In vivo photoacoustic flow cytometry‐based study of the effect of melanin content on melanoma metastasis

A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC...

Full description

Saved in:
Bibliographic Details
Published inJournal of biophotonics Vol. 17; no. 3; pp. e202300405 - n/a
Main Authors Pang, Kai, Liu, Qi, Zhu, Yuxi, Wei, Xunbin
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.03.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1864-063X
1864-0648
1864-0648
DOI10.1002/jbio.202300405

Cover

Loading…
Abstract A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses. This study built an optimized PAFC system. By using in vivo experiments and investigated the dynamic effect of melanin content on melanoma metastasis we found that melanin content was negatively correlated with tumor invasion ability. The melanin content of CTCs may be down‐regulated during tumor metastasis. CTC melanin content may be considered a potential indicator for melanoma metastasis risk assessment in future clinical diagnoses.
AbstractList A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses. This study built an optimized PAFC system. By using in vivo experiments and investigated the dynamic effect of melanin content on melanoma metastasis we found that melanin content was negatively correlated with tumor invasion ability. The melanin content of CTCs may be down‐regulated during tumor metastasis. CTC melanin content may be considered a potential indicator for melanoma metastasis risk assessment in future clinical diagnoses.
A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.
A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.
Author Wei, Xunbin
Pang, Kai
Zhu, Yuxi
Liu, Qi
Author_xml – sequence: 1
  givenname: Kai
  surname: Pang
  fullname: Pang, Kai
  organization: School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University
– sequence: 2
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Med‐X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Yuxi
  surname: Zhu
  fullname: Zhu, Yuxi
  organization: School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University
– sequence: 4
  givenname: Xunbin
  surname: Wei
  fullname: Wei, Xunbin
  email: xwei@bjmu.edu.cn
  organization: Peking University Cancer Hospital & Institute and Biomedical Engineering Department, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38010214$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEQx4OsuA-9epQGL15mrLw6naMuPkYW9qLgLaTzYDN0J2MnvUvf9iP4Gf0kZph1hAURAqkqfv-kqv7n6CSm6BB6iWGNAcjbbR_SmgChAAz4E3SGu5atoGXdyTGm30_Rec5bgBYop8_QKe0AA8HsDG03sbkNt6nZ3aSStElzLsE0fkh3jVlKGl2Zll_3P3udnW1yme3SJN-UG9c4750p-2x0g44hNibF4mItxUMpjboGRed6Qn6Onno9ZPfi4b5A3z5--Hr5eXV1_Wlz-e5qZaigfIW5FJpYjYXhxAP0Pcctp9RaA8LbzvVCdsZiYY0krZTCc-aJtJoS7lsD9AK9Oby7m9KP2eWixpCNG2pDro6nSCeZIISJrqKvH6HbNE-xdqcoSEal7CSp1KsHau5HZ9VuCqOeFvVnixVYHwAzpZwn548IBrW3Se1tUkebqoA9EphQdAl1f5MOw79l8iC7C4Nb_vOJ-vJ-c_1X-xvkvKiQ
CitedBy_id crossref_primary_10_1063_5_0226328
crossref_primary_10_1016_j_copbio_2024_103149
Cites_doi 10.18632/oncotarget.7528
10.1371/journal.pone.0156269
10.1117/1.JBO.20.10.106005
10.1111/exd.12618
10.1016/j.cell.2018.11.046
10.3390/cells8060553
10.1158/0008-5472.CAN-04-1058
10.1364/BOE.7.003643
10.1038/s41598-019-45643-9
10.1117/1.2793746
10.1016/j.bpj.2018.01.005
10.3390/cancers12123525
10.1529/biophysj.104.045476
10.1007/978-981-15-7627-0_13
10.15430/JCP.2016.21.2.73
10.1111/jpi.12728
10.3389/fcell.2020.00054
10.1016/S0092-8674(00)81683-9
10.3390/cancers11111750
10.1038/nnano.2009.333
10.1038/srep21531
10.3390/ijms19020607
10.1186/s13045-019-0735-4
10.1038/s41377-020-00435-z
10.1049/iet-ipr.2015.0385
10.1016/j.compmedimag.2007.01.003
10.1038/s41598-017-11119-x
10.1002/cyto.a.23851
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
DOI 10.1002/jbio.202300405
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage n/a
ExternalDocumentID 38010214
10_1002_jbio_202300405
JBIO202300405
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62075013; 62027824
– fundername: National Natural Science Foundation of China
  grantid: 62075013
– fundername: National Natural Science Foundation of China
  grantid: 62027824
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
XV2
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
ID FETCH-LOGICAL-c3735-1597a2da17c52f00bb516533ddc07fd8eb798cd17dc926997f54f29da325f6c03
IEDL.DBID DR2
ISSN 1864-063X
1864-0648
IngestDate Fri Jul 11 05:12:38 EDT 2025
Fri Jul 25 12:15:49 EDT 2025
Mon Jul 21 05:45:29 EDT 2025
Tue Jul 01 01:55:09 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Wed Aug 20 07:25:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords melanoma
photoacoustic flow cytometry
tumor metastasis
circulating tumor cells
melanin
Language English
License 2023 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3735-1597a2da17c52f00bb516533ddc07fd8eb798cd17dc926997f54f29da325f6c03
Notes Kai Pang and Qi Liu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 38010214
PQID 3094399892
PQPubID 1006377
PageCount 11
ParticipantIDs proquest_miscellaneous_2894722478
proquest_journals_3094399892
pubmed_primary_38010214
crossref_primary_10_1002_jbio_202300405
crossref_citationtrail_10_1002_jbio_202300405
wiley_primary_10_1002_jbio_202300405_JBIO202300405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2019; 8
2017; 7
2019; 9
2004; 64
2019; 11
2019; 12
2016; 10
2020; 12
2007; 31
2018; 45
2007; 12
2005; 88
2021; 70
2016; 11
2015; 24
2020; 8
2018; 19
2016; 6
2016; 7
2021; 10
2020; 97
2021
2015; 20
2018; 114
2016; 21
2000; 100
2009; 4
2019; 176
e_1_2_8_28_1
Yvying Y. (e_1_2_8_10_1) 2018; 45
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 448
  year: 2016
  publication-title: IET Image Process.
– volume: 4
  start-page: 855
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 21531
  year: 2016
  publication-title: Sci. Rep.
– volume: 21
  start-page: 73
  year: 2016
  publication-title: J. Cancer Prev.
– volume: 12
  start-page: 1
  year: 2019
  publication-title: J. Hematol Oncol.
– volume: 9
  start-page: 9280
  year: 2019
  publication-title: Sci. Rep.
– volume: 11
  start-page: 1750
  year: 2019
  publication-title: Cancers
– volume: 70
  year: 2021
  publication-title: J. Pineal Res.
– volume: 97
  start-page: 15
  year: 2020
  publication-title: Cytometry Part A
– volume: 8
  start-page: 553
  year: 2019
  publication-title: Cell
– volume: 24
  start-page: 258
  year: 2015
  publication-title: Exp. Dermatol.
– volume: 7
  start-page: 17844
  year: 2016
  publication-title: Oncotarget
– start-page: 289
  year: 2021
– volume: 100
  start-page: 57
  year: 2000
  publication-title: Cell
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 88
  start-page: 3689
  year: 2005
  publication-title: Biophys. J.
– volume: 114
  start-page: 1165
  year: 2018
  publication-title: Biophys. J.
– volume: 7
  start-page: 1
  year: 2017
  publication-title: Sci. Rep.
– volume: 19
  start-page: 607
  year: 2018
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 14
  year: 2007
  publication-title: J. Biomed. Opt.
– volume: 12
  start-page: 3525
  year: 2020
  publication-title: Cancers
– volume: 20
  year: 2015
  publication-title: J. Biomed. Opt.
– volume: 45
  start-page: 1201
  year: 2018
  publication-title: Chin. J. Clin. Oncol.
– volume: 64
  start-page: 5044
  year: 2004
  publication-title: Cancer Res.
– volume: 176
  start-page: 98
  year: 2019
  publication-title: Cell
– volume: 7
  start-page: 3643
  year: 2016
  publication-title: Biomed. Opt. Express
– volume: 10
  start-page: 1
  year: 2021
  publication-title: Light Sci. Appl.
– volume: 8
  start-page: 54
  year: 2020
  publication-title: Front. Cell Dev. Biol.
– volume: 31
  start-page: 362
  year: 2007
  publication-title: Comput. Med. Imaging Graph.
– ident: e_1_2_8_9_1
  doi: 10.18632/oncotarget.7528
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0156269
– ident: e_1_2_8_29_1
  doi: 10.1117/1.JBO.20.10.106005
– ident: e_1_2_8_4_1
  doi: 10.1111/exd.12618
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cell.2018.11.046
– ident: e_1_2_8_19_1
  doi: 10.3390/cells8060553
– ident: e_1_2_8_23_1
  doi: 10.1158/0008-5472.CAN-04-1058
– ident: e_1_2_8_30_1
  doi: 10.1364/BOE.7.003643
– ident: e_1_2_8_5_1
  doi: 10.1038/s41598-019-45643-9
– ident: e_1_2_8_22_1
  doi: 10.1117/1.2793746
– ident: e_1_2_8_11_1
  doi: 10.1016/j.bpj.2018.01.005
– ident: e_1_2_8_20_1
  doi: 10.3390/cancers12123525
– volume: 45
  start-page: 1201
  year: 2018
  ident: e_1_2_8_10_1
  publication-title: Chin. J. Clin. Oncol.
– ident: e_1_2_8_12_1
  doi: 10.1529/biophysj.104.045476
– ident: e_1_2_8_28_1
  doi: 10.1007/978-981-15-7627-0_13
– ident: e_1_2_8_13_1
  doi: 10.15430/JCP.2016.21.2.73
– ident: e_1_2_8_6_1
  doi: 10.1111/jpi.12728
– ident: e_1_2_8_7_1
  doi: 10.3389/fcell.2020.00054
– ident: e_1_2_8_14_1
  doi: 10.1016/S0092-8674(00)81683-9
– ident: e_1_2_8_17_1
  doi: 10.3390/cancers11111750
– ident: e_1_2_8_25_1
  doi: 10.1038/nnano.2009.333
– ident: e_1_2_8_26_1
  doi: 10.1038/srep21531
– ident: e_1_2_8_8_1
  doi: 10.3390/ijms19020607
– ident: e_1_2_8_18_1
  doi: 10.1186/s13045-019-0735-4
– ident: e_1_2_8_15_1
  doi: 10.1038/s41377-020-00435-z
– ident: e_1_2_8_2_1
  doi: 10.1049/iet-ipr.2015.0385
– ident: e_1_2_8_3_1
  doi: 10.1016/j.compmedimag.2007.01.003
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598-017-11119-x
– ident: e_1_2_8_27_1
  doi: 10.1002/cyto.a.23851
SSID ssj0060353
Score 2.3598902
Snippet A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300405
SubjectTerms circulating tumor cells
Flow cytometry
In vivo methods and tests
Melanin
Melanoma
Metastases
Monitoring
photoacoustic flow cytometry
Risk assessment
Tumor cells
tumor metastasis
Tumors
Title In vivo photoacoustic flow cytometry‐based study of the effect of melanin content on melanoma metastasis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300405
https://www.ncbi.nlm.nih.gov/pubmed/38010214
https://www.proquest.com/docview/3094399892
https://www.proquest.com/docview/2894722478
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQkTm4TO7bjI0VUbSVAQlTaW-Sn2LIbV920qJz6E_ob-SUdx7uhC0JIcLMTW3E8Hs_nZOYbhF4JOHH5SjniwdiR2jNKtKCBUMYcDaHSMqRo5PcfxN5hfTDhk2tR_JkfYvzgljRj2K-Tgmuz2P5JGnpkpil4jybKqIHENDlsJVT0aeSPEiUbaCirRtQEbPFkxdpY0u317utW6TeouY5cB9Ozewfp1aCzx8nXrdPebNnvv_A5_s9b3UW3l7gUv8kL6R664bv76NY1tsIH6Gi_w2fTs4iPv8Q-wk46JALDYRa_YXvex7nvT85_XFwmw-jwwFuLY8CAMHH2Gkm1uZ_pbtrh5CIP9g7HLl-Kcw2FXgNYXUwXD9Hh7rvPb_fIMlUDsUwyTgAUSU2drqTlNJSlMbwSgCSds6UMrvFGqsa6SjqrqFBKBl4HqpxmlAdhS_YIbXSx808Q1kYGBiDWm8bUQnDdmEaoSmvNlePMFIisRNXaJY95SqcxazMDM23THLbjHBbo9dj-ODN4_LHl5kry7VKTFy1LrpdwJlW0QC_H26CD6ceK7jzMdQuH1sS5WcumQI_zihkfxZqcPb1AdJD7X8bQHuzsfxxrT_-l0zN0E8p1dpTbRBv9yal_DsipNy8G7bgCp_oRJA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbhQhFCamXqgX_v-MtoqJiVe0MzDAcFmtzW5ta2LapHcEBki37g5Nd1pTr3wEn7FPIgw7o6sxJno3MJBhgMP5Dhy-A8ArFiwuWwiDbFB2qLQEI8WwQ5gQg50rFHfxNvLePhsdljtHtPcmjHdhEj_EsOEWJaNbr6OAxw3pjR-soSd6Em_v4cgZFVlMr8ew3jGIwdbHgUGK5aQjoiwqVqKgjY963sYcbyzXX9ZLv4HNZezaKZ_tO0D3zU4-J5_Wz1u9Xn_5hdHxv_7rLri9gKZwM82le-Cabe6DWz8RFj4AJ-MGXkwuPDw99q0Pi2kXCwy6qf8M68vWz2x7dnn19VvUjQZ21LXQOxhAJkyOIzE1s1PVTBoYveSDyoO-SVl-psJDqwJenU_mD8Hh9ruDtyO0iNaAasIJRQEXcYWNKnhNsctzrWnBApg0ps65M5XVXFS1KbipBWZCcEdLh4VRBFPH6pw8AiuNb-wTAJXmjgQca3WlS8aoqnTFRKGUosJQojOA-rGS9YLKPEbUmMpEwoxl7EM59GEGXg_lTxOJxx9LrvZDLxfCPJckel8Gs1TgDLwcXgcxjGcrqrGhr2WwWyPtZsmrDDxOU2b4FKlSAPUM4G7g_9IGufNm_GFIPf2XSi_AjdHB3q7cHe-_fwZuhvwy-c2tgpX27NyuBSDV6uedqHwHrSIVPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcypumLWAkJE5pEzu24yOvVbdAQYhKe7P8FNvuxqtu2qqc-An8Rn4JdrwbuiCEBLfYsRXH4_F8Tma-AeApDScuW3KT22Ds8spilEuKXI4wNsi5UjIXo5HfHdC9w2p_REaXovgTP0T_wS1qRrdfRwWfGbf7kzT0SI1j8B6KlFGRxPRqRYPGRFj0sSeQogXueCjLmlZ5MMajJW1jgXZX-6-apd-w5ip07WzP4CaQy1Enl5PjndNW7egvvxA6_s9r3QLrC2AKn6eVdBtcsc0dcOMSXeFdcDRs4Nn4zMPZZ9_6sJV2mcCgm_hzqC9aP7XtycX3r9-iZTSwI66F3sEAMWFyG4mlqZ3IZtzA6CMfDB70TaryUxkuWhnQ6nw8vwcOB68_vdzLF7kaco0ZJnlARUwiI0umCXJFoRQpaYCSxuiCOVNbxXitTcmM5ohyzhypHOJGYkQc1QW-D9Ya39gNAKViDgcUa1WtKkqJrFVNeSmlJNwQrDKQL0Ul9ILIPObTmIhEwYxEnEPRz2EGnvXtZ4nC448tt5eSFwtVngscfS_DoZSjDDzpbwcljH9WZGPDXItwao2kmxWrM_AgrZj-UbhO6dMzgDq5_2UMYv_F8H1f2vyXTo_BtQ-vBuLt8ODNFrgeqqvkNLcN1tqTU_swoKhWPeoU5Qd29RP2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+photoacoustic+flow+cytometry-based+study+of+the+effect+of+melanin+content+on+melanoma+metastasis&rft.jtitle=Journal+of+biophotonics&rft.au=Pang%2C+Kai&rft.au=Liu%2C+Qi&rft.au=Zhu%2C+Yuxi&rft.au=Wei%2C+Xunbin&rft.date=2024-03-01&rft.eissn=1864-0648&rft.volume=17&rft.issue=3&rft.spage=e202300405&rft_id=info:doi/10.1002%2Fjbio.202300405&rft_id=info%3Apmid%2F38010214&rft.externalDocID=38010214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon