47962 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 publication-title: J. Am. Chem. Soc. – start-page: 2 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16094 year: 2016 publication-title: Nat. Energy – volume: 14 start-page: 1835 year: 2021 end-page: 1853 publication-title: Energy Environ. Sci. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 publication-title: Chem. Rev. – volume: 142 start-page: 4621 year: 2020 end-page: 4630 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 279 year: 2017 end-page: 283 publication-title: Science – volume: 142 start-page: 16 year: 2020 end-page: 20 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 166 year: 2021 end-page: 173 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 3102 year: 2021 publication-title: Nat. Commun. – year: 2021 publication-title: Adv. Mater. – volume: 310 start-page: 1166 year: 2015 end-page: 1170 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 34990 year: 2020 end-page: 34998 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 18508 year: 2015 end-page: 18518 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 2852 year: 2020 end-page: 2868 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 705 year: 2018 publication-title: Nat. Commun. – volume: 52 125 start-page: 1654 1698 year: 2013 2013 end-page: 1659 1703 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 1042 year: 2013 end-page: 1048 publication-title: Nat. Chem. – volume: 31 start-page: 3929 year: 2019 end-page: 3940 publication-title: Chem. Mater. – volume: 66 start-page: 1659 year: 2021 end-page: 1668 publication-title: Sci. Bull. – volume: 5 start-page: 1876 year: 2019 end-page: 1883 publication-title: ACS Cent. Sci. – volume: 13 start-page: 1049 year: 2020 end-page: 1075 publication-title: Energy Environ. Sci. – volume: 3 year: 2019 publication-title: Small Methods – volume: 35 start-page: 88 year: 2021 end-page: 98 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 39 start-page: 88 year: 2019 end-page: 100 publication-title: J. Energy Chem. – volume: 226 start-page: 244 year: 2019 end-page: 249 publication-title: Mater. Chem. Phys. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 142 start-page: 4932 year: 2020 end-page: 4943 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 13334 year: 2020 end-page: 13338 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 1252 year: 2020 end-page: 1261 publication-title: Nano Lett. – ident: e_1_2_6_44_2 doi: 10.1021/jacs.0c06485 – ident: e_1_2_6_14_2 doi: 10.1021/acs.chemrev.8b00241 – ident: e_1_2_6_31_1 – start-page: 2 ident: e_1_2_6_45_1 publication-title: Adv. Energy Mater. – ident: e_1_2_6_73_2 doi: 10.1016/j.joule.2018.12.018 – ident: e_1_2_6_65_1 doi: 10.1002/aenm.202002271 – ident: e_1_2_6_18_2 doi: 10.1039/C4CP02475C – ident: e_1_2_6_29_2 doi: 10.1039/D0CS00199F – ident: e_1_2_6_25_2 doi: 10.1016/j.nanoen.2016.04.052 – ident: e_1_2_6_62_2 doi: 10.1002/adma.201905658 – ident: e_1_2_6_71_1 – ident: e_1_2_6_28_2 doi: 10.1126/science.1120411 – ident: e_1_2_6_11_2 doi: 10.1038/s41467-020-19070-8 – ident: e_1_2_6_21_2 doi: 10.1126/science.aal4373 – ident: e_1_2_6_36_1 – ident: e_1_2_6_64_1 doi: 10.1002/advs.201903168 – ident: e_1_2_6_53_2 doi: 10.1021/acs.chemmater.8b05365 – ident: e_1_2_6_50_2 doi: 10.1016/j.matchemphys.2019.01.032 – ident: e_1_2_6_30_2 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_6_33_2 doi: 10.1039/D0EE03181J – ident: e_1_2_6_59_1 doi: 10.1002/anie.201209596 – ident: e_1_2_6_51_2 doi: 10.1016/j.scib.2021.05.001 – ident: e_1_2_6_66_1 – ident: e_1_2_6_17_2 doi: 10.1002/adfm.201907931 – ident: e_1_2_6_4_2 doi: 10.1038/s41565-020-00797-w – ident: e_1_2_6_23_1 doi: 10.1002/aenm.202002508 – ident: e_1_2_6_20_2 doi: 10.1002/aenm.201802107 – ident: e_1_2_6_68_2 doi: 10.1002/adma.201606802 – ident: e_1_2_6_42_2 doi: 10.1021/acsami.0c13792 – ident: e_1_2_6_67_2 doi: 10.1021/acs.nanolett.9b04719 – ident: e_1_2_6_56_1 doi: 10.1002/aelm.201700098 – ident: e_1_2_6_70_1 doi: 10.1021/jacs.0c00553 – ident: e_1_2_6_43_2 doi: 10.1021/ja206846p – ident: e_1_2_6_46_1 doi: 10.1002/adfm.201703947 – ident: e_1_2_6_63_1 doi: 10.1002/adfm.201808756 – ident: e_1_2_6_54_2 doi: 10.1021/acsami.5b04842 – ident: e_1_2_6_59_2 doi: 10.1002/ange.201209596 – ident: e_1_2_6_9_2 doi: 10.1038/s41467-021-23349-9 – ident: e_1_2_6_72_2 doi: 10.1016/j.ensm.2020.11.009 – ident: e_1_2_6_10_2 doi: 10.1002/adma.202100810 – ident: e_1_2_6_1_1 – ident: e_1_2_6_26_2 doi: 10.1002/adma.201605160 – ident: e_1_2_6_38_2 doi: 10.1021/acsami.0c08984 – ident: e_1_2_6_69_1 doi: 10.1038/s41467-018-03116-z – ident: e_1_2_6_58_1 doi: 10.1038/nmat3238 – ident: e_1_2_6_15_2 doi: 10.1002/aenm.201702889 – ident: e_1_2_6_57_1 doi: 10.1021/nn405887k – ident: e_1_2_6_34_2 doi: 10.1021/jacs.9b11169 – ident: e_1_2_6_60_1 – ident: e_1_2_6_55_1 doi: 10.1002/anie.201908513 – ident: e_1_2_6_52_1 – ident: e_1_2_6_61_2 doi: 10.1021/acsami.9b17458 – ident: e_1_2_6_6_2 doi: 10.1039/C9EE02049G – ident: e_1_2_6_32_2 doi: 10.1002/aenm.202003054 – ident: e_1_2_6_41_1 – ident: e_1_2_6_48_1 doi: 10.1002/adma.201707483 – ident: e_1_2_6_19_1 – ident: e_1_2_6_37_2 doi: 10.1002/aenm.201601250 – ident: e_1_2_6_5_1 – ident: e_1_2_6_47_1 doi: 10.1016/j.jechem.2019.02.001 – ident: e_1_2_6_27_1 – ident: e_1_2_6_35_2 doi: 10.1021/jacs.9b08147 – ident: e_1_2_6_24_1 – ident: e_1_2_6_40_2 doi: 10.1002/smtd.201900338 – ident: e_1_2_6_2_2 doi: 10.1038/nmat2460 – ident: e_1_2_6_22_2 doi: 10.1038/nchem.1802 – ident: e_1_2_6_13_1 – ident: e_1_2_6_12_1 doi: 10.1002/adma.202007549 – ident: e_1_2_6_16_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_7_2 doi: 10.1038/nenergy.2016.132 – ident: e_1_2_6_55_2 doi: 10.1002/ange.201908513 – ident: e_1_2_6_39_2 doi: 10.1021/acscentsci.9b00846 – ident: e_1_2_6_3_2 doi: 10.1038/nenergy.2016.94 – ident: e_1_2_6_49_1 |
SSID | ssj0028806 |
Score | 2.6195107 |
Snippet | The exploration of new application forms of covalent organic frameworks (COFs) in Li−S batteries that can overcome drawbacks like low conductivity or high... The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202113315 |
SubjectTerms | Anthraquinone Anthraquinones Basic converters batteries Binders Cathodes covalent organic frameworks Density Lithium Li−S batteries Low conductivity microadditives Portable equipment Sulfur Tubes |
Title | Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202113315 https://www.ncbi.nlm.nih.gov/pubmed/34716649 https://www.proquest.com/docview/2618160593 https://www.proquest.com/docview/2590079700 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvdALr_IIFORKlTi59SOx42NZdbVUbQ_QSr1FtteRVqAsNBsh8Qs48xP5JXjiTcqCEBIck9iKY894ZpyZ7wM4ULUpnBeaGlFamms3pzbeo3MuEQ-s5HUfKJ5fqNlVfnpdXP9UxZ_wIcYDN9SMfr9GBbeuPboFDcUK7BjfxQBGyr7KHBO20Ct6O-JHiSicqbxISoos9ANqIxNHm903rdJvruam59qbnuk9sMOgU8bJ-8Nu5Q79l1_wHP_nq-7D3bVfSo6TID2ArdA8hDuTgQ5uF1xPqWA_dYtm2QQyWUYRjQaLpGJOT6ZDlheZRdFafiaXnQstsS15jYiMN-QcU_8wfQk32JYsGnK2-P712zuSID5jxP4IrqYnl5MZXRM0UC-1LKgI0f2Q1rBa1866IkjndKGkkNob53kdZPBB8dIwK-pSGxsNpvDM5ap0c2_kY9jGMT8FwgvvleBSc17nuWTWlvncaeFzJZkpbQZ0WKDKr9HLkUTjQ5Vwl0WFM1eNM5fBq7H9x4Tb8ceWe8N6V2v9basYV5ZcId1hBvvj4zjj-DvFNmHZxTZIuKqNZiyDJ0lOxlfJaPOVyk0Gol_tv4yhOr54czJePfuXTs9hR2BlBuOU6z3YXt104UX0l1buZa8TPwBPdAtT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6h5bBceD8CCxgJiZN3_Ujs-LhUW3Wh7QG6ErfIdh2pAqWwbYTEL-DMT-SX4ImboIIQEhyT2Ipjz3hmnJnvA3iualM4LzQ1orQ0125JbbxHl1wiHljJ6y5QnM3V5CJ_9a7oswmxFibhQwwHbqgZ3X6NCo4H0ic_UUOxBDsGeDGCkRLLzK8irXcXVb0ZEKREFM9UYCQlRR76HreRiZP9_vt26Tdnc9937YzP-Aa4ftgp5-T9cbt1x_7LL4iO__VdN-H6zjUlp0mWbsGV0NyGw1HPCHcHXMeqYD-1q2bdBDJaRymNNoukek5Pxn2iF5lE6Vp_JovWhQ2xG_ISQRkvyQyz_zCDCffYDVk1ZLr6_vXbW5JQPmPQfhcuxmeL0YTuOBqol1oWVITogUhrWK1rZ10RpHO6UFJI7Y3zvA4y-KB4aZgVdamNjTZTeOZyVbqlN_IeHOCYHwDhhfdKcKk5r_NcMmvLfOm08LmSzJQ2A9qvUOV3AObIo_GhStDLosKZq4aZy-DF0P5jgu74Y8ujfsGrnQpvqhhallwh42EGz4bHccbxj4ptwrqNbZBzVRvNWAb3k6AMr5LR7CuVmwxEt9x_GUN1Oj8_G64e_kunp3A4Wcym1fR8_voRXBNYqME45foIDraXbXgc3aete9IpyA8Exg9u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALlHeggJGQOLn1I_Hj2G672kK7QtBKvUW240grULZ0N0LqL-iZn8gvwRNvAgtCSHBMYiuOPeOZcWa-D6FXsjaF81wRw7UluXIVsfEeqZgAPDDN6i5QPJ7KyWn-5qw4-6mKP-FDDAduoBndfg0Kfl7VOz9AQ6ECO8Z3MYARAqrMr-eSapDr_fcDgBSP0pnqi4QgQEPfwzZSvrPef90s_eZrrruune0Z30G2H3VKOfm43S7dtr_8BdDxfz5rE91eOaZ4N0nSXXQtNPfQzVHPB3cfuY5TwX5uZ828CXg0jzIaLRZO1Zwej_s0LzyJsjX_gk9aFxbYLvAeQDJe4GPI_YP8JdhhF3jW4KPZt6uvH3DC-Iwh-wN0Oj44GU3IiqGBeKFEQXiI_oewhtaqdtYVQTinCim4UN44z-oggg-SaUMtr7UyNlpM7qnLpXaVN-Ih2oAxP0aYFd5LzoRirM5zQa3VeeUU97kU1GibIdIvUOlX8OXAovGpTMDLvISZK4eZy9Drof15Au74Y8utfr3LlQIvyhhYaiaB7zBDL4fHccbhf4ptwryNbYBxVRlFaYYeJTkZXiWi0ZcyNxni3Wr_ZQzl7vTwYLh68i-dXqAb7_bH5dHh9O1TdItDlQZlhKkttLG8aMOz6Dst3fNOPb4D3mcOJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthraquinone+Covalent+Organic+Framework+Hollow+Tubes+as+Binder+Microadditives+in+Li-S+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Can&rft.au=Liu%2C+Ming&rft.au=Gao%2C+Guang-Kuo&rft.au=Tian%2C+Xi&rft.date=2022-01-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=61&rft.issue=3&rft.spage=e202113315&rft_id=info:doi/10.1002%2Fanie.202113315&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |