Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta
Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing powe...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 24; pp. e202303124 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.06.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species. |
---|---|
AbstractList | Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.
A multimodal and complementary spectroscopic strategy (involving operando UV/Visible spectroscopy coupled to online mass spectrometry and solid‐state NMR spectroscopy) delivers a mechanistic blueprint of the zeolite‐catalyzed methanol‐to‐gasoline process by elucidating the impact of carbonylated and oxymethylene species. Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO 2 ‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species.Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO -neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite-catalyzed methanol-to-gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and "mobility-dependent" solid-state NMR spectroscopy to better understand the reaction mechanism over zeolites H-Beta and Zn-Beta. Significantly, the influential co-catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from renewable methanol, have the potential to account for a large share of the solution, since these could be directly compatible with existing power trains. Although discovered in 1977, the zeolite‐catalyzed methanol‐to‐gasoline (MTG) process has hardly reached industrial maturity, among other reasons, because maximizing the production of gasoline range hydrocarbons from methanol has proved complicated. In this work, we apply multimodal operando UV/Vis diffuse reflectance spectroscopy coupled with an online mass spectrometer and “mobility‐dependent” solid‐state NMR spectroscopy to better understand the reaction mechanism over zeolites H‐Beta and Zn‐Beta. Significantly, the influential co‐catalytic role of oxymethylene species is linked to gasoline formation, which impacts the MTG process more than carbonylated species. |
Author | Gong, Xuan Chowdhury, Abhishek Dutta Ye, Yiru Dokania, Abhay Gascon, Jorge Shoinkhorova, Tuiana B. Abou‐Hamad, Edy |
Author_xml | – sequence: 1 givenname: Yiru surname: Ye fullname: Ye, Yiru organization: Wuhan University – sequence: 2 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Xuan surname: Gong fullname: Gong, Xuan organization: Wuhan University – sequence: 4 givenname: Tuiana B. surname: Shoinkhorova fullname: Shoinkhorova, Tuiana B. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Abhay surname: Dokania fullname: Dokania, Abhay organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Jorge surname: Gascon fullname: Gascon, Jorge email: jorge.gascon@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Abhishek Dutta orcidid: 0000-0002-4121-7375 surname: Chowdhury fullname: Chowdhury, Abhishek Dutta email: abhishek@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37040129$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtuFTEQhi0URC7QUqKVaGj2YHt2Y7tBSqLcpIRQQENjzdkdE0d77IPtA0rHI-QZeRIcnVykSBGNxxp938zo32YbIQZi7K3gM8G5_IjB00xyCRyE7F6wLdFL0YJSsFH_HUCrdC822XbOV5XXmu--YpugeMeFNFvs0zkulz78aMolNedULjHE6e-fmxLrc4w5Tj5Q8yXFgXJuLn5Rar5TbRZq9qnga_bS4ZTpzV3dYd-ODr8enLRnF8enB3tn7QAKutbJ3RHlOJ87xx0ayTmKTnPko3GjQ971vVRaKEA0DvUwgBxHg50EAALpYId9WM9dpvhzRbnYhc8DTRMGiqtspTJGS6V6qOj7J-hVXKVQr7NSS9ELDUZU6t0dtZovaLTL5BeYru19MhWYrYEhxZwTuQdEcHsbvb2N3j5EX4XuiTD4gsXHUBL66XnNrLXffqLr_yyxe59PDx_df26lmF0 |
CitedBy_id | crossref_primary_10_1002_anie_202411197 crossref_primary_10_1016_j_energy_2025_134459 crossref_primary_10_1016_j_fuel_2024_133787 crossref_primary_10_1039_D4CY01168F crossref_primary_10_1039_D4CY01057D crossref_primary_10_1039_D4SC00603H crossref_primary_10_1002_anie_202401060 crossref_primary_10_1021_acs_accounts_3c00551 crossref_primary_10_1016_j_checat_2024_101168 crossref_primary_10_1016_j_gce_2024_01_002 crossref_primary_10_1016_j_jiec_2024_11_031 crossref_primary_10_1002_ange_202401060 crossref_primary_10_1016_j_cjsc_2024_100412 crossref_primary_10_1016_j_cjsc_2024_100265 crossref_primary_10_3390_catal14040232 crossref_primary_10_1002_ange_202411197 |
Cites_doi | 10.1002/anie.201608643 10.1016/j.checat.2022.07.026 10.1021/jacs.9b00585 10.1038/s41929-018-0078-5 10.1038/s41929-017-0002-4 10.1021/jacs.2c03478 10.1039/D1CS00966D 10.1002/anie.202207777 10.1002/anie.200900541 10.1021/jacsau.1c00317 10.1002/anie.201803279 10.1021/acscatal.2c04600 10.1021/cen-v081n038.p005 10.1038/s41929-019-0319-2 10.1021/i260067a008 10.1039/D1CP05144J 10.1021/ja065810a 10.1002/chem.201002258 10.1021/acscatal.5b01577 10.1021/acs.chemrev.2c00076 10.1039/c2sc20434g 10.1002/anie.201807814 10.1021/acscatal.0c05335 10.1016/S1387-1811(98)00329-1 10.1016/S2095-4956(14)60192-3 10.1016/j.jcat.2014.03.013 10.1016/j.jcat.2014.06.017 10.1021/acs.jpcc.0c06616 10.1021/acscatal.9b03474 10.1021/cs500722m 10.1021/cs5015749 10.1002/anie.201808480 10.1016/S0167-2991(09)60525-5 10.1021/acscatal.7b03114 10.1002/anie.201410974 10.1006/jcat.1998.2177 10.1021/acscatal.1c01422 10.1021/ar2002528 10.1016/j.jcat.2015.12.007 10.1002/anie.202007283 10.1021/acscatal.9b00641 10.1038/s41467-021-26090-5 10.1016/j.chempr.2021.05.023 10.1016/j.fmre.2021.08.002 10.1038/s41467-019-09449-7 10.1039/C9SC02215E 10.1021/acscatal.5b00007 10.1016/j.trechm.2020.07.005 10.1039/C5CS00304K 10.1021/cs3006583 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202303124 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37040129 10_1002_anie_202303124 ANIE202303124 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Wuhan University – fundername: National Natural Science Foundation of China funderid: 22050410276 – fundername: King Abdullah University of Science and Technology – fundername: Postdoctoral Research Foundation of China funderid: 2021M702515/2022T150493 – fundername: National Natural Science Foundation of China grantid: 22050410276 – fundername: Postdoctoral Research Foundation of China grantid: 2021M702515/2022T150493 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:04:42 EDT 2025 Fri Jul 25 10:26:07 EDT 2025 Wed Feb 19 02:23:28 EST 2025 Tue Jul 01 01:47:09 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Methanol-to-Gasoline Zeolite Methanol-to-Hydrocarbon Operando Study Reaction Mechanism |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-f26da2dbbff0fa9200a1480a0d9fdfa0455278173aa9fa8cc32dd9a42333e32f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4121-7375 |
PMID | 37040129 |
PQID | 2821518391 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2799827753 proquest_journals_2821518391 pubmed_primary_37040129 crossref_primary_10_1002_anie_202303124 crossref_citationtrail_10_1002_anie_202303124 wiley_primary_10_1002_anie_202303124_ANIE202303124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 12, 2023 |
PublicationDateYYYYMMDD | 2023-06-12 |
PublicationDate_xml | – month: 06 year: 2023 text: June 12, 2023 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 317 2021; 7 2014; 314 2017; 7 2019; 9 2013; 3 2010; 16 2015; 5 2003; 81 2019; 2 1999; 29 2022; 51 2019; 10 1988; 36 2015; 54 2022; 24 2020; 59 1978; 17 2020; 124 2021; 1 2019; 141 1998; 179 2014; 23 2009; 48 2016; 55 2022; 122 2022; 144 2014; 4 2012; 3 2020; 2 2021; 12 2021; 11 2018; 1 2022; 61 2015; 44 2022; 12 2016; 335 2022; 2 2012; 45 2006; 128 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 5 start-page: 317 year: 2015 end-page: 326 publication-title: ACS Catal. – volume: 7 start-page: 7987 year: 2017 end-page: 7994 publication-title: ACS Catal. – volume: 144 start-page: 18251 year: 2022 end-page: 18258 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 6078 year: 2015 end-page: 6085 publication-title: ACS Catal. – volume: 1 start-page: 398 year: 2018 end-page: 411 publication-title: Nat. Catal. – volume: 7 start-page: 2415 year: 2021 end-page: 2428 publication-title: Chem – volume: 314 start-page: 21 year: 2014 end-page: 31 publication-title: J. Catal. – volume: 45 start-page: 653 year: 2012 end-page: 662 publication-title: Acc. Chem. Res. – volume: 12 start-page: 5914 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 6491 year: 2019 end-page: 6501 publication-title: ACS Catal. – volume: 5 start-page: 1922 year: 2015 end-page: 1938 publication-title: ACS Catal. – volume: 23 start-page: 617 year: 2014 end-page: 624 publication-title: J. Energy Chem. – volume: 2 start-page: 785 year: 2020 end-page: 795 publication-title: Trends Chem. – volume: 122 start-page: 14275 year: 2022 end-page: 14345 publication-title: Chem. Rev. – volume: 44 start-page: 7155 year: 2015 end-page: 7176 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 632 year: 2019 end-page: 640 publication-title: Nat. Catal. – volume: 55 start-page: 15840 year: 2016 end-page: 15845 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 11398 year: 2019 end-page: 11403 publication-title: ACS Catal. – volume: 124 start-page: 20270 year: 2020 end-page: 20279 publication-title: J. Phys. Chem. C – volume: 59 start-page: 16741 year: 2020 end-page: 16746 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 5908 year: 2019 end-page: 5915 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 184 year: 2022 end-page: 192 publication-title: Fundam. Res. – volume: 10 start-page: 1462 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 8946 year: 2019 end-page: 8954 publication-title: Chem. Sci. – volume: 1 start-page: 23 year: 2018 end-page: 31 publication-title: Nat. Catal. – volume: 12 start-page: 15463 year: 2022 end-page: 15500 publication-title: ACS Catal. – volume: 179 start-page: 192 year: 1998 end-page: 202 publication-title: J. Catal. – volume: 317 start-page: 185 year: 2014 end-page: 197 publication-title: J. Catal. – volume: 2 start-page: 2328 year: 2022 end-page: 2345 publication-title: Chem Catal. – volume: 51 start-page: 4337 year: 2022 end-page: 4385 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 8387 year: 2022 end-page: 8397 publication-title: Phys. Chem. Chem. Phys. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 29 start-page: 173 year: 1999 end-page: 184 publication-title: Microporous Mesoporous Mater. – volume: 3 start-page: 18 year: 2013 end-page: 31 publication-title: ACS Catal. – volume: 3 start-page: 2932 year: 2012 end-page: 2940 publication-title: Chem. Sci. – volume: 81 start-page: 5 year: 2003 publication-title: Chem. Eng. News – volume: 128 start-page: 14770 year: 2006 end-page: 14771 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 325 year: 1988 end-page: 339 publication-title: Stud. Surf. Sci. Catal. – volume: 11 start-page: 7780 year: 2021 end-page: 7819 publication-title: ACS Catal. – volume: 54 start-page: 7261 year: 2015 end-page: 7264 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 14016 year: 2010 end-page: 14025 publication-title: Chem. Eur. J. – volume: 17 start-page: 255 year: 1978 end-page: 260 publication-title: Ind. Eng. Chem. Process Des. Dev. – volume: 11 start-page: 3628 year: 2021 end-page: 3637 publication-title: ACS Catal. – volume: 57 start-page: 8095 year: 2018 end-page: 8099 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 12549 year: 2018 end-page: 12553 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 14982 year: 2018 end-page: 14985 publication-title: Angew. Chem. Int. Ed. – volume: 335 start-page: 47 year: 2016 end-page: 57 publication-title: J. Catal. – volume: 1 start-page: 1961 year: 2021 end-page: 1974 publication-title: JACS Au – volume: 4 start-page: 3521 year: 2014 end-page: 3532 publication-title: ACS Catal. – volume: 48 start-page: 3814 year: 2009 end-page: 3816 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_17_1 doi: 10.1002/anie.201608643 – ident: e_1_2_7_35_1 doi: 10.1016/j.checat.2022.07.026 – ident: e_1_2_7_38_1 doi: 10.1021/jacs.9b00585 – ident: e_1_2_7_1_1 doi: 10.1038/s41929-018-0078-5 – ident: e_1_2_7_18_1 doi: 10.1038/s41929-017-0002-4 – ident: e_1_2_7_47_1 doi: 10.1021/jacs.2c03478 – ident: e_1_2_7_15_1 doi: 10.1039/D1CS00966D – ident: e_1_2_7_32_1 doi: 10.1002/anie.202207777 – ident: e_1_2_7_10_1 doi: 10.1002/anie.200900541 – ident: e_1_2_7_13_1 doi: 10.1021/jacsau.1c00317 – ident: e_1_2_7_19_1 doi: 10.1002/anie.201803279 – ident: e_1_2_7_25_1 doi: 10.1021/acscatal.2c04600 – ident: e_1_2_7_6_1 doi: 10.1021/cen-v081n038.p005 – ident: e_1_2_7_9_1 doi: 10.1038/s41929-019-0319-2 – ident: e_1_2_7_5_1 doi: 10.1021/i260067a008 – ident: e_1_2_7_43_1 – ident: e_1_2_7_48_1 doi: 10.1039/D1CP05144J – ident: e_1_2_7_28_1 doi: 10.1021/ja065810a – ident: e_1_2_7_36_1 doi: 10.1002/chem.201002258 – ident: e_1_2_7_50_1 doi: 10.1021/acscatal.5b01577 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemrev.2c00076 – ident: e_1_2_7_41_1 doi: 10.1039/c2sc20434g – ident: e_1_2_7_42_1 doi: 10.1002/anie.201807814 – ident: e_1_2_7_45_1 doi: 10.1021/acscatal.0c05335 – ident: e_1_2_7_12_1 doi: 10.1016/S1387-1811(98)00329-1 – ident: e_1_2_7_22_1 doi: 10.1016/S2095-4956(14)60192-3 – ident: e_1_2_7_7_1 – ident: e_1_2_7_27_1 doi: 10.1016/j.jcat.2014.03.013 – ident: e_1_2_7_29_1 doi: 10.1016/j.jcat.2014.06.017 – ident: e_1_2_7_26_1 doi: 10.1021/acs.jpcc.0c06616 – ident: e_1_2_7_49_1 doi: 10.1021/acscatal.9b03474 – ident: e_1_2_7_20_1 doi: 10.1021/cs500722m – ident: e_1_2_7_21_1 doi: 10.1021/cs5015749 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201808480 – ident: e_1_2_7_16_1 doi: 10.1016/S0167-2991(09)60525-5 – ident: e_1_2_7_30_1 doi: 10.1021/acscatal.7b03114 – ident: e_1_2_7_46_1 doi: 10.1002/anie.201410974 – ident: e_1_2_7_51_1 doi: 10.1006/jcat.1998.2177 – ident: e_1_2_7_52_1 doi: 10.1021/acscatal.1c01422 – ident: e_1_2_7_11_1 doi: 10.1021/ar2002528 – ident: e_1_2_7_24_1 doi: 10.1016/j.jcat.2015.12.007 – ident: e_1_2_7_37_1 doi: 10.1002/anie.202007283 – ident: e_1_2_7_40_1 doi: 10.1021/acscatal.9b00641 – ident: e_1_2_7_34_1 doi: 10.1038/s41467-021-26090-5 – ident: e_1_2_7_23_1 doi: 10.1016/j.chempr.2021.05.023 – ident: e_1_2_7_39_1 doi: 10.1016/j.fmre.2021.08.002 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-019-09449-7 – ident: e_1_2_7_33_1 doi: 10.1039/C9SC02215E – ident: e_1_2_7_4_1 doi: 10.1021/acscatal.5b00007 – ident: e_1_2_7_8_1 doi: 10.1016/j.trechm.2020.07.005 – ident: e_1_2_7_2_1 doi: 10.1039/C5CS00304K – ident: e_1_2_7_3_1 doi: 10.1021/cs3006583 |
SSID | ssj0028806 |
Score | 2.631581 |
Snippet | Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2‐neutral fuels, such as those obtained from... Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO 2 ‐neutral fuels, such as those obtained from... Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO -neutral fuels, such as those obtained from... Decarbonizing the transportation sector is among the biggest challenges in the fight against climate change. CO2 -neutral fuels, such as those obtained from... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303124 |
SubjectTerms | Carbon dioxide Carbonyls Climate change Decarbonization Diffuse reflectance spectroscopy Gasoline Magnetic resonance spectroscopy Methanol Methanol-to-Gasoline Methanol-to-Hydrocarbon NMR NMR spectroscopy Nuclear magnetic resonance Operando Study Powertrain Reaction Mechanism Reaction mechanisms Spectroscopy Transportation industry Zeolite Zeolites |
Title | Mapping the Methanol‐to‐Gasoline Process Over Zeolite Beta |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303124 https://www.ncbi.nlm.nih.gov/pubmed/37040129 https://www.proquest.com/docview/2821518391 https://www.proquest.com/docview/2799827753 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7Ey3pxfRtfRBD21GPszkwmF8EVnzAuiIJ4CdUvDw4z4mQunvwJ_sb9JVuVl44ignsJCakmneqq9Fedrq8AdnzbxM7rRJhOKkVslRMovRcxTaYdrbpJWpTp7F10Tq_j85v2zZss_pIfollwY88ovtfs4KhHu6-koZyB3eLi32SWkglBecMWo6LLhj9KknGW6UVKCa5CX7M2RnJ3svnkrPQBak4i12LqOf4JWHe63HFy3xrnumWe3vE5_s9bzcFshUvDg9KQ5mHKDRbgx2FdDm4R9nvIVA53ISHGsOd4xX3Y__v8kg_pcIIjLv7jwirvIPxDHhLeOt5c58LfLscluD4-ujo8FVXxBWFUomLhZceitFp7H3lMyZmQIqcII5t665GQYFsm3b1EIaYeu8YoaW2KhM6Uckp6tQzTg-HArUJoHAm5FJW2FAwqpJjSauxaEzlkurkARK38zFTM5Fwgo5-VnMoyY61kjVYC-NXIP5ScHJ9KbtRjmVW-OcooyCSYQ8BwL4Dt5jZpk3-V4MANxySTUBgqE4rlAlgpbaB5lErow0cwKQBZjOQXfcgOLs6Omqu17zRahxk-F0XJpA2Yzh_HbpOwUK63Cnv_B1WmALU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9lAulEIBtwUWCdTTJu6uE8cHkEp_SGgTJNRKVS9mvD8cqBJEHFVw6iP0VXgVHoEnYcZ_KCCEhNQDF0u21_Zqd2b3m_XO9wE89R0TOZ_F0nQTJSOrnUTlvYxoMu1muhcnhUzncNTtn0SvTzunC_C1zoUp-SGaBTf2jGK8ZgfnBen2T9ZQTsFusfo32aWKqn2Vh-7zBUVt0-eDPeriZ0od7B_v9mUlLCCNjnUkvepaVDbLvA89JmQoSFFBiKFNvPVIKKej4t52rBETjz1jtLI2QUIeWjutvKb33oAllhFnuv69tw1jlSJ3KBOatJase1_zRIaqPV_f-XnwN3A7j5WLye5gBb7VzVTucfnQmuVZy3z5hUHyv2rH23Crgt5ip_SVVVhw4zuwvFsr3t2FF0Nktor3gkCxGDr-qTA5_355lU_o8AqnrG_kRJVaId7QICDOHO8fdOKly3ENTq6l-vdgcTwZuwcgjKNCLkGdWYp3NVLYbDPsWRM6ZEa9AGTd26mpyNdZA-Q8LWmjVcq9kDa9EMBWU_5jSTvyx5KbtfGk1fAzTSmOJiRH2Hc7gCfNbWpN_huEYzeZUZmYIm0VU7gawP3S6JpP6ZjGdkKCAajCdP5Sh3RnNNhvztb_5aHHsNw_Hh6lR4PR4Qbc5OuyUIjahMX808w9JOiXZ48KZxPw7rqt8gcJ0l_e |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD5BTJAbUFAooI4JxqtZyky33V5IgiwrK-xCjCSEm3o6P1xAdgnbjZErHsFH8VV8BZ7EM_0zqyEmJlx406TttJ3MnDPznc6c7wNYt00VGJtGXIWx4IGWhqOwlgc0mYapbEVxLtPZ64d7x8GHk-bJFHyvcmEKfoj6h5vzjHy8dg5-qe3GL9JQl4HdcOLfZJYiKLdV7puvXyhoG73ttqmHXwvR2f20s8dLXQGuZCQDbkWoUeg0tda3GJOdIAUFPvo6ttoigZymiFqbkUSMLbaUkkLrGAl4SGmksJLe-wAeBqEfO7GI9seasEqQNxT5TFJyJ3tf0UT6YmOyvpPT4B_YdhIq53NdZx5-VK1UbHE5b4yztKGufyOQ_J-a8THMlcCbbRee8gSmzGABHu1UeneLsNVDx1VxxggSs55xSwrDi9ubb9mQDu9x5NSNDCsTK9ghDQHs1Ljdg4a9Mxk-heN7qf4zmB4MB2YZmDJUyMQoU03RrkQKmnWKLa18g45PzwNedXaiSup1pwBykRSk0SJxvZDUveDBm7r8ZUE6cmfJtcp2knLwGSUURROOI-S76cGr-ja1plsLwoEZjqlMRHG2iChY9WCpsLn6UzKikZ1woAcit5y_1CHZ7nd367OVf3noJcwctTvJQbe_vwqz7jLP5aHWYDq7GpvnhPuy9EXuagw-37dR_gRuXl6N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+Methanol%E2%80%90to%E2%80%90Gasoline+Process+Over+Zeolite+Beta&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Yiru&rft.au=Abou%E2%80%90Hamad%2C+Edy&rft.au=Gong%2C+Xuan&rft.au=Shoinkhorova%2C+Tuiana+B.&rft.date=2023-06-12&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=24&rft_id=info:doi/10.1002%2Fanie.202303124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202303124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |