Regulating Reversible Oxygen Electrocatalysis by Built‐in Electric Field of Heterojunction Electrocatalyst with Modified d‐Band
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electr...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 15; pp. e2207474 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
The built‐in electric field and modified d‐band of the Mott–Schottky heterojunction electrocatalyst modulate the adsorption/desorption of oxygenate intermediates in reversible oxygen electrocatalysis. |
---|---|
AbstractList | Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate
d
‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. The built‐in electric field and modified d‐band of the Mott–Schottky heterojunction electrocatalyst modulate the adsorption/desorption of oxygenate intermediates in reversible oxygen electrocatalysis. Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. |
Author | Xia, Chenfeng Li, Fu‐Min He, Chaohui Guo, Wei Liu, Qingqing Wang, Hongming Xia, Bao Yu |
Author_xml | – sequence: 1 givenname: Chaohui surname: He fullname: He, Chaohui organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Qingqing surname: Liu fullname: Liu, Qingqing organization: Huazhong University of Science and Technology (HUST) – sequence: 3 givenname: Hongming surname: Wang fullname: Wang, Hongming organization: Nanchang University – sequence: 4 givenname: Chenfeng surname: Xia fullname: Xia, Chenfeng organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Fu‐Min surname: Li fullname: Li, Fu‐Min organization: Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Wei surname: Guo fullname: Guo, Wei email: wguo@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) – sequence: 7 givenname: Bao Yu orcidid: 0000-0002-2054-908X surname: Xia fullname: Xia, Bao Yu email: byxia@hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36604992$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7IfeeikBb7zZNV-TTC5taa2wpVD1esgkZ9Ys2UlNMta5E_wD_kZ_ibNsu4WF4lUO5HnOOZz3GB30sQeEXlMyp4Sw93kdwpwRxogSSjxDR1RSPpM10we7mpJDdJzzihBOmVAv0CGXkgit2RH6fQPLIZji-yW-gR-Qsm8D4Ouf4xJ6fB7AlhStKSaM2Wfcjvh08KH8_fXHP3x7iy88BIdjhy-hQIqrobfFx32_4DtfvuGr6HznwWE3dTk1vXuJnncmZHh1_56grxfnX84uZ4vrj5_OPixmlisuZsC5EtLRiunaMUFa5iiV1uiutjVTUDFJrOB1KxwVum0ZVZWpu84wK6GGip-gd9u-tyl-HyCXZu2zhRBMD3HIDVOSalUxzib07R66ikPqp-0mSmvNNVF8ot7cU0O7BtfcJr82aWwezjsB8y1gU8w5QbdDKGk2-TWb_JpdfpMg9gTri9ncsiTjw9Oa3mp3PsD4nyHN56vF4tH9B2zPsrU |
CitedBy_id | crossref_primary_10_1039_D3QI00857F crossref_primary_10_1016_j_jechem_2024_09_029 crossref_primary_10_1002_smll_202309830 crossref_primary_10_1002_anie_202423756 crossref_primary_10_1002_adma_202400572 crossref_primary_10_1002_ange_202400069 crossref_primary_10_1039_D4GC04687K crossref_primary_10_1016_j_jcis_2024_01_024 crossref_primary_10_1002_adfm_202418211 crossref_primary_10_1002_aenm_202400059 crossref_primary_10_1016_j_jcis_2023_12_115 crossref_primary_10_1016_j_cej_2024_152241 crossref_primary_10_1002_anie_202401364 crossref_primary_10_1039_D3DT04108E crossref_primary_10_1002_cjoc_202400332 crossref_primary_10_1016_j_jcis_2024_07_212 crossref_primary_10_1021_acscatal_4c01035 crossref_primary_10_1021_acs_inorgchem_4c04811 crossref_primary_10_1021_acscatal_4c01631 crossref_primary_10_1002_smll_202300387 crossref_primary_10_1002_anie_202421869 crossref_primary_10_1021_acsami_3c01260 crossref_primary_10_1002_ange_202401364 crossref_primary_10_1002_adma_202418146 crossref_primary_10_26599_NR_2025_94907014 crossref_primary_10_1002_anie_202400069 crossref_primary_10_1016_j_apcatb_2024_124115 crossref_primary_10_1016_j_seppur_2023_124604 crossref_primary_10_1002_ange_202421869 crossref_primary_10_1002_smll_202304086 crossref_primary_10_1016_j_nanoen_2024_110216 crossref_primary_10_1002_aenm_202404796 crossref_primary_10_1016_j_jcis_2024_04_025 crossref_primary_10_1002_adma_202401568 crossref_primary_10_1002_smll_202300606 crossref_primary_10_1002_aenm_202302251 crossref_primary_10_1002_smll_202207461 crossref_primary_10_1039_D3CY01308A crossref_primary_10_1039_D4TA05503A crossref_primary_10_1002_ange_202423756 crossref_primary_10_1016_j_jcis_2024_12_206 crossref_primary_10_1039_D3EE04410F crossref_primary_10_1016_j_nxsust_2023_100018 crossref_primary_10_1016_j_jcis_2024_06_168 crossref_primary_10_1002_adfm_202304403 crossref_primary_10_1021_acsmaterialslett_4c00566 crossref_primary_10_1002_adfm_202307917 crossref_primary_10_1016_j_apcatb_2024_123882 crossref_primary_10_1016_j_jcis_2023_09_132 |
Cites_doi | 10.1002/adfm.202008085 10.1021/acs.nanolett.1c02705 10.1002/adma.201706836 10.1002/anie.202107858 10.1002/aenm.202003412 10.1016/j.jechem.2020.04.012 10.1002/anie.202000690 10.1021/jp047349j 10.1016/S1872-2067(21)63862-7 10.1016/j.jechem.2020.07.012 10.1002/adma.201504293 10.1002/adma.202104150 10.1002/sstr.202100144 10.1039/D2EE02440C 10.1002/adma.202200085 10.1002/anie.202210567 10.1021/acscatal.0c01273 10.1002/smsc.202100010 10.1002/smll.202106904 10.1002/anie.201713429 10.1002/anie.201801834 10.1021/acs.nanolett.7b00126 10.1002/sstr.202100185 10.1016/j.joule.2021.05.005 10.1016/j.esci.2022.08.004 10.1002/aenm.202103275 10.1002/anie.202107790 10.1002/anie.202215256 10.1002/adma.201806326 10.1016/j.nanoen.2021.106020 10.1002/smll.202101856 10.1021/jacs.9b01834 10.1002/adma.201800005 10.1002/anie.201306588 10.1038/s41563-019-0535-9 10.1002/adma.201800757 10.1002/advs.201800949 10.1021/acs.accounts.0c00488 10.1002/anie.202109207 10.1002/aenm.201903854 10.1002/adma.202105410 10.1039/C8EE03276A 10.1002/anie.202208642 10.1016/j.cej.2021.131589 10.1021/acsnano.0c10242 10.1002/anie.201905954 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202207474 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36604992 10_1002_smll_202207474 SMLL202207474 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075092 – fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device funderid: B21003 – fundername: Analytical and Testing Center of Huazhong University of Science – fundername: National Natural Science Foundation of China grantid: 22075092 – fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device grantid: B21003 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3734-e33746d15298d240b2d116ca9f8c827e5260c438b4d149bb2175a8ffa2c6e8e53 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:05:49 EDT 2025 Tue Aug 12 12:41:50 EDT 2025 Wed Feb 19 02:24:03 EST 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 02:54:23 EDT 2025 Wed Jan 22 16:20:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | electric field Mott-Schottky heterojunction electrocatalysis d-band center zinc-air batteries |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-e33746d15298d240b2d116ca9f8c827e5260c438b4d149bb2175a8ffa2c6e8e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2054-908X |
PMID | 36604992 |
PQID | 2799939073 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2761975232 proquest_journals_2799939073 pubmed_primary_36604992 crossref_primary_10_1002_smll_202207474 crossref_citationtrail_10_1002_smll_202207474 wiley_primary_10_1002_smll_202207474_SMLL202207474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 5 2021; 21 2021; 2 2021; 425 2019; 12 2019; 58 2020; 59 2022; 43 2020; 32 2020; 10 2021; 1 2019; 141 2004; 108 2015; 8 2020; 19 2023; 62 2021; 15 2021; 54 2021; 53 2021; 34 2018; 5 2021; 11 2021; 55 2022; 3 2020; 31 2022; 61 2017; 17 2021; 17 2022; 34 2022; 12 2022; 15 2018; 30 2022; 2 2021; 60 2016; 28 2021; 85 2022; 18 2014; 53 2018; 57 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 Nørskov J. K. (e_1_2_5_20_1) 2015; 8 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 19 start-page: 282 year: 2020 publication-title: Nat. Mater. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2022 publication-title: Small – volume: 1 year: 2021 publication-title: Small Sci. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 311 year: 2021 publication-title: Acc. Chem. Res. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 3 year: 2022 publication-title: Small Struct. – volume: 85 year: 2021 publication-title: Nano Energy – volume: 15 start-page: 4542 year: 2022 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1704 year: 2021 publication-title: Joule – volume: 17 year: 2021 publication-title: Small – volume: 59 start-page: 6492 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 5076 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 28 start-page: 440 year: 2016 publication-title: Adv. Mater. – volume: 17 start-page: 2057 year: 2017 publication-title: Nano Lett. – volume: 43 start-page: 1459 year: 2022 publication-title: Chinese J. Catal. – volume: 57 start-page: 2697 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 3309 year: 2021 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 53 start-page: 290 year: 2021 publication-title: J. Energy Chem. – volume: 21 start-page: 7753 year: 2021 publication-title: Nano Lett. – volume: 10 start-page: 9086 year: 2020 publication-title: ACS Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 102 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 183 year: 2021 publication-title: J. Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 8 start-page: 140 year: 2015 publication-title: Natl. Sci. Rev. – volume: 2 start-page: 453 year: 2022 publication-title: eScience – volume: 10 year: 2020 publication-title: Adv. Energy. Mater. – volume: 12 start-page: 322 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_5_25_1 doi: 10.1002/adfm.202008085 – ident: e_1_2_5_39_1 doi: 10.1021/acs.nanolett.1c02705 – ident: e_1_2_5_40_1 doi: 10.1002/adma.201706836 – ident: e_1_2_5_41_1 doi: 10.1002/anie.202107858 – ident: e_1_2_5_8_1 doi: 10.1002/aenm.202003412 – ident: e_1_2_5_15_1 doi: 10.1016/j.jechem.2020.04.012 – ident: e_1_2_5_13_1 doi: 10.1002/anie.202000690 – ident: e_1_2_5_46_1 doi: 10.1021/jp047349j – ident: e_1_2_5_4_1 doi: 10.1016/S1872-2067(21)63862-7 – ident: e_1_2_5_34_1 doi: 10.1016/j.jechem.2020.07.012 – ident: e_1_2_5_42_1 doi: 10.1002/adma.201504293 – ident: e_1_2_5_1_1 doi: 10.1002/adma.202104150 – ident: e_1_2_5_32_1 doi: 10.1002/sstr.202100144 – ident: e_1_2_5_12_1 doi: 10.1039/D2EE02440C – ident: e_1_2_5_5_1 doi: 10.1002/adma.202200085 – ident: e_1_2_5_24_1 doi: 10.1002/anie.202210567 – ident: e_1_2_5_44_1 doi: 10.1021/acscatal.0c01273 – ident: e_1_2_5_14_1 doi: 10.1002/smsc.202100010 – ident: e_1_2_5_26_1 doi: 10.1002/smll.202106904 – ident: e_1_2_5_37_1 doi: 10.1002/anie.201713429 – ident: e_1_2_5_38_1 doi: 10.1002/anie.201801834 – ident: e_1_2_5_43_1 doi: 10.1021/acs.nanolett.7b00126 – ident: e_1_2_5_2_1 doi: 10.1002/sstr.202100185 – volume: 8 start-page: 140 year: 2015 ident: e_1_2_5_20_1 publication-title: Natl. Sci. Rev. – ident: e_1_2_5_28_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_5_3_1 doi: 10.1016/j.esci.2022.08.004 – ident: e_1_2_5_6_1 doi: 10.1002/aenm.202103275 – ident: e_1_2_5_47_1 doi: 10.1002/anie.202107790 – ident: e_1_2_5_7_1 doi: 10.1002/anie.202215256 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201806326 – ident: e_1_2_5_9_1 doi: 10.1016/j.nanoen.2021.106020 – ident: e_1_2_5_33_1 doi: 10.1002/smll.202101856 – ident: e_1_2_5_16_1 doi: 10.1021/jacs.9b01834 – ident: e_1_2_5_31_1 doi: 10.1002/adma.201800005 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201306588 – ident: e_1_2_5_29_1 doi: 10.1038/s41563-019-0535-9 – ident: e_1_2_5_30_1 doi: 10.1002/adma.201800757 – ident: e_1_2_5_35_1 doi: 10.1002/advs.201800949 – ident: e_1_2_5_27_1 doi: 10.1021/acs.accounts.0c00488 – ident: e_1_2_5_17_1 doi: 10.1002/anie.202109207 – ident: e_1_2_5_23_1 doi: 10.1002/aenm.201903854 – ident: e_1_2_5_22_1 doi: 10.1002/adma.202105410 – ident: e_1_2_5_36_1 doi: 10.1039/C8EE03276A – ident: e_1_2_5_45_1 doi: 10.1002/anie.202208642 – ident: e_1_2_5_19_1 doi: 10.1016/j.cej.2021.131589 – ident: e_1_2_5_11_1 doi: 10.1021/acsnano.0c10242 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201905954 |
SSID | ssj0031247 |
Score | 2.6079438 |
Snippet | Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky... Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207474 |
SubjectTerms | Catalysts Chemical reactions Cobalt d‐band center electric field Electric fields Electrocatalysis Electrocatalysts Electron transfer Energy conversion Heterojunctions Metal air batteries Mott–Schottky heterojunction Nanotechnology Phosphides Rechargeable batteries Zinc-oxygen batteries zinc‐air batteries |
Title | Regulating Reversible Oxygen Electrocatalysis by Built‐in Electric Field of Heterojunction Electrocatalyst with Modified d‐Band |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207474 https://www.ncbi.nlm.nih.gov/pubmed/36604992 https://www.proquest.com/docview/2799939073 https://www.proquest.com/docview/2761975232 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UALb8LBRkJiZPbXduJnSNFXa1QF6SFSr1F_pWWLglis1LLCYkX4Bn7JJ2JN6FbhJDglsh24jgznm_s8TeEvIwqcKVHjmkvhgwJ6FiRZ4FZFQttpIEZEQ8KT9_lkxP59jQ7vXaKP_FD9AtuqBntfI0Kbuzy4Bdp6PLzArcOOEcKeCQExYAtREWznj9KgPFqs6uAzWJIvNWxNg75wWbzTav0G9TcRK6t6RnfJabrdIo4OdtfNXbffbvB5_g_X7VD7qxxKX2dBGmX3ArVPXL7GlvhffJjlvLWww2dhTacwy4CfX9-AUJIj1I-nXY5CFlOqL2gh6v5orn8_nPeFc8dHWPIHK0jnWAgTv0J7CrKxo32DcUFYjqt_TwCSKYennJoKv-AnIyPPr6ZsHUOB-aEEpIFIZTMPaCEQntAD5b70Sh3pojaaa5CBv6Uk0Jb6cFXsxY8pMzoGA13edAhEw_JVlVX4TGhZsi998pmTnJpI_ilwetMGwNOFo9RDgjr_mHp1gTnmGdjUSZqZl7i4Jb94A7Iq77-l0Tt8ceae51IlGsVX5ZcAbYWBUyRA_KiLwblxB0XU4V6hXXAP1Xg6_MBeZREqX-VyHN0N6GEtwLxlz6UH6bHx_3dk39p9JRsw7VIcUd7ZKv5ugrPAFI19nmrNlcb8BuQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgOQAH_hcKCxgJiZN3W9uJnSOLtirQLlLZlbhF_pUKJUFsKrGckHgBnpEnYSZuAl2EkOCY2E4cZ8Yznz3-hpDHUQWu9Mgx7cWQIQEdK_IsMKtioY00MCPiQeHZYT45li_eZF00IZ6FSfwQ_YIbakY7X6OC44L03k_W0JP3S9w74Bw54OV5cgHTereoat4zSAkwX21-FbBaDKm3Ot7GId_bbL9pl35zNjd919b4jK8S23U7xZy82101dtd9PsPo-F_fdY1cWbum9GmSpevkXKhukMu_EBbeJF_nKXU9XNB5aCM67DLQV59OQQ7pQUqp064IIdEJtad0f7VYNt-_fFt0xQtHxxg1R-tIJxiLU78F04ricaZ9Q3GNmM5qv4jgJ1MPT9k3lb9FjscHR88mbJ3GgTmhhGRBCCVzD45CoT04EJb70Sh3pojaaa5CBpDKSaGt9ADXrAWQlBkdo-EuDzpkYptsVXUV7hBqhtx7r2zmJJc2AjQNXmfaGMBZPEY5IKz7iaVbc5xjqo1lmdiZeYmDW_aDOyBP-vofErvHH2vudDJRrrX8pOQK3GtRwCw5II_6YtBP3HQxVahXWAcgqgK4zwfkdpKl_lUizxFxQglvJeIvfShfz6bT_uruvzR6SC5OjmbTcvr88OU9cgnuixSGtEO2mo-rcB88rMY-aHXoB75dH6s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSIgeyn9ZKGAkJE5pd20ndo6UdrXAbkELlXqL_CstLElFs1LLCYkX4Bl5EmbiTegWISQ4JrYTx5nxfGOPvyHkaZCeSTWwiXK8nyABXZJnqU-MDLnSQsOMiAeFJwfZ6FC8OkqPzp3ij_wQ3YIbakYzX6OCH7uw84s09OTTHLcOGEMKeHGZXBFZX6Fc7007AikO1qtJrwJGK0HmrZa2sc92VtuvmqXfsOYqdG1sz_A60W2vY8jJx-1FbbbtlwuEjv_zWTfIxhKY0udRkm6SS768RdbP0RXeJt-mMXE9XNCpb-I5zNzTN6dnIIV0PybUadaDkOaEmjO6u5jN6x9fv8_a4pmlQ4yZo1WgI4zEqT6AYUXhuNC-prhCTCeVmwVAydTBU3Z16e6Qw-H--xejZJnEIbFccpF4zqXIHMCEXDmAD4a5wSCzOg_KKiZ9Cg6VFVwZ4cBZMwZcpFSrEDSzmVc-5XfJWlmV_h6hus-cc9KkVjBhAjim3qlUaQ1eFgtB9EjS_sPCLhnOMdHGvIjczKzAwS26we2RZ13948jt8ceaW61IFEsdPymYBHDNc5gje-RJVwzaiVsuuvTVAuuAgyrB2Wc9shlFqXsVzzL0N6GENQLxlz4U7ybjcXd1_18aPSZX3-4Ni_HLg9cPyDW4zWMM0hZZqz8v_EOAV7V51GjQT2dIHmM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Reversible+Oxygen+Electrocatalysis+by+Built-in+Electric+Field+of+Heterojunction+Electrocatalyst+with+Modified+d-Band&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Chaohui&rft.au=Liu%2C+Qingqing&rft.au=Wang%2C+Hongming&rft.au=Xia%2C+Chenfeng&rft.date=2023-04-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=15&rft.spage=e2207474&rft_id=info:doi/10.1002%2Fsmll.202207474&rft_id=info%3Apmid%2F36604992&rft.externalDocID=36604992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |