Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching Multi‐Band Devices

High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching f...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 25; pp. e2300015 - n/a
Main Authors Yan, Jun, Zheng, Qi, Wang, Shuang‐Peng, Tian, Yong‐Zhi, Gong, Wei‐Qiang, Gao, Feng, Qiu, Ji‐Jun, Li, Lin, Yang, Shu‐Hui, Cao, Mao‐Sheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices. A facile one‐step solution processing method is developed to rapidly prepare gram‐scale MAPbX3 microcrystals. Utilizing its intrinsic electromagnetic (EM) properties, a series of EM devices is designed and fabricated, which can be applied in the fields of ultra‐wideband bandpass filters and multi‐band photodetection covering X‐rays, UV, visible light, and microwaves.
AbstractList High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices. A facile one‐step solution processing method is developed to rapidly prepare gram‐scale MAPbX3 microcrystals. Utilizing its intrinsic electromagnetic (EM) properties, a series of EM devices is designed and fabricated, which can be applied in the fields of ultra‐wideband bandpass filters and multi‐band photodetection covering X‐rays, UV, visible light, and microwaves.
High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair -1 cm-2 in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair -1 cm-2 in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.
High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX3, X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gyair−1 cm−2 in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices.
High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high‐efficiency EM functional materials and realizing high‐performance EM devices remain great challenges. Herein, a simple solution‐process is developed to rapidly grow gram‐scale organic–inorganic (MAPbX 3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X‐rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra‐wideband bandpass filter with high suppression level of −71.8 dB in the stopband in the GHz band, self‐powered photodetectors with tunable broadband or narrowband photoresponse in the visible‐light band, and a self‐powered X‐ray detector with high sensitivity of 3560 µC Gy air −1  cm −2  in the X‐ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high‐efficiency EM functional materials for realizing high‐performance EM absorbers and devices.
High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gy  cm  in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.
Author Li, Lin
Qiu, Ji‐Jun
Wang, Shuang‐Peng
Tian, Yong‐Zhi
Gao, Feng
Yan, Jun
Cao, Mao‐Sheng
Gong, Wei‐Qiang
Yang, Shu‐Hui
Zheng, Qi
Author_xml – sequence: 1
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
  organization: Harbin Normal University
– sequence: 2
  givenname: Qi
  surname: Zheng
  fullname: Zheng, Qi
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Shuang‐Peng
  surname: Wang
  fullname: Wang, Shuang‐Peng
  organization: University of Macau
– sequence: 4
  givenname: Yong‐Zhi
  surname: Tian
  fullname: Tian, Yong‐Zhi
  organization: Zhengzhou University
– sequence: 5
  givenname: Wei‐Qiang
  surname: Gong
  fullname: Gong, Wei‐Qiang
  organization: Harbin Normal University
– sequence: 6
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: Harbin Normal University
– sequence: 7
  givenname: Ji‐Jun
  surname: Qiu
  fullname: Qiu, Ji‐Jun
  organization: Dalian University of Technology
– sequence: 8
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  email: physics_lin@hotmail.com
  organization: Harbin Normal University
– sequence: 9
  givenname: Shu‐Hui
  surname: Yang
  fullname: Yang, Shu‐Hui
  email: yangshuhui@cuc.edu.cn
  organization: Communication University of China
– sequence: 10
  givenname: Mao‐Sheng
  orcidid: 0000-0001-6810-9422
  surname: Cao
  fullname: Cao, Mao‐Sheng
  email: caomaosheng@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36934413$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctuEzEUBmALFdG0sGWJRmLDJsG3uXgZ2kArNSrisrY8njPBxbGD7WmVXZ8AIfUN-yT1kBakSoiVvfj-Y_k_B2jPeQcIvSR4RjCmb1W3VjOKKcMYk_IJmpCSkinHotxDEyxYORUVb_bRQYwXmYgKV8_QPqsE45ywCfq5HGwy_eB0Mt4pW5yHlXJG317fnDq_uxcn2zaYrvgIwV_G7yZBsTQ6eB22MSlrjYNi4Vb5gGDcqlCuKxYWdAp-rVYOUh7xCeLGuwjF5yuT9LeR_X759vrXu9Efw6XREJ-jp72yEV7cn4fo6_vFl6OT6dn5h9Oj-dlUszr_iZRdqVpaNxyTnrWibjnRpNZUVG3NSIMbornQ0JSs7YGWHW07XTW0JF1PGNTsEL3Zzd0E_2OAmOTaRA3WKgd-iJI2BAsiCK8yff2IXvgh5KpGlR0TnOCsXt2roV1DJzfBrFXYyoemM-A7kIuLMUAvtUlqLD0FZawkWI4LleNC5Z-F5tjsUexh8j8DYhe4Mha2_9Fyfryc_83eAcN2tpw
CitedBy_id crossref_primary_10_1103_PhysRevApplied_21_044015
crossref_primary_10_1016_j_jmmm_2024_171850
crossref_primary_10_1021_acs_iecr_3c02059
crossref_primary_10_1007_s12613_024_2881_0
crossref_primary_10_1007_s40820_024_01391_8
crossref_primary_10_1002_adfm_202421144
crossref_primary_10_1016_j_cej_2023_146912
crossref_primary_10_1002_adfm_202405972
crossref_primary_10_1016_j_compositesb_2024_111279
crossref_primary_10_1039_D3TC03605G
crossref_primary_10_1016_j_cej_2024_155630
crossref_primary_10_1016_j_aeue_2024_155514
crossref_primary_10_1021_acsami_3c13489
crossref_primary_10_26599_JAC_2024_9220950
crossref_primary_10_1002_adfm_202408696
crossref_primary_10_1007_s10870_024_01024_3
crossref_primary_10_1016_j_ceramint_2023_07_227
crossref_primary_10_1016_j_ceramint_2024_10_097
crossref_primary_10_1039_D3NR06457C
crossref_primary_10_1016_j_carbon_2024_119099
crossref_primary_10_1016_j_colsurfa_2024_133379
crossref_primary_10_34133_research_0476
crossref_primary_10_1021_acs_nanolett_3c05006
crossref_primary_10_1016_j_carbon_2023_118165
crossref_primary_10_1002_cey2_638
crossref_primary_10_1016_j_carbon_2024_119931
crossref_primary_10_1016_j_carbon_2023_118265
crossref_primary_10_1016_j_cej_2024_149238
crossref_primary_10_1021_acsomega_3c03983
crossref_primary_10_1007_s10854_023_11525_0
crossref_primary_10_1016_j_carbon_2023_118300
crossref_primary_10_1002_adfm_202417156
crossref_primary_10_1021_acsaelm_3c01016
crossref_primary_10_1016_j_carbon_2024_118846
crossref_primary_10_1002_adfm_202315918
crossref_primary_10_1016_j_jcis_2023_07_169
crossref_primary_10_1002_adma_202311411
crossref_primary_10_1002_smtd_202301476
crossref_primary_10_1039_D4QM01054J
crossref_primary_10_1021_acsaelm_4c00307
crossref_primary_10_1016_j_carbon_2023_118273
crossref_primary_10_1002_adfm_202314541
crossref_primary_10_1002_smll_202309773
crossref_primary_10_1007_s10854_024_13650_w
crossref_primary_10_1021_acsanm_4c00055
crossref_primary_10_1002_smll_202401618
crossref_primary_10_1016_j_carbon_2023_118459
crossref_primary_10_1016_j_carbon_2023_118573
crossref_primary_10_1007_s10854_024_12814_y
crossref_primary_10_1002_slct_202400425
crossref_primary_10_1016_j_compositesb_2023_111136
crossref_primary_10_1016_j_matt_2024_08_009
crossref_primary_10_1016_j_carbon_2023_118218
crossref_primary_10_1016_j_vacuum_2023_112792
crossref_primary_10_1002_adfm_202423947
crossref_primary_10_1002_adfm_202417972
crossref_primary_10_1016_j_susmat_2024_e00993
crossref_primary_10_1002_adfm_202312237
crossref_primary_10_1002_inf2_12630
crossref_primary_10_1002_pen_26572
crossref_primary_10_1016_j_optlastec_2024_111211
crossref_primary_10_1039_D3TC02809G
crossref_primary_10_1007_s42114_023_00813_2
crossref_primary_10_1016_j_carbon_2023_118220
crossref_primary_10_1016_j_orgel_2024_107158
crossref_primary_10_1002_adma_202413559
crossref_primary_10_1002_adom_202400007
crossref_primary_10_1016_j_jiec_2024_05_055
crossref_primary_10_1016_j_carbon_2023_118166
crossref_primary_10_1016_j_carbon_2023_118046
crossref_primary_10_1016_j_carbon_2023_118442
crossref_primary_10_1016_j_carbon_2023_118563
crossref_primary_10_1016_j_rinp_2024_107353
crossref_primary_10_1002_smll_202306253
crossref_primary_10_1016_j_carbon_2023_118608
crossref_primary_10_1016_j_carbon_2023_118609
crossref_primary_10_1007_s42114_024_00830_9
crossref_primary_10_1016_j_diamond_2023_110490
crossref_primary_10_1039_D3TC03246A
crossref_primary_10_1002_lpor_202400669
crossref_primary_10_1016_j_apsusc_2024_160767
crossref_primary_10_3390_mi14111996
crossref_primary_10_1016_j_cej_2024_153783
crossref_primary_10_1002_adfm_202413884
crossref_primary_10_1002_smll_202412101
crossref_primary_10_1016_j_carbon_2023_118450
crossref_primary_10_1016_j_carbon_2023_118290
crossref_primary_10_1007_s10853_024_09553_0
crossref_primary_10_1016_j_colsurfa_2024_133407
crossref_primary_10_1016_j_carbon_2024_119569
crossref_primary_10_1016_j_ceramint_2024_01_127
crossref_primary_10_1016_j_carbon_2024_119289
crossref_primary_10_1016_j_carbon_2024_119567
crossref_primary_10_1007_s12274_024_6880_2
crossref_primary_10_1007_s12274_024_6967_9
crossref_primary_10_1002_smll_202403255
crossref_primary_10_1021_acsanm_3c03530
crossref_primary_10_1021_acsaelm_4c01543
crossref_primary_10_1016_j_mser_2024_100795
crossref_primary_10_1007_s12613_024_2917_5
crossref_primary_10_1039_D3NJ02870D
crossref_primary_10_1016_j_jallcom_2024_174176
crossref_primary_10_1016_j_jallcom_2024_173641
crossref_primary_10_1016_j_carbon_2023_118104
crossref_primary_10_1016_j_carbon_2024_119338
crossref_primary_10_1016_j_jeurceramsoc_2025_117203
crossref_primary_10_1016_j_ceramint_2024_01_257
crossref_primary_10_1039_D3TC02696E
crossref_primary_10_1016_j_carbon_2023_118103
crossref_primary_10_20517_ss_2024_51
crossref_primary_10_1002_adfm_202400998
crossref_primary_10_1016_j_colsurfa_2024_135372
crossref_primary_10_1016_j_jcis_2023_10_014
crossref_primary_10_1002_adfm_202413784
crossref_primary_10_21926_rpm_2501003
crossref_primary_10_1002_adom_202302127
crossref_primary_10_1016_j_xcrp_2024_102250
crossref_primary_10_1016_j_colsurfa_2024_134158
crossref_primary_10_1021_acsphotonics_4c00250
crossref_primary_10_1002_advs_202303104
crossref_primary_10_1021_acsanm_4c03503
crossref_primary_10_1016_j_carbon_2023_118071
crossref_primary_10_1021_acs_inorgchem_3c03326
crossref_primary_10_1016_j_carbon_2023_118651
crossref_primary_10_1016_j_carbon_2024_119501
crossref_primary_10_1007_s40242_024_4153_y
crossref_primary_10_1021_acs_iecr_4c04544
crossref_primary_10_1016_j_scib_2023_04_036
crossref_primary_10_20517_ss_2024_63
crossref_primary_10_1002_adma_202314233
crossref_primary_10_1063_5_0260963
crossref_primary_10_1016_j_jmat_2023_11_019
crossref_primary_10_1039_D4TA00492B
crossref_primary_10_1039_D4NR01657B
crossref_primary_10_1007_s40820_024_01449_7
crossref_primary_10_1021_acsami_3c07669
crossref_primary_10_1016_j_carbon_2024_119632
crossref_primary_10_1039_D3TC01416A
crossref_primary_10_1016_j_carbon_2023_118768
crossref_primary_10_1021_acsanm_3c04599
crossref_primary_10_1007_s12274_024_6746_7
crossref_primary_10_1016_j_jallcom_2024_173535
crossref_primary_10_1039_D3TC04067D
crossref_primary_10_1016_j_jlumin_2025_121111
crossref_primary_10_1007_s40820_024_01540_z
crossref_primary_10_1109_TCSII_2023_3321507
crossref_primary_10_1016_j_carbon_2024_119242
crossref_primary_10_1016_j_jallcom_2023_173193
crossref_primary_10_1016_j_carbon_2024_119083
crossref_primary_10_1016_j_ceramint_2024_01_084
crossref_primary_10_1039_D3RA03927G
crossref_primary_10_1016_j_jallcom_2024_176364
Cites_doi 10.1002/smll.202005606
10.1002/adma.202001981
10.1002/adfm.202109149
10.1002/adma.201906769
10.1002/advs.201700256
10.1038/s41586-021-03492-5
10.1002/adma.202002112
10.1002/adma.202003790
10.1063/1.4918991
10.1002/aenm.202201735
10.1002/adom.201600327
10.1002/smll.201800987
10.1002/adfm.202210456
10.1002/adma.202107538
10.1002/advs.202104163
10.1002/adfm.202100470
10.1126/sciadv.aaw8065
10.1038/s41377-021-00694-4
10.1038/s41467-020-16034-w
10.1126/sciadv.abb0253
10.1038/s41560-021-00949-9
10.1039/C7TA10010H
10.1109/TMTT.2020.3038202
10.1039/C6CP07457J
10.1038/s41586-020-2526-z
10.1021/acssuschemeng.7b03908
10.1002/advs.202203305
10.1016/j.mattod.2021.01.028
10.1016/j.nanoen.2020.104820
10.1002/adfm.201904205
10.1063/1.3527974
10.1038/s41560-018-0200-6
10.1021/acsnano.7b00370
10.1126/science.aba7977
10.1002/smll.201902730
10.1016/j.solener.2019.02.035
10.1002/adma.201706343
10.1002/adma.201907156
10.1002/adma.201502597
10.1016/j.carbon.2023.02.012
10.1002/smll.202106302
10.1002/adma.201907257
10.1016/j.nantod.2015.04.009
10.1002/adma.202102967
10.1039/C4CS00458B
10.1016/j.cej.2020.125715
10.1063/1.4978653
10.1002/adfm.202200141
10.1021/acsami.6b15379
10.1109/TMTT.2020.3033830
10.1038/s41566-022-00978-0
10.1002/anie.202102360
10.1038/s41586-021-03964-8
10.1364/OL.39.005184
10.1126/science.aaa5760
10.1002/adfm.201901236
10.1016/j.carbon.2022.06.037
10.1002/adma.202106195
10.1002/adma.202003225
10.1002/adma.201604439
10.1002/adfm.201807398
10.1016/j.carbon.2021.07.099
10.1002/adfm.202206053
10.1002/adma.202200720
10.1039/D2TC01124G
10.1038/natrevmats.2016.100
10.1038/s41467-021-25832-9
10.1023/A:1008993813689
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202300015
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36934413
10_1002_adma_202300015
ADMA202300015
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12074095; 52273257; 52177014; 51977009
– fundername: Talent Training Project of the Reform and Development Fund of Local Universities
  funderid: 2020YQ02
– fundername: Heilongjiang Provincial Science Foundation for Distinguished Young Scholars
  funderid: JQ2022A002
– fundername: National Natural Science Foundation of China
  grantid: 51977009
– fundername: Talent Training Project of the Reform and Development Fund of Local Universities
  grantid: 2020YQ02
– fundername: National Natural Science Foundation of China
  grantid: 12074095
– fundername: National Natural Science Foundation of China
  grantid: 52273257
– fundername: National Natural Science Foundation of China
  grantid: 52177014
– fundername: Heilongjiang Provincial Science Foundation for Distinguished Young Scholars
  grantid: JQ2022A002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c3735-15d5ab278401f3b97b41c17c296b7318081c49ce853bfe25d2bdc68251df13e73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 17:54:49 EDT 2025
Fri Jul 25 06:27:10 EDT 2025
Thu Apr 03 06:53:51 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 02:33:31 EDT 2025
Wed Jan 22 16:20:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords multi-band devices
organic-inorganic hybrid perovskites
electromagnetic responses
microwave absorption
electromagnetic functional materials
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-15d5ab278401f3b97b41c17c296b7318081c49ce853bfe25d2bdc68251df13e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6810-9422
PMID 36934413
PQID 2828139410
PQPubID 2045203
PageCount 14
ParticipantIDs proquest_miscellaneous_2810919146
proquest_journals_2828139410
pubmed_primary_36934413
crossref_citationtrail_10_1002_adma_202300015
crossref_primary_10_1002_adma_202300015
wiley_primary_10_1002_adma_202300015_ADMA202300015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2010; 97
2017; 2
2015; 347
2019; 15
2020; 369
2015; 106
2020; 11
2017; 110
2017; 9
2018; 6
2020; 6
2018; 3
2014; 5
2021; 31
2018; 5
2021; 33
2021; 598
2000; 11
2022; 34
2019; 29
2018; 30
2021; 593
2022; 32
2022; 33
2016; 45
2021; 9
2022; 197
2021; 48
2020; 583
2015; 10
2021; 184
2017; 29
2020; 32
2023; 206
2019; 182
2016; 4
2015; 27
2021; 12
2022
2020; 30
2020; 73
2017; 11
2022; 7
2021; 17
2022; 9
2017; 19
2022; 10
2022; 11
2014; 39
2020; 399
2021; 60
2022; 16
2022; 18
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Shao Y. C. (e_1_2_8_39_1) 2014; 5
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 11
  start-page: 5318
  year: 2017
  publication-title: ACS Nano
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2022
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 578
  year: 2014
  publication-title: Nat. Commun.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 355
  year: 2015
  publication-title: Nano Today
– volume: 69
  start-page: 65
  year: 2021
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 369
  start-page: 446
  year: 2020
  publication-title: Science
– volume: 206
  start-page: 124
  year: 2023
  publication-title: Carbon
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 583
  start-page: 790
  year: 2020
  publication-title: Nature
– volume: 10
  start-page: 7460
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 69
  start-page: 659
  year: 2021
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1423
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 3596
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater
– volume: 97
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 5516
  year: 2021
  publication-title: Nat. Commun.
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 2304
  year: 2020
  publication-title: Nat. Commun.
– volume: 184
  start-page: 136
  year: 2021
  publication-title: Carbon
– volume: 182
  start-page: 9
  year: 2019
  publication-title: Sol. Energy
– volume: 16
  start-page: 284
  year: 2022
  publication-title: Nat. Photonics
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 593
  start-page: 535
  year: 2021
  publication-title: Nature
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 4
  start-page: 1829
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 197
  start-page: 324
  year: 2022
  publication-title: Carbon
– volume: 399
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 11
  start-page: 6
  year: 2022
  publication-title: Light: Sci. Appl.
– volume: 19
  start-page: 3948
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 65
  year: 2022
  publication-title: Nat. Energy
– volume: 39
  start-page: 5184
  year: 2014
  publication-title: Opt. Lett.
– volume: 27
  start-page: 5176
  year: 2015
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 179
  year: 2000
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 48
  start-page: 155
  year: 2021
  publication-title: Mater. Today
– volume: 9
  start-page: 7601
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_37_1
  doi: 10.1002/smll.202005606
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202001981
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.202109149
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201906769
– ident: e_1_2_8_61_1
  doi: 10.1002/advs.201700256
– ident: e_1_2_8_23_1
  doi: 10.1038/s41586-021-03492-5
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202002112
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.202003790
– ident: e_1_2_8_62_1
  doi: 10.1063/1.4918991
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.202201735
– ident: e_1_2_8_42_1
  doi: 10.1002/adom.201600327
– ident: e_1_2_8_44_1
  doi: 10.1002/smll.201800987
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202210456
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202107538
– ident: e_1_2_8_19_1
  doi: 10.1002/advs.202104163
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202100470
– ident: e_1_2_8_58_1
  doi: 10.1126/sciadv.aaw8065
– ident: e_1_2_8_9_1
  doi: 10.1038/s41377-021-00694-4
– ident: e_1_2_8_67_1
  doi: 10.1038/s41467-020-16034-w
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.abb0253
– ident: e_1_2_8_48_1
  doi: 10.1038/s41560-021-00949-9
– ident: e_1_2_8_52_1
  doi: 10.1039/C7TA10010H
– ident: e_1_2_8_56_1
  doi: 10.1109/TMTT.2020.3038202
– ident: e_1_2_8_35_1
  doi: 10.1039/C6CP07457J
– ident: e_1_2_8_28_1
  doi: 10.1038/s41586-020-2526-z
– ident: e_1_2_8_34_1
  doi: 10.1021/acssuschemeng.7b03908
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.202203305
– ident: e_1_2_8_65_1
  doi: 10.1016/j.mattod.2021.01.028
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2020.104820
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.201904205
– ident: e_1_2_8_63_1
  doi: 10.1063/1.3527974
– ident: e_1_2_8_25_1
  doi: 10.1038/s41560-018-0200-6
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.7b00370
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aba7977
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201902730
– ident: e_1_2_8_46_1
  doi: 10.1016/j.solener.2019.02.035
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201706343
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201907156
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201502597
– ident: e_1_2_8_47_1
  doi: 10.1016/j.carbon.2023.02.012
– ident: e_1_2_8_22_1
  doi: 10.1002/smll.202106302
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201907257
– ident: e_1_2_8_60_1
  doi: 10.1016/j.nantod.2015.04.009
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.202102967
– ident: e_1_2_8_24_1
  doi: 10.1039/C4CS00458B
– volume: 5
  start-page: 578
  year: 2014
  ident: e_1_2_8_39_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2020.125715
– ident: e_1_2_8_50_1
  doi: 10.1063/1.4978653
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.202200141
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.6b15379
– ident: e_1_2_8_55_1
  doi: 10.1109/TMTT.2020.3033830
– ident: e_1_2_8_32_1
  doi: 10.1038/s41566-022-00978-0
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.202102360
– ident: e_1_2_8_27_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_8_15_1
  doi: 10.1364/OL.39.005184
– ident: e_1_2_8_43_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.201901236
– ident: e_1_2_8_12_1
  doi: 10.1016/j.carbon.2022.06.037
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202106195
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202003225
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201604439
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201807398
– ident: e_1_2_8_38_1
  doi: 10.1016/j.carbon.2021.07.099
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202206053
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202200720
– ident: e_1_2_8_29_1
  doi: 10.1039/D2TC01124G
– ident: e_1_2_8_33_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_8_54_1
  doi: 10.1038/s41467-021-25832-9
– ident: e_1_2_8_68_1
  doi: 10.1023/A:1008993813689
SSID ssj0009606
Score 2.70106
Snippet High‐efficiency electromagnetic (EM) functional materials are the core building block of high‐performance EM absorbers and devices, and they are indispensable...
High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300015
SubjectTerms Absorbers
Absorption spectra
Bandpass filters
Broadband
Devices
Efficiency
electromagnetic functional materials
electromagnetic responses
Functional materials
Materials science
Microcrystals
Microwave absorption
multi‐band devices
Narrowband
organic–inorganic hybrid perovskites
Perovskites
Space exploration
Ultrawideband
Title Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching Multi‐Band Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300015
https://www.ncbi.nlm.nih.gov/pubmed/36934413
https://www.proquest.com/docview/2828139410
https://www.proquest.com/docview/2810919146
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB7EJ33wrqfeiCCcp2rb9LJ9XF1lFVYOegTfSpJmRdSu7EXRJ3-BCP7D_SXOJLt194gIx7eWTnrLTOZLMvMNwHbk5ehHKzhTVXnshqHyaH83dVUFfYOk2uZNWhponMT18_D4IroYyeK3_BDlghtZhhmvycCF7Ox-kIaK3PAGIYQmv4-DMAVsESo6_eCPInhuyPZ45KZxWBmyNnrB7njzca_0CWqOI1fjeg5nQQxf2kacXO_0unJHPf3D5_iTr5qDmQEuZVWrSPMwoYsFmB5hK1yEF5OsS47Qrh8ym8ep-s9vR4WtDqVY_ZFSwNgf3W7dd2hlmDUo5E-1HxGGEv-3ZiM3ZaLI2YGtxHMrLgvKqGSnNmxXs7OHq64J9WTmyf3n1z2Sr2kzui3B-eHB3_26Oyjn4CqeYAf4UR4JSRudnt_kMk1k6Cs_UUEaywSHFgQnKkypjCqXTR1EeSBzFVNqbd70uU74MkwWrUL_AuZpnXhCh4FGNCRiLql0GgoqPPAiGTngDrszUwOucyq5cZNZluYgo_-clf_Zgd-l_J1l-fhScn2oHdnA2jsZTVtRwUPfc2CrvIx2SpsvotCtHskQBWuKjsmBFatV5aN4nHKEpdyBwOjGN--QVWuNanm2-j-N1mCKjm3M2zpMdts9vYHoqis3jQW9A1g4HUc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4AHoQD_qEOoraJhtPATPf87Bw8rC5kV1hiEBJuw3RPLyHorNkfyHLiCYyJT-Kr-Ag8iVXdMwOrMSYmHLzNT810p7uqq7q66iuAl6GXox5t4E5V5ZEbBMqj893EVQ3UDZJqm_fINdDdidr7wbuD8GAGvle5MBYfona4kWSY9ZoEnBzS61eooVlugIPQhibFX8ZVbunJGe7ahq87LZziV5xvbuy9bbtlYQFXiViErh_mYSbpyM3ze0ImsQx85ceKJ5GMkclRTaogoYKeQvY0D3MucxVRkmfe84WOBf53Fm5RGXGC62_tXiFW0YbAwPthM0kUNCqcSI-vT_d3Wg_-ZtxO28pG2W3egR_VMNkYl5O18UiuqfNfECT_q3G8C4ul6c2aVlbuwYwu7sPCNUDGB_DF5COTrrcuUmZTVdXlxbdOYQtgKdaeUJYbe68H_dMhOb9Zl6Ia1WCCljZBnGt27acsK3K2YYsNfcqOCkoaZbs2MlmzD2fHIxPNykzLlxdf3xB9S5sFfAn2b2RAHsJc0S_0Y2Ce1rGX6YBrNPiySEiqDoeECi-8UIYOuBX_pKqEc6eqIh9TC0TNU5rXtJ5XB1Zr-s8WyOSPlCsVO6blgjZMaWeOMhz4ngMv6te4FNH5Ulbo_phoCGU2Qd3rwCPLxnVTIkoEWt7CAW6Y8S99SJutbrO-W_6Xj57D7fZedzvd7uxsPYF5em5D_FZgbjQY66doTI7kMyO-DA5vms9_AqaSeWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4EChgJxCmtE-exOXBYSFe7lK2qQqXe0thxUFXIVvugWk79BQiJP8Jf4S_0lzBjJ2kXhJCQeuCWxyS27BnPjD3zDcDTkBeoRzvoqaoicoNAcTrfTVzVQd0gqbZ5SVsDw82ovxO83g13l-B7kwtj8SHaDTeSDLNek4AfFuXaKWhoXhjcIDShSe_XYZUben6ETtvkxSDFGX7m-731d6_6bl1XwFUiFqHrhUWYSzpx414pZBLLwFNerPwkkjHyOGpJFSRUz1PIUvth4ctCRZTjWZSe0LHA_16Ai0HEEyoWkW6fAlaRP2DQ_bCZJAo6DUwk99cW-7uoBn-zbRdNZaPretfgRzNKNsTlYHU2lavq8y8Akv_TMF6Hq7XhzbpWUm7Akq5uwpUzcIy34IvJRiZNbzdImU1UVSfH3waVLX-lWH9OOW5sS49Hnya09c2GFNOoxnO0swngXLMzP2V5VbB1W2roY_6-opRRtm3jkjV7e7Q_NbGszLR8cvz1JdGn2izft2HnXAbkDixXo0rfA8a1jnmuA1-juZdHQlJtOCRUeMFDGTrgNuyTqRrMnWqKfMgsDLWf0bxm7bw68LylP7QwJn-kXGm4MauXs0lGfjlKcOBxB560r3EhotOlvNKjGdEQxmyCmteBu5aL26ZElAi0u4UDvuHFv_Qh66bDbnt3_18-egyXttJe9mawufEALtNjG9-3AsvT8Uw_REtyKh8Z4WWwd95s_hOlOHgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Organic%E2%80%93Inorganic+Hybrid+Perovskite+Microcrystalline+Engineering+and+Electromagnetic+Response+Switching+Multi%E2%80%90Band+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Jun&rft.au=Zheng%2C+Qi&rft.au=Shuang%E2%80%90Peng+Wang&rft.au=Yong%E2%80%90Zhi+Tian&rft.date=2023-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202300015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon