Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta

Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing powe...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 24; pp. e202303124 - n/a
Main Authors Ye, Yiru, Abou‐Hamad, Edy, Gong, Xuan, Shoinkhorova, Tuiana B., Dokania, Abhay, Gascon, Jorge, Chowdhury, Abhishek Dutta
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.06.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.
AbstractList Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species.
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO 2 ‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
Author Gong, Xuan
Chowdhury, Abhishek Dutta
Ye, Yiru
Dokania, Abhay
Gascon, Jorge
Shoinkhorova, Tuiana B.
Abou‐Hamad, Edy
Author_xml – sequence: 1
  givenname: Yiru
  surname: Ye
  fullname: Ye, Yiru
  organization: Wuhan University
– sequence: 2
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Xuan
  surname: Gong
  fullname: Gong, Xuan
  organization: Wuhan University
– sequence: 4
  givenname: Tuiana B.
  surname: Shoinkhorova
  fullname: Shoinkhorova, Tuiana B.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Abhay
  surname: Dokania
  fullname: Dokania, Abhay
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Jorge
  surname: Gascon
  fullname: Gascon, Jorge
  email: jorge.gascon@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Abhishek Dutta
  orcidid: 0000-0002-4121-7375
  surname: Chowdhury
  fullname: Chowdhury, Abhishek Dutta
  email: abhishek@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37040129$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtuFTEQhi0URC7QUqKVaGj2YHt2Y7tBSqLcpIRQQENjzdkdE0d77IPtA0rHI-QZeRIcnVykSBGNxxp938zo32YbIQZi7K3gM8G5_IjB00xyCRyE7F6wLdFL0YJSsFH_HUCrdC822XbOV5XXmu--YpugeMeFNFvs0zkulz78aMolNedULjHE6e-fmxLrc4w5Tj5Q8yXFgXJuLn5Rar5TbRZq9qnga_bS4ZTpzV3dYd-ODr8enLRnF8enB3tn7QAKutbJ3RHlOJ87xx0ayTmKTnPko3GjQ971vVRaKEA0DvUwgBxHg50EAALpYId9WM9dpvhzRbnYhc8DTRMGiqtspTJGS6V6qOj7J-hVXKVQr7NSS9ELDUZU6t0dtZovaLTL5BeYru19MhWYrYEhxZwTuQdEcHsbvb2N3j5EX4XuiTD4gsXHUBL66XnNrLXffqLr_yyxe59PDx_df26lmF0
CitedBy_id crossref_primary_10_1002_anie_202411197
crossref_primary_10_1016_j_energy_2025_134459
crossref_primary_10_1016_j_fuel_2024_133787
crossref_primary_10_1039_D4CY01168F
crossref_primary_10_1039_D4CY01057D
crossref_primary_10_1039_D4SC00603H
crossref_primary_10_1002_anie_202401060
crossref_primary_10_1021_acs_accounts_3c00551
crossref_primary_10_1016_j_checat_2024_101168
crossref_primary_10_1016_j_gce_2024_01_002
crossref_primary_10_1016_j_jiec_2024_11_031
crossref_primary_10_1002_ange_202401060
crossref_primary_10_1016_j_cjsc_2024_100412
crossref_primary_10_1016_j_cjsc_2024_100265
crossref_primary_10_3390_catal14040232
crossref_primary_10_1002_ange_202411197
Cites_doi 10.1002/anie.201608643
10.1016/j.checat.2022.07.026
10.1021/jacs.9b00585
10.1038/s41929-018-0078-5
10.1038/s41929-017-0002-4
10.1021/jacs.2c03478
10.1039/D1CS00966D
10.1002/anie.202207777
10.1002/anie.200900541
10.1021/jacsau.1c00317
10.1002/anie.201803279
10.1021/acscatal.2c04600
10.1021/cen-v081n038.p005
10.1038/s41929-019-0319-2
10.1021/i260067a008
10.1039/D1CP05144J
10.1021/ja065810a
10.1002/chem.201002258
10.1021/acscatal.5b01577
10.1021/acs.chemrev.2c00076
10.1039/c2sc20434g
10.1002/anie.201807814
10.1021/acscatal.0c05335
10.1016/S1387-1811(98)00329-1
10.1016/S2095-4956(14)60192-3
10.1016/j.jcat.2014.03.013
10.1016/j.jcat.2014.06.017
10.1021/acs.jpcc.0c06616
10.1021/acscatal.9b03474
10.1021/cs500722m
10.1021/cs5015749
10.1002/anie.201808480
10.1016/S0167-2991(09)60525-5
10.1021/acscatal.7b03114
10.1002/anie.201410974
10.1006/jcat.1998.2177
10.1021/acscatal.1c01422
10.1021/ar2002528
10.1016/j.jcat.2015.12.007
10.1002/anie.202007283
10.1021/acscatal.9b00641
10.1038/s41467-021-26090-5
10.1016/j.chempr.2021.05.023
10.1016/j.fmre.2021.08.002
10.1038/s41467-019-09449-7
10.1039/C9SC02215E
10.1021/acscatal.5b00007
10.1016/j.trechm.2020.07.005
10.1039/C5CS00304K
10.1021/cs3006583
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202303124
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37040129
10_1002_anie_202303124
ANIE202303124
Genre article
Journal Article
GrantInformation_xml – fundername: Wuhan University
– fundername: National Natural Science Foundation of China
  funderid: 22050410276
– fundername: King Abdullah University of Science and Technology
– fundername: Postdoctoral Research Foundation of China
  funderid: 2021M702515/2022T150493
– fundername: National Natural Science Foundation of China
  grantid: 22050410276
– fundername: Postdoctoral Research Foundation of China
  grantid: 2021M702515/2022T150493
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:04:42 EDT 2025
Fri Jul 25 10:26:07 EDT 2025
Wed Feb 19 02:23:28 EST 2025
Tue Jul 01 01:47:09 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Methanol-to-Gasoline
Zeolite
Methanol-to-Hydrocarbon
Operando Study
Reaction Mechanism
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4121-7375
PMID 37040129
PQID 2821518391
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_2799827753
proquest_journals_2821518391
pubmed_primary_37040129
crossref_primary_10_1002_anie_202303124
crossref_citationtrail_10_1002_anie_202303124
wiley_primary_10_1002_anie_202303124_ANIE202303124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 12, 2023
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: June 12, 2023
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 317
2021; 7
2014; 314
2017; 7
2019; 9
2013; 3
2010; 16
2015; 5
2003; 81
2019; 2
1999; 29
2022; 51
2019; 10
1988; 36
2015; 54
2022; 24
2020; 59
1978; 17
2020; 124
2021; 1
2019; 141
1998; 179
2014; 23
2009; 48
2016; 55
2022; 122
2022; 144
2014; 4
2012; 3
2020; 2
2021; 12
2021; 11
2018; 1
2022; 61
2015; 44
2022; 12
2016; 335
2022; 2
2012; 45
2006; 128
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 5
  start-page: 317
  year: 2015
  end-page: 326
  publication-title: ACS Catal.
– volume: 7
  start-page: 7987
  year: 2017
  end-page: 7994
  publication-title: ACS Catal.
– volume: 144
  start-page: 18251
  year: 2022
  end-page: 18258
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6078
  year: 2015
  end-page: 6085
  publication-title: ACS Catal.
– volume: 1
  start-page: 398
  year: 2018
  end-page: 411
  publication-title: Nat. Catal.
– volume: 7
  start-page: 2415
  year: 2021
  end-page: 2428
  publication-title: Chem
– volume: 314
  start-page: 21
  year: 2014
  end-page: 31
  publication-title: J. Catal.
– volume: 45
  start-page: 653
  year: 2012
  end-page: 662
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 5914
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 6491
  year: 2019
  end-page: 6501
  publication-title: ACS Catal.
– volume: 5
  start-page: 1922
  year: 2015
  end-page: 1938
  publication-title: ACS Catal.
– volume: 23
  start-page: 617
  year: 2014
  end-page: 624
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 785
  year: 2020
  end-page: 795
  publication-title: Trends Chem.
– volume: 122
  start-page: 14275
  year: 2022
  end-page: 14345
  publication-title: Chem. Rev.
– volume: 44
  start-page: 7155
  year: 2015
  end-page: 7176
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 632
  year: 2019
  end-page: 640
  publication-title: Nat. Catal.
– volume: 55
  start-page: 15840
  year: 2016
  end-page: 15845
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 11398
  year: 2019
  end-page: 11403
  publication-title: ACS Catal.
– volume: 124
  start-page: 20270
  year: 2020
  end-page: 20279
  publication-title: J. Phys. Chem. C
– volume: 59
  start-page: 16741
  year: 2020
  end-page: 16746
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 5908
  year: 2019
  end-page: 5915
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 184
  year: 2022
  end-page: 192
  publication-title: Fundam. Res.
– volume: 10
  start-page: 1462
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 8946
  year: 2019
  end-page: 8954
  publication-title: Chem. Sci.
– volume: 1
  start-page: 23
  year: 2018
  end-page: 31
  publication-title: Nat. Catal.
– volume: 12
  start-page: 15463
  year: 2022
  end-page: 15500
  publication-title: ACS Catal.
– volume: 179
  start-page: 192
  year: 1998
  end-page: 202
  publication-title: J. Catal.
– volume: 317
  start-page: 185
  year: 2014
  end-page: 197
  publication-title: J. Catal.
– volume: 2
  start-page: 2328
  year: 2022
  end-page: 2345
  publication-title: Chem Catal.
– volume: 51
  start-page: 4337
  year: 2022
  end-page: 4385
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 8387
  year: 2022
  end-page: 8397
  publication-title: Phys. Chem. Chem. Phys.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  start-page: 173
  year: 1999
  end-page: 184
  publication-title: Microporous Mesoporous Mater.
– volume: 3
  start-page: 18
  year: 2013
  end-page: 31
  publication-title: ACS Catal.
– volume: 3
  start-page: 2932
  year: 2012
  end-page: 2940
  publication-title: Chem. Sci.
– volume: 81
  start-page: 5
  year: 2003
  publication-title: Chem. Eng. News
– volume: 128
  start-page: 14770
  year: 2006
  end-page: 14771
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 325
  year: 1988
  end-page: 339
  publication-title: Stud. Surf. Sci. Catal.
– volume: 11
  start-page: 7780
  year: 2021
  end-page: 7819
  publication-title: ACS Catal.
– volume: 54
  start-page: 7261
  year: 2015
  end-page: 7264
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 14016
  year: 2010
  end-page: 14025
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 255
  year: 1978
  end-page: 260
  publication-title: Ind. Eng. Chem. Process Des. Dev.
– volume: 11
  start-page: 3628
  year: 2021
  end-page: 3637
  publication-title: ACS Catal.
– volume: 57
  start-page: 8095
  year: 2018
  end-page: 8099
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 12549
  year: 2018
  end-page: 12553
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 14982
  year: 2018
  end-page: 14985
  publication-title: Angew. Chem. Int. Ed.
– volume: 335
  start-page: 47
  year: 2016
  end-page: 57
  publication-title: J. Catal.
– volume: 1
  start-page: 1961
  year: 2021
  end-page: 1974
  publication-title: JACS Au
– volume: 4
  start-page: 3521
  year: 2014
  end-page: 3532
  publication-title: ACS Catal.
– volume: 48
  start-page: 3814
  year: 2009
  end-page: 3816
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.201608643
– ident: e_1_2_7_35_1
  doi: 10.1016/j.checat.2022.07.026
– ident: e_1_2_7_38_1
  doi: 10.1021/jacs.9b00585
– ident: e_1_2_7_1_1
  doi: 10.1038/s41929-018-0078-5
– ident: e_1_2_7_18_1
  doi: 10.1038/s41929-017-0002-4
– ident: e_1_2_7_47_1
  doi: 10.1021/jacs.2c03478
– ident: e_1_2_7_15_1
  doi: 10.1039/D1CS00966D
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202207777
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.200900541
– ident: e_1_2_7_13_1
  doi: 10.1021/jacsau.1c00317
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201803279
– ident: e_1_2_7_25_1
  doi: 10.1021/acscatal.2c04600
– ident: e_1_2_7_6_1
  doi: 10.1021/cen-v081n038.p005
– ident: e_1_2_7_9_1
  doi: 10.1038/s41929-019-0319-2
– ident: e_1_2_7_5_1
  doi: 10.1021/i260067a008
– ident: e_1_2_7_43_1
– ident: e_1_2_7_48_1
  doi: 10.1039/D1CP05144J
– ident: e_1_2_7_28_1
  doi: 10.1021/ja065810a
– ident: e_1_2_7_36_1
  doi: 10.1002/chem.201002258
– ident: e_1_2_7_50_1
  doi: 10.1021/acscatal.5b01577
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemrev.2c00076
– ident: e_1_2_7_41_1
  doi: 10.1039/c2sc20434g
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201807814
– ident: e_1_2_7_45_1
  doi: 10.1021/acscatal.0c05335
– ident: e_1_2_7_12_1
  doi: 10.1016/S1387-1811(98)00329-1
– ident: e_1_2_7_22_1
  doi: 10.1016/S2095-4956(14)60192-3
– ident: e_1_2_7_7_1
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jcat.2014.03.013
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcat.2014.06.017
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.jpcc.0c06616
– ident: e_1_2_7_49_1
  doi: 10.1021/acscatal.9b03474
– ident: e_1_2_7_20_1
  doi: 10.1021/cs500722m
– ident: e_1_2_7_21_1
  doi: 10.1021/cs5015749
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201808480
– ident: e_1_2_7_16_1
  doi: 10.1016/S0167-2991(09)60525-5
– ident: e_1_2_7_30_1
  doi: 10.1021/acscatal.7b03114
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201410974
– ident: e_1_2_7_51_1
  doi: 10.1006/jcat.1998.2177
– ident: e_1_2_7_52_1
  doi: 10.1021/acscatal.1c01422
– ident: e_1_2_7_11_1
  doi: 10.1021/ar2002528
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcat.2015.12.007
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.202007283
– ident: e_1_2_7_40_1
  doi: 10.1021/acscatal.9b00641
– ident: e_1_2_7_34_1
  doi: 10.1038/s41467-021-26090-5
– ident: e_1_2_7_23_1
  doi: 10.1016/j.chempr.2021.05.023
– ident: e_1_2_7_39_1
  doi: 10.1016/j.fmre.2021.08.002
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-019-09449-7
– ident: e_1_2_7_33_1
  doi: 10.1039/C9SC02215E
– ident: e_1_2_7_4_1
  doi: 10.1021/acscatal.5b00007
– ident: e_1_2_7_8_1
  doi: 10.1016/j.trechm.2020.07.005
– ident: e_1_2_7_2_1
  doi: 10.1039/C5CS00304K
– ident: e_1_2_7_3_1
  doi: 10.1021/cs3006583
SSID ssj0028806
Score 2.631581
Snippet Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from...
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO 2 ‐neutral fuels, such as those obtained from...
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO -neutral fuels, such as those obtained from...
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303124
SubjectTerms Carbon dioxide
Carbonyls
Climate change
Decarbonization
Diffuse reflectance spectroscopy
Gasoline
Magnetic resonance spectroscopy
Methanol
Methanol-to-Gasoline
Methanol-to-Hydrocarbon
NMR
NMR spectroscopy
Nuclear magnetic resonance
Operando Study
Powertrain
Reaction Mechanism
Reaction mechanisms
Spectroscopy
Transportation industry
Zeolite
Zeolites
Title Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303124
https://www.ncbi.nlm.nih.gov/pubmed/37040129
https://www.proquest.com/docview/2821518391
https://www.proquest.com/docview/2799827753
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ey3pxfRtfRBD21GPszkwmF8EVnzAuiIJ4CdUvDw4z4mQunvwJ_sb9JVuVl44ignsJCakmneqq9Fedrq8AdnzbxM7rRJhOKkVslRMovRcxTaYdrbpJWpTp7F10Tq_j85v2zZss_pIfollwY88ovtfs4KhHu6-koZyB3eLi32SWkglBecMWo6LLhj9KknGW6UVKCa5CX7M2RnJ3svnkrPQBak4i12LqOf4JWHe63HFy3xrnumWe3vE5_s9bzcFshUvDg9KQ5mHKDRbgx2FdDm4R9nvIVA53ISHGsOd4xX3Y__v8kg_pcIIjLv7jwirvIPxDHhLeOt5c58LfLscluD4-ujo8FVXxBWFUomLhZceitFp7H3lMyZmQIqcII5t665GQYFsm3b1EIaYeu8YoaW2KhM6Uckp6tQzTg-HArUJoHAm5FJW2FAwqpJjSauxaEzlkurkARK38zFTM5Fwgo5-VnMoyY61kjVYC-NXIP5ScHJ9KbtRjmVW-OcooyCSYQ8BwL4Dt5jZpk3-V4MANxySTUBgqE4rlAlgpbaB5lErow0cwKQBZjOQXfcgOLs6Omqu17zRahxk-F0XJpA2Yzh_HbpOwUK63Cnv_B1WmALU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9lAulEIBtwUWCdTTJu6uE8cHkEp_SGgTJNRKVS9mvD8cqBJEHFVw6iP0VXgVHoEnYcZ_KCCEhNQDF0u21_Zqd2b3m_XO9wE89R0TOZ_F0nQTJSOrnUTlvYxoMu1muhcnhUzncNTtn0SvTzunC_C1zoUp-SGaBTf2jGK8ZgfnBen2T9ZQTsFusfo32aWKqn2Vh-7zBUVt0-eDPeriZ0od7B_v9mUlLCCNjnUkvepaVDbLvA89JmQoSFFBiKFNvPVIKKej4t52rBETjz1jtLI2QUIeWjutvKb33oAllhFnuv69tw1jlSJ3KBOatJase1_zRIaqPV_f-XnwN3A7j5WLye5gBb7VzVTucfnQmuVZy3z5hUHyv2rH23Crgt5ip_SVVVhw4zuwvFsr3t2FF0Nktor3gkCxGDr-qTA5_355lU_o8AqnrG_kRJVaId7QICDOHO8fdOKly3ENTq6l-vdgcTwZuwcgjKNCLkGdWYp3NVLYbDPsWRM6ZEa9AGTd26mpyNdZA-Q8LWmjVcq9kDa9EMBWU_5jSTvyx5KbtfGk1fAzTSmOJiRH2Hc7gCfNbWpN_huEYzeZUZmYIm0VU7gawP3S6JpP6ZjGdkKCAajCdP5Sh3RnNNhvztb_5aHHsNw_Hh6lR4PR4Qbc5OuyUIjahMX808w9JOiXZ48KZxPw7rqt8gcJ0l_e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD5BTJAbUFAooI4JxqtZyky33V5IgiwrK-xCjCSEm3o6P1xAdgnbjZErHsFH8VV8BZ7EM_0zqyEmJlx406TttJ3MnDPznc6c7wNYt00VGJtGXIWx4IGWhqOwlgc0mYapbEVxLtPZ64d7x8GHk-bJFHyvcmEKfoj6h5vzjHy8dg5-qe3GL9JQl4HdcOLfZJYiKLdV7puvXyhoG73ttqmHXwvR2f20s8dLXQGuZCQDbkWoUeg0tda3GJOdIAUFPvo6ttoigZymiFqbkUSMLbaUkkLrGAl4SGmksJLe-wAeBqEfO7GI9seasEqQNxT5TFJyJ3tf0UT6YmOyvpPT4B_YdhIq53NdZx5-VK1UbHE5b4yztKGufyOQ_J-a8THMlcCbbRee8gSmzGABHu1UeneLsNVDx1VxxggSs55xSwrDi9ubb9mQDu9x5NSNDCsTK9ghDQHs1Ljdg4a9Mxk-heN7qf4zmB4MB2YZmDJUyMQoU03RrkQKmnWKLa18g45PzwNedXaiSup1pwBykRSk0SJxvZDUveDBm7r8ZUE6cmfJtcp2knLwGSUURROOI-S76cGr-ja1plsLwoEZjqlMRHG2iChY9WCpsLn6UzKikZ1woAcit5y_1CHZ7nd367OVf3noJcwctTvJQbe_vwqz7jLP5aHWYDq7GpvnhPuy9EXuagw-37dR_gRuXl6N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+Methanol%E2%80%90to%E2%80%90Gasoline+Process+Over+Zeolite+Beta&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Yiru&rft.au=Abou%E2%80%90Hamad%2C+Edy&rft.au=Gong%2C+Xuan&rft.au=Shoinkhorova%2C+Tuiana+B.&rft.date=2023-06-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.202303124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202303124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon