Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes
Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 22; pp. e202403695 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
27.05.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
A dynamic anode/electrolyte interface coupled with regulated solvation structures strategy is firstly realized with Tris additive for aqueous zinc‐ion batteries. The dynamic adsorption layer could successively attract solvated‐Zn2+, then promote the de‐solvation by the orientation polarization, the volume rejection effect and strong intermolecular force of the vertically‐adsorbed Tris, leading to an improved Zn2+‐transport kinetics and the inhibition of side reactions. |
---|---|
AbstractList | Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn 2+ , but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn 2+ and then promote the de‐solvation of the solvated Zn 2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H 2 O of the vertically‐adsorbed Tris. Therefore, an improved Zn 2+ ‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO 2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. A dynamic anode/electrolyte interface coupled with regulated solvation structures strategy is firstly realized with Tris additive for aqueous zinc‐ion batteries. The dynamic adsorption layer could successively attract solvated‐Zn2+, then promote the de‐solvation by the orientation polarization, the volume rejection effect and strong intermolecular force of the vertically‐adsorbed Tris, leading to an improved Zn2+‐transport kinetics and the inhibition of side reactions. Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but also is vertically adsorbed on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to in situ generate a dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport dynamics as well as the inhibition of side reactions of Zn anode are well realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. |
Author | Yu, Zhong‐Zhen Jiang, Zhi‐Guo Yu, Jia‐Cheng Zhang, Jia‐Hao Xie, Gang Qu, Jin Yao, Ming Yu, Chun‐Yu Han, Mei‐Chen Wang, Yong‐Xin |
Author_xml | – sequence: 1 givenname: Mei‐Chen surname: Han fullname: Han, Mei‐Chen organization: Beijing University of Chemical Technology – sequence: 2 givenname: Jia‐Hao surname: Zhang fullname: Zhang, Jia‐Hao organization: Beijing University of Chemical Technology – sequence: 3 givenname: Chun‐Yu surname: Yu fullname: Yu, Chun‐Yu organization: Beijing University of Chemical Technology – sequence: 4 givenname: Jia‐Cheng surname: Yu fullname: Yu, Jia‐Cheng organization: Beijing University of Chemical Technology – sequence: 5 givenname: Yong‐Xin surname: Wang fullname: Wang, Yong‐Xin organization: Beijing University of Chemical Technology – sequence: 6 givenname: Zhi‐Guo surname: Jiang fullname: Jiang, Zhi‐Guo organization: Beijing University of Chemical Technology – sequence: 7 givenname: Ming surname: Yao fullname: Yao, Ming organization: Beijing University of Chemical Technology – sequence: 8 givenname: Gang surname: Xie fullname: Xie, Gang organization: PowerChina Beijing Engineering Co., Ltd – sequence: 9 givenname: Zhong‐Zhen surname: Yu fullname: Yu, Zhong‐Zhen email: yuzz@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 10 givenname: Jin orcidid: 0000-0001-8962-3260 surname: Qu fullname: Qu, Jin email: qujin@mail.buct.edu.cn organization: Beijing University of Chemical Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38436549$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsMmUzuOE2c5GgY60gASLRs2lse5mbpy7MF2WmXHI7DhBXkS3E4LUiXEyrb0nXOvzzlGB847QOglJTNKSHmqnIFZScqKsLrlT9AR5SUtWNOwg3yvGCsawekhOo7xKvNCkPoZOmSiYjWv2iP0c-FdTGHUybgtfjs5NRiN5853cLq0oFPwdkqAVy5B6JWGiBd-3Fno8I1Jl_gzbEerUn6ee3utkvEOn9_5jSGzvQ947d321_cfFxAGrFyHz8z20k5ZeQ0hmo0F_NU4jT9AUnY_OT5HT3tlI7y4P0_Ql3fLi8VZsf70frWYrwvNGsYLKrjqGCObntNKlZqrumFAhRZad53IHwcBbb0RJVGEVjWhumFVVVPS5mQ6zk7Qm73vLvhvI8QkBxM1WKsc-DHKss1zWJvjzejrR-iVH4PL20lGOBecsFZk6tU9NW4G6OQumEGFST4EnoFqD-jgYwzQS23SXWwpKGMlJfK2V3nbq_zTa5bNHskenP8paPeCG2Nh-g8t5x9Xy7_a357MtyA |
CitedBy_id | crossref_primary_10_1002_aenm_202404693 crossref_primary_10_1002_ange_202502896 crossref_primary_10_1002_adfm_202421220 crossref_primary_10_1002_cnl2_168 crossref_primary_10_1039_D4EE04372C crossref_primary_10_1039_D4SC05127K crossref_primary_10_1039_D5QI00035A crossref_primary_10_1016_j_vacuum_2024_113365 crossref_primary_10_1039_D4EE02896A crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1002_anie_202502896 crossref_primary_10_1016_j_jpowsour_2025_236530 crossref_primary_10_3390_ma17184456 crossref_primary_10_1039_D4TA03129F crossref_primary_10_1021_acsami_4c20454 crossref_primary_10_1021_acsenergylett_4c01646 crossref_primary_10_1039_D4EE04870A crossref_primary_10_20517_energymater_2024_169 crossref_primary_10_1021_acs_inorgchem_4c05130 crossref_primary_10_1039_D4EE04212C crossref_primary_10_1002_smll_202407238 crossref_primary_10_1016_j_est_2024_113354 crossref_primary_10_1007_s40820_024_01544_9 crossref_primary_10_1002_adfm_202406386 crossref_primary_10_1039_D4NR03635B crossref_primary_10_1021_acsami_4c10070 |
Cites_doi | 10.1002/anie.202217458 10.1039/D3EE00658A 10.1039/D1EE01861B 10.1002/anie.202218452 10.1002/adma.201903675 10.1002/aenm.202300550 10.1002/adma.202200677 10.1038/s41467-023-38492-8 10.1016/0013-4686(83)85164-0 10.1002/smll.202207664 10.1002/adfm.202110957 10.1155/2018/2079278 10.1002/anie.202016531 10.1002/adfm.202103514 10.1002/anie.201814653 10.1002/aenm.202103231 10.1016/j.cej.2022.137471 10.1016/j.ensm.2021.08.021 10.1002/adfm.202006425 10.1002/adfm.202300952 10.1002/anie.202210979 10.1021/acsnano.2c02448 10.1007/s40820-023-01050-4 10.1016/j.nanoen.2020.104523 10.1002/inf2.12374 10.1016/j.cej.2023.142105 10.1016/j.joule.2023.05.004 10.1002/anie.201813223 10.1109/MEI.2003.1238713 10.1007/s40820-020-0397-3 10.1021/acsenergylett.3c00154 10.1002/adfm.202206695 10.1002/aenm.202003419 10.1021/acsnano.9b05599 10.1002/anie.202212839 10.1002/aenm.202300283 10.1002/adfm.202214538 10.1002/adma.202206754 10.1002/anie.202302701 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202403695 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38436549 10_1002_anie_202403695 ANIE202403695 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972016; 52090034; 52221006 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3735-185ad330bf514a2c5a673e18c8ccdd8851e8e96b820a014601c73446109433d53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:58:25 EDT 2025 Fri Jul 25 11:47:22 EDT 2025 Wed Feb 19 02:11:25 EST 2025 Tue Jul 01 01:47:32 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Sun Jul 06 04:45:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | anodes tris(hydroxymethyl)aminomethane zinc-ion batteries dynamic anode-electrolyte interface layers solvation structures |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-185ad330bf514a2c5a673e18c8ccdd8851e8e96b820a014601c73446109433d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8962-3260 |
PMID | 38436549 |
PQID | 3055850398 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2937339024 proquest_journals_3055850398 pubmed_primary_38436549 crossref_citationtrail_10_1002_anie_202403695 crossref_primary_10_1002_anie_202403695 wiley_primary_10_1002_anie_202403695_ANIE202403695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 27, 2024 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: May 27, 2024 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 530 2023; 13 2022; 5(3) 2021; 42 2023; 14 2023; 33 2023; 34 2023; 7(6) 2019; 31 2023; 461 2023; 15 2023; 16 2019; 13 2023; 8 2019; 58 2020; 12 2003; 19(5) 2021; 14 2023; 62 2018; 2018 2021; 31 2021; 11 2020; 31 2023 2022; 61 2020; 70 2022; 12 2022; 34 2022; 32 1983; 28(7) 2021; 60 2022; 447 2022; 16 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Kondratenko Y. A. (e_1_2_8_28_1) 2022; 530 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Liu Y. (e_1_2_8_12_1) 2022; 5 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 70 year: 2020 publication-title: Nano Energy – year: 2023 publication-title: Small – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 530 year: 2022 publication-title: Electr. Insul. Mag. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1613 year: 2023 end-page: 1625 publication-title: ACS Energy Lett. – volume: 447 year: 2022 publication-title: Chem. Eng. J. – volume: 14 start-page: 5563 year: 2021 end-page: 5571 publication-title: Energy Environ. Sci. – volume: 60 start-page: 7366 year: 2021 end-page: 7375 publication-title: Angew. Chem. Int. Ed. – volume: 2018 start-page: 1 year: 2018 end-page: 14 publication-title: J. Spectrosc. – volume: 34 year: 2023 publication-title: Adv. Funct. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 58 start-page: 2760 year: 2019 end-page: 2764 publication-title: Angew. Chem. Int. Ed. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 16 start-page: 9461 year: 2022 end-page: 9471 publication-title: ACS Nano – volume: 461 year: 2023 publication-title: Chem. Eng. J. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 56 year: 2020 publication-title: Nano-Micro Lett. – volume: 42 start-page: 753 year: 2021 end-page: 763 publication-title: Energy Storage Mater. – volume: 13 start-page: 11676 year: 2019 end-page: 11685 publication-title: ACS Nano – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 16 start-page: 2910 year: 2023 end-page: 2923 publication-title: Energy Environ. Sci. – volume: 5(3) year: 2022 publication-title: InfoMat. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 19(5) start-page: 5 year: 2003 end-page: 19 publication-title: Electr. Insul. Mag. – volume: 15 start-page: 81 year: 2023 publication-title: Nano-Micro Lett. – volume: 28(7) start-page: 891 year: 1983 end-page: 898 publication-title: Electrochim. Acta – volume: 7(6) start-page: 1145 year: 2023 end-page: 1175 publication-title: Joule – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 58 start-page: 4313 year: 2019 end-page: 4317 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 2925 year: 2023 publication-title: Nat. Commun. – ident: e_1_2_8_26_1 doi: 10.1002/anie.202217458 – ident: e_1_2_8_40_1 doi: 10.1039/D3EE00658A – ident: e_1_2_8_16_1 doi: 10.1039/D1EE01861B – ident: e_1_2_8_19_1 doi: 10.1002/anie.202218452 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201903675 – ident: e_1_2_8_18_1 doi: 10.1002/aenm.202300550 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202200677 – volume: 530 year: 2022 ident: e_1_2_8_28_1 publication-title: Electr. Insul. Mag. – ident: e_1_2_8_13_1 doi: 10.1038/s41467-023-38492-8 – ident: e_1_2_8_35_1 doi: 10.1016/0013-4686(83)85164-0 – ident: e_1_2_8_22_1 doi: 10.1002/smll.202207664 – ident: e_1_2_8_7_1 doi: 10.1002/adfm.202110957 – ident: e_1_2_8_21_1 doi: 10.1155/2018/2079278 – ident: e_1_2_8_15_1 doi: 10.1002/anie.202016531 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202103514 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201814653 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.202103231 – ident: e_1_2_8_20_1 doi: 10.1016/j.cej.2022.137471 – ident: e_1_2_8_5_1 doi: 10.1016/j.ensm.2021.08.021 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202006425 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202300952 – ident: e_1_2_8_9_1 doi: 10.1002/anie.202210979 – ident: e_1_2_8_30_1 doi: 10.1021/acsnano.2c02448 – ident: e_1_2_8_39_1 doi: 10.1007/s40820-023-01050-4 – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2020.104523 – volume: 5 year: 2022 ident: e_1_2_8_12_1 publication-title: InfoMat. doi: 10.1002/inf2.12374 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2023.142105 – ident: e_1_2_8_38_1 doi: 10.1016/j.joule.2023.05.004 – ident: e_1_2_8_4_1 doi: 10.1002/anie.201813223 – ident: e_1_2_8_25_1 doi: 10.1109/MEI.2003.1238713 – ident: e_1_2_8_1_1 doi: 10.1007/s40820-020-0397-3 – ident: e_1_2_8_33_1 doi: 10.1021/acsenergylett.3c00154 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202206695 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202003419 – ident: e_1_2_8_3_1 doi: 10.1021/acsnano.9b05599 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202212839 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.202300283 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202214538 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202206754 – ident: e_1_2_8_17_1 doi: 10.1002/anie.202302701 |
SSID | ssj0028806 |
Score | 2.6068373 |
Snippet | Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the... Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202403695 |
SubjectTerms | Adsorption Anodes dynamic anode-electrolyte interface layers Electric fields Electrode polarization Energy storage Intermolecular forces Manganese dioxide Plating Rechargeable batteries Side reactions Solvation solvation structures Structural stability tris(hydroxymethyl)aminomethane Zinc zinc-ion batteries |
Title | Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403695 https://www.ncbi.nlm.nih.gov/pubmed/38436549 https://www.proquest.com/docview/3055850398 https://www.proquest.com/docview/2937339024 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXsoFKM9AQUZC4uTuxs7DOa6WrQqiPfQhVVwiv7aqiJxKu3soJ35CL_2D_BJm4k1gQQgJbokSJ05mHH-ezHwfwBuizEorm3KVzgXPcE7jlSk01whGtPG505YC-odHxcFZ9uE8P_-pij_yQwwBNxoZ3feaBrg2i9EP0lCqwMb1HfHJFRVVmVPCFqGi44E_SqBzxvIiKTmp0PesjWMx2my-OSv9BjU3kWs39ezfB913OmacfN5bLc2e_fILn-P_PNUDuLfGpWwSHWkH7vjwELanvRzcI7glac9INhsu2LsoZM8moXV-NItaOs310rMuxDinRC82bVdXjXeMYr3sOIre4-5J28Q4MDvprrfCFT9D7Mw-tuHi29ebU5wsmA6OUQ5Kc40tu9QR03j26TJYduiX1FO68-IxnO3PTqcHfK3pwK0sZc4RHmgn5djMEalpYXNdlNKnyiprnVNoI698VRgEJpp4bcapLWXWkcKjEV0un8BWaIN_BgzXrlWZOokfaKomztTckIxOWZRC4CJOJ8B7m9Z2TXhOuhtNHamaRU0vux5edgJvh_OvItXHH8_c7V2kXg_5RU3UaSofy0ol8Ho4jEaiPzA6-Ha1qBFblVJWeJ0EnkbXGm4lVYYOnFUJiM5B_tKHenL0fjbsPf-XRi_gLm1TLoQod2ELbe5fIsRamlfdMPoOTz4d4Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5VAu_P8YCiwSiJObeNe_Bw5RkiqhSQ5tKlVczHq9iSrMuiKJUDjxCFx4EF6FR-BJmPHGRgEhJKQeODpZ26udmZ0fz34fwDOCzPIS5bmxN-Oujz7NTbJQuhKDEZnpIJeKCvrjSTg49V-dBWc78LU-C2PxIZqCG1lGtV-TgVNBuvUTNZSOYGOCR4ByYVL3VR7p9QfM2hYvhz0U8XPOD_vT7sDdEAu4SkQicNFHyRwT-WyG4YLkKpBhJLQXq1ipPI8xCNGxTsIMvaMkcJW2pyLhV8jkvhA5EUXgrn-FaMQJrr933CBWcTQHe6BJCJd472ucyDZvbc932w_-Ftxux8qVszu8Dt_qZbI9Lm8PVsvsQH38BUHyv1rHG3BtE3qzjrWVm7CjzS3Y69aMd7fhC7GXWjxdM2e9tZHvzhXrmDLXrb6lCyrWS82qKuqMetlYt1xdFDpnVM5mx3pOZGh4eVIWttTNTqrnrd7jWEwP2Kg08--fPk_RHzJpckZtNsUa76y6Y7JCs9fnRrGxXtJM6c2LO3B6KatyF3ZNafR9YJieJ5GXC_RBdGDaj2cZMQVFYcQ55qnSAbdWolRtMN2JWqRILRo1T0m4aSNcB1404y8smskfR-7XOpludrVFSuhwcdAWSezA0-ZvFBJ9ZJJGl6tFiuFjJESCz3HgntXl5lUi9kUY-IkDvNLIv8wh7UyG_ebqwb_c9AT2BtPxKB0NJ0cP4Sr9Tq0fPNqHXZS_foQR5TJ7XNkwgzeXrew_AM5geCc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VRQIuvB-BAosE4uQm3vXzwCHKQw1tI9SHVHFx17vrqMK1oyYRCid-Ahf-B3-Fv8AvYcYbGwWEkJB64Oh4ba92ZnYemf0-gBcEmeXGynUiN-OOhz7NidNAOhKDEZkaX0tFBf39cbBz7L058U824Gt9FsbiQzQFN7KMar8mA5_qrP0TNJROYGN-R3hyQVy3Ve6a5QdM2mavR32U8EvOh4Oj3o6z4hVwlAiF76CLkhrz-DTDaEFy5csgFMaNVKSU1hHGICYycZCic5SErdJxVSi8CpjcE0ITTwRu-lfwRkxkEf2DBrCKozXY80xCOER7X8NEdnh7fb7rbvC32HY9VK583fAmfKtXyba4vN9ezNNt9fEXAMn_aRlvwY1V4M261lJuw4Yp7sC1Xs13dxe-EHepRdMtJqy_LOT5mWLdotSmPbBkQflyblhVQ82ok431ysU0N5pRMZsdmAlRoeHlYZnbQjc7rN63uMCxmBywvbKYfP_0-Qi9IZOFZtRkky_xyao3Js0Ne3dWKLZv5jRT-vLsHhxfyqrch82iLMxDYJicx6GrBXogOi7tRVlKPEFhEHKOWapsgVPrUKJWiO5ELJInFouaJyTcpBFuC14146cWy-SPI7dqlUxWe9osIWy4yO-IOGrB8-Y2Con-YpKFKRezBIPHUIgY39OCB1aVm0-JyBOB78Ut4JVC_mUOSXc8GjRXj_7loWdw9W1_mOyNxruP4Tr9TH0fPNyCTRS_eYLh5Dx9Wlkwg9PL1vUfx6R21g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Dynamic+Anode%2FElectrolyte+Interfaces+Coupled+with+Regulated+Solvation+Structures+for+Long%E2%80%90Term+and+Highly+Reversible+Zinc+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mei%E2%80%90Chen+Han&rft.au=Jia%E2%80%90Hao+Zhang&rft.au=Chun%E2%80%90Yu+Yu&rft.au=Jia%E2%80%90Cheng+Yu&rft.date=2024-05-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=22&rft_id=info:doi/10.1002%2Fanie.202403695&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |