Regulating Reversible Oxygen Electrocatalysis by Built‐in Electric Field of Heterojunction Electrocatalyst with Modified d‐Band

Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electr...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 15; pp. e2207474 - n/a
Main Authors He, Chaohui, Liu, Qingqing, Wang, Hongming, Xia, Chenfeng, Li, Fu‐Min, Guo, Wei, Xia, Bao Yu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. The built‐in electric field and modified d‐band of the Mott–Schottky heterojunction electrocatalyst modulate the adsorption/desorption of oxygenate intermediates in reversible oxygen electrocatalysis.
AbstractList Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d ‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co‐N‐C) polyhedra containing abundant metal‐phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc‐air batteries (ZABs). The built‐in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d‐band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies. The built‐in electric field and modified d‐band of the Mott–Schottky heterojunction electrocatalyst modulate the adsorption/desorption of oxygenate intermediates in reversible oxygen electrocatalysis.
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Author Xia, Chenfeng
Li, Fu‐Min
He, Chaohui
Guo, Wei
Liu, Qingqing
Wang, Hongming
Xia, Bao Yu
Author_xml – sequence: 1
  givenname: Chaohui
  surname: He
  fullname: He, Chaohui
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Qingqing
  surname: Liu
  fullname: Liu, Qingqing
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 3
  givenname: Hongming
  surname: Wang
  fullname: Wang, Hongming
  organization: Nanchang University
– sequence: 4
  givenname: Chenfeng
  surname: Xia
  fullname: Xia, Chenfeng
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Fu‐Min
  surname: Li
  fullname: Li, Fu‐Min
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Wei
  surname: Guo
  fullname: Guo, Wei
  email: wguo@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 7
  givenname: Bao Yu
  orcidid: 0000-0002-2054-908X
  surname: Xia
  fullname: Xia, Bao Yu
  email: byxia@hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36604992$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7IfeeikBb7zZNV-TTC5taa2wpVD1esgkZ9Ys2UlNMta5E_wD_kZ_ibNsu4WF4lUO5HnOOZz3GB30sQeEXlMyp4Sw93kdwpwRxogSSjxDR1RSPpM10we7mpJDdJzzihBOmVAv0CGXkgit2RH6fQPLIZji-yW-gR-Qsm8D4Ouf4xJ6fB7AlhStKSaM2Wfcjvh08KH8_fXHP3x7iy88BIdjhy-hQIqrobfFx32_4DtfvuGr6HznwWE3dTk1vXuJnncmZHh1_56grxfnX84uZ4vrj5_OPixmlisuZsC5EtLRiunaMUFa5iiV1uiutjVTUDFJrOB1KxwVum0ZVZWpu84wK6GGip-gd9u-tyl-HyCXZu2zhRBMD3HIDVOSalUxzib07R66ikPqp-0mSmvNNVF8ot7cU0O7BtfcJr82aWwezjsB8y1gU8w5QbdDKGk2-TWb_JpdfpMg9gTri9ncsiTjw9Oa3mp3PsD4nyHN56vF4tH9B2zPsrU
CitedBy_id crossref_primary_10_1039_D3QI00857F
crossref_primary_10_1016_j_jechem_2024_09_029
crossref_primary_10_1002_smll_202309830
crossref_primary_10_1002_anie_202423756
crossref_primary_10_1002_adma_202400572
crossref_primary_10_1002_ange_202400069
crossref_primary_10_1039_D4GC04687K
crossref_primary_10_1016_j_jcis_2024_01_024
crossref_primary_10_1002_adfm_202418211
crossref_primary_10_1002_aenm_202400059
crossref_primary_10_1016_j_jcis_2023_12_115
crossref_primary_10_1016_j_cej_2024_152241
crossref_primary_10_1002_anie_202401364
crossref_primary_10_1039_D3DT04108E
crossref_primary_10_1002_cjoc_202400332
crossref_primary_10_1016_j_jcis_2024_07_212
crossref_primary_10_1021_acscatal_4c01035
crossref_primary_10_1021_acs_inorgchem_4c04811
crossref_primary_10_1021_acscatal_4c01631
crossref_primary_10_1002_smll_202300387
crossref_primary_10_1002_anie_202421869
crossref_primary_10_1021_acsami_3c01260
crossref_primary_10_1002_ange_202401364
crossref_primary_10_1002_adma_202418146
crossref_primary_10_26599_NR_2025_94907014
crossref_primary_10_1002_anie_202400069
crossref_primary_10_1016_j_apcatb_2024_124115
crossref_primary_10_1016_j_seppur_2023_124604
crossref_primary_10_1002_ange_202421869
crossref_primary_10_1002_smll_202304086
crossref_primary_10_1016_j_nanoen_2024_110216
crossref_primary_10_1002_aenm_202404796
crossref_primary_10_1016_j_jcis_2024_04_025
crossref_primary_10_1002_adma_202401568
crossref_primary_10_1002_smll_202300606
crossref_primary_10_1002_aenm_202302251
crossref_primary_10_1002_smll_202207461
crossref_primary_10_1039_D3CY01308A
crossref_primary_10_1039_D4TA05503A
crossref_primary_10_1002_ange_202423756
crossref_primary_10_1016_j_jcis_2024_12_206
crossref_primary_10_1039_D3EE04410F
crossref_primary_10_1016_j_nxsust_2023_100018
crossref_primary_10_1016_j_jcis_2024_06_168
crossref_primary_10_1002_adfm_202304403
crossref_primary_10_1021_acsmaterialslett_4c00566
crossref_primary_10_1002_adfm_202307917
crossref_primary_10_1016_j_apcatb_2024_123882
crossref_primary_10_1016_j_jcis_2023_09_132
Cites_doi 10.1002/adfm.202008085
10.1021/acs.nanolett.1c02705
10.1002/adma.201706836
10.1002/anie.202107858
10.1002/aenm.202003412
10.1016/j.jechem.2020.04.012
10.1002/anie.202000690
10.1021/jp047349j
10.1016/S1872-2067(21)63862-7
10.1016/j.jechem.2020.07.012
10.1002/adma.201504293
10.1002/adma.202104150
10.1002/sstr.202100144
10.1039/D2EE02440C
10.1002/adma.202200085
10.1002/anie.202210567
10.1021/acscatal.0c01273
10.1002/smsc.202100010
10.1002/smll.202106904
10.1002/anie.201713429
10.1002/anie.201801834
10.1021/acs.nanolett.7b00126
10.1002/sstr.202100185
10.1016/j.joule.2021.05.005
10.1016/j.esci.2022.08.004
10.1002/aenm.202103275
10.1002/anie.202107790
10.1002/anie.202215256
10.1002/adma.201806326
10.1016/j.nanoen.2021.106020
10.1002/smll.202101856
10.1021/jacs.9b01834
10.1002/adma.201800005
10.1002/anie.201306588
10.1038/s41563-019-0535-9
10.1002/adma.201800757
10.1002/advs.201800949
10.1021/acs.accounts.0c00488
10.1002/anie.202109207
10.1002/aenm.201903854
10.1002/adma.202105410
10.1039/C8EE03276A
10.1002/anie.202208642
10.1016/j.cej.2021.131589
10.1021/acsnano.0c10242
10.1002/anie.201905954
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202207474
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36604992
10_1002_smll_202207474
SMLL202207474
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075092
– fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device
  funderid: B21003
– fundername: Analytical and Testing Center of Huazhong University of Science
– fundername: National Natural Science Foundation of China
  grantid: 22075092
– fundername: Innovation and Talent Recruitment Base of New Energy Chemistry and Device
  grantid: B21003
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c3734-e33746d15298d240b2d116ca9f8c827e5260c438b4d149bb2175a8ffa2c6e8e53
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:05:49 EDT 2025
Tue Aug 12 12:41:50 EDT 2025
Wed Feb 19 02:24:03 EST 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 02:54:23 EDT 2025
Wed Jan 22 16:20:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords electric field
Mott-Schottky heterojunction
electrocatalysis
d-band center
zinc-air batteries
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-e33746d15298d240b2d116ca9f8c827e5260c438b4d149bb2175a8ffa2c6e8e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2054-908X
PMID 36604992
PQID 2799939073
PQPubID 1046358
PageCount 7
ParticipantIDs proquest_miscellaneous_2761975232
proquest_journals_2799939073
pubmed_primary_36604992
crossref_primary_10_1002_smll_202207474
crossref_citationtrail_10_1002_smll_202207474
wiley_primary_10_1002_smll_202207474_SMLL202207474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 5
2021; 21
2021; 2
2021; 425
2019; 12
2019; 58
2020; 59
2022; 43
2020; 32
2020; 10
2021; 1
2019; 141
2004; 108
2015; 8
2020; 19
2023; 62
2021; 15
2021; 54
2021; 53
2021; 34
2018; 5
2021; 11
2021; 55
2022; 3
2020; 31
2022; 61
2017; 17
2021; 17
2022; 34
2022; 12
2022; 15
2018; 30
2022; 2
2021; 60
2016; 28
2021; 85
2022; 18
2014; 53
2018; 57
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
Nørskov J. K. (e_1_2_5_20_1) 2015; 8
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 19
  start-page: 282
  year: 2020
  publication-title: Nat. Mater.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 311
  year: 2021
  publication-title: Acc. Chem. Res.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 3
  year: 2022
  publication-title: Small Struct.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 15
  start-page: 4542
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1704
  year: 2021
  publication-title: Joule
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  start-page: 6492
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 5076
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 28
  start-page: 440
  year: 2016
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2057
  year: 2017
  publication-title: Nano Lett.
– volume: 43
  start-page: 1459
  year: 2022
  publication-title: Chinese J. Catal.
– volume: 57
  start-page: 2697
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 3309
  year: 2021
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 290
  year: 2021
  publication-title: J. Energy Chem.
– volume: 21
  start-page: 7753
  year: 2021
  publication-title: Nano Lett.
– volume: 10
  start-page: 9086
  year: 2020
  publication-title: ACS Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 102
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 183
  year: 2021
  publication-title: J. Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 140
  year: 2015
  publication-title: Natl. Sci. Rev.
– volume: 2
  start-page: 453
  year: 2022
  publication-title: eScience
– volume: 10
  year: 2020
  publication-title: Adv. Energy. Mater.
– volume: 12
  start-page: 322
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_5_25_1
  doi: 10.1002/adfm.202008085
– ident: e_1_2_5_39_1
  doi: 10.1021/acs.nanolett.1c02705
– ident: e_1_2_5_40_1
  doi: 10.1002/adma.201706836
– ident: e_1_2_5_41_1
  doi: 10.1002/anie.202107858
– ident: e_1_2_5_8_1
  doi: 10.1002/aenm.202003412
– ident: e_1_2_5_15_1
  doi: 10.1016/j.jechem.2020.04.012
– ident: e_1_2_5_13_1
  doi: 10.1002/anie.202000690
– ident: e_1_2_5_46_1
  doi: 10.1021/jp047349j
– ident: e_1_2_5_4_1
  doi: 10.1016/S1872-2067(21)63862-7
– ident: e_1_2_5_34_1
  doi: 10.1016/j.jechem.2020.07.012
– ident: e_1_2_5_42_1
  doi: 10.1002/adma.201504293
– ident: e_1_2_5_1_1
  doi: 10.1002/adma.202104150
– ident: e_1_2_5_32_1
  doi: 10.1002/sstr.202100144
– ident: e_1_2_5_12_1
  doi: 10.1039/D2EE02440C
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.202200085
– ident: e_1_2_5_24_1
  doi: 10.1002/anie.202210567
– ident: e_1_2_5_44_1
  doi: 10.1021/acscatal.0c01273
– ident: e_1_2_5_14_1
  doi: 10.1002/smsc.202100010
– ident: e_1_2_5_26_1
  doi: 10.1002/smll.202106904
– ident: e_1_2_5_37_1
  doi: 10.1002/anie.201713429
– ident: e_1_2_5_38_1
  doi: 10.1002/anie.201801834
– ident: e_1_2_5_43_1
  doi: 10.1021/acs.nanolett.7b00126
– ident: e_1_2_5_2_1
  doi: 10.1002/sstr.202100185
– volume: 8
  start-page: 140
  year: 2015
  ident: e_1_2_5_20_1
  publication-title: Natl. Sci. Rev.
– ident: e_1_2_5_28_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_5_3_1
  doi: 10.1016/j.esci.2022.08.004
– ident: e_1_2_5_6_1
  doi: 10.1002/aenm.202103275
– ident: e_1_2_5_47_1
  doi: 10.1002/anie.202107790
– ident: e_1_2_5_7_1
  doi: 10.1002/anie.202215256
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201806326
– ident: e_1_2_5_9_1
  doi: 10.1016/j.nanoen.2021.106020
– ident: e_1_2_5_33_1
  doi: 10.1002/smll.202101856
– ident: e_1_2_5_16_1
  doi: 10.1021/jacs.9b01834
– ident: e_1_2_5_31_1
  doi: 10.1002/adma.201800005
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201306588
– ident: e_1_2_5_29_1
  doi: 10.1038/s41563-019-0535-9
– ident: e_1_2_5_30_1
  doi: 10.1002/adma.201800757
– ident: e_1_2_5_35_1
  doi: 10.1002/advs.201800949
– ident: e_1_2_5_27_1
  doi: 10.1021/acs.accounts.0c00488
– ident: e_1_2_5_17_1
  doi: 10.1002/anie.202109207
– ident: e_1_2_5_23_1
  doi: 10.1002/aenm.201903854
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.202105410
– ident: e_1_2_5_36_1
  doi: 10.1039/C8EE03276A
– ident: e_1_2_5_45_1
  doi: 10.1002/anie.202208642
– ident: e_1_2_5_19_1
  doi: 10.1016/j.cej.2021.131589
– ident: e_1_2_5_11_1
  doi: 10.1021/acsnano.0c10242
– ident: e_1_2_5_18_1
  doi: 10.1002/anie.201905954
SSID ssj0031247
Score 2.6079438
Snippet Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high‐performance electrochemical energy devices. Here, a Mott–Schottky...
Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207474
SubjectTerms Catalysts
Chemical reactions
Cobalt
d‐band center
electric field
Electric fields
Electrocatalysis
Electrocatalysts
Electron transfer
Energy conversion
Heterojunctions
Metal air batteries
Mott–Schottky heterojunction
Nanotechnology
Phosphides
Rechargeable batteries
Zinc-oxygen batteries
zinc‐air batteries
Title Regulating Reversible Oxygen Electrocatalysis by Built‐in Electric Field of Heterojunction Electrocatalyst with Modified d‐Band
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202207474
https://www.ncbi.nlm.nih.gov/pubmed/36604992
https://www.proquest.com/docview/2799939073
https://www.proquest.com/docview/2761975232
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQT-UALb8LBRkJiZPbXduJnSNFXa1QF6SFSr1F_pWWLglis1LLCYkX4Bn7JJ2JN6FbhJDglsh24jgznm_s8TeEvIwqcKVHjmkvhgwJ6FiRZ4FZFQttpIEZEQ8KT9_lkxP59jQ7vXaKP_FD9AtuqBntfI0Kbuzy4Bdp6PLzArcOOEcKeCQExYAtREWznj9KgPFqs6uAzWJIvNWxNg75wWbzTav0G9TcRK6t6RnfJabrdIo4OdtfNXbffbvB5_g_X7VD7qxxKX2dBGmX3ArVPXL7GlvhffJjlvLWww2dhTacwy4CfX9-AUJIj1I-nXY5CFlOqL2gh6v5orn8_nPeFc8dHWPIHK0jnWAgTv0J7CrKxo32DcUFYjqt_TwCSKYennJoKv-AnIyPPr6ZsHUOB-aEEpIFIZTMPaCEQntAD5b70Sh3pojaaa5CBv6Uk0Jb6cFXsxY8pMzoGA13edAhEw_JVlVX4TGhZsi998pmTnJpI_ilwetMGwNOFo9RDgjr_mHp1gTnmGdjUSZqZl7i4Jb94A7Iq77-l0Tt8ceae51IlGsVX5ZcAbYWBUyRA_KiLwblxB0XU4V6hXXAP1Xg6_MBeZREqX-VyHN0N6GEtwLxlz6UH6bHx_3dk39p9JRsw7VIcUd7ZKv5ugrPAFI19nmrNlcb8BuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZgOQAH_hcKCxgJiZN3W9uJnSOLtirQLlLZlbhF_pUKJUFsKrGckHgBnpEnYSZuAl2EkOCY2E4cZ8Yznz3-hpDHUQWu9Mgx7cWQIQEdK_IsMKtioY00MCPiQeHZYT45li_eZF00IZ6FSfwQ_YIbakY7X6OC44L03k_W0JP3S9w74Bw54OV5cgHTereoat4zSAkwX21-FbBaDKm3Ot7GId_bbL9pl35zNjd919b4jK8S23U7xZy82101dtd9PsPo-F_fdY1cWbum9GmSpevkXKhukMu_EBbeJF_nKXU9XNB5aCM67DLQV59OQQ7pQUqp064IIdEJtad0f7VYNt-_fFt0xQtHxxg1R-tIJxiLU78F04ricaZ9Q3GNmM5qv4jgJ1MPT9k3lb9FjscHR88mbJ3GgTmhhGRBCCVzD45CoT04EJb70Sh3pojaaa5CBpDKSaGt9ADXrAWQlBkdo-EuDzpkYptsVXUV7hBqhtx7r2zmJJc2AjQNXmfaGMBZPEY5IKz7iaVbc5xjqo1lmdiZeYmDW_aDOyBP-vofErvHH2vudDJRrrX8pOQK3GtRwCw5II_6YtBP3HQxVahXWAcgqgK4zwfkdpKl_lUizxFxQglvJeIvfShfz6bT_uruvzR6SC5OjmbTcvr88OU9cgnuixSGtEO2mo-rcB88rMY-aHXoB75dH6s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSIgeyn9ZKGAkJE5pd20ndo6UdrXAbkELlXqL_CstLElFs1LLCYkX4Bl5EmbiTegWISQ4JrYTx5nxfGOPvyHkaZCeSTWwiXK8nyABXZJnqU-MDLnSQsOMiAeFJwfZ6FC8OkqPzp3ij_wQ3YIbakYzX6OCH7uw84s09OTTHLcOGEMKeHGZXBFZX6Fc7007AikO1qtJrwJGK0HmrZa2sc92VtuvmqXfsOYqdG1sz_A60W2vY8jJx-1FbbbtlwuEjv_zWTfIxhKY0udRkm6SS768RdbP0RXeJt-mMXE9XNCpb-I5zNzTN6dnIIV0PybUadaDkOaEmjO6u5jN6x9fv8_a4pmlQ4yZo1WgI4zEqT6AYUXhuNC-prhCTCeVmwVAydTBU3Z16e6Qw-H--xejZJnEIbFccpF4zqXIHMCEXDmAD4a5wSCzOg_KKiZ9Cg6VFVwZ4cBZMwZcpFSrEDSzmVc-5XfJWlmV_h6hus-cc9KkVjBhAjim3qlUaQ1eFgtB9EjS_sPCLhnOMdHGvIjczKzAwS26we2RZ13948jt8ceaW61IFEsdPymYBHDNc5gje-RJVwzaiVsuuvTVAuuAgyrB2Wc9shlFqXsVzzL0N6GENQLxlz4U7ybjcXd1_18aPSZX3-4Ni_HLg9cPyDW4zWMM0hZZqz8v_EOAV7V51GjQT2dIHmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Reversible+Oxygen+Electrocatalysis+by+Built-in+Electric+Field+of+Heterojunction+Electrocatalyst+with+Modified+d-Band&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=He%2C+Chaohui&rft.au=Liu%2C+Qingqing&rft.au=Wang%2C+Hongming&rft.au=Xia%2C+Chenfeng&rft.date=2023-04-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=15&rft.spage=e2207474&rft_id=info:doi/10.1002%2Fsmll.202207474&rft_id=info%3Apmid%2F36604992&rft.externalDocID=36604992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon