In vivo photoacoustic flow cytometry‐based study of the effect of melanin content on melanoma metastasis
A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC...
Saved in:
Published in | Journal of biophotonics Vol. 17; no. 3; pp. e202300405 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.03.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1864-063X 1864-0648 1864-0648 |
DOI | 10.1002/jbio.202300405 |
Cover
Loading…
Abstract | A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.
This study built an optimized PAFC system. By using in vivo experiments and investigated the dynamic effect of melanin content on melanoma metastasis we found that melanin content was negatively correlated with tumor invasion ability. The melanin content of CTCs may be down‐regulated during tumor metastasis. CTC melanin content may be considered a potential indicator for melanoma metastasis risk assessment in future clinical diagnoses. |
---|---|
AbstractList | A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.
This study built an optimized PAFC system. By using in vivo experiments and investigated the dynamic effect of melanin content on melanoma metastasis we found that melanin content was negatively correlated with tumor invasion ability. The melanin content of CTCs may be down‐regulated during tumor metastasis. CTC melanin content may be considered a potential indicator for melanoma metastasis risk assessment in future clinical diagnoses. A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non‐invasively, and label‐free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily‐pigmented and moderately‐pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately‐pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down‐regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses. A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses. |
Author | Wei, Xunbin Pang, Kai Zhu, Yuxi Liu, Qi |
Author_xml | – sequence: 1 givenname: Kai surname: Pang fullname: Pang, Kai organization: School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University – sequence: 2 givenname: Qi surname: Liu fullname: Liu, Qi organization: Med‐X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Yuxi surname: Zhu fullname: Zhu, Yuxi organization: School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University – sequence: 4 givenname: Xunbin surname: Wei fullname: Wei, Xunbin email: xwei@bjmu.edu.cn organization: Peking University Cancer Hospital & Institute and Biomedical Engineering Department, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38010214$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFDEQx4OsuA-9epQGL15mrLw6naMuPkYW9qLgLaTzYDN0J2MnvUvf9iP4Gf0kZph1hAURAqkqfv-kqv7n6CSm6BB6iWGNAcjbbR_SmgChAAz4E3SGu5atoGXdyTGm30_Rec5bgBYop8_QKe0AA8HsDG03sbkNt6nZ3aSStElzLsE0fkh3jVlKGl2Zll_3P3udnW1yme3SJN-UG9c4750p-2x0g44hNibF4mItxUMpjboGRed6Qn6Onno9ZPfi4b5A3z5--Hr5eXV1_Wlz-e5qZaigfIW5FJpYjYXhxAP0Pcctp9RaA8LbzvVCdsZiYY0krZTCc-aJtJoS7lsD9AK9Oby7m9KP2eWixpCNG2pDro6nSCeZIISJrqKvH6HbNE-xdqcoSEal7CSp1KsHau5HZ9VuCqOeFvVnixVYHwAzpZwn548IBrW3Se1tUkebqoA9EphQdAl1f5MOw79l8iC7C4Nb_vOJ-vJ-c_1X-xvkvKiQ |
CitedBy_id | crossref_primary_10_1063_5_0226328 crossref_primary_10_1016_j_copbio_2024_103149 |
Cites_doi | 10.18632/oncotarget.7528 10.1371/journal.pone.0156269 10.1117/1.JBO.20.10.106005 10.1111/exd.12618 10.1016/j.cell.2018.11.046 10.3390/cells8060553 10.1158/0008-5472.CAN-04-1058 10.1364/BOE.7.003643 10.1038/s41598-019-45643-9 10.1117/1.2793746 10.1016/j.bpj.2018.01.005 10.3390/cancers12123525 10.1529/biophysj.104.045476 10.1007/978-981-15-7627-0_13 10.15430/JCP.2016.21.2.73 10.1111/jpi.12728 10.3389/fcell.2020.00054 10.1016/S0092-8674(00)81683-9 10.3390/cancers11111750 10.1038/nnano.2009.333 10.1038/srep21531 10.3390/ijms19020607 10.1186/s13045-019-0735-4 10.1038/s41377-020-00435-z 10.1049/iet-ipr.2015.0385 10.1016/j.compmedimag.2007.01.003 10.1038/s41598-017-11119-x 10.1002/cyto.a.23851 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
DOI | 10.1002/jbio.202300405 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-0648 |
EndPage | n/a |
ExternalDocumentID | 38010214 10_1002_jbio_202300405 JBIO202300405 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 62075013; 62027824 – fundername: National Natural Science Foundation of China grantid: 62075013 – fundername: National Natural Science Foundation of China grantid: 62027824 |
GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR XV2 ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 |
ID | FETCH-LOGICAL-c3735-1597a2da17c52f00bb516533ddc07fd8eb798cd17dc926997f54f29da325f6c03 |
IEDL.DBID | DR2 |
ISSN | 1864-063X 1864-0648 |
IngestDate | Fri Jul 11 05:12:38 EDT 2025 Fri Jul 25 12:15:49 EDT 2025 Mon Jul 21 05:45:29 EDT 2025 Tue Jul 01 01:55:09 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Wed Aug 20 07:25:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | melanoma photoacoustic flow cytometry tumor metastasis circulating tumor cells melanin |
Language | English |
License | 2023 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3735-1597a2da17c52f00bb516533ddc07fd8eb798cd17dc926997f54f29da325f6c03 |
Notes | Kai Pang and Qi Liu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 38010214 |
PQID | 3094399892 |
PQPubID | 1006377 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2894722478 proquest_journals_3094399892 pubmed_primary_38010214 crossref_primary_10_1002_jbio_202300405 crossref_citationtrail_10_1002_jbio_202300405 wiley_primary_10_1002_jbio_202300405_JBIO202300405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
PublicationTitle | Journal of biophotonics |
PublicationTitleAlternate | J Biophotonics |
PublicationYear | 2024 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2019; 8 2017; 7 2019; 9 2004; 64 2019; 11 2019; 12 2016; 10 2020; 12 2007; 31 2018; 45 2007; 12 2005; 88 2021; 70 2016; 11 2015; 24 2020; 8 2018; 19 2016; 6 2016; 7 2021; 10 2020; 97 2021 2015; 20 2018; 114 2016; 21 2000; 100 2009; 4 2019; 176 e_1_2_8_28_1 Yvying Y. (e_1_2_8_10_1) 2018; 45 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 448 year: 2016 publication-title: IET Image Process. – volume: 4 start-page: 855 year: 2009 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 21531 year: 2016 publication-title: Sci. Rep. – volume: 21 start-page: 73 year: 2016 publication-title: J. Cancer Prev. – volume: 12 start-page: 1 year: 2019 publication-title: J. Hematol Oncol. – volume: 9 start-page: 9280 year: 2019 publication-title: Sci. Rep. – volume: 11 start-page: 1750 year: 2019 publication-title: Cancers – volume: 70 year: 2021 publication-title: J. Pineal Res. – volume: 97 start-page: 15 year: 2020 publication-title: Cytometry Part A – volume: 8 start-page: 553 year: 2019 publication-title: Cell – volume: 24 start-page: 258 year: 2015 publication-title: Exp. Dermatol. – volume: 7 start-page: 17844 year: 2016 publication-title: Oncotarget – start-page: 289 year: 2021 – volume: 100 start-page: 57 year: 2000 publication-title: Cell – volume: 11 year: 2016 publication-title: PLoS One – volume: 88 start-page: 3689 year: 2005 publication-title: Biophys. J. – volume: 114 start-page: 1165 year: 2018 publication-title: Biophys. J. – volume: 7 start-page: 1 year: 2017 publication-title: Sci. Rep. – volume: 19 start-page: 607 year: 2018 publication-title: Int. J. Mol. Sci. – volume: 12 start-page: 14 year: 2007 publication-title: J. Biomed. Opt. – volume: 12 start-page: 3525 year: 2020 publication-title: Cancers – volume: 20 year: 2015 publication-title: J. Biomed. Opt. – volume: 45 start-page: 1201 year: 2018 publication-title: Chin. J. Clin. Oncol. – volume: 64 start-page: 5044 year: 2004 publication-title: Cancer Res. – volume: 176 start-page: 98 year: 2019 publication-title: Cell – volume: 7 start-page: 3643 year: 2016 publication-title: Biomed. Opt. Express – volume: 10 start-page: 1 year: 2021 publication-title: Light Sci. Appl. – volume: 8 start-page: 54 year: 2020 publication-title: Front. Cell Dev. Biol. – volume: 31 start-page: 362 year: 2007 publication-title: Comput. Med. Imaging Graph. – ident: e_1_2_8_9_1 doi: 10.18632/oncotarget.7528 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pone.0156269 – ident: e_1_2_8_29_1 doi: 10.1117/1.JBO.20.10.106005 – ident: e_1_2_8_4_1 doi: 10.1111/exd.12618 – ident: e_1_2_8_16_1 doi: 10.1016/j.cell.2018.11.046 – ident: e_1_2_8_19_1 doi: 10.3390/cells8060553 – ident: e_1_2_8_23_1 doi: 10.1158/0008-5472.CAN-04-1058 – ident: e_1_2_8_30_1 doi: 10.1364/BOE.7.003643 – ident: e_1_2_8_5_1 doi: 10.1038/s41598-019-45643-9 – ident: e_1_2_8_22_1 doi: 10.1117/1.2793746 – ident: e_1_2_8_11_1 doi: 10.1016/j.bpj.2018.01.005 – ident: e_1_2_8_20_1 doi: 10.3390/cancers12123525 – volume: 45 start-page: 1201 year: 2018 ident: e_1_2_8_10_1 publication-title: Chin. J. Clin. Oncol. – ident: e_1_2_8_12_1 doi: 10.1529/biophysj.104.045476 – ident: e_1_2_8_28_1 doi: 10.1007/978-981-15-7627-0_13 – ident: e_1_2_8_13_1 doi: 10.15430/JCP.2016.21.2.73 – ident: e_1_2_8_6_1 doi: 10.1111/jpi.12728 – ident: e_1_2_8_7_1 doi: 10.3389/fcell.2020.00054 – ident: e_1_2_8_14_1 doi: 10.1016/S0092-8674(00)81683-9 – ident: e_1_2_8_17_1 doi: 10.3390/cancers11111750 – ident: e_1_2_8_25_1 doi: 10.1038/nnano.2009.333 – ident: e_1_2_8_26_1 doi: 10.1038/srep21531 – ident: e_1_2_8_8_1 doi: 10.3390/ijms19020607 – ident: e_1_2_8_18_1 doi: 10.1186/s13045-019-0735-4 – ident: e_1_2_8_15_1 doi: 10.1038/s41377-020-00435-z – ident: e_1_2_8_2_1 doi: 10.1049/iet-ipr.2015.0385 – ident: e_1_2_8_3_1 doi: 10.1016/j.compmedimag.2007.01.003 – ident: e_1_2_8_21_1 doi: 10.1038/s41598-017-11119-x – ident: e_1_2_8_27_1 doi: 10.1002/cyto.a.23851 |
SSID | ssj0060353 |
Score | 2.3598902 |
Snippet | A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300405 |
SubjectTerms | circulating tumor cells Flow cytometry In vivo methods and tests Melanin Melanoma Metastases Monitoring photoacoustic flow cytometry Risk assessment Tumor cells tumor metastasis Tumors |
Title | In vivo photoacoustic flow cytometry‐based study of the effect of melanin content on melanoma metastasis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.202300405 https://www.ncbi.nlm.nih.gov/pubmed/38010214 https://www.proquest.com/docview/3094399892 https://www.proquest.com/docview/2894722478 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQkTm4TO7bjI0VUbSVAQlTaW-Sn2LIbV920qJz6E_ob-SUdx7uhC0JIcLMTW3E8Hs_nZOYbhF4JOHH5SjniwdiR2jNKtKCBUMYcDaHSMqRo5PcfxN5hfTDhk2tR_JkfYvzgljRj2K-Tgmuz2P5JGnpkpil4jybKqIHENDlsJVT0aeSPEiUbaCirRtQEbPFkxdpY0u317utW6TeouY5cB9Ozewfp1aCzx8nXrdPebNnvv_A5_s9b3UW3l7gUv8kL6R664bv76NY1tsIH6Gi_w2fTs4iPv8Q-wk46JALDYRa_YXvex7nvT85_XFwmw-jwwFuLY8CAMHH2Gkm1uZ_pbtrh5CIP9g7HLl-Kcw2FXgNYXUwXD9Hh7rvPb_fIMlUDsUwyTgAUSU2drqTlNJSlMbwSgCSds6UMrvFGqsa6SjqrqFBKBl4HqpxmlAdhS_YIbXSx808Q1kYGBiDWm8bUQnDdmEaoSmvNlePMFIisRNXaJY95SqcxazMDM23THLbjHBbo9dj-ODN4_LHl5kry7VKTFy1LrpdwJlW0QC_H26CD6ceK7jzMdQuH1sS5WcumQI_zihkfxZqcPb1AdJD7X8bQHuzsfxxrT_-l0zN0E8p1dpTbRBv9yal_DsipNy8G7bgCp_oRJA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbhQhFCamXqgX_v-MtoqJiVe0MzDAcFmtzW5ta2LapHcEBki37g5Nd1pTr3wEn7FPIgw7o6sxJno3MJBhgMP5Dhy-A8ArFiwuWwiDbFB2qLQEI8WwQ5gQg50rFHfxNvLePhsdljtHtPcmjHdhEj_EsOEWJaNbr6OAxw3pjR-soSd6Em_v4cgZFVlMr8ew3jGIwdbHgUGK5aQjoiwqVqKgjY963sYcbyzXX9ZLv4HNZezaKZ_tO0D3zU4-J5_Wz1u9Xn_5hdHxv_7rLri9gKZwM82le-Cabe6DWz8RFj4AJ-MGXkwuPDw99q0Pi2kXCwy6qf8M68vWz2x7dnn19VvUjQZ21LXQOxhAJkyOIzE1s1PVTBoYveSDyoO-SVl-psJDqwJenU_mD8Hh9ruDtyO0iNaAasIJRQEXcYWNKnhNsctzrWnBApg0ps65M5XVXFS1KbipBWZCcEdLh4VRBFPH6pw8AiuNb-wTAJXmjgQca3WlS8aoqnTFRKGUosJQojOA-rGS9YLKPEbUmMpEwoxl7EM59GEGXg_lTxOJxx9LrvZDLxfCPJckel8Gs1TgDLwcXgcxjGcrqrGhr2WwWyPtZsmrDDxOU2b4FKlSAPUM4G7g_9IGufNm_GFIPf2XSi_AjdHB3q7cHe-_fwZuhvwy-c2tgpX27NyuBSDV6uedqHwHrSIVPg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAcypumLWAkJE5pEzu24yOvVbdAQYhKe7P8FNvuxqtu2qqc-An8Rn4JdrwbuiCEBLfYsRXH4_F8Tma-AeApDScuW3KT22Ds8spilEuKXI4wNsi5UjIXo5HfHdC9w2p_REaXovgTP0T_wS1qRrdfRwWfGbf7kzT0SI1j8B6KlFGRxPRqRYPGRFj0sSeQogXueCjLmlZ5MMajJW1jgXZX-6-apd-w5ip07WzP4CaQy1Enl5PjndNW7egvvxA6_s9r3QLrC2AKn6eVdBtcsc0dcOMSXeFdcDRs4Nn4zMPZZ9_6sJV2mcCgm_hzqC9aP7XtycX3r9-iZTSwI66F3sEAMWFyG4mlqZ3IZtzA6CMfDB70TaryUxkuWhnQ6nw8vwcOB68_vdzLF7kaco0ZJnlARUwiI0umCXJFoRQpaYCSxuiCOVNbxXitTcmM5ohyzhypHOJGYkQc1QW-D9Ya39gNAKViDgcUa1WtKkqJrFVNeSmlJNwQrDKQL0Ul9ILIPObTmIhEwYxEnEPRz2EGnvXtZ4nC448tt5eSFwtVngscfS_DoZSjDDzpbwcljH9WZGPDXItwao2kmxWrM_AgrZj-UbhO6dMzgDq5_2UMYv_F8H1f2vyXTo_BtQ-vBuLt8ODNFrgeqqvkNLcN1tqTU_swoKhWPeoU5Qd29RP2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+photoacoustic+flow+cytometry-based+study+of+the+effect+of+melanin+content+on+melanoma+metastasis&rft.jtitle=Journal+of+biophotonics&rft.au=Pang%2C+Kai&rft.au=Liu%2C+Qi&rft.au=Zhu%2C+Yuxi&rft.au=Wei%2C+Xunbin&rft.date=2024-03-01&rft.eissn=1864-0648&rft.volume=17&rft.issue=3&rft.spage=e202300405&rft_id=info:doi/10.1002%2Fjbio.202300405&rft_id=info%3Apmid%2F38010214&rft.externalDocID=38010214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |