Multiscale Polymeric Materials for Advanced Lithium Battery Applications

Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific e...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 4; pp. e2203194 - n/a
Main Authors Kang, Jieun, Han, Dong‐Yeob, Kim, Sungho, Ryu, Jaegeon, Park, Soojin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Polymeric materials indispensable to building safe, high‐energy‐density advanced batteries, in terms of electrode integrity, interface stability, and extending operational limits, are reviewed. The fundamental understanding of functional polymeric materials for advanced lithium battery chemistry and key research directions are discussed, thus suggesting design strategies for polymeric materials for advanced lithium batteries with improved electrochemical performances.
AbstractList Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg −1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg-1 at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg-1 at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Polymeric materials indispensable to building safe, high‐energy‐density advanced batteries, in terms of electrode integrity, interface stability, and extending operational limits, are reviewed. The fundamental understanding of functional polymeric materials for advanced lithium battery chemistry and key research directions are discussed, thus suggesting design strategies for polymeric materials for advanced lithium batteries with improved electrochemical performances.
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Author Kim, Sungho
Ryu, Jaegeon
Kang, Jieun
Park, Soojin
Han, Dong‐Yeob
Author_xml – sequence: 1
  givenname: Jieun
  surname: Kang
  fullname: Kang, Jieun
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 2
  givenname: Dong‐Yeob
  surname: Han
  fullname: Han, Dong‐Yeob
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 3
  givenname: Sungho
  surname: Kim
  fullname: Kim, Sungho
  organization: Pohang University of Science and Technology (POSTECH)
– sequence: 4
  givenname: Jaegeon
  surname: Ryu
  fullname: Ryu, Jaegeon
  email: jryu@sogang.ac.kr
  organization: Sogang University
– sequence: 5
  givenname: Soojin
  orcidid: 0000-0003-3878-6515
  surname: Park
  fullname: Park, Soojin
  email: soojin.park@postech.ac.kr
  organization: Pohang University of Science and Technology (POSTECH)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35616903$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAURoMoOj62LqXgxk3Hm6RNmmV9CzPoQtchTVOMpO2YtMr8ezOODxDE1V3knJuP--2iza7vDEKHGKYYgJyqulVTAoQAxSLbQBOcE5xmIPJNNAFB81SwrNhBuyE8A4BgwLbRDs0ZZgLoBN3MRzfYoJUzyX3vlq3xVidzNcSpXEia3idl_ao6bepkZocnO7bJmRri-zIpFwtntRps34V9tNVEwRx8zj30eHX5cH6Tzu6ub8_LWaopp1lqoOYxlcKcF00GtYZc5UoDM01uKGRVgwlXFeUGjNAUWKWroqqbIqe0ampG99DJeu_C9y-jCYNsY3zjnOpMPwZJGAdgtMhIRI9_oc_96LuYThLORMEF5yvq6JMaq9bUcuFtq_xSft0oAtM1oH0fgjfNN4JBrkqQqxLkdwlRyH4J2g4fVxq8su5vTay1N-vM8p9PZHkxL3_cd4n_mu8
CitedBy_id crossref_primary_10_1002_aenm_202402293
crossref_primary_10_1021_acsaem_4c01003
crossref_primary_10_1002_adfm_202421880
crossref_primary_10_1016_j_cej_2023_144996
crossref_primary_10_1007_s12598_024_03049_1
crossref_primary_10_1002_smll_202400641
crossref_primary_10_1002_metm_13
crossref_primary_10_1016_j_mtener_2024_101684
crossref_primary_10_1002_advs_202412258
crossref_primary_10_1002_eom2_12418
crossref_primary_10_1016_j_ceja_2024_100657
crossref_primary_10_1002_smll_202411463
crossref_primary_10_1002_smll_202306622
crossref_primary_10_1002_aenm_202304530
crossref_primary_10_1021_acsami_4c04864
crossref_primary_10_1016_j_cej_2023_145441
crossref_primary_10_1021_acsaem_3c01163
crossref_primary_10_1002_adma_202305605
crossref_primary_10_1016_j_cej_2023_144840
crossref_primary_10_1002_adfm_202213458
crossref_primary_10_1002_advs_202402156
crossref_primary_10_1002_smsc_202400611
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124444
crossref_primary_10_1016_j_pnsc_2024_05_005
crossref_primary_10_1021_acsami_3c18382
crossref_primary_10_1002_adma_202303226
crossref_primary_10_1002_adma_202410948
crossref_primary_10_1039_D4IM00066H
crossref_primary_10_1039_D3DT02548A
crossref_primary_10_1002_smll_202409114
crossref_primary_10_1002_adsu_202400023
crossref_primary_10_34133_research_0406
crossref_primary_10_1002_adma_202306491
crossref_primary_10_1002_smll_202300118
crossref_primary_10_1039_D4TA04766D
crossref_primary_10_1016_j_jallcom_2025_179419
crossref_primary_10_1002_adma_202306157
crossref_primary_10_1039_D4TC04275A
crossref_primary_10_1021_acsnano_5c00528
crossref_primary_10_1063_5_0182553
Cites_doi 10.1021/ja203983r
10.1002/ente.201402215
10.1038/s41560-021-00910-w
10.1002/aenm.201501082
10.1038/s41586-021-03885-6
10.1039/C8EE01053F
10.1002/adma.201905219
10.1002/adfm.202106176
10.1002/adma.202106335
10.1039/C6CS00875E
10.1002/anie.201909339
10.1039/C5GC02654G
10.1039/C7EE03122J
10.1016/j.jpowsour.2013.03.024
10.1038/s41560-019-0349-7
10.1021/acsami.0c17563
10.1149/1.3212894
10.1002/anie.202006595
10.1021/acsnano.5b05030
10.1038/s41467-019-09924-1
10.1016/j.joule.2019.01.006
10.1016/j.nanoen.2021.105878
10.1002/aenm.201900570
10.1002/aenm.201703320
10.1021/acsnano.6b00218
10.1002/adma.201800533
10.1002/adma.201804766
10.1007/s12274-017-1692-2
10.1039/C7CS00858A
10.1021/acs.chemmater.9b01553
10.1039/c2nr31164j
10.1021/cr020738u
10.1002/aenm.202103718
10.1002/aenm.201801219
10.1038/s41560-020-00702-8
10.1039/D1EE00049G
10.1007/s12274-017-1763-4
10.1039/c0jm01086c
10.1016/j.joule.2019.07.025
10.1038/nchem.1802
10.1038/s41560-018-0312-z
10.1002/aenm.202102109
10.1039/C8EE02555J
10.1016/j.nantod.2012.08.004
10.1002/aenm.201502588
10.1126/science.aal4373
10.1038/nnano.2017.16
10.1016/j.jechem.2018.12.013
10.1002/aenm.202002455
10.1002/eem2.12129
10.1002/anie.201201568
10.1038/nmat3602
10.1021/acs.nanolett.5b04117
10.1002/adfm.201902499
10.1016/j.electacta.2015.11.019
10.1002/aenm.201703138
10.1016/j.joule.2018.09.003
10.1021/cr500062v
10.1002/adma.202005937
10.1016/j.polymer.2014.04.051
10.1021/acs.chemrev.8b00241
10.1002/adma.202100425
10.1002/pi.5677
10.1002/celc.201801105
10.1002/adfm.201910138
10.1016/j.ensm.2017.05.013
10.1016/j.jechem.2021.05.027
10.1016/j.xcrp.2020.100119
10.1038/nmat1368
10.1038/s41560-020-0634-5
10.1016/j.matt.2019.05.016
10.1007/s13233-020-8175-0
10.1039/C9TA03104A
10.1016/j.jpowsour.2004.07.007
10.1016/j.ssi.2013.08.014
10.1039/C6EE01219A
10.1002/adfm.202010958
10.1016/j.eurpolymj.2005.09.017
10.1016/j.electacta.2019.06.034
10.1016/j.jpowsour.2015.06.068
10.1002/aenm.202003836
10.1016/j.xcrp.2022.100785
10.1016/j.joule.2018.02.012
10.1002/aenm.201501010
10.1002/anie.201814294
10.1016/j.ensm.2021.01.018
10.1002/adfm.201908433
10.1002/adma.201606823
10.1016/j.ensm.2021.06.033
10.1016/j.ensm.2020.08.012
10.1002/inf2.12185
10.1146/annurev-matsci-071312-121705
10.1039/C4TA02151G
10.1021/ja4054465
10.1038/s41563-019-0431-3
10.1002/aenm.201601066
10.1002/aenm.201802645
10.1002/adfm.202070065
10.1016/j.jpowsour.2019.226985
10.1039/C8EE00640G
10.1002/smll.202105724
10.1038/s41560-018-0130-3
10.1039/c3ra42611d
10.1021/jacs.8b06047
10.1002/aenm.202002297
10.1002/adma.201102421
10.1002/aenm.201501008
10.1002/adfm.201906770
10.1016/j.jpowsour.2019.03.057
10.1149/1.2398725
10.1126/sciadv.aat5383
10.1021/acscentsci.7b00569
10.1038/19730
10.1021/acsnano.6b06797
10.1002/macp.201900414
10.1149/1.3563085
10.1039/C4TA04504A
10.1016/S0013-4686(03)00968-X
10.1021/acs.chemmater.0c01489
10.1002/adma.201707594
10.1002/adma.201804822
10.1038/s41598-017-17697-0
10.1002/anie.201710806
10.1002/adfm.202104858
10.1002/aenm.202103187
10.1039/C6CS00491A
10.1002/aenm.201802107
10.1016/j.cej.2021.134394
10.1038/natrevmats.2016.13
10.1149/1.1850854
10.1039/C3EE40795K
10.1002/aenm.201702314
10.1039/C7CP02779F
10.1002/aenm.201400690
10.1016/j.ensm.2021.12.046
10.1021/acs.accounts.8b00566
10.1002/aenm.201903110
10.1038/s41586-021-04209-4
10.1002/celc.201900686
10.1016/j.jpcs.2007.08.072
10.1002/smll.201901689
10.1021/acsenergylett.7b00763
10.1002/adfm.201401269
10.1021/acsaem.1c00327
10.1002/aenm.201804022
10.1002/adfm.202005699
10.1021/acsami.7b06303
10.1002/aenm.201601556
10.1021/ja2111543
10.1039/C9RA07781B
10.1038/s41467-018-03466-8
10.1038/s41467-018-06923-6
10.1002/aenm.201901749
10.1016/j.jechem.2020.03.041
10.1016/S0167-2738(03)00025-0
10.1016/j.jpowsour.2022.231105
10.1002/adfm.201500589
10.1038/s41560-017-0047-2
10.1016/j.jpowsour.2011.04.030
10.1039/D0EE00342E
10.1039/C4EE01303D
10.1038/s41560-018-0295-9
10.1021/acsenergylett.6b00456
10.1039/C9EE03828K
10.1002/aenm.201902872
10.1002/adfm.201704858
10.1002/advs.202104277
10.1016/j.ensm.2016.07.003
10.1039/D0CS00137F
10.1016/j.jpowsour.2016.12.036
10.1039/D0EE00060D
10.1016/j.jpowsour.2008.11.031
10.1126/sciadv.1600320
10.1021/acsami.0c21164
10.1002/adfm.202102360
10.1002/adma.201603755
10.1016/j.chempr.2020.01.008
10.1002/aenm.201701482
10.1016/j.jpowsour.2016.03.070
10.1021/acs.nanolett.6b04951
10.1016/j.electacta.2017.11.164
10.1039/D0TA07511F
10.1016/j.joule.2018.06.015
10.1002/aenm.201200068
10.1038/s41578-019-0165-5
10.1039/D1CS00450F
10.1039/C2EE23564A
10.1016/j.electacta.2017.02.160
10.1002/adfm.202104863
10.1021/acsami.9b14147
10.1002/aenm.201903658
10.1002/adfm.202101827
10.1016/j.joule.2018.09.008
10.1038/s41565-019-0604-x
10.1038/s41578-019-0103-6
10.1016/j.chempr.2019.05.009
10.1002/advs.201700270
10.1016/j.ensm.2019.11.003
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202203194
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35616903
10_1002_adma_202203194
ADMA202203194
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2018M1A2A2063346
– fundername: National Research Foundation of Korea
  grantid: 2018M1A2A2063346
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3734-e0d7935a1778f40dc05a5ac06ef5e304bf127ab37e0e9c306bcb8bdf8533bfd63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:25:19 EDT 2025
Fri Jul 25 08:35:43 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Tue Jul 01 02:33:17 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:24:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords advanced batteries
electrolytes
binders
separators
polymeric materials
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-e0d7935a1778f40dc05a5ac06ef5e304bf127ab37e0e9c306bcb8bdf8533bfd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3878-6515
PMID 35616903
PQID 2769879772
PQPubID 2045203
PageCount 22
ParticipantIDs proquest_miscellaneous_2670063842
proquest_journals_2769879772
pubmed_primary_35616903
crossref_primary_10_1002_adma_202203194
crossref_citationtrail_10_1002_adma_202203194
wiley_primary_10_1002_adma_202203194_ADMA202203194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2018 2019 2019; 59 8 7 31
2022 2022 2020 2019; 432 65 8 6
2013; 3
2020 2022 2016; 30 12 1
2019; 11
2020 2020; 10 30
2019; 12
2018 2011 2014 2015; 5 33 262 5
2021 2019; 4 15
2015 2013 2018; 25 5 30
2020; 15
2020; 13
2020; 10
2009; 12
2016 2019 2020; 187 317 12
2018; 8
2010; 20
2011 2017; 133 19
2018; 2
2020 2019; 32 31
2018; 4
2020 2020 2018; 25 59 8
2016; 316
2022; 34
2019 2020 2021; 37 13 13
2016 2008 2017 2016 2003; 10 69 258 16 159
2019; 438
2020 2016 2012 2013 2017 2021; 10 6 2 237 46 50
2021; 85
2016 2021 2018; 6 31 2
2022 2011; 12 196
2013 2018; 135 28
2019; 9
2019; 4
2019; 3
2019; 5
2019; 31
2021 2015; 11 5
2004; 49
2019 2021; 9 36
2019; 1
2017 2013; 46 12
2018 2005 2017; 47 4 10
2018 2009 2012; 11 189 134
2007; 10
2020 2018; 59 5
2011 2016; 23 10
2018 2020 2021; 30 33 31
2016; 5
2017 2017 2016; 2 341 18
2016; 1
2016; 2
2020; 30
2018; 118
2022; 9
2022; 12
2021 2022; 6 3
2018; 11
2018; 10
2019 2022 2020 2019 2020; 3 18 5 18 5
2018 2019; 3 10
2016; 9
2020 2018; 28 3
2017 2019 2014; 7 9 55
2017; 7
2019; 52
2014 2017; 7 12
2013 2006; 6 42
2017 2014; 29 114
2018 2020; 9 10
2017; 232
2017; 357
2017; 9
2012; 51
2020; 5
2014; 4
2021; 31
2021; 33
2020; 1
2020; 50
2020 2021; 32 11
2019; 68
2020; 49
2022; 526
2021; 41
2014; 7
2021 2017 2018 2019; 33 17 9 9
2021 2014 2021 2022; 31 2 31 32
2004; 104
2021; 4
2021; 3
2018; 140
2005; 152
2015; 3
2013; 43
2022; 45
2019; 423
2021 2022; 598 601
2020; 221
2017; 29
2019 2014; 9 24
2015; 9
2021; 14
2005 2014; 139 2
2020 2018; 13 11
2020 2015; 6 294
2017; 10
1999; 398
2012; 7
2012; 4
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_1_2
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_120_3
e_1_2_8_120_2
e_1_2_8_99_1
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_105_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_120_5
e_1_2_8_120_4
e_1_2_8_30_1
e_1_2_8_118_4
e_1_2_8_25_1
e_1_2_8_118_3
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_118_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_106_2
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_28_1
e_1_2_8_119_2
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_119_1
e_1_2_8_111_3
e_1_2_8_111_2
e_1_2_8_111_4
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_93_1
e_1_2_8_27_1
Peng L. (e_1_2_8_51_1) 2021; 31
e_1_2_8_80_1
e_1_2_8_8_1
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_112_2
e_1_2_8_112_1
e_1_2_8_112_3
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_100_6
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_31_3
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_100_2
e_1_2_8_100_3
e_1_2_8_123_1
e_1_2_8_100_4
e_1_2_8_100_5
e_1_2_8_68_1
e_1_2_8_68_2
e_1_2_8_5_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_83_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_109_3
e_1_2_8_95_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_72_3
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_72_1
e_1_2_8_101_3
e_1_2_8_124_2
e_1_2_8_29_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_114_3
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_114_2
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_56_4
e_1_2_8_56_2
e_1_2_8_56_3
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_94_2
e_1_2_8_102_4
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_102_2
e_1_2_8_71_1
e_1_2_8_102_3
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_47_3
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_97_1
e_1_2_8_103_3
e_1_2_8_51_3
e_1_2_8_51_4
e_1_2_8_74_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_103_1
e_1_2_8_103_2
e_1_2_8_69_4
e_1_2_8_69_5
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_69_3
e_1_2_8_69_1
e_1_2_8_4_1
e_1_2_8_116_2
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_116_3
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_96_1
e_1_2_8_104_2
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 526
  year: 2022
  publication-title: J. Power Sources
– volume: 423
  start-page: 218
  year: 2019
  publication-title: J. Power Sources
– volume: 5
  start-page: 2326
  year: 2019
  publication-title: Chem
– volume: 23 10
  start-page: 4679 3702
  year: 2011 2016
  publication-title: Adv. Mater. ACS Nano
– volume: 9 24
  start-page: 5904
  year: 2019 2014
  publication-title: Adv. Energy Mater. Adv. Funct. Mater.
– volume: 5 33 262 5
  start-page: 4008 3 738
  year: 2018 2011 2014 2015
  publication-title: ChemElectroChem ECS Trans. Solid State Ionics Adv. Energy Mater.
– volume: 7 12
  start-page: 513 194
  year: 2014 2017
  publication-title: Energy Environ. Sci. Nat. Nanotechnol.
– volume: 43
  start-page: 503
  year: 2013
  publication-title: Annu. Rev. Mater. Res.
– volume: 152
  start-page: A396
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 312
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 28 3
  start-page: 1175 290
  year: 2020 2018
  publication-title: Macromol. Res. Nat. Energy
– volume: 2
  start-page: 950
  year: 2018
  publication-title: Joule
– volume: 57
  start-page: 1505
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 2922
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 31 2 31 32
  year: 2021 2014 2021 2022
  publication-title: Adv. Funct. Mater. J. Mater. Chem. A Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 49
  start-page: 4667
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 1605
  year: 2004
  publication-title: Electrochim. Acta
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 16
  year: 2019
  publication-title: Nat. Energy
– volume: 2
  start-page: 2047
  year: 2018
  publication-title: Joule
– volume: 12 196
  start-page: 7687
  year: 2022 2011
  publication-title: Adv. Energy Mater. J. Power Sources
– volume: 50
  start-page: 248
  year: 2020
  publication-title: J. Energy Chem.
– volume: 9 10
  start-page: 1339
  year: 2018 2020
  publication-title: Nat. Commun. Adv. Energy Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 3 18 5 18 5
  start-page: 2761 786 1278 526
  year: 2019 2022 2020 2019 2020
  publication-title: Joule Small Nat. Energy Nat. Mater. Nat. Energy
– volume: 11
  start-page: 243
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 246
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 4139
  year: 2017
  publication-title: Nano Res.
– volume: 20
  start-page: 9180
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 10 30
  year: 2020 2020
  publication-title: Adv. Energy Mater. Adv. Funct. Mater.
– volume: 357
  start-page: 279
  year: 2017
  publication-title: Science
– volume: 45
  start-page: 941
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 94
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 37 13 13
  start-page: 126 1318 9965
  year: 2019 2020 2021
  publication-title: J. Energy Chem. Energy Environ. Sci. ACS Appl. Mater. Interfaces
– volume: 104
  start-page: 4419
  year: 2004
  publication-title: Chem. Rev.
– volume: 41
  start-page: 522
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 4
  start-page: 365
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139 2
  start-page: 284
  year: 2005 2014
  publication-title: J. Power Sources J. Mater. Chem. A
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4 15
  start-page: 336
  year: 2021 2019
  publication-title: Energy Environ. Mater. Small
– volume: 4
  start-page: 187
  year: 2019
  publication-title: Nat. Energy
– volume: 432 65 8 6
  start-page: 9 3674
  year: 2022 2022 2020 2019
  publication-title: Chem. Eng. J. J. Energy Chem. J. Mater. Chem. A ChemElectroChem
– volume: 32 11
  year: 2020 2021
  publication-title: Adv. Mater. Adv. Energy Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2208
  year: 2018
  publication-title: Joule
– volume: 221
  year: 2020
  publication-title: Macromol. Chem. Phys.
– volume: 598 601
  start-page: 590 217
  year: 2021 2022
  publication-title: Nature Nature
– volume: 59 8 7 31
  year: 2020 2018 2019 2019
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. J. Mater. Chem. A Adv. Mater.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 4
  start-page: 260
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 1
  start-page: 317
  year: 2019
  publication-title: Matter
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 3
  start-page: 460
  year: 2021
  publication-title: Infomat
– volume: 11 5
  year: 2021 2015
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 2 341 18
  start-page: 2388 457 2710
  year: 2017 2017 2016
  publication-title: ACS Energy Lett. J. Power Sources Green Chem.
– volume: 30 33 31
  start-page: 164
  year: 2018 2020 2021
  publication-title: Adv. Mater. Energy Storage Mater. Adv. Funct. Mater.
– volume: 25 5 30
  start-page: 3599 1042
  year: 2015 2013 2018
  publication-title: Adv. Funct. Mater. Nat. Chem. Adv. Mater.
– volume: 9 36
  start-page: 355
  year: 2019 2021
  publication-title: Adv. Energy Mater. Energy Storage Mater.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 30 12 1
  start-page: 1247
  year: 2020 2022 2016
  publication-title: Adv. Funct. Mater. Adv. Energy Mater. ACS Energy Lett.
– volume: 47 4 10
  start-page: 2145 366 3970
  year: 2018 2005 2017
  publication-title: Chem. Soc. Rev. Nat. Mater. Nano Res.
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 52
  start-page: 686
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: A215
  year: 2009
  publication-title: Electrochem. Solid‐State Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6 31 2
  start-page: 2528
  year: 2016 2021 2018
  publication-title: Adv. Energy Mater. Adv. Funct. Mater. Joule
– volume: 13 11
  start-page: 1429 1945
  year: 2020 2018
  publication-title: Energy Environ. Sci. Energy Environ. Sci.
– volume: 316
  start-page: 85
  year: 2016
  publication-title: J. Power Sources
– volume: 10
  start-page: A17
  year: 2007
  publication-title: Electrochem. Solid‐State Lett.
– volume: 135 28
  year: 2013 2018
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 68
  start-page: 7
  year: 2019
  publication-title: Polym. Int.
– volume: 3
  start-page: 453
  year: 2015
  publication-title: Energy Technol.
– volume: 7
  start-page: 414
  year: 2012
  publication-title: Nano Today
– volume: 118
  start-page: 8936
  year: 2018
  publication-title: Chem. Rev.
– volume: 5
  start-page: 139
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 6 3
  start-page: 951
  year: 2021 2022
  publication-title: Nat. Energy Cell Rep. Phys. Sci.
– volume: 438
  year: 2019
  publication-title: J. Power Sources
– volume: 3 10
  start-page: 16 2067
  year: 2018 2019
  publication-title: Nat. Energy Nat. Commun.
– volume: 12
  start-page: 273
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 10 6 2 237 46 50
  start-page: 922 229 3006
  year: 2020 2016 2012 2013 2017 2021
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. J. Power Sources Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 14
  start-page: 3510
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6 42
  start-page: 618 21
  year: 2013 2006
  publication-title: Energy Environ. Sci. Eur. Polym. J.
– volume: 25 59 8
  start-page: 1 3802
  year: 2020 2020 2018
  publication-title: Energy Storage Mater. Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 10 69 258 16 159
  start-page: 243 1106 459 111
  year: 2016 2008 2017 2016 2003
  publication-title: ACS Nano J. Phys. Chem. Solids Electrochim. Acta Nano Lett. Solid State Ionics
– volume: 33 17 9 9
  start-page: 1670 4469
  year: 2021 2017 2018 2019
  publication-title: Adv. Mater. Nano Lett. Nat. Commun. Adv. Energy Mater.
– volume: 11 189 134
  start-page: 3096 72 2902
  year: 2018 2009 2012
  publication-title: Energy Environ. Sci. J. Power Sources J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 187 317 12
  start-page: 113 711
  year: 2016 2019 2020
  publication-title: Electrochim. Acta Electrochim. Acta ACS Appl. Mater. Interfaces
– volume: 32 31
  start-page: 7237 4598
  year: 2020 2019
  publication-title: Chem. Mater. Chem. Mater.
– volume: 9
  start-page: 3252
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 398
  start-page: 792
  year: 1999
  publication-title: Nature
– volume: 59 5
  year: 2020 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Sci.
– volume: 232
  start-page: 414
  year: 2017
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 5910
  year: 2012
  publication-title: Nanoscale
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 7 9 55
  start-page: 2799
  year: 2017 2019 2014
  publication-title: Sci. Rep. RSC Adv. Polymer
– volume: 133 19
  year: 2011 2017
  publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 8762
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 29 114
  year: 2017 2014
  publication-title: Adv. Mater. Chem. Rev.
– volume: 3
  start-page: 662
  year: 2019
  publication-title: Joule
– volume: 13
  start-page: 1197
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 46 12
  start-page: 797 452
  year: 2017 2013
  publication-title: Chem. Soc. Rev. Nat. Mater.
– volume: 6 294
  start-page: 902 180
  year: 2020 2015
  publication-title: Chem J. Power Sources
– ident: e_1_2_8_119_1
  doi: 10.1021/ja203983r
– ident: e_1_2_8_8_1
  doi: 10.1002/ente.201402215
– ident: e_1_2_8_83_1
  doi: 10.1038/s41560-021-00910-w
– ident: e_1_2_8_118_4
  doi: 10.1002/aenm.201501082
– ident: e_1_2_8_99_1
  doi: 10.1038/s41586-021-03885-6
– ident: e_1_2_8_74_2
  doi: 10.1039/C8EE01053F
– ident: e_1_2_8_88_1
  doi: 10.1002/adma.201905219
– ident: e_1_2_8_51_4
  doi: 10.1002/adfm.202106176
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.202106335
– ident: e_1_2_8_100_5
  doi: 10.1039/C6CS00875E
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201909339
– ident: e_1_2_8_60_3
  doi: 10.1039/C5GC02654G
– ident: e_1_2_8_59_1
  doi: 10.1039/C7EE03122J
– ident: e_1_2_8_100_4
  doi: 10.1016/j.jpowsour.2013.03.024
– ident: e_1_2_8_97_1
  doi: 10.1038/s41560-019-0349-7
– ident: e_1_2_8_47_3
  doi: 10.1021/acsami.0c17563
– ident: e_1_2_8_27_1
  doi: 10.1149/1.3212894
– ident: e_1_2_8_111_1
  doi: 10.1002/anie.202006595
– ident: e_1_2_8_22_1
  doi: 10.1021/acsnano.5b05030
– ident: e_1_2_8_66_2
  doi: 10.1038/s41467-019-09924-1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2019.01.006
– ident: e_1_2_8_53_1
  doi: 10.1016/j.nanoen.2021.105878
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201900570
– ident: e_1_2_8_109_3
  doi: 10.1002/aenm.201703320
– ident: e_1_2_8_34_2
  doi: 10.1021/acsnano.6b00218
– ident: e_1_2_8_112_1
  doi: 10.1002/adma.201800533
– ident: e_1_2_8_111_4
  doi: 10.1002/adma.201804766
– ident: e_1_2_8_11_3
  doi: 10.1007/s12274-017-1692-2
– ident: e_1_2_8_11_1
  doi: 10.1039/C7CS00858A
– ident: e_1_2_8_105_2
  doi: 10.1021/acs.chemmater.9b01553
– ident: e_1_2_8_81_1
  doi: 10.1039/c2nr31164j
– ident: e_1_2_8_6_1
  doi: 10.1021/cr020738u
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.202103718
– ident: e_1_2_8_111_2
  doi: 10.1002/aenm.201801219
– ident: e_1_2_8_69_3
  doi: 10.1038/s41560-020-00702-8
– ident: e_1_2_8_96_1
  doi: 10.1039/D1EE00049G
– ident: e_1_2_8_123_1
  doi: 10.1007/s12274-017-1763-4
– ident: e_1_2_8_54_1
  doi: 10.1039/c0jm01086c
– ident: e_1_2_8_69_1
  doi: 10.1016/j.joule.2019.07.025
– ident: e_1_2_8_31_2
  doi: 10.1038/nchem.1802
– ident: e_1_2_8_75_1
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_8_106_1
  doi: 10.1002/aenm.202102109
– ident: e_1_2_8_108_1
  doi: 10.1039/C8EE02555J
– ident: e_1_2_8_10_1
  doi: 10.1016/j.nantod.2012.08.004
– ident: e_1_2_8_101_1
  doi: 10.1002/aenm.201502588
– ident: e_1_2_8_23_1
  doi: 10.1126/science.aal4373
– ident: e_1_2_8_65_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_114_1
  doi: 10.1016/j.jechem.2018.12.013
– ident: e_1_2_8_104_1
  doi: 10.1002/aenm.202002455
– ident: e_1_2_8_21_1
  doi: 10.1002/eem2.12129
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.201201568
– ident: e_1_2_8_124_2
  doi: 10.1038/nmat3602
– ident: e_1_2_8_120_4
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201902499
– ident: e_1_2_8_47_1
  doi: 10.1016/j.electacta.2015.11.019
– ident: e_1_2_8_18_1
  doi: 10.1002/aenm.201703138
– ident: e_1_2_8_101_3
  doi: 10.1016/j.joule.2018.09.003
– ident: e_1_2_8_14_2
  doi: 10.1021/cr500062v
– ident: e_1_2_8_102_1
  doi: 10.1002/adma.202005937
– ident: e_1_2_8_116_3
  doi: 10.1016/j.polymer.2014.04.051
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.8b00241
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202100425
– ident: e_1_2_8_76_1
  doi: 10.1002/pi.5677
– ident: e_1_2_8_118_1
  doi: 10.1002/celc.201801105
– ident: e_1_2_8_72_1
  doi: 10.1002/adfm.201910138
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ensm.2017.05.013
– ident: e_1_2_8_56_2
  doi: 10.1016/j.jechem.2021.05.027
– ident: e_1_2_8_82_1
  doi: 10.1016/j.xcrp.2020.100119
– ident: e_1_2_8_11_2
  doi: 10.1038/nmat1368
– ident: e_1_2_8_69_5
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_70_1
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_8_1_1
  doi: 10.1007/s13233-020-8175-0
– ident: e_1_2_8_111_3
  doi: 10.1039/C9TA03104A
– ident: e_1_2_8_94_1
  doi: 10.1016/j.jpowsour.2004.07.007
– ident: e_1_2_8_118_3
  doi: 10.1016/j.ssi.2013.08.014
– ident: e_1_2_8_45_1
  doi: 10.1039/C6EE01219A
– ident: e_1_2_8_101_2
  doi: 10.1002/adfm.202010958
– ident: e_1_2_8_113_2
  doi: 10.1016/j.eurpolymj.2005.09.017
– ident: e_1_2_8_47_2
  doi: 10.1016/j.electacta.2019.06.034
– ident: e_1_2_8_7_2
  doi: 10.1016/j.jpowsour.2015.06.068
– ident: e_1_2_8_88_2
  doi: 10.1002/aenm.202003836
– ident: e_1_2_8_83_2
  doi: 10.1016/j.xcrp.2022.100785
– ident: e_1_2_8_30_1
  doi: 10.1016/j.joule.2018.02.012
– ident: e_1_2_8_100_2
  doi: 10.1002/aenm.201501010
– ident: e_1_2_8_109_2
  doi: 10.1002/anie.201814294
– ident: e_1_2_8_19_2
  doi: 10.1016/j.ensm.2021.01.018
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201908433
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201606823
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ensm.2021.06.033
– ident: e_1_2_8_112_2
  doi: 10.1016/j.ensm.2020.08.012
– ident: e_1_2_8_25_1
  doi: 10.1002/inf2.12185
– ident: e_1_2_8_87_1
  doi: 10.1146/annurev-matsci-071312-121705
– ident: e_1_2_8_51_2
  doi: 10.1039/C4TA02151G
– ident: e_1_2_8_33_1
  doi: 10.1021/ja4054465
– ident: e_1_2_8_69_4
  doi: 10.1038/s41563-019-0431-3
– ident: e_1_2_8_107_1
  doi: 10.1002/aenm.201601066
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201802645
– ident: e_1_2_8_37_2
  doi: 10.1002/adfm.202070065
– ident: e_1_2_8_90_1
  doi: 10.1016/j.jpowsour.2019.226985
– ident: e_1_2_8_103_1
  doi: 10.1039/C8EE00640G
– ident: e_1_2_8_69_2
  doi: 10.1002/smll.202105724
– ident: e_1_2_8_1_2
  doi: 10.1038/s41560-018-0130-3
– ident: e_1_2_8_63_1
  doi: 10.1039/c3ra42611d
– ident: e_1_2_8_67_1
  doi: 10.1021/jacs.8b06047
– ident: e_1_2_8_68_2
  doi: 10.1002/aenm.202002297
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201102421
– ident: e_1_2_8_104_2
  doi: 10.1002/aenm.201501008
– ident: e_1_2_8_122_1
  doi: 10.1002/adfm.201906770
– ident: e_1_2_8_98_1
  doi: 10.1016/j.jpowsour.2019.03.057
– ident: e_1_2_8_26_1
  doi: 10.1149/1.2398725
– ident: e_1_2_8_95_1
  doi: 10.1126/sciadv.aat5383
– ident: e_1_2_8_42_1
  doi: 10.1021/acscentsci.7b00569
– ident: e_1_2_8_85_1
  doi: 10.1038/19730
– ident: e_1_2_8_120_1
  doi: 10.1021/acsnano.6b06797
– ident: e_1_2_8_28_1
  doi: 10.1002/macp.201900414
– ident: e_1_2_8_118_2
  doi: 10.1149/1.3563085
– ident: e_1_2_8_94_2
  doi: 10.1039/C4TA04504A
– ident: e_1_2_8_121_1
  doi: 10.1016/S0013-4686(03)00968-X
– ident: e_1_2_8_105_1
  doi: 10.1021/acs.chemmater.0c01489
– ident: e_1_2_8_31_3
  doi: 10.1002/adma.201707594
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.201804822
– ident: e_1_2_8_116_1
  doi: 10.1038/s41598-017-17697-0
– ident: e_1_2_8_78_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.202104858
– ident: e_1_2_8_72_2
  doi: 10.1002/aenm.202103187
– ident: e_1_2_8_124_1
  doi: 10.1039/C6CS00491A
– ident: e_1_2_8_39_1
  doi: 10.1002/aenm.201802107
– ident: e_1_2_8_56_1
  doi: 10.1016/j.cej.2021.134394
– ident: e_1_2_8_2_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_8_71_1
  doi: 10.1149/1.1850854
– ident: e_1_2_8_65_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_8_35_1
  doi: 10.1002/aenm.201702314
– ident: e_1_2_8_119_2
  doi: 10.1039/C7CP02779F
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201400690
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ensm.2021.12.046
– ident: e_1_2_8_89_1
  doi: 10.1021/acs.accounts.8b00566
– ident: e_1_2_8_37_1
  doi: 10.1002/aenm.201903110
– ident: e_1_2_8_99_2
  doi: 10.1038/s41586-021-04209-4
– ident: e_1_2_8_56_4
  doi: 10.1002/celc.201900686
– ident: e_1_2_8_120_2
  doi: 10.1016/j.jpcs.2007.08.072
– ident: e_1_2_8_21_2
  doi: 10.1002/smll.201901689
– ident: e_1_2_8_60_1
  doi: 10.1021/acsenergylett.7b00763
– ident: e_1_2_8_17_2
  doi: 10.1002/adfm.201401269
– ident: e_1_2_8_93_1
  doi: 10.1021/acsaem.1c00327
– volume: 31
  start-page: 2208537
  year: 2021
  ident: e_1_2_8_51_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_110_1
  doi: 10.1002/aenm.201804022
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.202005699
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.7b06303
– ident: e_1_2_8_61_1
  doi: 10.1002/aenm.201601556
– ident: e_1_2_8_103_3
  doi: 10.1021/ja2111543
– ident: e_1_2_8_116_2
  doi: 10.1039/C9RA07781B
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-018-03466-8
– ident: e_1_2_8_102_3
  doi: 10.1038/s41467-018-06923-6
– ident: e_1_2_8_102_4
  doi: 10.1002/aenm.201901749
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jechem.2020.03.041
– ident: e_1_2_8_120_5
  doi: 10.1016/S0167-2738(03)00025-0
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jpowsour.2022.231105
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201500589
– ident: e_1_2_8_66_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_8_106_2
  doi: 10.1016/j.jpowsour.2011.04.030
– ident: e_1_2_8_114_2
  doi: 10.1039/D0EE00342E
– ident: e_1_2_8_125_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_8_43_1
  doi: 10.1038/s41560-018-0295-9
– ident: e_1_2_8_72_3
  doi: 10.1021/acsenergylett.6b00456
– ident: e_1_2_8_74_1
  doi: 10.1039/C9EE03828K
– ident: e_1_2_8_64_1
  doi: 10.1002/aenm.201902872
– ident: e_1_2_8_33_2
  doi: 10.1002/adfm.201704858
– ident: e_1_2_8_92_1
  doi: 10.1002/advs.202104277
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ensm.2016.07.003
– ident: e_1_2_8_58_1
  doi: 10.1039/D0CS00137F
– ident: e_1_2_8_60_2
  doi: 10.1016/j.jpowsour.2016.12.036
– ident: e_1_2_8_50_1
  doi: 10.1039/D0EE00060D
– ident: e_1_2_8_103_2
  doi: 10.1016/j.jpowsour.2008.11.031
– ident: e_1_2_8_73_1
  doi: 10.1126/sciadv.1600320
– ident: e_1_2_8_114_3
  doi: 10.1021/acsami.0c21164
– ident: e_1_2_8_112_3
  doi: 10.1002/adfm.202102360
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201603755
– ident: e_1_2_8_7_1
  doi: 10.1016/j.chempr.2020.01.008
– ident: e_1_2_8_77_1
  doi: 10.1002/aenm.201701482
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jpowsour.2016.03.070
– ident: e_1_2_8_102_2
  doi: 10.1021/acs.nanolett.6b04951
– ident: e_1_2_8_120_3
  doi: 10.1016/j.electacta.2017.11.164
– ident: e_1_2_8_56_3
  doi: 10.1039/D0TA07511F
– ident: e_1_2_8_52_1
  doi: 10.1016/j.joule.2018.06.015
– ident: e_1_2_8_100_3
  doi: 10.1002/aenm.201200068
– ident: e_1_2_8_84_1
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_8_100_6
  doi: 10.1039/D1CS00450F
– ident: e_1_2_8_113_1
  doi: 10.1039/C2EE23564A
– ident: e_1_2_8_40_1
  doi: 10.1016/j.electacta.2017.02.160
– ident: e_1_2_8_91_1
  doi: 10.1002/adfm.202104863
– ident: e_1_2_8_115_1
  doi: 10.1021/acsami.9b14147
– ident: e_1_2_8_100_1
  doi: 10.1002/aenm.201903658
– ident: e_1_2_8_51_3
  doi: 10.1002/adfm.202101827
– ident: e_1_2_8_117_1
  doi: 10.1016/j.joule.2018.09.008
– ident: e_1_2_8_80_1
  doi: 10.1038/s41565-019-0604-x
– ident: e_1_2_8_4_1
  doi: 10.1038/s41578-019-0103-6
– ident: e_1_2_8_86_1
  doi: 10.1016/j.chempr.2019.05.009
– ident: e_1_2_8_15_2
  doi: 10.1002/advs.201700270
– ident: e_1_2_8_109_1
  doi: 10.1016/j.ensm.2019.11.003
SSID ssj0009606
Score 2.5859435
SecondaryResourceType review_article
Snippet Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation...
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2203194
SubjectTerms advanced batteries
Batteries
binders
Electric vehicles
Electrode materials
Electrolytes
Energy storage
Lithium
Lithium batteries
Lithium-ion batteries
Materials science
polymeric materials
Rechargeable batteries
separators
Specific energy
Title Multiscale Polymeric Materials for Advanced Lithium Battery Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203194
https://www.ncbi.nlm.nih.gov/pubmed/35616903
https://www.proquest.com/docview/2769879772
https://www.proquest.com/docview/2670063842
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA6Lp92Dui8dH0sEYU_RTJ7dx8YHw-IsIgremiSdRnGcEafnoL_eStLTzuwiC-6x6QpJp6qSr1OprxDad1z2na4VyYzVRFSSEyu8JQKgtYcNW1WxasnwtxpciV_X8nohiz_xQ3QHbsEz4nodHNzY6eEraaipIm8QYyEPJxCChgtbARVdvPJHBXgeyfa4JLkS2Zy1kbLD5ebLu9JfUHMZucat53QNmfmg042Tu4NZYw_c8x98jv_zVetotcWluEiG9Bl98OMv6NMCW-FXNIjJulNQqsfnk9FTjPXgoWmSEWOAv7horxTgs9vm5nZ2jxN_5xMuFgLl39DV6cnl0YC0hRiI45oL4mkFbixNX-usFrRyVBppHFW-lp5TYes-08Zy7anPHfyEWGczW9UABbitK8W_o5XxZOw3EQZA0a-YzWsVqpx4WD2k4xZgqrIZ1Vb3EJkronQtS3koljEqE78yK8MMld0M9dDPTv4h8XO8Kbkz12vZ-um0ZFrlmQYMzHpor3sNHhbCJmbsJzOQCZlMsEwJkNlI9tB1xQF-qpzyHmJRq_8YQ1kcD4vuaes9jbbRx1DxPp0C7aCV5nHmdwEXNfZHtP0XJlUCVA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_JduKWAkECe3WTu2kwOHiKXa0t0KoVbqLcSOIyra3aqbFdq-Fa_CEzG2k7QLQkhIPXBMMkmczI8_2-NvAF4ZLvpGVZImhVY0LgWnOraaxgitLXbYsvRVS8b7cngYfzgSRyvwvd0LE_ghugk35xk-XjsHdxPS25esoUXpiYMYcxtx4iavcs8uvuGobfZ2d4Aqfs3YzvuDd0PaFBaghiseUxuVaJai6CuVVHFUmkgUojCRtJWwOL7XVZ-pQnNlI5saBNXa6ESXFXZtXFel5PjcG3DTlRF3dP2DT5eMVW5A4On9uKCpjJOWJzJi28vtXe4HfwO3y1jZd3Y79-BH-5tCjsvXrXmtt8zFLwyS_9V_vA93G-hNsuArD2DFTh7CnSuEjI9g6Pcjz9BuLfk4PVn45SwyLurgpwQRPsmarAkyOq6_HM9PSaAoXZDsSi7AYzi8lk9Zg9XJdGLXgSBm6pdMp5V0hVwsBkhhuEYkLnUSKa16QFvN56YhYnf1QE7yQCHNcqeRvNNID9508meBguSPkputIeVNKJrlTMk0UQjzWQ9edpcxiLiVoWJip3OUcZu1MBLHKPMkGGD3Ko4IW6YR7wHzZvSXNuTZYJx1Rxv_ctMLuDU8GI_y0e7-3lO4jed5mPTahNX6fG6fIQys9XPveAQ-X7eF_gSafWGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64E3ZUsBIIE5uvbZjJwcOEctqS7tVhajUW4gfEVXb3YrNCm1_FX-Ff8Q4r3ZBCAmpB45JJokTz-PzY74BeGVF1Le6UDTOjabSRYIa6Q2VCK09Bmzlqqol4301OpQfjqKjFfje5sLU_BDdhFuwjMpfBwM_d8X2JWlo7ireIM5DHo5stlXu-sU3HLTN3u4MsIdfcz58_-ndiDZ1BagVWkjqmUOtjPK-1nEhmbMsyqPcMuWLyOPw3hR9rnMjtGc-sYipjTWxcQVGNmEKpwQ-9wbclIoloVjE4OMlYVUYD1TsfiKiiZJxSxPJ-PZye5fD4G_YdhkqV7FueBd-tH-p3uJysjUvzZa9-IVA8n_6jffgTgO8SVpbyn1Y8ZMHsHaFjvEhjKps5BlqrScH09NFtZhFxnlZWylBfE_SZs8E2TsuvxzPz0hNULog6ZWdAI_g8Fo-5TGsTqYT_wQIIqa-4yYpVCjj4tE9RlYYxOHKxEwb3QPadnxmGxr2UA3kNKsJpHkWeiTreqQHbzr585qA5I-Sm60eZY0jmmVcqyTWCPJ5D152l9GFhHWhfOKnc5QJqVrohyXKrNf6171KIL5WCRM94JUW_aUNWToYp93Rxr_c9AJuHQyG2d7O_u5TuI2nRT3jtQmr5de5f4YYsDTPK7Mj8Pm6FfQn8hFgXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Polymeric+Materials+for+Advanced+Lithium+Battery+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kang%2C+Jieun&rft.au=Dong%E2%80%90Yeob+Han&rft.au=Kim%2C+Sungho&rft.au=Ryu%2C+Jaegeon&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fadma.202203194&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon