Development of “CLAN” Nanomedicine for Nucleic Acid Therapeutics
Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome de...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 16; pp. e1900055 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐b‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
A cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) has been developed via encapsulation of nucleic acids inside the aqueous core for disease treatment. In this Review, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and their application are summarized. Finally, the prospective for further development of CLAN is also discussed. |
---|---|
AbstractList | Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐ b ‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐ b ‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG‐b‐PLA and its derivatives) and can be scaled‐up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed. A cationic lipid assisted PEG‐b‐PLA nanoparticle (CLAN) has been developed via encapsulation of nucleic acids inside the aqueous core for disease treatment. In this Review, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and their application are summarized. Finally, the prospective for further development of CLAN is also discussed. |
Author | Iqbal, Shoaib Luo, Ying‐Li Xu, Cong‐Fei Wang, Jun Yang, Xianzhu Shen, Song |
Author_xml | – sequence: 1 givenname: Cong‐Fei surname: Xu fullname: Xu, Cong‐Fei organization: South China University of Technology – sequence: 2 givenname: Shoaib surname: Iqbal fullname: Iqbal, Shoaib organization: University of Science and Technology of China – sequence: 3 givenname: Song surname: Shen fullname: Shen, Song organization: South China University of Technology – sequence: 4 givenname: Ying‐Li surname: Luo fullname: Luo, Ying‐Li organization: Guangzhou International Campus – sequence: 5 givenname: Xianzhu orcidid: 0000-0002-1006-0950 surname: Yang fullname: Yang, Xianzhu email: yangxz@scut.edu.cn organization: Guangzhou Regenerative Medicine and Health Guangdong Laboratory – sequence: 6 givenname: Jun orcidid: 0000-0001-9957-9208 surname: Wang fullname: Wang, Jun email: mcjwang@scut.edu.cn organization: Guangzhou Regenerative Medicine and Health Guangdong Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30884095$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9O3DAQh60KVP601x6rSL1w2WXGjpP4uFoKrZQuB-jZcpxZ1ciJt3ZCxY0HgZfjSQhaoBJS1dPM4ftGM_M7YDt96ImxTwhzBODHqfN-zgEVAEj5ju1jgWJWVFztvPYIe-wgpSsAgTwv37M9AVWVg5L77OSErsmHTUf9kIV19nB7t6wXq4fb-2xl-tBR66zrKVuHmK1G68nZbGFdm13-omg2NA7Opg9sd218oo_P9ZD9PP16ufw2q8_Pvi8X9cyKUsgZL4rctLkUUAKVCktbIRdklDIVCbLGcsFzKFpokVuUFpuiqSQ0DShV8kocsqPt3E0Mv0dKg-5csuS96SmMSXNUOYoCJU7olzfoVRhjP22nOUeolMyVmKjPz9TYTKfqTXSdiTf65T8TkG8BG0NKkdbausEMLvRDNM5rBP0Ug36KQb_GMGnzN9rL5H8Kaiv8cZ5u_kPrix91_dd9BIunmUE |
CitedBy_id | crossref_primary_10_1039_D3BM02071A crossref_primary_10_1002_anie_202101609 crossref_primary_10_1002_EXP_20210081 crossref_primary_10_1002_smtd_202300812 crossref_primary_10_1002_smll_202309031 crossref_primary_10_1007_s12274_024_6776_1 crossref_primary_10_1002_adfm_201906605 crossref_primary_10_1016_j_addr_2019_11_005 crossref_primary_10_1083_jcb_202308066 crossref_primary_10_1186_s40824_022_00292_4 crossref_primary_10_2147_IJN_S321329 crossref_primary_10_1016_j_biopha_2023_114567 crossref_primary_10_1007_s40843_024_3048_0 crossref_primary_10_1021_acsomega_2c06578 crossref_primary_10_3390_s22041346 crossref_primary_10_1002_pol_20230370 crossref_primary_10_1016_j_jconrel_2020_10_003 crossref_primary_10_1039_D1BM00537E crossref_primary_10_1080_10717544_2022_2105443 crossref_primary_10_1007_s12274_020_2954_y crossref_primary_10_1016_j_ymthe_2022_11_013 crossref_primary_10_1016_j_apsb_2023_05_018 crossref_primary_10_1002_adma_202301686 crossref_primary_10_1002_cmdc_202100777 crossref_primary_10_1002_ange_202101609 crossref_primary_10_1007_s11095_022_03307_w crossref_primary_10_1007_s40097_022_00472_7 crossref_primary_10_1186_s12951_025_03228_x crossref_primary_10_1021_acs_bioconjchem_1c00437 crossref_primary_10_1016_j_scitotenv_2019_134493 crossref_primary_10_3390_ijms25052932 crossref_primary_10_3390_pharmaceutics15010153 crossref_primary_10_1002_smll_202106046 crossref_primary_10_1002_smll_202407676 crossref_primary_10_1016_j_jconrel_2023_12_044 crossref_primary_10_1016_j_tips_2020_08_001 crossref_primary_10_1002_smll_202000673 crossref_primary_10_3390_ma16020539 crossref_primary_10_1002_VIW_20200026 crossref_primary_10_1021_acs_nanolett_9b01807 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1002_marc_202401023 crossref_primary_10_3389_fonc_2022_827891 |
Cites_doi | 10.1021/ja504845f 10.1038/gt.2016.72 10.1016/j.jconrel.2014.07.001 10.1038/nbt.3659 10.1093/annonc/mdr379 10.1002/hep.26654 10.1073/pnas.1502159112 10.1002/jgm.2698 10.1021/acsnano.7b07874 10.1016/j.addr.2015.01.008 10.1073/pnas.1008366107 10.1002/hep.22034 10.1089/nat.2013.0463 10.1016/j.biomaterials.2015.12.014 10.1016/j.biomaterials.2011.09.061 10.1016/j.jhep.2014.12.027 10.1002/adbi.201800075 10.1146/annurev-pharmtox-010715-103633 10.1016/j.biomaterials.2016.02.031 10.1016/j.drudis.2015.11.012 10.1016/j.biomaterials.2015.01.068 10.1021/ar3000162 10.1016/j.nantod.2016.04.008 10.1016/j.jconrel.2007.11.017 10.1038/s41467-018-06522-5 10.1007/s12274-018-2150-5 10.1073/pnas.0611660104 10.1016/j.ijpharm.2009.10.023 10.1371/journal.pone.0076681 10.1038/cmi.2015.111 10.1073/pnas.1303958110 10.1016/j.ijpharm.2006.10.036 10.1021/mp100067u 10.1093/nar/gkw236 10.1016/j.ijpharm.2008.09.039 10.1021/mp400714z 10.1016/j.tibtech.2015.02.011 10.1038/nm.2279 10.1126/scitranslmed.3003651 10.1021/nl2035354 10.1039/C8BM00263K 10.1016/j.jconrel.2014.11.011 10.1016/j.ydbio.2015.08.020 10.1016/j.addr.2016.01.022 10.1016/j.biomaterials.2015.07.048 10.1021/nn300106t 10.1208/s12248-010-9210-4 10.1016/j.ctrv.2016.08.004 10.1038/nnano.2017.54 10.1016/j.jconrel.2011.07.035 10.1038/ncomms13787 10.1016/j.jconrel.2016.01.044 10.1146/annurev-biochem-060713-035418 10.1038/nature15818 10.1038/nmat2444 10.1016/j.addr.2015.02.007 10.1016/j.biomaterials.2018.04.052 10.1038/s41467-017-00227-x 10.1038/s41551-018-0214-1 10.1371/journal.pone.0034833 10.1016/j.cell.2014.11.047 10.1002/adhm.201400037 10.1038/nbt1367 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201900055 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30884095 10_1002_smll_201900055 SMLL201900055 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFA0205600 – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams funderid: 2017ZT07S054 – fundername: Outstanding Scholar Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory funderid: 2018GZR110102001 – fundername: National Natural Science Foundation of China funderid: 51633008; 81801825; 51822302 – fundername: China Postdoctoral Science Foundation funderid: 2018M630953 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3735-2664ad453070e7917c8123ea99a8e3ecac232406d0d12c15c1b6b850bb0997283 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 21:54:15 EDT 2025 Fri Jul 25 12:15:47 EDT 2025 Thu Apr 03 06:56:28 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Tue Jul 01 02:10:41 EDT 2025 Wed Jan 22 16:23:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | siRNA delivery nanomedicine cationic lipid assisted nanoparticles gene editing nucleic acid therapeutics |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-2664ad453070e7917c8123ea99a8e3ecac232406d0d12c15c1b6b850bb0997283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1006-0950 0000-0001-9957-9208 |
PMID | 30884095 |
PQID | 2210895493 |
PQPubID | 1046358 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2194136151 proquest_journals_2210895493 pubmed_primary_30884095 crossref_citationtrail_10_1002_smll_201900055 crossref_primary_10_1002_smll_201900055 wiley_primary_10_1002_smll_201900055_SMLL201900055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-00 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2007; 104 2017; 8 2010; 107 2015; 33 2014; 24 2011; 17 2013; 8 2012; 12 2011; 156 2014; 136 2016; 34 2007; 334 2018; 6 2018; 9 2013; 15 2018; 2 2014; 3 2018; 172 2015; 87 2014; 59 2016; 231 2016; 82 2010; 390 2013; 110 2012; 23 2009; 367 2010; 7 2014; 11 2007; 25 2016; 44 2016; 88 2015; 160 2015; 51 2017; 24 2016; 50 2015; 406 2015; 526 2008; 126 2014; 192 2015; 205 2014; 83 2012; 33 2016; 56 2016; 99 2016; 11 2016; 7 2015; 69 2017; 14 2015; 62 2015; 112 2017; 12 2016; 21 2008; 47 2009; 8 2012; 6 2018; 12 2012; 7 2018; 11 2012; 45 2012; 4 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 7 start-page: e34833 year: 2012 publication-title: PLoS One – volume: 107 start-page: 13836 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 390 start-page: 70 year: 2010 publication-title: Int. J. Pharm. – volume: 12 start-page: 287 year: 2012 publication-title: Nano Lett. – volume: 12 start-page: 994 year: 2018 publication-title: ACS Nano – volume: 112 start-page: 10002 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 104 start-page: 3460 year: 2007 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 4092 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 133 year: 2016 publication-title: Nano Today – volume: 34 start-page: 933 year: 2016 publication-title: Nat. Biotechnol. – volume: 82 start-page: 48 year: 2016 publication-title: Biomaterials – volume: 406 start-page: 196 year: 2015 publication-title: Dev. Biol. – volume: 11 start-page: 2612 year: 2014 publication-title: Mol. Pharmaceutics – volume: 8 start-page: e76681 year: 2013 publication-title: PLoS One – volume: 205 start-page: 7 year: 2015 publication-title: J. Controlled Release – volume: 87 start-page: 68 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 110 start-page: 18638 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 334 start-page: 137 year: 2007 publication-title: Int. J. Pharm. – volume: 160 start-page: 62 year: 2015 publication-title: Cell – volume: 136 start-page: 9866 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 13787 year: 2016 publication-title: Nat. Commun. – volume: 59 start-page: 385 year: 2014 publication-title: Hepatology – volume: 192 start-page: 114 year: 2014 publication-title: J. Controlled Release – volume: 12 start-page: 492 year: 2010 publication-title: AAPS J. – volume: 88 start-page: 48 year: 2016 publication-title: Biomaterials – volume: 47 start-page: 729 year: 2008 publication-title: Hepatology – volume: 367 start-page: 195 year: 2009 publication-title: Int. J. Pharm. – volume: 2 start-page: 1800075 year: 2018 publication-title: Adv. Biosyst. – volume: 3 start-page: 1792 year: 2014 publication-title: Adv. Healthcare Mater. – volume: 8 start-page: 202 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 128ra39 year: 2012 publication-title: Sci. Transl. Med. – volume: 231 start-page: 17 year: 2016 publication-title: J. Controlled Release – volume: 6 start-page: 1592 year: 2018 publication-title: Biomater. Sci. – volume: 87 start-page: 46 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 6 start-page: 4835 year: 2012 publication-title: ACS Nano – volume: 23 start-page: 1214 year: 2012 publication-title: Ann. Oncol. – volume: 2 start-page: 326 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 24 start-page: 144 year: 2017 publication-title: Gene Ther. – volume: 33 start-page: 583 year: 2012 publication-title: Biomaterials – volume: 14 start-page: 675 year: 2017 publication-title: Cell Mol. Immunol. – volume: 83 start-page: 409 year: 2014 publication-title: Annu. Rev. Biochem. – volume: 99 start-page: 129 year: 2016 publication-title: Adv. Drug Delivery Rev. – volume: 56 start-page: 103 year: 2016 publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 7 start-page: 1643 year: 2010 publication-title: Mol. Pharmaceutics – volume: 62 start-page: 1311 year: 2015 publication-title: J. Hepatol. – volume: 25 start-page: 1444 year: 2007 publication-title: Nat. Biotechnol. – volume: 50 start-page: 35 year: 2016 publication-title: Cancer Treat. Rev. – volume: 21 start-page: 430 year: 2016 publication-title: Drug Discovery Today – volume: 526 start-page: 351 year: 2015 publication-title: Nature – volume: 69 start-page: 1 year: 2015 publication-title: Biomaterials – volume: 8 start-page: 526 year: 2009 publication-title: Nat. Mater. – volume: 24 start-page: 101 year: 2014 publication-title: Nucleic Acid Ther. – volume: 17 start-page: 179 year: 2011 publication-title: Nat. Med. – volume: 51 start-page: 1 year: 2015 publication-title: Biomaterials – volume: 11 start-page: 6270 year: 2018 publication-title: Nano Res. – volume: 45 start-page: 1153 year: 2012 publication-title: Acc. Chem. Res. – volume: 33 start-page: 280 year: 2015 publication-title: Trends Biotechnol. – volume: 44 start-page: 6518 year: 2016 publication-title: Nucleic Acids Res. – volume: 15 start-page: 65 year: 2013 publication-title: J. Gene Med. – volume: 126 start-page: 246 year: 2008 publication-title: J. Controlled Release – volume: 172 start-page: 92 year: 2018 publication-title: Biomaterials – volume: 156 start-page: 203 year: 2011 publication-title: J. Controlled Release – volume: 12 start-page: 692 year: 2017 publication-title: Nat. Nanotechnol. – ident: e_1_2_7_63_1 doi: 10.1021/ja504845f – ident: e_1_2_7_5_1 doi: 10.1038/gt.2016.72 – ident: e_1_2_7_30_1 doi: 10.1016/j.jconrel.2014.07.001 – ident: e_1_2_7_6_1 doi: 10.1038/nbt.3659 – ident: e_1_2_7_27_1 doi: 10.1093/annonc/mdr379 – ident: e_1_2_7_48_1 doi: 10.1002/hep.26654 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1502159112 – ident: e_1_2_7_1_1 doi: 10.1002/jgm.2698 – ident: e_1_2_7_57_1 doi: 10.1021/acsnano.7b07874 – ident: e_1_2_7_9_1 doi: 10.1016/j.addr.2015.01.008 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.1008366107 – ident: e_1_2_7_43_1 doi: 10.1002/hep.22034 – ident: e_1_2_7_8_1 doi: 10.1089/nat.2013.0463 – ident: e_1_2_7_41_1 doi: 10.1016/j.biomaterials.2015.12.014 – ident: e_1_2_7_20_1 doi: 10.1016/j.biomaterials.2011.09.061 – ident: e_1_2_7_46_1 doi: 10.1016/j.jhep.2014.12.027 – ident: e_1_2_7_61_1 doi: 10.1002/adbi.201800075 – ident: e_1_2_7_3_1 doi: 10.1146/annurev-pharmtox-010715-103633 – ident: e_1_2_7_32_1 doi: 10.1016/j.biomaterials.2016.02.031 – ident: e_1_2_7_10_1 doi: 10.1016/j.drudis.2015.11.012 – ident: e_1_2_7_39_1 doi: 10.1016/j.biomaterials.2015.01.068 – ident: e_1_2_7_2_1 doi: 10.1021/ar3000162 – ident: e_1_2_7_29_1 doi: 10.1016/j.nantod.2016.04.008 – ident: e_1_2_7_17_1 doi: 10.1016/j.jconrel.2007.11.017 – ident: e_1_2_7_33_1 doi: 10.1038/s41467-018-06522-5 – ident: e_1_2_7_35_1 doi: 10.1007/s12274-018-2150-5 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.0611660104 – ident: e_1_2_7_15_1 doi: 10.1016/j.ijpharm.2009.10.023 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pone.0076681 – ident: e_1_2_7_45_1 doi: 10.1038/cmi.2015.111 – ident: e_1_2_7_23_1 doi: 10.1073/pnas.1303958110 – ident: e_1_2_7_24_1 doi: 10.1016/j.ijpharm.2006.10.036 – ident: e_1_2_7_22_1 doi: 10.1021/mp100067u – ident: e_1_2_7_12_1 doi: 10.1093/nar/gkw236 – ident: e_1_2_7_16_1 doi: 10.1016/j.ijpharm.2008.09.039 – ident: e_1_2_7_37_1 doi: 10.1021/mp400714z – ident: e_1_2_7_55_1 doi: 10.1016/j.tibtech.2015.02.011 – ident: e_1_2_7_59_1 doi: 10.1038/nm.2279 – ident: e_1_2_7_26_1 doi: 10.1126/scitranslmed.3003651 – ident: e_1_2_7_19_1 doi: 10.1021/nl2035354 – ident: e_1_2_7_56_1 doi: 10.1039/C8BM00263K – ident: e_1_2_7_42_1 doi: 10.1016/j.jconrel.2014.11.011 – ident: e_1_2_7_49_1 doi: 10.1016/j.ydbio.2015.08.020 – ident: e_1_2_7_14_1 doi: 10.1016/j.addr.2016.01.022 – ident: e_1_2_7_53_1 doi: 10.1016/j.biomaterials.2015.07.048 – ident: e_1_2_7_18_1 doi: 10.1021/nn300106t – ident: e_1_2_7_7_1 doi: 10.1208/s12248-010-9210-4 – ident: e_1_2_7_4_1 doi: 10.1016/j.ctrv.2016.08.004 – ident: e_1_2_7_62_1 doi: 10.1038/nnano.2017.54 – ident: e_1_2_7_25_1 doi: 10.1016/j.jconrel.2011.07.035 – ident: e_1_2_7_50_1 doi: 10.1038/ncomms13787 – ident: e_1_2_7_52_1 doi: 10.1016/j.jconrel.2016.01.044 – ident: e_1_2_7_54_1 doi: 10.1146/annurev-biochem-060713-035418 – ident: e_1_2_7_11_1 doi: 10.1038/nature15818 – ident: e_1_2_7_21_1 doi: 10.1038/nmat2444 – ident: e_1_2_7_13_1 doi: 10.1016/j.addr.2015.02.007 – ident: e_1_2_7_34_1 doi: 10.1016/j.biomaterials.2018.04.052 – ident: e_1_2_7_47_1 doi: 10.1038/s41467-017-00227-x – ident: e_1_2_7_60_1 doi: 10.1038/s41551-018-0214-1 – ident: e_1_2_7_28_1 doi: 10.1371/journal.pone.0034833 – ident: e_1_2_7_58_1 doi: 10.1016/j.cell.2014.11.047 – ident: e_1_2_7_31_1 doi: 10.1002/adhm.201400037 – ident: e_1_2_7_51_1 doi: 10.1038/nbt1367 |
SSID | ssj0031247 |
Score | 2.47362 |
SecondaryResourceType | review_article |
Snippet | Nucleic acid‐based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their... Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900055 |
SubjectTerms | cationic lipid assisted nanoparticles Controllability gene editing Lipids Macromolecules nanomedicine Nanoparticles Nanotechnology nucleic acid therapeutics Nucleic acids siRNA delivery |
Title | Development of “CLAN” Nanomedicine for Nucleic Acid Therapeutics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201900055 https://www.ncbi.nlm.nih.gov/pubmed/30884095 https://www.proquest.com/docview/2210895493 https://www.proquest.com/docview/2194136151 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YT3rw_UDRrImJp0LbbUt7JCghBjgoJNyafTUhIhgLF0_8EP1z_BJn-gI0xkRvbbptt7szO990Zr4l5FpFgjmejAylAgkOSmQaXEWWITwncBjzmEiyCTtdr9V37gfuYKWKP-WHKH64oWYk6zUqOBdxdUkaGj-PMHRgJbteYpU5JmwhKnoo-KMYGK9kdxWwWQYSb-WsjaZdXb993Sp9g5rryDUxPc1dwvNOpxknT5XZVFTk2xc-x_981R7ZyXApraeCtE829PiAbK-wFR6S25UEIzqJ6GL-3mjXu4v5B4U1epJH6SnAYNpFmuShpHU5VLS3rPGKj0i_eddrtIxsEwZDshrDDDjP4cpxcW3QNXDuJEACpnkQcF8zLblETGZ6ylSWLS1XWsITvmsKkdTk-uyYbI4nY31KqALLqCNbM9PWDggDDzjAQc_XwhGMuVGJGPkkhDJjKMeNMkZhyq1shzg6YTE6JXJTtH9JuTl-bFnO5zTMdDQObfB2fYxyshK5Ki6DdmHIhI_1ZAZtrACsPKK-EjlJZaF4FYMFGrxjeLidzOgvfQgfO-12cXb2l5vOyRYep4lDZbI5fZ3pC8BEU3GZyP0njVoCVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4BPQAH-gu4pXQrgXpysHfXxj70EBFQKE4OECRurvfHEgISRBKh9sSDtA_RV-kj8CSdsWNDiqpKlTj0aHttrz0zO9_szn4DsGFyJWSoc9eYWGOAkntuZnLfVaGMpRChUEU2Yacbto_lp5PgZAZ-VHthSn6IesKNLKMYr8nAaUJ66441dHhxTmsHflH2ssqrPLBfrjFqG37cb6GINznf2-3ttN1JYQFXi21BWV2hzIwMSN_tNgYsGt2csFkcZ5EVVmeacIYXGs_4XPuB9lWoosBTqthnGgl87iw8oTLiRNffOqwZqwS6y6KeC3pJl6i-Kp5Ij29N93faDz4At9NYuXB2e0_hZ_WbyhyXs8Z4pBr6628Mkv_Vf3wGSxPozZqlrTyHGdt_AYv3CBlfQuteDhUb5Oz25ttO0uze3nxn6IYGVSICQ6TPusQEfapZU58a1rvbxjZ8BceP8hnLMNcf9O0qMIPO3-bcCo9bifqexRki3jCySiohgtwBt5J6qick7FQL5Dwt6aN5StJIa2k48KFuf1nSj_yx5VqlROlkGBqmHAP6iBZyhQPv68s4gNCqUNa3gzG28WMEMgRsHVgpla9-lUAfJBGEO8ALFfpLH9KjTpLUR6__5aZ3MN_udZI02e8evIEFOl_mSa3B3OhqbN8iBByp9cLoGHx-bO38BTYtXSc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkBAceC2w5WkkVpwCie2Y5MCholQ8SoVYkLiF-BEJLduibSsEJ34I_Af-Cn-BX8I4aQIFoZWQOHBM4iSOZ8bzTTz-BmBFJ5JxoRJH61BhgJK4TqwTz5GCh5wxwWSaTXhQFzsnfO_UP-2Dh3wvTMYPUfxws5aRztfWwC91sv5CGtr6e2GXDry06mWeVrlvrq8waGtt7lZQwr8orW4fb-043boCjmIbzCZ1CR5r7lt1NxsYryj0cszEYRgHhhkVKwszXKFd7VHl-cqTQga-K2W6zTRg-Nx-GOTCDW2xiMpRQVjF0Fum5VzQSTqW6SuniXTpem9_e93gO2zbC5VTX1cdg8d8lLIUlz9rnbZcUzdvCCS_0zCOw2gXeJNyZikT0GcakzDyio7xB1ReZVCRZkKebu-2auX60-09QSfUzNMQCOJ8Urc80OeKlNW5Jscvm9haU3DyJZ8xDQONZsP8BKLR9ZuEGuZSw1Hb4zBGvCsCI7lkzE9K4ORCj1SXgt1WArmIMvJoGllpRIU0SrBatL_MyEc-bDmf61DUnYRaEcVwPrDLuKwEy8VlnD7smlDcMM0OtvFChDEW1pZgJtO94lUMPRCG__hwmmrQf_oQ_T6o1Yqj2c_ctARDh5VqVNut78_BsD2dJUnNw0D7X8csIP5ry8XU5AicfbVyPgOU_FvW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+%22CLAN%22+Nanomedicine+for+Nucleic+Acid+Therapeutics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xu%2C+Cong-Fei&rft.au=Iqbal%2C+Shoaib&rft.au=Shen%2C+Song&rft.au=Luo%2C+Ying-Li&rft.date=2019-04-01&rft.eissn=1613-6829&rft.volume=15&rft.issue=16&rft.spage=e1900055&rft_id=info:doi/10.1002%2Fsmll.201900055&rft_id=info%3Apmid%2F30884095&rft.externalDocID=30884095 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |