Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching Multi‐Band Devices
High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching f...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 25; pp. e2300015 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices.
A facile one‐step solution processing method is developed to rapidly prepare gram‐scale MAPbX3 microcrystals. Utilizing its intrinsic electromagnetic (EM) properties, a series of EM devices is designed and fabricated, which can be applied in the fields of ultra‐wideband bandpass filters and multi‐band photodetection covering X‐rays, UV, visible light, and microwaves. |
---|---|
AbstractList | High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices.
A facile one‐step solution processing method is developed to rapidly prepare gram‐scale MAPbX3 microcrystals. Utilizing its intrinsic electromagnetic (EM) properties, a series of EM devices is designed and fabricated, which can be applied in the fields of ultra‐wideband bandpass filters and multi‐band photodetection covering X‐rays, UV, visible light, and microwaves. High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair -1 cm-2 in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair -1 cm-2 in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices. High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices. High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX 3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gy air −1 cm −2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices. High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gy cm in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices. |
Author | Li, Lin Qiu, Ji‐Jun Wang, Shuang‐Peng Tian, Yong‐Zhi Gao, Feng Yan, Jun Cao, Mao‐Sheng Gong, Wei‐Qiang Yang, Shu‐Hui Zheng, Qi |
Author_xml | – sequence: 1 givenname: Jun surname: Yan fullname: Yan, Jun organization: Harbin Normal University – sequence: 2 givenname: Qi surname: Zheng fullname: Zheng, Qi organization: Beijing Institute of Technology – sequence: 3 givenname: Shuang‐Peng surname: Wang fullname: Wang, Shuang‐Peng organization: University of Macau – sequence: 4 givenname: Yong‐Zhi surname: Tian fullname: Tian, Yong‐Zhi organization: Zhengzhou University – sequence: 5 givenname: Wei‐Qiang surname: Gong fullname: Gong, Wei‐Qiang organization: Harbin Normal University – sequence: 6 givenname: Feng surname: Gao fullname: Gao, Feng organization: Harbin Normal University – sequence: 7 givenname: Ji‐Jun surname: Qiu fullname: Qiu, Ji‐Jun organization: Dalian University of Technology – sequence: 8 givenname: Lin surname: Li fullname: Li, Lin email: physics_lin@hotmail.com organization: Harbin Normal University – sequence: 9 givenname: Shu‐Hui surname: Yang fullname: Yang, Shu‐Hui email: yangshuhui@cuc.edu.cn organization: Communication University of China – sequence: 10 givenname: Mao‐Sheng orcidid: 0000-0001-6810-9422 surname: Cao fullname: Cao, Mao‐Sheng email: caomaosheng@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36934413$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctuEzEUBmALFdG0sGWJRmLDJsG3uXgZ2kArNSrisrY8njPBxbGD7WmVXZ8AIfUN-yT1kBakSoiVvfj-Y_k_B2jPeQcIvSR4RjCmb1W3VjOKKcMYk_IJmpCSkinHotxDEyxYORUVb_bRQYwXmYgKV8_QPqsE45ywCfq5HGwy_eB0Mt4pW5yHlXJG317fnDq_uxcn2zaYrvgIwV_G7yZBsTQ6eB22MSlrjYNi4Vb5gGDcqlCuKxYWdAp-rVYOUh7xCeLGuwjF5yuT9LeR_X759vrXu9Efw6XREJ-jp72yEV7cn4fo6_vFl6OT6dn5h9Oj-dlUszr_iZRdqVpaNxyTnrWibjnRpNZUVG3NSIMbornQ0JSs7YGWHW07XTW0JF1PGNTsEL3Zzd0E_2OAmOTaRA3WKgd-iJI2BAsiCK8yff2IXvgh5KpGlR0TnOCsXt2roV1DJzfBrFXYyoemM-A7kIuLMUAvtUlqLD0FZawkWI4LleNC5Z-F5tjsUexh8j8DYhe4Mha2_9Fyfryc_83eAcN2tpw |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_21_044015 crossref_primary_10_1016_j_jmmm_2024_171850 crossref_primary_10_1021_acs_iecr_3c02059 crossref_primary_10_1007_s12613_024_2881_0 crossref_primary_10_1007_s40820_024_01391_8 crossref_primary_10_1002_adfm_202421144 crossref_primary_10_1016_j_cej_2023_146912 crossref_primary_10_1002_adfm_202405972 crossref_primary_10_1016_j_compositesb_2024_111279 crossref_primary_10_1039_D3TC03605G crossref_primary_10_1016_j_cej_2024_155630 crossref_primary_10_1016_j_aeue_2024_155514 crossref_primary_10_1021_acsami_3c13489 crossref_primary_10_26599_JAC_2024_9220950 crossref_primary_10_1002_adfm_202408696 crossref_primary_10_1007_s10870_024_01024_3 crossref_primary_10_1016_j_ceramint_2023_07_227 crossref_primary_10_1016_j_ceramint_2024_10_097 crossref_primary_10_1039_D3NR06457C crossref_primary_10_1016_j_carbon_2024_119099 crossref_primary_10_1016_j_colsurfa_2024_133379 crossref_primary_10_34133_research_0476 crossref_primary_10_1021_acs_nanolett_3c05006 crossref_primary_10_1016_j_carbon_2023_118165 crossref_primary_10_1002_cey2_638 crossref_primary_10_1016_j_carbon_2024_119931 crossref_primary_10_1016_j_carbon_2023_118265 crossref_primary_10_1016_j_cej_2024_149238 crossref_primary_10_1021_acsomega_3c03983 crossref_primary_10_1007_s10854_023_11525_0 crossref_primary_10_1016_j_carbon_2023_118300 crossref_primary_10_1002_adfm_202417156 crossref_primary_10_1021_acsaelm_3c01016 crossref_primary_10_1016_j_carbon_2024_118846 crossref_primary_10_1002_adfm_202315918 crossref_primary_10_1016_j_jcis_2023_07_169 crossref_primary_10_1002_adma_202311411 crossref_primary_10_1002_smtd_202301476 crossref_primary_10_1039_D4QM01054J crossref_primary_10_1021_acsaelm_4c00307 crossref_primary_10_1016_j_carbon_2023_118273 crossref_primary_10_1002_adfm_202314541 crossref_primary_10_1002_smll_202309773 crossref_primary_10_1007_s10854_024_13650_w crossref_primary_10_1021_acsanm_4c00055 crossref_primary_10_1002_smll_202401618 crossref_primary_10_1016_j_carbon_2023_118459 crossref_primary_10_1016_j_carbon_2023_118573 crossref_primary_10_1007_s10854_024_12814_y crossref_primary_10_1002_slct_202400425 crossref_primary_10_1016_j_compositesb_2023_111136 crossref_primary_10_1016_j_matt_2024_08_009 crossref_primary_10_1016_j_carbon_2023_118218 crossref_primary_10_1016_j_vacuum_2023_112792 crossref_primary_10_1002_adfm_202423947 crossref_primary_10_1002_adfm_202417972 crossref_primary_10_1016_j_susmat_2024_e00993 crossref_primary_10_1002_adfm_202312237 crossref_primary_10_1002_inf2_12630 crossref_primary_10_1002_pen_26572 crossref_primary_10_1016_j_optlastec_2024_111211 crossref_primary_10_1039_D3TC02809G crossref_primary_10_1007_s42114_023_00813_2 crossref_primary_10_1016_j_carbon_2023_118220 crossref_primary_10_1016_j_orgel_2024_107158 crossref_primary_10_1002_adma_202413559 crossref_primary_10_1002_adom_202400007 crossref_primary_10_1016_j_jiec_2024_05_055 crossref_primary_10_1016_j_carbon_2023_118166 crossref_primary_10_1016_j_carbon_2023_118046 crossref_primary_10_1016_j_carbon_2023_118442 crossref_primary_10_1016_j_carbon_2023_118563 crossref_primary_10_1016_j_rinp_2024_107353 crossref_primary_10_1002_smll_202306253 crossref_primary_10_1016_j_carbon_2023_118608 crossref_primary_10_1016_j_carbon_2023_118609 crossref_primary_10_1007_s42114_024_00830_9 crossref_primary_10_1016_j_diamond_2023_110490 crossref_primary_10_1039_D3TC03246A crossref_primary_10_1002_lpor_202400669 crossref_primary_10_1016_j_apsusc_2024_160767 crossref_primary_10_3390_mi14111996 crossref_primary_10_1016_j_cej_2024_153783 crossref_primary_10_1002_adfm_202413884 crossref_primary_10_1002_smll_202412101 crossref_primary_10_1016_j_carbon_2023_118450 crossref_primary_10_1016_j_carbon_2023_118290 crossref_primary_10_1007_s10853_024_09553_0 crossref_primary_10_1016_j_colsurfa_2024_133407 crossref_primary_10_1016_j_carbon_2024_119569 crossref_primary_10_1016_j_ceramint_2024_01_127 crossref_primary_10_1016_j_carbon_2024_119289 crossref_primary_10_1016_j_carbon_2024_119567 crossref_primary_10_1007_s12274_024_6880_2 crossref_primary_10_1007_s12274_024_6967_9 crossref_primary_10_1002_smll_202403255 crossref_primary_10_1021_acsanm_3c03530 crossref_primary_10_1021_acsaelm_4c01543 crossref_primary_10_1016_j_mser_2024_100795 crossref_primary_10_1007_s12613_024_2917_5 crossref_primary_10_1039_D3NJ02870D crossref_primary_10_1016_j_jallcom_2024_174176 crossref_primary_10_1016_j_jallcom_2024_173641 crossref_primary_10_1016_j_carbon_2023_118104 crossref_primary_10_1016_j_carbon_2024_119338 crossref_primary_10_1016_j_jeurceramsoc_2025_117203 crossref_primary_10_1016_j_ceramint_2024_01_257 crossref_primary_10_1039_D3TC02696E crossref_primary_10_1016_j_carbon_2023_118103 crossref_primary_10_20517_ss_2024_51 crossref_primary_10_1002_adfm_202400998 crossref_primary_10_1016_j_colsurfa_2024_135372 crossref_primary_10_1016_j_jcis_2023_10_014 crossref_primary_10_1002_adfm_202413784 crossref_primary_10_21926_rpm_2501003 crossref_primary_10_1002_adom_202302127 crossref_primary_10_1016_j_xcrp_2024_102250 crossref_primary_10_1016_j_colsurfa_2024_134158 crossref_primary_10_1021_acsphotonics_4c00250 crossref_primary_10_1002_advs_202303104 crossref_primary_10_1021_acsanm_4c03503 crossref_primary_10_1016_j_carbon_2023_118071 crossref_primary_10_1021_acs_inorgchem_3c03326 crossref_primary_10_1016_j_carbon_2023_118651 crossref_primary_10_1016_j_carbon_2024_119501 crossref_primary_10_1007_s40242_024_4153_y crossref_primary_10_1021_acs_iecr_4c04544 crossref_primary_10_1016_j_scib_2023_04_036 crossref_primary_10_20517_ss_2024_63 crossref_primary_10_1002_adma_202314233 crossref_primary_10_1063_5_0260963 crossref_primary_10_1016_j_jmat_2023_11_019 crossref_primary_10_1039_D4TA00492B crossref_primary_10_1039_D4NR01657B crossref_primary_10_1007_s40820_024_01449_7 crossref_primary_10_1021_acsami_3c07669 crossref_primary_10_1016_j_carbon_2024_119632 crossref_primary_10_1039_D3TC01416A crossref_primary_10_1016_j_carbon_2023_118768 crossref_primary_10_1021_acsanm_3c04599 crossref_primary_10_1007_s12274_024_6746_7 crossref_primary_10_1016_j_jallcom_2024_173535 crossref_primary_10_1039_D3TC04067D crossref_primary_10_1016_j_jlumin_2025_121111 crossref_primary_10_1007_s40820_024_01540_z crossref_primary_10_1109_TCSII_2023_3321507 crossref_primary_10_1016_j_carbon_2024_119242 crossref_primary_10_1016_j_jallcom_2023_173193 crossref_primary_10_1016_j_carbon_2024_119083 crossref_primary_10_1016_j_ceramint_2024_01_084 crossref_primary_10_1039_D3RA03927G crossref_primary_10_1016_j_jallcom_2024_176364 |
Cites_doi | 10.1002/smll.202005606 10.1002/adma.202001981 10.1002/adfm.202109149 10.1002/adma.201906769 10.1002/advs.201700256 10.1038/s41586-021-03492-5 10.1002/adma.202002112 10.1002/adma.202003790 10.1063/1.4918991 10.1002/aenm.202201735 10.1002/adom.201600327 10.1002/smll.201800987 10.1002/adfm.202210456 10.1002/adma.202107538 10.1002/advs.202104163 10.1002/adfm.202100470 10.1126/sciadv.aaw8065 10.1038/s41377-021-00694-4 10.1038/s41467-020-16034-w 10.1126/sciadv.abb0253 10.1038/s41560-021-00949-9 10.1039/C7TA10010H 10.1109/TMTT.2020.3038202 10.1039/C6CP07457J 10.1038/s41586-020-2526-z 10.1021/acssuschemeng.7b03908 10.1002/advs.202203305 10.1016/j.mattod.2021.01.028 10.1016/j.nanoen.2020.104820 10.1002/adfm.201904205 10.1063/1.3527974 10.1038/s41560-018-0200-6 10.1021/acsnano.7b00370 10.1126/science.aba7977 10.1002/smll.201902730 10.1016/j.solener.2019.02.035 10.1002/adma.201706343 10.1002/adma.201907156 10.1002/adma.201502597 10.1016/j.carbon.2023.02.012 10.1002/smll.202106302 10.1002/adma.201907257 10.1016/j.nantod.2015.04.009 10.1002/adma.202102967 10.1039/C4CS00458B 10.1016/j.cej.2020.125715 10.1063/1.4978653 10.1002/adfm.202200141 10.1021/acsami.6b15379 10.1109/TMTT.2020.3033830 10.1038/s41566-022-00978-0 10.1002/anie.202102360 10.1038/s41586-021-03964-8 10.1364/OL.39.005184 10.1126/science.aaa5760 10.1002/adfm.201901236 10.1016/j.carbon.2022.06.037 10.1002/adma.202106195 10.1002/adma.202003225 10.1002/adma.201604439 10.1002/adfm.201807398 10.1016/j.carbon.2021.07.099 10.1002/adfm.202206053 10.1002/adma.202200720 10.1039/D2TC01124G 10.1038/natrevmats.2016.100 10.1038/s41467-021-25832-9 10.1023/A:1008993813689 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202300015 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36934413 10_1002_adma_202300015 ADMA202300015 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12074095; 52273257; 52177014; 51977009 – fundername: Talent Training Project of the Reform and Development Fund of Local Universities funderid: 2020YQ02 – fundername: Heilongjiang Provincial Science Foundation for Distinguished Young Scholars funderid: JQ2022A002 – fundername: National Natural Science Foundation of China grantid: 51977009 – fundername: Talent Training Project of the Reform and Development Fund of Local Universities grantid: 2020YQ02 – fundername: National Natural Science Foundation of China grantid: 12074095 – fundername: National Natural Science Foundation of China grantid: 52273257 – fundername: National Natural Science Foundation of China grantid: 52177014 – fundername: Heilongjiang Provincial Science Foundation for Distinguished Young Scholars grantid: JQ2022A002 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c3735-15d5ab278401f3b97b41c17c296b7318081c49ce853bfe25d2bdc68251df13e73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 17:54:49 EDT 2025 Fri Jul 25 06:27:10 EDT 2025 Thu Apr 03 06:53:51 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 02:33:31 EDT 2025 Wed Jan 22 16:20:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | multi-band devices organic-inorganic hybrid perovskites electromagnetic responses microwave absorption electromagnetic functional materials |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-15d5ab278401f3b97b41c17c296b7318081c49ce853bfe25d2bdc68251df13e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6810-9422 |
PMID | 36934413 |
PQID | 2828139410 |
PQPubID | 2045203 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2810919146 proquest_journals_2828139410 pubmed_primary_36934413 crossref_citationtrail_10_1002_adma_202300015 crossref_primary_10_1002_adma_202300015 wiley_primary_10_1002_adma_202300015_ADMA202300015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 69 2010; 97 2017; 2 2015; 347 2019; 15 2020; 369 2015; 106 2020; 11 2017; 110 2017; 9 2018; 6 2020; 6 2018; 3 2014; 5 2021; 31 2018; 5 2021; 33 2021; 598 2000; 11 2022; 34 2019; 29 2018; 30 2021; 593 2022; 32 2022; 33 2016; 45 2021; 9 2022; 197 2021; 48 2020; 583 2015; 10 2021; 184 2017; 29 2020; 32 2023; 206 2019; 182 2016; 4 2015; 27 2021; 12 2022 2020; 30 2020; 73 2017; 11 2022; 7 2021; 17 2022; 9 2017; 19 2022; 10 2022; 11 2014; 39 2020; 399 2021; 60 2022; 16 2022; 18 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Shao Y. C. (e_1_2_8_39_1) 2014; 5 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 11 start-page: 5318 year: 2017 publication-title: ACS Nano – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2022 publication-title: Adv. Energy Mater. – volume: 5 start-page: 578 year: 2014 publication-title: Nat. Commun. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 355 year: 2015 publication-title: Nano Today – volume: 69 start-page: 65 year: 2021 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 369 start-page: 446 year: 2020 publication-title: Science – volume: 206 start-page: 124 year: 2023 publication-title: Carbon – volume: 14 year: 2018 publication-title: Small – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 583 start-page: 790 year: 2020 publication-title: Nature – volume: 10 start-page: 7460 year: 2022 publication-title: J. Mater. Chem. C – volume: 69 start-page: 659 year: 2021 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 6 start-page: 1423 year: 2018 publication-title: J. Mater. Chem. A – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 3596 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater – volume: 97 year: 2010 publication-title: Appl. Phys. Lett. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 12 start-page: 5516 year: 2021 publication-title: Nat. Commun. – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 2304 year: 2020 publication-title: Nat. Commun. – volume: 184 start-page: 136 year: 2021 publication-title: Carbon – volume: 182 start-page: 9 year: 2019 publication-title: Sol. Energy – volume: 16 start-page: 284 year: 2022 publication-title: Nat. Photonics – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 593 start-page: 535 year: 2021 publication-title: Nature – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 4 start-page: 1829 year: 2016 publication-title: Adv. Opt. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 598 start-page: 444 year: 2021 publication-title: Nature – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 197 start-page: 324 year: 2022 publication-title: Carbon – volume: 399 year: 2020 publication-title: Chem. Eng. J. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 11 start-page: 6 year: 2022 publication-title: Light: Sci. Appl. – volume: 19 start-page: 3948 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 65 year: 2022 publication-title: Nat. Energy – volume: 39 start-page: 5184 year: 2014 publication-title: Opt. Lett. – volume: 27 start-page: 5176 year: 2015 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 179 year: 2000 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 48 start-page: 155 year: 2021 publication-title: Mater. Today – volume: 9 start-page: 7601 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_37_1 doi: 10.1002/smll.202005606 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202001981 – ident: e_1_2_8_66_1 doi: 10.1002/adfm.202109149 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201906769 – ident: e_1_2_8_61_1 doi: 10.1002/advs.201700256 – ident: e_1_2_8_23_1 doi: 10.1038/s41586-021-03492-5 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202002112 – ident: e_1_2_8_64_1 doi: 10.1002/adma.202003790 – ident: e_1_2_8_62_1 doi: 10.1063/1.4918991 – ident: e_1_2_8_36_1 doi: 10.1002/aenm.202201735 – ident: e_1_2_8_42_1 doi: 10.1002/adom.201600327 – ident: e_1_2_8_44_1 doi: 10.1002/smll.201800987 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202210456 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202107538 – ident: e_1_2_8_19_1 doi: 10.1002/advs.202104163 – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202100470 – ident: e_1_2_8_58_1 doi: 10.1126/sciadv.aaw8065 – ident: e_1_2_8_9_1 doi: 10.1038/s41377-021-00694-4 – ident: e_1_2_8_67_1 doi: 10.1038/s41467-020-16034-w – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.abb0253 – ident: e_1_2_8_48_1 doi: 10.1038/s41560-021-00949-9 – ident: e_1_2_8_52_1 doi: 10.1039/C7TA10010H – ident: e_1_2_8_56_1 doi: 10.1109/TMTT.2020.3038202 – ident: e_1_2_8_35_1 doi: 10.1039/C6CP07457J – ident: e_1_2_8_28_1 doi: 10.1038/s41586-020-2526-z – ident: e_1_2_8_34_1 doi: 10.1021/acssuschemeng.7b03908 – ident: e_1_2_8_18_1 doi: 10.1002/advs.202203305 – ident: e_1_2_8_65_1 doi: 10.1016/j.mattod.2021.01.028 – ident: e_1_2_8_53_1 doi: 10.1016/j.nanoen.2020.104820 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.201904205 – ident: e_1_2_8_63_1 doi: 10.1063/1.3527974 – ident: e_1_2_8_25_1 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.7b00370 – ident: e_1_2_8_2_1 doi: 10.1126/science.aba7977 – ident: e_1_2_8_4_1 doi: 10.1002/smll.201902730 – ident: e_1_2_8_46_1 doi: 10.1016/j.solener.2019.02.035 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201706343 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201907156 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201502597 – ident: e_1_2_8_47_1 doi: 10.1016/j.carbon.2023.02.012 – ident: e_1_2_8_22_1 doi: 10.1002/smll.202106302 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201907257 – ident: e_1_2_8_60_1 doi: 10.1016/j.nantod.2015.04.009 – ident: e_1_2_8_59_1 doi: 10.1002/adma.202102967 – ident: e_1_2_8_24_1 doi: 10.1039/C4CS00458B – volume: 5 start-page: 578 year: 2014 ident: e_1_2_8_39_1 publication-title: Nat. Commun. – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2020.125715 – ident: e_1_2_8_50_1 doi: 10.1063/1.4978653 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.202200141 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.6b15379 – ident: e_1_2_8_55_1 doi: 10.1109/TMTT.2020.3033830 – ident: e_1_2_8_32_1 doi: 10.1038/s41566-022-00978-0 – ident: e_1_2_8_40_1 doi: 10.1002/anie.202102360 – ident: e_1_2_8_27_1 doi: 10.1038/s41586-021-03964-8 – ident: e_1_2_8_15_1 doi: 10.1364/OL.39.005184 – ident: e_1_2_8_43_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.201901236 – ident: e_1_2_8_12_1 doi: 10.1016/j.carbon.2022.06.037 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202106195 – ident: e_1_2_8_20_1 doi: 10.1002/adma.202003225 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201604439 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201807398 – ident: e_1_2_8_38_1 doi: 10.1016/j.carbon.2021.07.099 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202206053 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202200720 – ident: e_1_2_8_29_1 doi: 10.1039/D2TC01124G – ident: e_1_2_8_33_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_8_54_1 doi: 10.1038/s41467-021-25832-9 – ident: e_1_2_8_68_1 doi: 10.1023/A:1008993813689 |
SSID | ssj0009606 |
Score | 2.70106 |
Snippet | High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable... High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300015 |
SubjectTerms | Absorbers Absorption spectra Bandpass filters Broadband Devices Efficiency electromagnetic functional materials electromagnetic responses Functional materials Materials science Microcrystals Microwave absorption multi‐band devices Narrowband organic–inorganic hybrid perovskites Perovskites Space exploration Ultrawideband |
Title | Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching Multi‐Band Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300015 https://www.ncbi.nlm.nih.gov/pubmed/36934413 https://www.proquest.com/docview/2828139410 https://www.proquest.com/docview/2810919146 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB7EJ33wrqfeiCCcp2rb9LJ9XF1lFVYOegTfSpJmRdSu7EXRJ3-BCP7D_SXOJLt194gIx7eWTnrLTOZLMvMNwHbk5ehHKzhTVXnshqHyaH83dVUFfYOk2uZNWhponMT18_D4IroYyeK3_BDlghtZhhmvycCF7Ox-kIaK3PAGIYQmv4-DMAVsESo6_eCPInhuyPZ45KZxWBmyNnrB7njzca_0CWqOI1fjeg5nQQxf2kacXO_0unJHPf3D5_iTr5qDmQEuZVWrSPMwoYsFmB5hK1yEF5OsS47Qrh8ym8ep-s9vR4WtDqVY_ZFSwNgf3W7dd2hlmDUo5E-1HxGGEv-3ZiM3ZaLI2YGtxHMrLgvKqGSnNmxXs7OHq64J9WTmyf3n1z2Sr2kzui3B-eHB3_26Oyjn4CqeYAf4UR4JSRudnt_kMk1k6Cs_UUEaywSHFgQnKkypjCqXTR1EeSBzFVNqbd70uU74MkwWrUL_AuZpnXhCh4FGNCRiLql0GgoqPPAiGTngDrszUwOucyq5cZNZluYgo_-clf_Zgd-l_J1l-fhScn2oHdnA2jsZTVtRwUPfc2CrvIx2SpsvotCtHskQBWuKjsmBFatV5aN4nHKEpdyBwOjGN--QVWuNanm2-j-N1mCKjm3M2zpMdts9vYHoqis3jQW9A1g4HUc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4AHoQD_qEOoraJhtPATPf87Bw8rC5kV1hiEBJuw3RPLyHorNkfyHLiCYyJT-Kr-Ag8iVXdMwOrMSYmHLzNT810p7uqq7q66iuAl6GXox5t4E5V5ZEbBMqj893EVQ3UDZJqm_fINdDdidr7wbuD8GAGvle5MBYfona4kWSY9ZoEnBzS61eooVlugIPQhibFX8ZVbunJGe7ahq87LZziV5xvbuy9bbtlYQFXiViErh_mYSbpyM3ze0ImsQx85ceKJ5GMkclRTaogoYKeQvY0D3MucxVRkmfe84WOBf53Fm5RGXGC62_tXiFW0YbAwPthM0kUNCqcSI-vT_d3Wg_-ZtxO28pG2W3egR_VMNkYl5O18UiuqfNfECT_q3G8C4ul6c2aVlbuwYwu7sPCNUDGB_DF5COTrrcuUmZTVdXlxbdOYQtgKdaeUJYbe68H_dMhOb9Zl6Ia1WCCljZBnGt27acsK3K2YYsNfcqOCkoaZbs2MlmzD2fHIxPNykzLlxdf3xB9S5sFfAn2b2RAHsJc0S_0Y2Ce1rGX6YBrNPiySEiqDoeECi-8UIYOuBX_pKqEc6eqIh9TC0TNU5rXtJ5XB1Zr-s8WyOSPlCsVO6blgjZMaWeOMhz4ngMv6te4FNH5Ulbo_phoCGU2Qd3rwCPLxnVTIkoEWt7CAW6Y8S99SJutbrO-W_6Xj57D7fZedzvd7uxsPYF5em5D_FZgbjQY66doTI7kMyO-DA5vms9_AqaSeWE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4EChgJxCmtE-exOXBYSFe7lK2qQqXe0thxUFXIVvugWk79BQiJP8Jf4S_0lzBjJ2kXhJCQeuCWxyS27BnPjD3zDcDTkBeoRzvoqaoicoNAcTrfTVzVQd0gqbZ5SVsDw82ovxO83g13l-B7kwtj8SHaDTeSDLNek4AfFuXaKWhoXhjcIDShSe_XYZUben6ETtvkxSDFGX7m-731d6_6bl1XwFUiFqHrhUWYSzpx414pZBLLwFNerPwkkjHyOGpJFSRUz1PIUvth4ctCRZTjWZSe0LHA_16Ai0HEEyoWkW6fAlaRP2DQ_bCZJAo6DUwk99cW-7uoBn-zbRdNZaPretfgRzNKNsTlYHU2lavq8y8Akv_TMF6Hq7XhzbpWUm7Akq5uwpUzcIy34IvJRiZNbzdImU1UVSfH3waVLX-lWH9OOW5sS49Hnya09c2GFNOoxnO0swngXLMzP2V5VbB1W2roY_6-opRRtm3jkjV7e7Q_NbGszLR8cvz1JdGn2izft2HnXAbkDixXo0rfA8a1jnmuA1-juZdHQlJtOCRUeMFDGTrgNuyTqRrMnWqKfMgsDLWf0bxm7bw68LylP7QwJn-kXGm4MauXs0lGfjlKcOBxB560r3EhotOlvNKjGdEQxmyCmteBu5aL26ZElAi0u4UDvuHFv_Qh66bDbnt3_18-egyXttJe9mawufEALtNjG9-3AsvT8Uw_REtyKh8Z4WWwd95s_hOlOHgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Organic%E2%80%93Inorganic+Hybrid+Perovskite+Microcrystalline+Engineering+and+Electromagnetic+Response+Switching+Multi%E2%80%90Band+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Jun&rft.au=Zheng%2C+Qi&rft.au=Shuang%E2%80%90Peng+Wang&rft.au=Yong%E2%80%90Zhi+Tian&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202300015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |