Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes

Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 22; pp. e202403695 - n/a
Main Authors Han, Mei‐Chen, Zhang, Jia‐Hao, Yu, Chun‐Yu, Yu, Jia‐Cheng, Wang, Yong‐Xin, Jiang, Zhi‐Guo, Yao, Ming, Xie, Gang, Yu, Zhong‐Zhen, Qu, Jin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 27.05.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. A dynamic anode/electrolyte interface coupled with regulated solvation structures strategy is firstly realized with Tris additive for aqueous zinc‐ion batteries. The dynamic adsorption layer could successively attract solvated‐Zn2+, then promote the de‐solvation by the orientation polarization, the volume rejection effect and strong intermolecular force of the vertically‐adsorbed Tris, leading to an improved Zn2+‐transport kinetics and the inhibition of side reactions.
AbstractList Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn 2+ , but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn 2+ and then promote the de‐solvation of the solvated Zn 2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H 2 O of the vertically‐adsorbed Tris. Therefore, an improved Zn 2+ ‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO 2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone‐pair‐electrons and zincophilic sites is firstly introduced to achieve long‐term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but is also adsorbed vertically on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to generate an in situ dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de‐solvation of the solvated Zn2+ owing to the orientation polarization with regularly‐changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically‐adsorbed Tris. Therefore, an improved Zn2+‐transport kinetics as well as the inhibition of side reactions of Zn anode are successfully realized. Accordingly, the Zn||Zn symmetric cell provides an ultra‐long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications. A dynamic anode/electrolyte interface coupled with regulated solvation structures strategy is firstly realized with Tris additive for aqueous zinc‐ion batteries. The dynamic adsorption layer could successively attract solvated‐Zn2+, then promote the de‐solvation by the orientation polarization, the volume rejection effect and strong intermolecular force of the vertically‐adsorbed Tris, leading to an improved Zn2+‐transport kinetics and the inhibition of side reactions.
Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the severe side reactions of zinc negative electrode largely hinder the further application of AZIBs. Herein, trace tris(hydroxymethyl)aminomethane (Tris) additive with rich lone-pair-electrons and zincophilic sites is firstly introduced to achieve long-term and highly reversible Zn plating/stripping. Specifically, Tris not only regulates the solvation structure of Zn2+, but also is vertically adsorbed on the Zn anode surface with a changed coordination intensity during the plating/stripping process of Zn to in situ generate a dynamic adsorption layer for the first time. The dynamic adsorption layer could successively attract the solvated Zn2+ and then promote the de-solvation of the solvated Zn2+ owing to the orientation polarization with regularly-changed applied electric field, the volume rejection effect, and strong intermolecular force towards H2O of the vertically-adsorbed Tris. Therefore, an improved Zn2+-transport dynamics as well as the inhibition of side reactions of Zn anode are well realized. Accordingly, the Zn||Zn symmetric cell provides an ultra-long cycle life of 2600 h. Furthermore, the Zn||MnO2 full cell with Tris could demonstrate a high capacity and structural stability for practical applications.
Author Yu, Zhong‐Zhen
Jiang, Zhi‐Guo
Yu, Jia‐Cheng
Zhang, Jia‐Hao
Xie, Gang
Qu, Jin
Yao, Ming
Yu, Chun‐Yu
Han, Mei‐Chen
Wang, Yong‐Xin
Author_xml – sequence: 1
  givenname: Mei‐Chen
  surname: Han
  fullname: Han, Mei‐Chen
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Jia‐Hao
  surname: Zhang
  fullname: Zhang, Jia‐Hao
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Chun‐Yu
  surname: Yu
  fullname: Yu, Chun‐Yu
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Jia‐Cheng
  surname: Yu
  fullname: Yu, Jia‐Cheng
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Yong‐Xin
  surname: Wang
  fullname: Wang, Yong‐Xin
  organization: Beijing University of Chemical Technology
– sequence: 6
  givenname: Zhi‐Guo
  surname: Jiang
  fullname: Jiang, Zhi‐Guo
  organization: Beijing University of Chemical Technology
– sequence: 7
  givenname: Ming
  surname: Yao
  fullname: Yao, Ming
  organization: Beijing University of Chemical Technology
– sequence: 8
  givenname: Gang
  surname: Xie
  fullname: Xie, Gang
  organization: PowerChina Beijing Engineering Co., Ltd
– sequence: 9
  givenname: Zhong‐Zhen
  surname: Yu
  fullname: Yu, Zhong‐Zhen
  email: yuzz@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 10
  givenname: Jin
  orcidid: 0000-0001-8962-3260
  surname: Qu
  fullname: Qu, Jin
  email: qujin@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38436549$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsMmUzuOE2c5GgY60gASLRs2lse5mbpy7MF2WmXHI7DhBXkS3E4LUiXEyrb0nXOvzzlGB847QOglJTNKSHmqnIFZScqKsLrlT9AR5SUtWNOwg3yvGCsawekhOo7xKvNCkPoZOmSiYjWv2iP0c-FdTGHUybgtfjs5NRiN5853cLq0oFPwdkqAVy5B6JWGiBd-3Fno8I1Jl_gzbEerUn6ee3utkvEOn9_5jSGzvQ947d321_cfFxAGrFyHz8z20k5ZeQ0hmo0F_NU4jT9AUnY_OT5HT3tlI7y4P0_Ql3fLi8VZsf70frWYrwvNGsYLKrjqGCObntNKlZqrumFAhRZad53IHwcBbb0RJVGEVjWhumFVVVPS5mQ6zk7Qm73vLvhvI8QkBxM1WKsc-DHKss1zWJvjzejrR-iVH4PL20lGOBecsFZk6tU9NW4G6OQumEGFST4EnoFqD-jgYwzQS23SXWwpKGMlJfK2V3nbq_zTa5bNHskenP8paPeCG2Nh-g8t5x9Xy7_a357MtyA
CitedBy_id crossref_primary_10_1002_aenm_202404693
crossref_primary_10_1002_ange_202502896
crossref_primary_10_1002_adfm_202421220
crossref_primary_10_1002_cnl2_168
crossref_primary_10_1039_D4EE04372C
crossref_primary_10_1039_D4SC05127K
crossref_primary_10_1039_D5QI00035A
crossref_primary_10_1016_j_vacuum_2024_113365
crossref_primary_10_1039_D4EE02896A
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1002_anie_202502896
crossref_primary_10_1016_j_jpowsour_2025_236530
crossref_primary_10_3390_ma17184456
crossref_primary_10_1039_D4TA03129F
crossref_primary_10_1021_acsami_4c20454
crossref_primary_10_1021_acsenergylett_4c01646
crossref_primary_10_1039_D4EE04870A
crossref_primary_10_20517_energymater_2024_169
crossref_primary_10_1021_acs_inorgchem_4c05130
crossref_primary_10_1039_D4EE04212C
crossref_primary_10_1002_smll_202407238
crossref_primary_10_1016_j_est_2024_113354
crossref_primary_10_1007_s40820_024_01544_9
crossref_primary_10_1002_adfm_202406386
crossref_primary_10_1039_D4NR03635B
crossref_primary_10_1021_acsami_4c10070
Cites_doi 10.1002/anie.202217458
10.1039/D3EE00658A
10.1039/D1EE01861B
10.1002/anie.202218452
10.1002/adma.201903675
10.1002/aenm.202300550
10.1002/adma.202200677
10.1038/s41467-023-38492-8
10.1016/0013-4686(83)85164-0
10.1002/smll.202207664
10.1002/adfm.202110957
10.1155/2018/2079278
10.1002/anie.202016531
10.1002/adfm.202103514
10.1002/anie.201814653
10.1002/aenm.202103231
10.1016/j.cej.2022.137471
10.1016/j.ensm.2021.08.021
10.1002/adfm.202006425
10.1002/adfm.202300952
10.1002/anie.202210979
10.1021/acsnano.2c02448
10.1007/s40820-023-01050-4
10.1016/j.nanoen.2020.104523
10.1002/inf2.12374
10.1016/j.cej.2023.142105
10.1016/j.joule.2023.05.004
10.1002/anie.201813223
10.1109/MEI.2003.1238713
10.1007/s40820-020-0397-3
10.1021/acsenergylett.3c00154
10.1002/adfm.202206695
10.1002/aenm.202003419
10.1021/acsnano.9b05599
10.1002/anie.202212839
10.1002/aenm.202300283
10.1002/adfm.202214538
10.1002/adma.202206754
10.1002/anie.202302701
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202403695
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38436549
10_1002_anie_202403695
ANIE202403695
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972016; 52090034; 52221006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
NPM
RWI
VQA
WRC
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3735-185ad330bf514a2c5a673e18c8ccdd8851e8e96b820a014601c73446109433d53
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:58:25 EDT 2025
Fri Jul 25 11:47:22 EDT 2025
Wed Feb 19 02:11:25 EST 2025
Tue Jul 01 01:47:32 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Sun Jul 06 04:45:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords anodes
tris(hydroxymethyl)aminomethane
zinc-ion batteries
dynamic anode-electrolyte interface layers
solvation structures
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-185ad330bf514a2c5a673e18c8ccdd8851e8e96b820a014601c73446109433d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8962-3260
PMID 38436549
PQID 3055850398
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2937339024
proquest_journals_3055850398
pubmed_primary_38436549
crossref_citationtrail_10_1002_anie_202403695
crossref_primary_10_1002_anie_202403695
wiley_primary_10_1002_anie_202403695_ANIE202403695
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 27, 2024
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: May 27, 2024
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 530
2023; 13
2022; 5(3)
2021; 42
2023; 14
2023; 33
2023; 34
2023; 7(6)
2019; 31
2023; 461
2023; 15
2023; 16
2019; 13
2023; 8
2019; 58
2020; 12
2003; 19(5)
2021; 14
2023; 62
2018; 2018
2021; 31
2021; 11
2020; 31
2023
2022; 61
2020; 70
2022; 12
2022; 34
2022; 32
1983; 28(7)
2021; 60
2022; 447
2022; 16
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Kondratenko Y. A. (e_1_2_8_28_1) 2022; 530
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Liu Y. (e_1_2_8_12_1) 2022; 5
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 70
  year: 2020
  publication-title: Nano Energy
– year: 2023
  publication-title: Small
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 530
  year: 2022
  publication-title: Electr. Insul. Mag.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1613
  year: 2023
  end-page: 1625
  publication-title: ACS Energy Lett.
– volume: 447
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 5563
  year: 2021
  end-page: 5571
  publication-title: Energy Environ. Sci.
– volume: 60
  start-page: 7366
  year: 2021
  end-page: 7375
  publication-title: Angew. Chem. Int. Ed.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 14
  publication-title: J. Spectrosc.
– volume: 34
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 58
  start-page: 2760
  year: 2019
  end-page: 2764
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  start-page: 9461
  year: 2022
  end-page: 9471
  publication-title: ACS Nano
– volume: 461
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 56
  year: 2020
  publication-title: Nano-Micro Lett.
– volume: 42
  start-page: 753
  year: 2021
  end-page: 763
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 11676
  year: 2019
  end-page: 11685
  publication-title: ACS Nano
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 2910
  year: 2023
  end-page: 2923
  publication-title: Energy Environ. Sci.
– volume: 5(3)
  year: 2022
  publication-title: InfoMat.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 19(5)
  start-page: 5
  year: 2003
  end-page: 19
  publication-title: Electr. Insul. Mag.
– volume: 15
  start-page: 81
  year: 2023
  publication-title: Nano-Micro Lett.
– volume: 28(7)
  start-page: 891
  year: 1983
  end-page: 898
  publication-title: Electrochim. Acta
– volume: 7(6)
  start-page: 1145
  year: 2023
  end-page: 1175
  publication-title: Joule
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 4313
  year: 2019
  end-page: 4317
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 2925
  year: 2023
  publication-title: Nat. Commun.
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.202217458
– ident: e_1_2_8_40_1
  doi: 10.1039/D3EE00658A
– ident: e_1_2_8_16_1
  doi: 10.1039/D1EE01861B
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.202218452
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201903675
– ident: e_1_2_8_18_1
  doi: 10.1002/aenm.202300550
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202200677
– volume: 530
  year: 2022
  ident: e_1_2_8_28_1
  publication-title: Electr. Insul. Mag.
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-023-38492-8
– ident: e_1_2_8_35_1
  doi: 10.1016/0013-4686(83)85164-0
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.202207664
– ident: e_1_2_8_7_1
  doi: 10.1002/adfm.202110957
– ident: e_1_2_8_21_1
  doi: 10.1155/2018/2079278
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202016531
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202103514
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201814653
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.202103231
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cej.2022.137471
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ensm.2021.08.021
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202006425
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202300952
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.202210979
– ident: e_1_2_8_30_1
  doi: 10.1021/acsnano.2c02448
– ident: e_1_2_8_39_1
  doi: 10.1007/s40820-023-01050-4
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2020.104523
– volume: 5
  year: 2022
  ident: e_1_2_8_12_1
  publication-title: InfoMat.
  doi: 10.1002/inf2.12374
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2023.142105
– ident: e_1_2_8_38_1
  doi: 10.1016/j.joule.2023.05.004
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_8_25_1
  doi: 10.1109/MEI.2003.1238713
– ident: e_1_2_8_1_1
  doi: 10.1007/s40820-020-0397-3
– ident: e_1_2_8_33_1
  doi: 10.1021/acsenergylett.3c00154
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202206695
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202003419
– ident: e_1_2_8_3_1
  doi: 10.1021/acsnano.9b05599
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202212839
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202300283
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202214538
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202206754
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.202302701
SSID ssj0028806
Score 2.6068373
Snippet Aqueous zinc ion batteries (AZIBs) show a great potential for next‐generation energy storage due to their high safety and high energy density. However, the...
Aqueous zinc ion batteries (AZIBs) show a great potential for next-generation energy storage due to their high safety and high energy density. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202403695
SubjectTerms Adsorption
Anodes
dynamic anode-electrolyte interface layers
Electric fields
Electrode polarization
Energy storage
Intermolecular forces
Manganese dioxide
Plating
Rechargeable batteries
Side reactions
Solvation
solvation structures
Structural stability
tris(hydroxymethyl)aminomethane
Zinc
zinc-ion batteries
Title Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202403695
https://www.ncbi.nlm.nih.gov/pubmed/38436549
https://www.proquest.com/docview/3055850398
https://www.proquest.com/docview/2937339024
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXsoFKM9AQUZC4uTuxs7DOa6WrQqiPfQhVVwiv7aqiJxKu3soJ35CL_2D_BJm4k1gQQgJbokSJ05mHH-ezHwfwBuizEorm3KVzgXPcE7jlSk01whGtPG505YC-odHxcFZ9uE8P_-pij_yQwwBNxoZ3feaBrg2i9EP0lCqwMb1HfHJFRVVmVPCFqGi44E_SqBzxvIiKTmp0PesjWMx2my-OSv9BjU3kWs39ezfB913OmacfN5bLc2e_fILn-P_PNUDuLfGpWwSHWkH7vjwELanvRzcI7glac9INhsu2LsoZM8moXV-NItaOs310rMuxDinRC82bVdXjXeMYr3sOIre4-5J28Q4MDvprrfCFT9D7Mw-tuHi29ebU5wsmA6OUQ5Kc40tu9QR03j26TJYduiX1FO68-IxnO3PTqcHfK3pwK0sZc4RHmgn5djMEalpYXNdlNKnyiprnVNoI698VRgEJpp4bcapLWXWkcKjEV0un8BWaIN_BgzXrlWZOokfaKomztTckIxOWZRC4CJOJ8B7m9Z2TXhOuhtNHamaRU0vux5edgJvh_OvItXHH8_c7V2kXg_5RU3UaSofy0ol8Ho4jEaiPzA6-Ha1qBFblVJWeJ0EnkbXGm4lVYYOnFUJiM5B_tKHenL0fjbsPf-XRi_gLm1TLoQod2ELbe5fIsRamlfdMPoOTz4d4Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5VAu_P8YCiwSiJObeNe_Bw5RkiqhSQ5tKlVczHq9iSrMuiKJUDjxCFx4EF6FR-BJmPHGRgEhJKQeODpZ26udmZ0fz34fwDOCzPIS5bmxN-Oujz7NTbJQuhKDEZnpIJeKCvrjSTg49V-dBWc78LU-C2PxIZqCG1lGtV-TgVNBuvUTNZSOYGOCR4ByYVL3VR7p9QfM2hYvhz0U8XPOD_vT7sDdEAu4SkQicNFHyRwT-WyG4YLkKpBhJLQXq1ipPI8xCNGxTsIMvaMkcJW2pyLhV8jkvhA5EUXgrn-FaMQJrr933CBWcTQHe6BJCJd472ucyDZvbc932w_-Ftxux8qVszu8Dt_qZbI9Lm8PVsvsQH38BUHyv1rHG3BtE3qzjrWVm7CjzS3Y69aMd7fhC7GXWjxdM2e9tZHvzhXrmDLXrb6lCyrWS82qKuqMetlYt1xdFDpnVM5mx3pOZGh4eVIWttTNTqrnrd7jWEwP2Kg08--fPk_RHzJpckZtNsUa76y6Y7JCs9fnRrGxXtJM6c2LO3B6KatyF3ZNafR9YJieJ5GXC_RBdGDaj2cZMQVFYcQ55qnSAbdWolRtMN2JWqRILRo1T0m4aSNcB1404y8smskfR-7XOpludrVFSuhwcdAWSezA0-ZvFBJ9ZJJGl6tFiuFjJESCz3HgntXl5lUi9kUY-IkDvNLIv8wh7UyG_ebqwb_c9AT2BtPxKB0NJ0cP4Sr9Tq0fPNqHXZS_foQR5TJ7XNkwgzeXrew_AM5geCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VRQIuvB-BAosE4uQm3vXzwCHKQw1tI9SHVHFx17vrqMK1oyYRCid-Ahf-B3-Fv8AvYcYbGwWEkJB64Oh4ba92ZnYemf0-gBcEmeXGynUiN-OOhz7NidNAOhKDEZkaX0tFBf39cbBz7L058U824Gt9FsbiQzQFN7KMar8mA5_qrP0TNJROYGN-R3hyQVy3Ve6a5QdM2mavR32U8EvOh4Oj3o6z4hVwlAiF76CLkhrz-DTDaEFy5csgFMaNVKSU1hHGICYycZCic5SErdJxVSi8CpjcE0ITTwRu-lfwRkxkEf2DBrCKozXY80xCOER7X8NEdnh7fb7rbvC32HY9VK583fAmfKtXyba4vN9ezNNt9fEXAMn_aRlvwY1V4M261lJuw4Yp7sC1Xs13dxe-EHepRdMtJqy_LOT5mWLdotSmPbBkQflyblhVQ82ok431ysU0N5pRMZsdmAlRoeHlYZnbQjc7rN63uMCxmBywvbKYfP_0-Qi9IZOFZtRkky_xyao3Js0Ne3dWKLZv5jRT-vLsHhxfyqrch82iLMxDYJicx6GrBXogOi7tRVlKPEFhEHKOWapsgVPrUKJWiO5ELJInFouaJyTcpBFuC14146cWy-SPI7dqlUxWe9osIWy4yO-IOGrB8-Y2Con-YpKFKRezBIPHUIgY39OCB1aVm0-JyBOB78Ut4JVC_mUOSXc8GjRXj_7loWdw9W1_mOyNxruP4Tr9TH0fPNyCTRS_eYLh5Dx9Wlkwg9PL1vUfx6R21g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Dynamic+Anode%2FElectrolyte+Interfaces+Coupled+with+Regulated+Solvation+Structures+for+Long%E2%80%90Term+and+Highly+Reversible+Zinc+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Mei%E2%80%90Chen+Han&rft.au=Jia%E2%80%90Hao+Zhang&rft.au=Chun%E2%80%90Yu+Yu&rft.au=Jia%E2%80%90Cheng+Yu&rft.date=2024-05-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=22&rft_id=info:doi/10.1002%2Fanie.202403695&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon