Development of “CLAN” Nanomedicine for Nucleic Acid Therapeutics

Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome de...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 16; pp. e1900055 - n/a
Main Authors Xu, Cong‐Fei, Iqbal, Shoaib, Shen, Song, Luo, Ying‐Li, Yang, Xianzhu, Wang, Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐b‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. A cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) has been developed via encapsulation of nucleic acids inside the aqueous core for disease treatment. In this Review, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and their application are summarized. Finally, the prospective for further development of CLAN is also discussed.
AbstractList Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐ b ‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐ b ‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐b‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. A cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) has been developed via encapsulation of nucleic acids inside the aqueous core for disease treatment. In this Review, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and their application are summarized. Finally, the prospective for further development of CLAN is also discussed.
Author Iqbal, Shoaib
Luo, Ying‐Li
Xu, Cong‐Fei
Wang, Jun
Yang, Xianzhu
Shen, Song
Author_xml – sequence: 1
  givenname: Cong‐Fei
  surname: Xu
  fullname: Xu, Cong‐Fei
  organization: South China University of Technology
– sequence: 2
  givenname: Shoaib
  surname: Iqbal
  fullname: Iqbal, Shoaib
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Song
  surname: Shen
  fullname: Shen, Song
  organization: South China University of Technology
– sequence: 4
  givenname: Ying‐Li
  surname: Luo
  fullname: Luo, Ying‐Li
  organization: Guangzhou International Campus
– sequence: 5
  givenname: Xianzhu
  orcidid: 0000-0002-1006-0950
  surname: Yang
  fullname: Yang, Xianzhu
  email: yangxz@scut.edu.cn
  organization: Guangzhou Regenerative Medicine and Health Guangdong Laboratory
– sequence: 6
  givenname: Jun
  orcidid: 0000-0001-9957-9208
  surname: Wang
  fullname: Wang, Jun
  email: mcjwang@scut.edu.cn
  organization: Guangzhou Regenerative Medicine and Health Guangdong Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30884095$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9O3DAQh60KVP601x6rSL1w2WXGjpP4uFoKrZQuB-jZcpxZ1ciJt3ZCxY0HgZfjSQhaoBJS1dPM4ftGM_M7YDt96ImxTwhzBODHqfN-zgEVAEj5ju1jgWJWVFztvPYIe-wgpSsAgTwv37M9AVWVg5L77OSErsmHTUf9kIV19nB7t6wXq4fb-2xl-tBR66zrKVuHmK1G68nZbGFdm13-omg2NA7Opg9sd218oo_P9ZD9PP16ufw2q8_Pvi8X9cyKUsgZL4rctLkUUAKVCktbIRdklDIVCbLGcsFzKFpokVuUFpuiqSQ0DShV8kocsqPt3E0Mv0dKg-5csuS96SmMSXNUOYoCJU7olzfoVRhjP22nOUeolMyVmKjPz9TYTKfqTXSdiTf65T8TkG8BG0NKkdbausEMLvRDNM5rBP0Ug36KQb_GMGnzN9rL5H8Kaiv8cZ5u_kPrix91_dd9BIunmUE
CitedBy_id crossref_primary_10_1039_D3BM02071A
crossref_primary_10_1002_anie_202101609
crossref_primary_10_1002_EXP_20210081
crossref_primary_10_1002_smtd_202300812
crossref_primary_10_1002_smll_202309031
crossref_primary_10_1007_s12274_024_6776_1
crossref_primary_10_1002_adfm_201906605
crossref_primary_10_1016_j_addr_2019_11_005
crossref_primary_10_1083_jcb_202308066
crossref_primary_10_1186_s40824_022_00292_4
crossref_primary_10_2147_IJN_S321329
crossref_primary_10_1016_j_biopha_2023_114567
crossref_primary_10_1007_s40843_024_3048_0
crossref_primary_10_1021_acsomega_2c06578
crossref_primary_10_3390_s22041346
crossref_primary_10_1002_pol_20230370
crossref_primary_10_1016_j_jconrel_2020_10_003
crossref_primary_10_1039_D1BM00537E
crossref_primary_10_1080_10717544_2022_2105443
crossref_primary_10_1007_s12274_020_2954_y
crossref_primary_10_1016_j_ymthe_2022_11_013
crossref_primary_10_1016_j_apsb_2023_05_018
crossref_primary_10_1002_adma_202301686
crossref_primary_10_1002_cmdc_202100777
crossref_primary_10_1002_ange_202101609
crossref_primary_10_1007_s11095_022_03307_w
crossref_primary_10_1007_s40097_022_00472_7
crossref_primary_10_1186_s12951_025_03228_x
crossref_primary_10_1021_acs_bioconjchem_1c00437
crossref_primary_10_1016_j_scitotenv_2019_134493
crossref_primary_10_3390_ijms25052932
crossref_primary_10_3390_pharmaceutics15010153
crossref_primary_10_1002_smll_202106046
crossref_primary_10_1002_smll_202407676
crossref_primary_10_1016_j_jconrel_2023_12_044
crossref_primary_10_1016_j_tips_2020_08_001
crossref_primary_10_1002_smll_202000673
crossref_primary_10_3390_ma16020539
crossref_primary_10_1002_VIW_20200026
crossref_primary_10_1021_acs_nanolett_9b01807
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1002_marc_202401023
crossref_primary_10_3389_fonc_2022_827891
Cites_doi 10.1021/ja504845f
10.1038/gt.2016.72
10.1016/j.jconrel.2014.07.001
10.1038/nbt.3659
10.1093/annonc/mdr379
10.1002/hep.26654
10.1073/pnas.1502159112
10.1002/jgm.2698
10.1021/acsnano.7b07874
10.1016/j.addr.2015.01.008
10.1073/pnas.1008366107
10.1002/hep.22034
10.1089/nat.2013.0463
10.1016/j.biomaterials.2015.12.014
10.1016/j.biomaterials.2011.09.061
10.1016/j.jhep.2014.12.027
10.1002/adbi.201800075
10.1146/annurev-pharmtox-010715-103633
10.1016/j.biomaterials.2016.02.031
10.1016/j.drudis.2015.11.012
10.1016/j.biomaterials.2015.01.068
10.1021/ar3000162
10.1016/j.nantod.2016.04.008
10.1016/j.jconrel.2007.11.017
10.1038/s41467-018-06522-5
10.1007/s12274-018-2150-5
10.1073/pnas.0611660104
10.1016/j.ijpharm.2009.10.023
10.1371/journal.pone.0076681
10.1038/cmi.2015.111
10.1073/pnas.1303958110
10.1016/j.ijpharm.2006.10.036
10.1021/mp100067u
10.1093/nar/gkw236
10.1016/j.ijpharm.2008.09.039
10.1021/mp400714z
10.1016/j.tibtech.2015.02.011
10.1038/nm.2279
10.1126/scitranslmed.3003651
10.1021/nl2035354
10.1039/C8BM00263K
10.1016/j.jconrel.2014.11.011
10.1016/j.ydbio.2015.08.020
10.1016/j.addr.2016.01.022
10.1016/j.biomaterials.2015.07.048
10.1021/nn300106t
10.1208/s12248-010-9210-4
10.1016/j.ctrv.2016.08.004
10.1038/nnano.2017.54
10.1016/j.jconrel.2011.07.035
10.1038/ncomms13787
10.1016/j.jconrel.2016.01.044
10.1146/annurev-biochem-060713-035418
10.1038/nature15818
10.1038/nmat2444
10.1016/j.addr.2015.02.007
10.1016/j.biomaterials.2018.04.052
10.1038/s41467-017-00227-x
10.1038/s41551-018-0214-1
10.1371/journal.pone.0034833
10.1016/j.cell.2014.11.047
10.1002/adhm.201400037
10.1038/nbt1367
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201900055
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30884095
10_1002_smll_201900055
SMLL201900055
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFA0205600
– fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams
  funderid: 2017ZT07S054
– fundername: Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory
  funderid: 2018GZR110102001
– fundername: National Natural Science Foundation of China
  funderid: 51633008; 81801825; 51822302
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M630953
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3735-2664ad453070e7917c8123ea99a8e3ecac232406d0d12c15c1b6b850bb0997283
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 21:54:15 EDT 2025
Fri Jul 25 12:15:47 EDT 2025
Thu Apr 03 06:56:28 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Tue Jul 01 02:10:41 EDT 2025
Wed Jan 22 16:23:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords siRNA delivery
nanomedicine
cationic lipid assisted nanoparticles
gene editing
nucleic acid therapeutics
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-2664ad453070e7917c8123ea99a8e3ecac232406d0d12c15c1b6b850bb0997283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1006-0950
0000-0001-9957-9208
PMID 30884095
PQID 2210895493
PQPubID 1046358
PageCount 15
ParticipantIDs proquest_miscellaneous_2194136151
proquest_journals_2210895493
pubmed_primary_30884095
crossref_citationtrail_10_1002_smll_201900055
crossref_primary_10_1002_smll_201900055
wiley_primary_10_1002_smll_201900055_SMLL201900055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2007; 104
2017; 8
2010; 107
2015; 33
2014; 24
2011; 17
2013; 8
2012; 12
2011; 156
2014; 136
2016; 34
2007; 334
2018; 6
2018; 9
2013; 15
2018; 2
2014; 3
2018; 172
2015; 87
2014; 59
2016; 231
2016; 82
2010; 390
2013; 110
2012; 23
2009; 367
2010; 7
2014; 11
2007; 25
2016; 44
2016; 88
2015; 160
2015; 51
2017; 24
2016; 50
2015; 406
2015; 526
2008; 126
2014; 192
2015; 205
2014; 83
2012; 33
2016; 56
2016; 99
2016; 11
2016; 7
2015; 69
2017; 14
2015; 62
2015; 112
2017; 12
2016; 21
2008; 47
2009; 8
2012; 6
2018; 12
2012; 7
2018; 11
2012; 45
2012; 4
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 7
  start-page: e34833
  year: 2012
  publication-title: PLoS One
– volume: 107
  start-page: 13836
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 390
  start-page: 70
  year: 2010
  publication-title: Int. J. Pharm.
– volume: 12
  start-page: 287
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 994
  year: 2018
  publication-title: ACS Nano
– volume: 112
  start-page: 10002
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 104
  start-page: 3460
  year: 2007
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 4092
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 133
  year: 2016
  publication-title: Nano Today
– volume: 34
  start-page: 933
  year: 2016
  publication-title: Nat. Biotechnol.
– volume: 82
  start-page: 48
  year: 2016
  publication-title: Biomaterials
– volume: 406
  start-page: 196
  year: 2015
  publication-title: Dev. Biol.
– volume: 11
  start-page: 2612
  year: 2014
  publication-title: Mol. Pharmaceutics
– volume: 8
  start-page: e76681
  year: 2013
  publication-title: PLoS One
– volume: 205
  start-page: 7
  year: 2015
  publication-title: J. Controlled Release
– volume: 87
  start-page: 68
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 110
  start-page: 18638
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 334
  start-page: 137
  year: 2007
  publication-title: Int. J. Pharm.
– volume: 160
  start-page: 62
  year: 2015
  publication-title: Cell
– volume: 136
  start-page: 9866
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 13787
  year: 2016
  publication-title: Nat. Commun.
– volume: 59
  start-page: 385
  year: 2014
  publication-title: Hepatology
– volume: 192
  start-page: 114
  year: 2014
  publication-title: J. Controlled Release
– volume: 12
  start-page: 492
  year: 2010
  publication-title: AAPS J.
– volume: 88
  start-page: 48
  year: 2016
  publication-title: Biomaterials
– volume: 47
  start-page: 729
  year: 2008
  publication-title: Hepatology
– volume: 367
  start-page: 195
  year: 2009
  publication-title: Int. J. Pharm.
– volume: 2
  start-page: 1800075
  year: 2018
  publication-title: Adv. Biosyst.
– volume: 3
  start-page: 1792
  year: 2014
  publication-title: Adv. Healthcare Mater.
– volume: 8
  start-page: 202
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 128ra39
  year: 2012
  publication-title: Sci. Transl. Med.
– volume: 231
  start-page: 17
  year: 2016
  publication-title: J. Controlled Release
– volume: 6
  start-page: 1592
  year: 2018
  publication-title: Biomater. Sci.
– volume: 87
  start-page: 46
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 6
  start-page: 4835
  year: 2012
  publication-title: ACS Nano
– volume: 23
  start-page: 1214
  year: 2012
  publication-title: Ann. Oncol.
– volume: 2
  start-page: 326
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 24
  start-page: 144
  year: 2017
  publication-title: Gene Ther.
– volume: 33
  start-page: 583
  year: 2012
  publication-title: Biomaterials
– volume: 14
  start-page: 675
  year: 2017
  publication-title: Cell Mol. Immunol.
– volume: 83
  start-page: 409
  year: 2014
  publication-title: Annu. Rev. Biochem.
– volume: 99
  start-page: 129
  year: 2016
  publication-title: Adv. Drug Delivery Rev.
– volume: 56
  start-page: 103
  year: 2016
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 7
  start-page: 1643
  year: 2010
  publication-title: Mol. Pharmaceutics
– volume: 62
  start-page: 1311
  year: 2015
  publication-title: J. Hepatol.
– volume: 25
  start-page: 1444
  year: 2007
  publication-title: Nat. Biotechnol.
– volume: 50
  start-page: 35
  year: 2016
  publication-title: Cancer Treat. Rev.
– volume: 21
  start-page: 430
  year: 2016
  publication-title: Drug Discovery Today
– volume: 526
  start-page: 351
  year: 2015
  publication-title: Nature
– volume: 69
  start-page: 1
  year: 2015
  publication-title: Biomaterials
– volume: 8
  start-page: 526
  year: 2009
  publication-title: Nat. Mater.
– volume: 24
  start-page: 101
  year: 2014
  publication-title: Nucleic Acid Ther.
– volume: 17
  start-page: 179
  year: 2011
  publication-title: Nat. Med.
– volume: 51
  start-page: 1
  year: 2015
  publication-title: Biomaterials
– volume: 11
  start-page: 6270
  year: 2018
  publication-title: Nano Res.
– volume: 45
  start-page: 1153
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 280
  year: 2015
  publication-title: Trends Biotechnol.
– volume: 44
  start-page: 6518
  year: 2016
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 65
  year: 2013
  publication-title: J. Gene Med.
– volume: 126
  start-page: 246
  year: 2008
  publication-title: J. Controlled Release
– volume: 172
  start-page: 92
  year: 2018
  publication-title: Biomaterials
– volume: 156
  start-page: 203
  year: 2011
  publication-title: J. Controlled Release
– volume: 12
  start-page: 692
  year: 2017
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_7_63_1
  doi: 10.1021/ja504845f
– ident: e_1_2_7_5_1
  doi: 10.1038/gt.2016.72
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jconrel.2014.07.001
– ident: e_1_2_7_6_1
  doi: 10.1038/nbt.3659
– ident: e_1_2_7_27_1
  doi: 10.1093/annonc/mdr379
– ident: e_1_2_7_48_1
  doi: 10.1002/hep.26654
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.1502159112
– ident: e_1_2_7_1_1
  doi: 10.1002/jgm.2698
– ident: e_1_2_7_57_1
  doi: 10.1021/acsnano.7b07874
– ident: e_1_2_7_9_1
  doi: 10.1016/j.addr.2015.01.008
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.1008366107
– ident: e_1_2_7_43_1
  doi: 10.1002/hep.22034
– ident: e_1_2_7_8_1
  doi: 10.1089/nat.2013.0463
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biomaterials.2015.12.014
– ident: e_1_2_7_20_1
  doi: 10.1016/j.biomaterials.2011.09.061
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jhep.2014.12.027
– ident: e_1_2_7_61_1
  doi: 10.1002/adbi.201800075
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev-pharmtox-010715-103633
– ident: e_1_2_7_32_1
  doi: 10.1016/j.biomaterials.2016.02.031
– ident: e_1_2_7_10_1
  doi: 10.1016/j.drudis.2015.11.012
– ident: e_1_2_7_39_1
  doi: 10.1016/j.biomaterials.2015.01.068
– ident: e_1_2_7_2_1
  doi: 10.1021/ar3000162
– ident: e_1_2_7_29_1
  doi: 10.1016/j.nantod.2016.04.008
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jconrel.2007.11.017
– ident: e_1_2_7_33_1
  doi: 10.1038/s41467-018-06522-5
– ident: e_1_2_7_35_1
  doi: 10.1007/s12274-018-2150-5
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.0611660104
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ijpharm.2009.10.023
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pone.0076681
– ident: e_1_2_7_45_1
  doi: 10.1038/cmi.2015.111
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.1303958110
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ijpharm.2006.10.036
– ident: e_1_2_7_22_1
  doi: 10.1021/mp100067u
– ident: e_1_2_7_12_1
  doi: 10.1093/nar/gkw236
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ijpharm.2008.09.039
– ident: e_1_2_7_37_1
  doi: 10.1021/mp400714z
– ident: e_1_2_7_55_1
  doi: 10.1016/j.tibtech.2015.02.011
– ident: e_1_2_7_59_1
  doi: 10.1038/nm.2279
– ident: e_1_2_7_26_1
  doi: 10.1126/scitranslmed.3003651
– ident: e_1_2_7_19_1
  doi: 10.1021/nl2035354
– ident: e_1_2_7_56_1
  doi: 10.1039/C8BM00263K
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jconrel.2014.11.011
– ident: e_1_2_7_49_1
  doi: 10.1016/j.ydbio.2015.08.020
– ident: e_1_2_7_14_1
  doi: 10.1016/j.addr.2016.01.022
– ident: e_1_2_7_53_1
  doi: 10.1016/j.biomaterials.2015.07.048
– ident: e_1_2_7_18_1
  doi: 10.1021/nn300106t
– ident: e_1_2_7_7_1
  doi: 10.1208/s12248-010-9210-4
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ctrv.2016.08.004
– ident: e_1_2_7_62_1
  doi: 10.1038/nnano.2017.54
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jconrel.2011.07.035
– ident: e_1_2_7_50_1
  doi: 10.1038/ncomms13787
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jconrel.2016.01.044
– ident: e_1_2_7_54_1
  doi: 10.1146/annurev-biochem-060713-035418
– ident: e_1_2_7_11_1
  doi: 10.1038/nature15818
– ident: e_1_2_7_21_1
  doi: 10.1038/nmat2444
– ident: e_1_2_7_13_1
  doi: 10.1016/j.addr.2015.02.007
– ident: e_1_2_7_34_1
  doi: 10.1016/j.biomaterials.2018.04.052
– ident: e_1_2_7_47_1
  doi: 10.1038/s41467-017-00227-x
– ident: e_1_2_7_60_1
  doi: 10.1038/s41551-018-0214-1
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0034833
– ident: e_1_2_7_58_1
  doi: 10.1016/j.cell.2014.11.047
– ident: e_1_2_7_31_1
  doi: 10.1002/adhm.201400037
– ident: e_1_2_7_51_1
  doi: 10.1038/nbt1367
SSID ssj0031247
Score 2.47362
SecondaryResourceType review_article
Snippet Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their...
Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900055
SubjectTerms cationic lipid assisted nanoparticles
Controllability
gene editing
Lipids
Macromolecules
nanomedicine
Nanoparticles
Nanotechnology
nucleic acid therapeutics
Nucleic acids
siRNA delivery
Title Development of “CLAN” Nanomedicine for Nucleic Acid Therapeutics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900055
https://www.ncbi.nlm.nih.gov/pubmed/30884095
https://www.proquest.com/docview/2210895493
https://www.proquest.com/docview/2194136151
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rw_UDRrImJp0LbbUt7JCghBjgoJNyafTUhIhgLF0_8EP1z_BJn-gI0xkRvbbptt7szO990Zr4l5FpFgjmejAylAgkOSmQaXEWWITwncBjzmEiyCTtdr9V37gfuYKWKP-WHKH64oWYk6zUqOBdxdUkaGj-PMHRgJbteYpU5JmwhKnoo-KMYGK9kdxWwWQYSb-WsjaZdXb993Sp9g5rryDUxPc1dwvNOpxknT5XZVFTk2xc-x_981R7ZyXApraeCtE829PiAbK-wFR6S25UEIzqJ6GL-3mjXu4v5B4U1epJH6SnAYNpFmuShpHU5VLS3rPGKj0i_eddrtIxsEwZDshrDDDjP4cpxcW3QNXDuJEACpnkQcF8zLblETGZ6ylSWLS1XWsITvmsKkdTk-uyYbI4nY31KqALLqCNbM9PWDggDDzjAQc_XwhGMuVGJGPkkhDJjKMeNMkZhyq1shzg6YTE6JXJTtH9JuTl-bFnO5zTMdDQObfB2fYxyshK5Ki6DdmHIhI_1ZAZtrACsPKK-EjlJZaF4FYMFGrxjeLidzOgvfQgfO-12cXb2l5vOyRYep4lDZbI5fZ3pC8BEU3GZyP0njVoCVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4BPQAH-gu4pXQrgXpysHfXxj70EBFQKE4OECRurvfHEgISRBKh9sSDtA_RV-kj8CSdsWNDiqpKlTj0aHttrz0zO9_szn4DsGFyJWSoc9eYWGOAkntuZnLfVaGMpRChUEU2Yacbto_lp5PgZAZ-VHthSn6IesKNLKMYr8nAaUJ66441dHhxTmsHflH2ssqrPLBfrjFqG37cb6GINznf2-3ttN1JYQFXi21BWV2hzIwMSN_tNgYsGt2csFkcZ5EVVmeacIYXGs_4XPuB9lWoosBTqthnGgl87iw8oTLiRNffOqwZqwS6y6KeC3pJl6i-Kp5Ij29N93faDz4At9NYuXB2e0_hZ_WbyhyXs8Z4pBr6628Mkv_Vf3wGSxPozZqlrTyHGdt_AYv3CBlfQuteDhUb5Oz25ttO0uze3nxn6IYGVSICQ6TPusQEfapZU58a1rvbxjZ8BceP8hnLMNcf9O0qMIPO3-bcCo9bifqexRki3jCySiohgtwBt5J6qick7FQL5Dwt6aN5StJIa2k48KFuf1nSj_yx5VqlROlkGBqmHAP6iBZyhQPv68s4gNCqUNa3gzG28WMEMgRsHVgpla9-lUAfJBGEO8ALFfpLH9KjTpLUR6__5aZ3MN_udZI02e8evIEFOl_mSa3B3OhqbN8iBByp9cLoGHx-bO38BTYtXSc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkBAceC2w5WkkVpwCie2Y5MCholQ8SoVYkLiF-BEJLduibSsEJ34I_Af-Cn-BX8I4aQIFoZWQOHBM4iSOZ8bzTTz-BmBFJ5JxoRJH61BhgJK4TqwTz5GCh5wxwWSaTXhQFzsnfO_UP-2Dh3wvTMYPUfxws5aRztfWwC91sv5CGtr6e2GXDry06mWeVrlvrq8waGtt7lZQwr8orW4fb-043boCjmIbzCZ1CR5r7lt1NxsYryj0cszEYRgHhhkVKwszXKFd7VHl-cqTQga-K2W6zTRg-Nx-GOTCDW2xiMpRQVjF0Fum5VzQSTqW6SuniXTpem9_e93gO2zbC5VTX1cdg8d8lLIUlz9rnbZcUzdvCCS_0zCOw2gXeJNyZikT0GcakzDyio7xB1ReZVCRZkKebu-2auX60-09QSfUzNMQCOJ8Urc80OeKlNW5Jscvm9haU3DyJZ8xDQONZsP8BKLR9ZuEGuZSw1Hb4zBGvCsCI7lkzE9K4ORCj1SXgt1WArmIMvJoGllpRIU0SrBatL_MyEc-bDmf61DUnYRaEcVwPrDLuKwEy8VlnD7smlDcMM0OtvFChDEW1pZgJtO94lUMPRCG__hwmmrQf_oQ_T6o1Yqj2c_ctARDh5VqVNut78_BsD2dJUnNw0D7X8csIP5ry8XU5AicfbVyPgOU_FvW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+%22CLAN%22+Nanomedicine+for+Nucleic+Acid+Therapeutics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Cong-Fei&rft.au=Iqbal%2C+Shoaib&rft.au=Shen%2C+Song&rft.au=Luo%2C+Ying-Li&rft.date=2019-04-01&rft.eissn=1613-6829&rft.volume=15&rft.issue=16&rft.spage=e1900055&rft_id=info:doi/10.1002%2Fsmll.201900055&rft_id=info%3Apmid%2F30884095&rft.externalDocID=30884095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon