Multiscale Polymeric Materials for Advanced Lithium Battery Applications
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific e...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 4; pp. e2203194 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Polymeric materials indispensable to building safe, high‐energy‐density advanced batteries, in terms of electrode integrity, interface stability, and extending operational limits, are reviewed. The fundamental understanding of functional polymeric materials for advanced lithium battery chemistry and key research directions are discussed, thus suggesting design strategies for polymeric materials for advanced lithium batteries with improved electrochemical performances. |
---|---|
AbstractList | Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg
−1
at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg-1 at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg-1 at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation rechargeable batteries (i.e., advanced batteries) have been long‐accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg−1 at the cell‐level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high‐energy‐density lithium‐ion, lithium–sulfur, lithium‐metal, and dual‐ion battery chemistry, the key research directions of polymeric materials for achieving high‐energy‐density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. Polymeric materials indispensable to building safe, high‐energy‐density advanced batteries, in terms of electrode integrity, interface stability, and extending operational limits, are reviewed. The fundamental understanding of functional polymeric materials for advanced lithium battery chemistry and key research directions are discussed, thus suggesting design strategies for polymeric materials for advanced lithium batteries with improved electrochemical performances. Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed. |
Author | Kim, Sungho Ryu, Jaegeon Kang, Jieun Park, Soojin Han, Dong‐Yeob |
Author_xml | – sequence: 1 givenname: Jieun surname: Kang fullname: Kang, Jieun organization: Pohang University of Science and Technology (POSTECH) – sequence: 2 givenname: Dong‐Yeob surname: Han fullname: Han, Dong‐Yeob organization: Pohang University of Science and Technology (POSTECH) – sequence: 3 givenname: Sungho surname: Kim fullname: Kim, Sungho organization: Pohang University of Science and Technology (POSTECH) – sequence: 4 givenname: Jaegeon surname: Ryu fullname: Ryu, Jaegeon email: jryu@sogang.ac.kr organization: Sogang University – sequence: 5 givenname: Soojin orcidid: 0000-0003-3878-6515 surname: Park fullname: Park, Soojin email: soojin.park@postech.ac.kr organization: Pohang University of Science and Technology (POSTECH) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35616903$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAURoMoOj62LqXgxk3Hm6RNmmV9CzPoQtchTVOMpO2YtMr8ezOODxDE1V3knJuP--2iza7vDEKHGKYYgJyqulVTAoQAxSLbQBOcE5xmIPJNNAFB81SwrNhBuyE8A4BgwLbRDs0ZZgLoBN3MRzfYoJUzyX3vlq3xVidzNcSpXEia3idl_ao6bepkZocnO7bJmRri-zIpFwtntRps34V9tNVEwRx8zj30eHX5cH6Tzu6ub8_LWaopp1lqoOYxlcKcF00GtYZc5UoDM01uKGRVgwlXFeUGjNAUWKWroqqbIqe0ampG99DJeu_C9y-jCYNsY3zjnOpMPwZJGAdgtMhIRI9_oc_96LuYThLORMEF5yvq6JMaq9bUcuFtq_xSft0oAtM1oH0fgjfNN4JBrkqQqxLkdwlRyH4J2g4fVxq8su5vTay1N-vM8p9PZHkxL3_cd4n_mu8 |
CitedBy_id | crossref_primary_10_1002_aenm_202402293 crossref_primary_10_1021_acsaem_4c01003 crossref_primary_10_1002_adfm_202421880 crossref_primary_10_1016_j_cej_2023_144996 crossref_primary_10_1007_s12598_024_03049_1 crossref_primary_10_1002_smll_202400641 crossref_primary_10_1002_metm_13 crossref_primary_10_1016_j_mtener_2024_101684 crossref_primary_10_1002_advs_202412258 crossref_primary_10_1002_eom2_12418 crossref_primary_10_1016_j_ceja_2024_100657 crossref_primary_10_1002_smll_202411463 crossref_primary_10_1002_smll_202306622 crossref_primary_10_1002_aenm_202304530 crossref_primary_10_1021_acsami_4c04864 crossref_primary_10_1016_j_cej_2023_145441 crossref_primary_10_1021_acsaem_3c01163 crossref_primary_10_1002_adma_202305605 crossref_primary_10_1016_j_cej_2023_144840 crossref_primary_10_1002_adfm_202213458 crossref_primary_10_1002_advs_202402156 crossref_primary_10_1002_smsc_202400611 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124444 crossref_primary_10_1016_j_pnsc_2024_05_005 crossref_primary_10_1021_acsami_3c18382 crossref_primary_10_1002_adma_202303226 crossref_primary_10_1002_adma_202410948 crossref_primary_10_1039_D4IM00066H crossref_primary_10_1039_D3DT02548A crossref_primary_10_1002_smll_202409114 crossref_primary_10_1002_adsu_202400023 crossref_primary_10_34133_research_0406 crossref_primary_10_1002_adma_202306491 crossref_primary_10_1002_smll_202300118 crossref_primary_10_1039_D4TA04766D crossref_primary_10_1016_j_jallcom_2025_179419 crossref_primary_10_1002_adma_202306157 crossref_primary_10_1039_D4TC04275A crossref_primary_10_1021_acsnano_5c00528 crossref_primary_10_1063_5_0182553 |
Cites_doi | 10.1021/ja203983r 10.1002/ente.201402215 10.1038/s41560-021-00910-w 10.1002/aenm.201501082 10.1038/s41586-021-03885-6 10.1039/C8EE01053F 10.1002/adma.201905219 10.1002/adfm.202106176 10.1002/adma.202106335 10.1039/C6CS00875E 10.1002/anie.201909339 10.1039/C5GC02654G 10.1039/C7EE03122J 10.1016/j.jpowsour.2013.03.024 10.1038/s41560-019-0349-7 10.1021/acsami.0c17563 10.1149/1.3212894 10.1002/anie.202006595 10.1021/acsnano.5b05030 10.1038/s41467-019-09924-1 10.1016/j.joule.2019.01.006 10.1016/j.nanoen.2021.105878 10.1002/aenm.201900570 10.1002/aenm.201703320 10.1021/acsnano.6b00218 10.1002/adma.201800533 10.1002/adma.201804766 10.1007/s12274-017-1692-2 10.1039/C7CS00858A 10.1021/acs.chemmater.9b01553 10.1039/c2nr31164j 10.1021/cr020738u 10.1002/aenm.202103718 10.1002/aenm.201801219 10.1038/s41560-020-00702-8 10.1039/D1EE00049G 10.1007/s12274-017-1763-4 10.1039/c0jm01086c 10.1016/j.joule.2019.07.025 10.1038/nchem.1802 10.1038/s41560-018-0312-z 10.1002/aenm.202102109 10.1039/C8EE02555J 10.1016/j.nantod.2012.08.004 10.1002/aenm.201502588 10.1126/science.aal4373 10.1038/nnano.2017.16 10.1016/j.jechem.2018.12.013 10.1002/aenm.202002455 10.1002/eem2.12129 10.1002/anie.201201568 10.1038/nmat3602 10.1021/acs.nanolett.5b04117 10.1002/adfm.201902499 10.1016/j.electacta.2015.11.019 10.1002/aenm.201703138 10.1016/j.joule.2018.09.003 10.1021/cr500062v 10.1002/adma.202005937 10.1016/j.polymer.2014.04.051 10.1021/acs.chemrev.8b00241 10.1002/adma.202100425 10.1002/pi.5677 10.1002/celc.201801105 10.1002/adfm.201910138 10.1016/j.ensm.2017.05.013 10.1016/j.jechem.2021.05.027 10.1016/j.xcrp.2020.100119 10.1038/nmat1368 10.1038/s41560-020-0634-5 10.1016/j.matt.2019.05.016 10.1007/s13233-020-8175-0 10.1039/C9TA03104A 10.1016/j.jpowsour.2004.07.007 10.1016/j.ssi.2013.08.014 10.1039/C6EE01219A 10.1002/adfm.202010958 10.1016/j.eurpolymj.2005.09.017 10.1016/j.electacta.2019.06.034 10.1016/j.jpowsour.2015.06.068 10.1002/aenm.202003836 10.1016/j.xcrp.2022.100785 10.1016/j.joule.2018.02.012 10.1002/aenm.201501010 10.1002/anie.201814294 10.1016/j.ensm.2021.01.018 10.1002/adfm.201908433 10.1002/adma.201606823 10.1016/j.ensm.2021.06.033 10.1016/j.ensm.2020.08.012 10.1002/inf2.12185 10.1146/annurev-matsci-071312-121705 10.1039/C4TA02151G 10.1021/ja4054465 10.1038/s41563-019-0431-3 10.1002/aenm.201601066 10.1002/aenm.201802645 10.1002/adfm.202070065 10.1016/j.jpowsour.2019.226985 10.1039/C8EE00640G 10.1002/smll.202105724 10.1038/s41560-018-0130-3 10.1039/c3ra42611d 10.1021/jacs.8b06047 10.1002/aenm.202002297 10.1002/adma.201102421 10.1002/aenm.201501008 10.1002/adfm.201906770 10.1016/j.jpowsour.2019.03.057 10.1149/1.2398725 10.1126/sciadv.aat5383 10.1021/acscentsci.7b00569 10.1038/19730 10.1021/acsnano.6b06797 10.1002/macp.201900414 10.1149/1.3563085 10.1039/C4TA04504A 10.1016/S0013-4686(03)00968-X 10.1021/acs.chemmater.0c01489 10.1002/adma.201707594 10.1002/adma.201804822 10.1038/s41598-017-17697-0 10.1002/anie.201710806 10.1002/adfm.202104858 10.1002/aenm.202103187 10.1039/C6CS00491A 10.1002/aenm.201802107 10.1016/j.cej.2021.134394 10.1038/natrevmats.2016.13 10.1149/1.1850854 10.1039/C3EE40795K 10.1002/aenm.201702314 10.1039/C7CP02779F 10.1002/aenm.201400690 10.1016/j.ensm.2021.12.046 10.1021/acs.accounts.8b00566 10.1002/aenm.201903110 10.1038/s41586-021-04209-4 10.1002/celc.201900686 10.1016/j.jpcs.2007.08.072 10.1002/smll.201901689 10.1021/acsenergylett.7b00763 10.1002/adfm.201401269 10.1021/acsaem.1c00327 10.1002/aenm.201804022 10.1002/adfm.202005699 10.1021/acsami.7b06303 10.1002/aenm.201601556 10.1021/ja2111543 10.1039/C9RA07781B 10.1038/s41467-018-03466-8 10.1038/s41467-018-06923-6 10.1002/aenm.201901749 10.1016/j.jechem.2020.03.041 10.1016/S0167-2738(03)00025-0 10.1016/j.jpowsour.2022.231105 10.1002/adfm.201500589 10.1038/s41560-017-0047-2 10.1016/j.jpowsour.2011.04.030 10.1039/D0EE00342E 10.1039/C4EE01303D 10.1038/s41560-018-0295-9 10.1021/acsenergylett.6b00456 10.1039/C9EE03828K 10.1002/aenm.201902872 10.1002/adfm.201704858 10.1002/advs.202104277 10.1016/j.ensm.2016.07.003 10.1039/D0CS00137F 10.1016/j.jpowsour.2016.12.036 10.1039/D0EE00060D 10.1016/j.jpowsour.2008.11.031 10.1126/sciadv.1600320 10.1021/acsami.0c21164 10.1002/adfm.202102360 10.1002/adma.201603755 10.1016/j.chempr.2020.01.008 10.1002/aenm.201701482 10.1016/j.jpowsour.2016.03.070 10.1021/acs.nanolett.6b04951 10.1016/j.electacta.2017.11.164 10.1039/D0TA07511F 10.1016/j.joule.2018.06.015 10.1002/aenm.201200068 10.1038/s41578-019-0165-5 10.1039/D1CS00450F 10.1039/C2EE23564A 10.1016/j.electacta.2017.02.160 10.1002/adfm.202104863 10.1021/acsami.9b14147 10.1002/aenm.201903658 10.1002/adfm.202101827 10.1016/j.joule.2018.09.008 10.1038/s41565-019-0604-x 10.1038/s41578-019-0103-6 10.1016/j.chempr.2019.05.009 10.1002/advs.201700270 10.1016/j.ensm.2019.11.003 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202203194 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35616903 10_1002_adma_202203194 ADMA202203194 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2018M1A2A2063346 – fundername: National Research Foundation of Korea grantid: 2018M1A2A2063346 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3734-e0d7935a1778f40dc05a5ac06ef5e304bf127ab37e0e9c306bcb8bdf8533bfd63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:25:19 EDT 2025 Fri Jul 25 08:35:43 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Tue Jul 01 02:33:17 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:24:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | advanced batteries electrolytes binders separators polymeric materials |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-e0d7935a1778f40dc05a5ac06ef5e304bf127ab37e0e9c306bcb8bdf8533bfd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3878-6515 |
PMID | 35616903 |
PQID | 2769879772 |
PQPubID | 2045203 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2670063842 proquest_journals_2769879772 pubmed_primary_35616903 crossref_primary_10_1002_adma_202203194 crossref_citationtrail_10_1002_adma_202203194 wiley_primary_10_1002_adma_202203194_ADMA202203194 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2018 2019 2019; 59 8 7 31 2022 2022 2020 2019; 432 65 8 6 2013; 3 2020 2022 2016; 30 12 1 2019; 11 2020 2020; 10 30 2019; 12 2018 2011 2014 2015; 5 33 262 5 2021 2019; 4 15 2015 2013 2018; 25 5 30 2020; 15 2020; 13 2020; 10 2009; 12 2016 2019 2020; 187 317 12 2018; 8 2010; 20 2011 2017; 133 19 2018; 2 2020 2019; 32 31 2018; 4 2020 2020 2018; 25 59 8 2016; 316 2022; 34 2019 2020 2021; 37 13 13 2016 2008 2017 2016 2003; 10 69 258 16 159 2019; 438 2020 2016 2012 2013 2017 2021; 10 6 2 237 46 50 2021; 85 2016 2021 2018; 6 31 2 2022 2011; 12 196 2013 2018; 135 28 2019; 9 2019; 4 2019; 3 2019; 5 2019; 31 2021 2015; 11 5 2004; 49 2019 2021; 9 36 2019; 1 2017 2013; 46 12 2018 2005 2017; 47 4 10 2018 2009 2012; 11 189 134 2007; 10 2020 2018; 59 5 2011 2016; 23 10 2018 2020 2021; 30 33 31 2016; 5 2017 2017 2016; 2 341 18 2016; 1 2016; 2 2020; 30 2018; 118 2022; 9 2022; 12 2021 2022; 6 3 2018; 11 2018; 10 2019 2022 2020 2019 2020; 3 18 5 18 5 2018 2019; 3 10 2016; 9 2020 2018; 28 3 2017 2019 2014; 7 9 55 2017; 7 2019; 52 2014 2017; 7 12 2013 2006; 6 42 2017 2014; 29 114 2018 2020; 9 10 2017; 232 2017; 357 2017; 9 2012; 51 2020; 5 2014; 4 2021; 31 2021; 33 2020; 1 2020; 50 2020 2021; 32 11 2019; 68 2020; 49 2022; 526 2021; 41 2014; 7 2021 2017 2018 2019; 33 17 9 9 2021 2014 2021 2022; 31 2 31 32 2004; 104 2021; 4 2021; 3 2018; 140 2005; 152 2015; 3 2013; 43 2022; 45 2019; 423 2021 2022; 598 601 2020; 221 2017; 29 2019 2014; 9 24 2015; 9 2021; 14 2005 2014; 139 2 2020 2018; 13 11 2020 2015; 6 294 2017; 10 1999; 398 2012; 7 2012; 4 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_1_2 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_120_3 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_99_2 e_1_2_8_105_1 e_1_2_8_105_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_120_5 e_1_2_8_120_4 e_1_2_8_30_1 e_1_2_8_118_4 e_1_2_8_25_1 e_1_2_8_118_3 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_118_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_106_2 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_119_2 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_119_1 e_1_2_8_111_3 e_1_2_8_111_2 e_1_2_8_111_4 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_93_1 e_1_2_8_27_1 Peng L. (e_1_2_8_51_1) 2021; 31 e_1_2_8_80_1 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_112_2 e_1_2_8_112_1 e_1_2_8_112_3 e_1_2_8_39_1 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_100_6 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_31_3 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_100_2 e_1_2_8_100_3 e_1_2_8_123_1 e_1_2_8_100_4 e_1_2_8_100_5 e_1_2_8_68_1 e_1_2_8_68_2 e_1_2_8_5_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_83_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_109_3 e_1_2_8_95_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_72_3 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_72_1 e_1_2_8_101_3 e_1_2_8_124_2 e_1_2_8_29_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_114_3 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_114_2 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_56_4 e_1_2_8_56_2 e_1_2_8_56_3 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_94_2 e_1_2_8_102_4 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_102_2 e_1_2_8_71_1 e_1_2_8_102_3 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_47_3 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_97_1 e_1_2_8_103_3 e_1_2_8_51_3 e_1_2_8_51_4 e_1_2_8_74_2 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_103_1 e_1_2_8_103_2 e_1_2_8_69_4 e_1_2_8_69_5 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_69_3 e_1_2_8_69_1 e_1_2_8_4_1 e_1_2_8_116_2 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_116_3 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_96_1 e_1_2_8_104_2 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 526 year: 2022 publication-title: J. Power Sources – volume: 423 start-page: 218 year: 2019 publication-title: J. Power Sources – volume: 5 start-page: 2326 year: 2019 publication-title: Chem – volume: 23 10 start-page: 4679 3702 year: 2011 2016 publication-title: Adv. Mater. ACS Nano – volume: 9 24 start-page: 5904 year: 2019 2014 publication-title: Adv. Energy Mater. Adv. Funct. Mater. – volume: 5 33 262 5 start-page: 4008 3 738 year: 2018 2011 2014 2015 publication-title: ChemElectroChem ECS Trans. Solid State Ionics Adv. Energy Mater. – volume: 7 12 start-page: 513 194 year: 2014 2017 publication-title: Energy Environ. Sci. Nat. Nanotechnol. – volume: 43 start-page: 503 year: 2013 publication-title: Annu. Rev. Mater. Res. – volume: 152 start-page: A396 year: 2005 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 312 year: 2019 publication-title: Nat. Rev. Mater. – volume: 28 3 start-page: 1175 290 year: 2020 2018 publication-title: Macromol. Res. Nat. Energy – volume: 2 start-page: 950 year: 2018 publication-title: Joule – volume: 57 start-page: 1505 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2922 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 31 2 31 32 year: 2021 2014 2021 2022 publication-title: Adv. Funct. Mater. J. Mater. Chem. A Adv. Funct. Mater. Adv. Funct. Mater. – volume: 49 start-page: 4667 year: 2020 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 1605 year: 2004 publication-title: Electrochim. Acta – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 16 year: 2019 publication-title: Nat. Energy – volume: 2 start-page: 2047 year: 2018 publication-title: Joule – volume: 12 196 start-page: 7687 year: 2022 2011 publication-title: Adv. Energy Mater. J. Power Sources – volume: 50 start-page: 248 year: 2020 publication-title: J. Energy Chem. – volume: 9 10 start-page: 1339 year: 2018 2020 publication-title: Nat. Commun. Adv. Energy Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 3 18 5 18 5 start-page: 2761 786 1278 526 year: 2019 2022 2020 2019 2020 publication-title: Joule Small Nat. Energy Nat. Mater. Nat. Energy – volume: 11 start-page: 243 year: 2018 publication-title: Energy Environ. Sci. – volume: 10 start-page: 246 year: 2018 publication-title: Energy Storage Mater. – volume: 10 start-page: 4139 year: 2017 publication-title: Nano Res. – volume: 20 start-page: 9180 year: 2010 publication-title: J. Mater. Chem. – volume: 10 30 year: 2020 2020 publication-title: Adv. Energy Mater. Adv. Funct. Mater. – volume: 357 start-page: 279 year: 2017 publication-title: Science – volume: 45 start-page: 941 year: 2022 publication-title: Energy Storage Mater. – volume: 15 start-page: 94 year: 2020 publication-title: Nat. Nanotechnol. – volume: 37 13 13 start-page: 126 1318 9965 year: 2019 2020 2021 publication-title: J. Energy Chem. Energy Environ. Sci. ACS Appl. Mater. Interfaces – volume: 104 start-page: 4419 year: 2004 publication-title: Chem. Rev. – volume: 41 start-page: 522 year: 2021 publication-title: Energy Storage Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 4 start-page: 365 year: 2019 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 2 start-page: 284 year: 2005 2014 publication-title: J. Power Sources J. Mater. Chem. A – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 4 15 start-page: 336 year: 2021 2019 publication-title: Energy Environ. Mater. Small – volume: 4 start-page: 187 year: 2019 publication-title: Nat. Energy – volume: 432 65 8 6 start-page: 9 3674 year: 2022 2022 2020 2019 publication-title: Chem. Eng. J. J. Energy Chem. J. Mater. Chem. A ChemElectroChem – volume: 32 11 year: 2020 2021 publication-title: Adv. Mater. Adv. Energy Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2208 year: 2018 publication-title: Joule – volume: 221 year: 2020 publication-title: Macromol. Chem. Phys. – volume: 598 601 start-page: 590 217 year: 2021 2022 publication-title: Nature Nature – volume: 59 8 7 31 year: 2020 2018 2019 2019 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. J. Mater. Chem. A Adv. Mater. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 4 start-page: 260 year: 2018 publication-title: ACS Cent. Sci. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 1 start-page: 317 year: 2019 publication-title: Matter – volume: 9 year: 2015 publication-title: ACS Nano – volume: 3 start-page: 460 year: 2021 publication-title: Infomat – volume: 11 5 year: 2021 2015 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 2 341 18 start-page: 2388 457 2710 year: 2017 2017 2016 publication-title: ACS Energy Lett. J. Power Sources Green Chem. – volume: 30 33 31 start-page: 164 year: 2018 2020 2021 publication-title: Adv. Mater. Energy Storage Mater. Adv. Funct. Mater. – volume: 25 5 30 start-page: 3599 1042 year: 2015 2013 2018 publication-title: Adv. Funct. Mater. Nat. Chem. Adv. Mater. – volume: 9 36 start-page: 355 year: 2019 2021 publication-title: Adv. Energy Mater. Energy Storage Mater. – volume: 85 year: 2021 publication-title: Nano Energy – volume: 30 12 1 start-page: 1247 year: 2020 2022 2016 publication-title: Adv. Funct. Mater. Adv. Energy Mater. ACS Energy Lett. – volume: 47 4 10 start-page: 2145 366 3970 year: 2018 2005 2017 publication-title: Chem. Soc. Rev. Nat. Mater. Nano Res. – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 52 start-page: 686 year: 2019 publication-title: Acc. Chem. Res. – volume: 12 start-page: A215 year: 2009 publication-title: Electrochem. Solid‐State Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 31 2 start-page: 2528 year: 2016 2021 2018 publication-title: Adv. Energy Mater. Adv. Funct. Mater. Joule – volume: 13 11 start-page: 1429 1945 year: 2020 2018 publication-title: Energy Environ. Sci. Energy Environ. Sci. – volume: 316 start-page: 85 year: 2016 publication-title: J. Power Sources – volume: 10 start-page: A17 year: 2007 publication-title: Electrochem. Solid‐State Lett. – volume: 135 28 year: 2013 2018 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 68 start-page: 7 year: 2019 publication-title: Polym. Int. – volume: 3 start-page: 453 year: 2015 publication-title: Energy Technol. – volume: 7 start-page: 414 year: 2012 publication-title: Nano Today – volume: 118 start-page: 8936 year: 2018 publication-title: Chem. Rev. – volume: 5 start-page: 139 year: 2016 publication-title: Energy Storage Mater. – volume: 6 3 start-page: 951 year: 2021 2022 publication-title: Nat. Energy Cell Rep. Phys. Sci. – volume: 438 year: 2019 publication-title: J. Power Sources – volume: 3 10 start-page: 16 2067 year: 2018 2019 publication-title: Nat. Energy Nat. Commun. – volume: 12 start-page: 273 year: 2019 publication-title: Energy Environ. Sci. – volume: 10 6 2 237 46 50 start-page: 922 229 3006 year: 2020 2016 2012 2013 2017 2021 publication-title: Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. J. Power Sources Chem. Soc. Rev. Chem. Soc. Rev. – volume: 14 start-page: 3510 year: 2021 publication-title: Energy Environ. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 42 start-page: 618 21 year: 2013 2006 publication-title: Energy Environ. Sci. Eur. Polym. J. – volume: 25 59 8 start-page: 1 3802 year: 2020 2020 2018 publication-title: Energy Storage Mater. Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 10 69 258 16 159 start-page: 243 1106 459 111 year: 2016 2008 2017 2016 2003 publication-title: ACS Nano J. Phys. Chem. Solids Electrochim. Acta Nano Lett. Solid State Ionics – volume: 33 17 9 9 start-page: 1670 4469 year: 2021 2017 2018 2019 publication-title: Adv. Mater. Nano Lett. Nat. Commun. Adv. Energy Mater. – volume: 11 189 134 start-page: 3096 72 2902 year: 2018 2009 2012 publication-title: Energy Environ. Sci. J. Power Sources J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 187 317 12 start-page: 113 711 year: 2016 2019 2020 publication-title: Electrochim. Acta Electrochim. Acta ACS Appl. Mater. Interfaces – volume: 32 31 start-page: 7237 4598 year: 2020 2019 publication-title: Chem. Mater. Chem. Mater. – volume: 9 start-page: 3252 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 398 start-page: 792 year: 1999 publication-title: Nature – volume: 59 5 year: 2020 2018 publication-title: Angew. Chem., Int. Ed. Adv. Sci. – volume: 232 start-page: 414 year: 2017 publication-title: Electrochim. Acta – volume: 4 start-page: 5910 year: 2012 publication-title: Nanoscale – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 7 9 55 start-page: 2799 year: 2017 2019 2014 publication-title: Sci. Rep. RSC Adv. Polymer – volume: 133 19 year: 2011 2017 publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys. – volume: 51 start-page: 8762 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 29 114 year: 2017 2014 publication-title: Adv. Mater. Chem. Rev. – volume: 3 start-page: 662 year: 2019 publication-title: Joule – volume: 13 start-page: 1197 year: 2020 publication-title: Energy Environ. Sci. – volume: 46 12 start-page: 797 452 year: 2017 2013 publication-title: Chem. Soc. Rev. Nat. Mater. – volume: 6 294 start-page: 902 180 year: 2020 2015 publication-title: Chem J. Power Sources – ident: e_1_2_8_119_1 doi: 10.1021/ja203983r – ident: e_1_2_8_8_1 doi: 10.1002/ente.201402215 – ident: e_1_2_8_83_1 doi: 10.1038/s41560-021-00910-w – ident: e_1_2_8_118_4 doi: 10.1002/aenm.201501082 – ident: e_1_2_8_99_1 doi: 10.1038/s41586-021-03885-6 – ident: e_1_2_8_74_2 doi: 10.1039/C8EE01053F – ident: e_1_2_8_88_1 doi: 10.1002/adma.201905219 – ident: e_1_2_8_51_4 doi: 10.1002/adfm.202106176 – ident: e_1_2_8_49_1 doi: 10.1002/adma.202106335 – ident: e_1_2_8_100_5 doi: 10.1039/C6CS00875E – ident: e_1_2_8_15_1 doi: 10.1002/anie.201909339 – ident: e_1_2_8_60_3 doi: 10.1039/C5GC02654G – ident: e_1_2_8_59_1 doi: 10.1039/C7EE03122J – ident: e_1_2_8_100_4 doi: 10.1016/j.jpowsour.2013.03.024 – ident: e_1_2_8_97_1 doi: 10.1038/s41560-019-0349-7 – ident: e_1_2_8_47_3 doi: 10.1021/acsami.0c17563 – ident: e_1_2_8_27_1 doi: 10.1149/1.3212894 – ident: e_1_2_8_111_1 doi: 10.1002/anie.202006595 – ident: e_1_2_8_22_1 doi: 10.1021/acsnano.5b05030 – ident: e_1_2_8_66_2 doi: 10.1038/s41467-019-09924-1 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2019.01.006 – ident: e_1_2_8_53_1 doi: 10.1016/j.nanoen.2021.105878 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201900570 – ident: e_1_2_8_109_3 doi: 10.1002/aenm.201703320 – ident: e_1_2_8_34_2 doi: 10.1021/acsnano.6b00218 – ident: e_1_2_8_112_1 doi: 10.1002/adma.201800533 – ident: e_1_2_8_111_4 doi: 10.1002/adma.201804766 – ident: e_1_2_8_11_3 doi: 10.1007/s12274-017-1692-2 – ident: e_1_2_8_11_1 doi: 10.1039/C7CS00858A – ident: e_1_2_8_105_2 doi: 10.1021/acs.chemmater.9b01553 – ident: e_1_2_8_81_1 doi: 10.1039/c2nr31164j – ident: e_1_2_8_6_1 doi: 10.1021/cr020738u – ident: e_1_2_8_32_1 doi: 10.1002/aenm.202103718 – ident: e_1_2_8_111_2 doi: 10.1002/aenm.201801219 – ident: e_1_2_8_69_3 doi: 10.1038/s41560-020-00702-8 – ident: e_1_2_8_96_1 doi: 10.1039/D1EE00049G – ident: e_1_2_8_123_1 doi: 10.1007/s12274-017-1763-4 – ident: e_1_2_8_54_1 doi: 10.1039/c0jm01086c – ident: e_1_2_8_69_1 doi: 10.1016/j.joule.2019.07.025 – ident: e_1_2_8_31_2 doi: 10.1038/nchem.1802 – ident: e_1_2_8_75_1 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_8_106_1 doi: 10.1002/aenm.202102109 – ident: e_1_2_8_108_1 doi: 10.1039/C8EE02555J – ident: e_1_2_8_10_1 doi: 10.1016/j.nantod.2012.08.004 – ident: e_1_2_8_101_1 doi: 10.1002/aenm.201502588 – ident: e_1_2_8_23_1 doi: 10.1126/science.aal4373 – ident: e_1_2_8_65_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_114_1 doi: 10.1016/j.jechem.2018.12.013 – ident: e_1_2_8_104_1 doi: 10.1002/aenm.202002455 – ident: e_1_2_8_21_1 doi: 10.1002/eem2.12129 – ident: e_1_2_8_29_1 doi: 10.1002/anie.201201568 – ident: e_1_2_8_124_2 doi: 10.1038/nmat3602 – ident: e_1_2_8_120_4 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201902499 – ident: e_1_2_8_47_1 doi: 10.1016/j.electacta.2015.11.019 – ident: e_1_2_8_18_1 doi: 10.1002/aenm.201703138 – ident: e_1_2_8_101_3 doi: 10.1016/j.joule.2018.09.003 – ident: e_1_2_8_14_2 doi: 10.1021/cr500062v – ident: e_1_2_8_102_1 doi: 10.1002/adma.202005937 – ident: e_1_2_8_116_3 doi: 10.1016/j.polymer.2014.04.051 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.8b00241 – ident: e_1_2_8_36_1 doi: 10.1002/adma.202100425 – ident: e_1_2_8_76_1 doi: 10.1002/pi.5677 – ident: e_1_2_8_118_1 doi: 10.1002/celc.201801105 – ident: e_1_2_8_72_1 doi: 10.1002/adfm.201910138 – ident: e_1_2_8_44_1 doi: 10.1016/j.ensm.2017.05.013 – ident: e_1_2_8_56_2 doi: 10.1016/j.jechem.2021.05.027 – ident: e_1_2_8_82_1 doi: 10.1016/j.xcrp.2020.100119 – ident: e_1_2_8_11_2 doi: 10.1038/nmat1368 – ident: e_1_2_8_69_5 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_8_70_1 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_8_1_1 doi: 10.1007/s13233-020-8175-0 – ident: e_1_2_8_111_3 doi: 10.1039/C9TA03104A – ident: e_1_2_8_94_1 doi: 10.1016/j.jpowsour.2004.07.007 – ident: e_1_2_8_118_3 doi: 10.1016/j.ssi.2013.08.014 – ident: e_1_2_8_45_1 doi: 10.1039/C6EE01219A – ident: e_1_2_8_101_2 doi: 10.1002/adfm.202010958 – ident: e_1_2_8_113_2 doi: 10.1016/j.eurpolymj.2005.09.017 – ident: e_1_2_8_47_2 doi: 10.1016/j.electacta.2019.06.034 – ident: e_1_2_8_7_2 doi: 10.1016/j.jpowsour.2015.06.068 – ident: e_1_2_8_88_2 doi: 10.1002/aenm.202003836 – ident: e_1_2_8_83_2 doi: 10.1016/j.xcrp.2022.100785 – ident: e_1_2_8_30_1 doi: 10.1016/j.joule.2018.02.012 – ident: e_1_2_8_100_2 doi: 10.1002/aenm.201501010 – ident: e_1_2_8_109_2 doi: 10.1002/anie.201814294 – ident: e_1_2_8_19_2 doi: 10.1016/j.ensm.2021.01.018 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201908433 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201606823 – ident: e_1_2_8_20_1 doi: 10.1016/j.ensm.2021.06.033 – ident: e_1_2_8_112_2 doi: 10.1016/j.ensm.2020.08.012 – ident: e_1_2_8_25_1 doi: 10.1002/inf2.12185 – ident: e_1_2_8_87_1 doi: 10.1146/annurev-matsci-071312-121705 – ident: e_1_2_8_51_2 doi: 10.1039/C4TA02151G – ident: e_1_2_8_33_1 doi: 10.1021/ja4054465 – ident: e_1_2_8_69_4 doi: 10.1038/s41563-019-0431-3 – ident: e_1_2_8_107_1 doi: 10.1002/aenm.201601066 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201802645 – ident: e_1_2_8_37_2 doi: 10.1002/adfm.202070065 – ident: e_1_2_8_90_1 doi: 10.1016/j.jpowsour.2019.226985 – ident: e_1_2_8_103_1 doi: 10.1039/C8EE00640G – ident: e_1_2_8_69_2 doi: 10.1002/smll.202105724 – ident: e_1_2_8_1_2 doi: 10.1038/s41560-018-0130-3 – ident: e_1_2_8_63_1 doi: 10.1039/c3ra42611d – ident: e_1_2_8_67_1 doi: 10.1021/jacs.8b06047 – ident: e_1_2_8_68_2 doi: 10.1002/aenm.202002297 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201102421 – ident: e_1_2_8_104_2 doi: 10.1002/aenm.201501008 – ident: e_1_2_8_122_1 doi: 10.1002/adfm.201906770 – ident: e_1_2_8_98_1 doi: 10.1016/j.jpowsour.2019.03.057 – ident: e_1_2_8_26_1 doi: 10.1149/1.2398725 – ident: e_1_2_8_95_1 doi: 10.1126/sciadv.aat5383 – ident: e_1_2_8_42_1 doi: 10.1021/acscentsci.7b00569 – ident: e_1_2_8_85_1 doi: 10.1038/19730 – ident: e_1_2_8_120_1 doi: 10.1021/acsnano.6b06797 – ident: e_1_2_8_28_1 doi: 10.1002/macp.201900414 – ident: e_1_2_8_118_2 doi: 10.1149/1.3563085 – ident: e_1_2_8_94_2 doi: 10.1039/C4TA04504A – ident: e_1_2_8_121_1 doi: 10.1016/S0013-4686(03)00968-X – ident: e_1_2_8_105_1 doi: 10.1021/acs.chemmater.0c01489 – ident: e_1_2_8_31_3 doi: 10.1002/adma.201707594 – ident: e_1_2_8_46_1 doi: 10.1002/adma.201804822 – ident: e_1_2_8_116_1 doi: 10.1038/s41598-017-17697-0 – ident: e_1_2_8_78_1 doi: 10.1002/anie.201710806 – ident: e_1_2_8_41_1 doi: 10.1002/adfm.202104858 – ident: e_1_2_8_72_2 doi: 10.1002/aenm.202103187 – ident: e_1_2_8_124_1 doi: 10.1039/C6CS00491A – ident: e_1_2_8_39_1 doi: 10.1002/aenm.201802107 – ident: e_1_2_8_56_1 doi: 10.1016/j.cej.2021.134394 – ident: e_1_2_8_2_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_8_71_1 doi: 10.1149/1.1850854 – ident: e_1_2_8_65_1 doi: 10.1039/C3EE40795K – ident: e_1_2_8_35_1 doi: 10.1002/aenm.201702314 – ident: e_1_2_8_119_2 doi: 10.1039/C7CP02779F – ident: e_1_2_8_13_1 doi: 10.1002/aenm.201400690 – ident: e_1_2_8_48_1 doi: 10.1016/j.ensm.2021.12.046 – ident: e_1_2_8_89_1 doi: 10.1021/acs.accounts.8b00566 – ident: e_1_2_8_37_1 doi: 10.1002/aenm.201903110 – ident: e_1_2_8_99_2 doi: 10.1038/s41586-021-04209-4 – ident: e_1_2_8_56_4 doi: 10.1002/celc.201900686 – ident: e_1_2_8_120_2 doi: 10.1016/j.jpcs.2007.08.072 – ident: e_1_2_8_21_2 doi: 10.1002/smll.201901689 – ident: e_1_2_8_60_1 doi: 10.1021/acsenergylett.7b00763 – ident: e_1_2_8_17_2 doi: 10.1002/adfm.201401269 – ident: e_1_2_8_93_1 doi: 10.1021/acsaem.1c00327 – volume: 31 start-page: 2208537 year: 2021 ident: e_1_2_8_51_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_110_1 doi: 10.1002/aenm.201804022 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.202005699 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.7b06303 – ident: e_1_2_8_61_1 doi: 10.1002/aenm.201601556 – ident: e_1_2_8_103_3 doi: 10.1021/ja2111543 – ident: e_1_2_8_116_2 doi: 10.1039/C9RA07781B – ident: e_1_2_8_68_1 doi: 10.1038/s41467-018-03466-8 – ident: e_1_2_8_102_3 doi: 10.1038/s41467-018-06923-6 – ident: e_1_2_8_102_4 doi: 10.1002/aenm.201901749 – ident: e_1_2_8_57_1 doi: 10.1016/j.jechem.2020.03.041 – ident: e_1_2_8_120_5 doi: 10.1016/S0167-2738(03)00025-0 – ident: e_1_2_8_62_1 doi: 10.1016/j.jpowsour.2022.231105 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201500589 – ident: e_1_2_8_66_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_8_106_2 doi: 10.1016/j.jpowsour.2011.04.030 – ident: e_1_2_8_114_2 doi: 10.1039/D0EE00342E – ident: e_1_2_8_125_1 doi: 10.1039/C4EE01303D – ident: e_1_2_8_43_1 doi: 10.1038/s41560-018-0295-9 – ident: e_1_2_8_72_3 doi: 10.1021/acsenergylett.6b00456 – ident: e_1_2_8_74_1 doi: 10.1039/C9EE03828K – ident: e_1_2_8_64_1 doi: 10.1002/aenm.201902872 – ident: e_1_2_8_33_2 doi: 10.1002/adfm.201704858 – ident: e_1_2_8_92_1 doi: 10.1002/advs.202104277 – ident: e_1_2_8_9_1 doi: 10.1016/j.ensm.2016.07.003 – ident: e_1_2_8_58_1 doi: 10.1039/D0CS00137F – ident: e_1_2_8_60_2 doi: 10.1016/j.jpowsour.2016.12.036 – ident: e_1_2_8_50_1 doi: 10.1039/D0EE00060D – ident: e_1_2_8_103_2 doi: 10.1016/j.jpowsour.2008.11.031 – ident: e_1_2_8_73_1 doi: 10.1126/sciadv.1600320 – ident: e_1_2_8_114_3 doi: 10.1021/acsami.0c21164 – ident: e_1_2_8_112_3 doi: 10.1002/adfm.202102360 – ident: e_1_2_8_79_1 doi: 10.1002/adma.201603755 – ident: e_1_2_8_7_1 doi: 10.1016/j.chempr.2020.01.008 – ident: e_1_2_8_77_1 doi: 10.1002/aenm.201701482 – ident: e_1_2_8_12_1 doi: 10.1016/j.jpowsour.2016.03.070 – ident: e_1_2_8_102_2 doi: 10.1021/acs.nanolett.6b04951 – ident: e_1_2_8_120_3 doi: 10.1016/j.electacta.2017.11.164 – ident: e_1_2_8_56_3 doi: 10.1039/D0TA07511F – ident: e_1_2_8_52_1 doi: 10.1016/j.joule.2018.06.015 – ident: e_1_2_8_100_3 doi: 10.1002/aenm.201200068 – ident: e_1_2_8_84_1 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_8_100_6 doi: 10.1039/D1CS00450F – ident: e_1_2_8_113_1 doi: 10.1039/C2EE23564A – ident: e_1_2_8_40_1 doi: 10.1016/j.electacta.2017.02.160 – ident: e_1_2_8_91_1 doi: 10.1002/adfm.202104863 – ident: e_1_2_8_115_1 doi: 10.1021/acsami.9b14147 – ident: e_1_2_8_100_1 doi: 10.1002/aenm.201903658 – ident: e_1_2_8_51_3 doi: 10.1002/adfm.202101827 – ident: e_1_2_8_117_1 doi: 10.1016/j.joule.2018.09.008 – ident: e_1_2_8_80_1 doi: 10.1038/s41565-019-0604-x – ident: e_1_2_8_4_1 doi: 10.1038/s41578-019-0103-6 – ident: e_1_2_8_86_1 doi: 10.1016/j.chempr.2019.05.009 – ident: e_1_2_8_15_2 doi: 10.1002/advs.201700270 – ident: e_1_2_8_109_1 doi: 10.1016/j.ensm.2019.11.003 |
SSID | ssj0009606 |
Score | 2.5859435 |
SecondaryResourceType | review_article |
Snippet | Riding on the rapid growth in electric vehicles and the stationary energy storage market, high‐energy‐density lithium‐ion batteries and next‐generation... Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2203194 |
SubjectTerms | advanced batteries Batteries binders Electric vehicles Electrode materials Electrolytes Energy storage Lithium Lithium batteries Lithium-ion batteries Materials science polymeric materials Rechargeable batteries separators Specific energy |
Title | Multiscale Polymeric Materials for Advanced Lithium Battery Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202203194 https://www.ncbi.nlm.nih.gov/pubmed/35616903 https://www.proquest.com/docview/2769879772 https://www.proquest.com/docview/2670063842 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA6Lp92Dui8dH0sEYU_RTJ7dx8YHw-IsIgremiSdRnGcEafnoL_eStLTzuwiC-6x6QpJp6qSr1OprxDad1z2na4VyYzVRFSSEyu8JQKgtYcNW1WxasnwtxpciV_X8nohiz_xQ3QHbsEz4nodHNzY6eEraaipIm8QYyEPJxCChgtbARVdvPJHBXgeyfa4JLkS2Zy1kbLD5ebLu9JfUHMZucat53QNmfmg042Tu4NZYw_c8x98jv_zVetotcWluEiG9Bl98OMv6NMCW-FXNIjJulNQqsfnk9FTjPXgoWmSEWOAv7horxTgs9vm5nZ2jxN_5xMuFgLl39DV6cnl0YC0hRiI45oL4mkFbixNX-usFrRyVBppHFW-lp5TYes-08Zy7anPHfyEWGczW9UABbitK8W_o5XxZOw3EQZA0a-YzWsVqpx4WD2k4xZgqrIZ1Vb3EJkronQtS3koljEqE78yK8MMld0M9dDPTv4h8XO8Kbkz12vZ-um0ZFrlmQYMzHpor3sNHhbCJmbsJzOQCZlMsEwJkNlI9tB1xQF-qpzyHmJRq_8YQ1kcD4vuaes9jbbRx1DxPp0C7aCV5nHmdwEXNfZHtP0XJlUCVA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_JduKWAkECe3WTu2kwOHiKXa0t0KoVbqLcSOIyra3aqbFdq-Fa_CEzG2k7QLQkhIPXBMMkmczI8_2-NvAF4ZLvpGVZImhVY0LgWnOraaxgitLXbYsvRVS8b7cngYfzgSRyvwvd0LE_ghugk35xk-XjsHdxPS25esoUXpiYMYcxtx4iavcs8uvuGobfZ2d4Aqfs3YzvuDd0PaFBaghiseUxuVaJai6CuVVHFUmkgUojCRtJWwOL7XVZ-pQnNlI5saBNXa6ESXFXZtXFel5PjcG3DTlRF3dP2DT5eMVW5A4On9uKCpjJOWJzJi28vtXe4HfwO3y1jZd3Y79-BH-5tCjsvXrXmtt8zFLwyS_9V_vA93G-hNsuArD2DFTh7CnSuEjI9g6Pcjz9BuLfk4PVn45SwyLurgpwQRPsmarAkyOq6_HM9PSaAoXZDsSi7AYzi8lk9Zg9XJdGLXgSBm6pdMp5V0hVwsBkhhuEYkLnUSKa16QFvN56YhYnf1QE7yQCHNcqeRvNNID9508meBguSPkputIeVNKJrlTMk0UQjzWQ9edpcxiLiVoWJip3OUcZu1MBLHKPMkGGD3Ko4IW6YR7wHzZvSXNuTZYJx1Rxv_ctMLuDU8GI_y0e7-3lO4jed5mPTahNX6fG6fIQys9XPveAQ-X7eF_gSafWGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiF64E3ZUsBIIE5uvbZjJwcOEctqS7tVhajUW4gfEVXb3YrNCm1_FX-Ff8Q4r3ZBCAmpB45JJokTz-PzY74BeGVF1Le6UDTOjabSRYIa6Q2VCK09Bmzlqqol4301OpQfjqKjFfje5sLU_BDdhFuwjMpfBwM_d8X2JWlo7ireIM5DHo5stlXu-sU3HLTN3u4MsIdfcz58_-ndiDZ1BagVWkjqmUOtjPK-1nEhmbMsyqPcMuWLyOPw3hR9rnMjtGc-sYipjTWxcQVGNmEKpwQ-9wbclIoloVjE4OMlYVUYD1TsfiKiiZJxSxPJ-PZye5fD4G_YdhkqV7FueBd-tH-p3uJysjUvzZa9-IVA8n_6jffgTgO8SVpbyn1Y8ZMHsHaFjvEhjKps5BlqrScH09NFtZhFxnlZWylBfE_SZs8E2TsuvxzPz0hNULog6ZWdAI_g8Fo-5TGsTqYT_wQIIqa-4yYpVCjj4tE9RlYYxOHKxEwb3QPadnxmGxr2UA3kNKsJpHkWeiTreqQHbzr585qA5I-Sm60eZY0jmmVcqyTWCPJ5D152l9GFhHWhfOKnc5QJqVrohyXKrNf6171KIL5WCRM94JUW_aUNWToYp93Rxr_c9AJuHQyG2d7O_u5TuI2nRT3jtQmr5de5f4YYsDTPK7Mj8Pm6FfQn8hFgXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Polymeric+Materials+for+Advanced+Lithium+Battery+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kang%2C+Jieun&rft.au=Dong%E2%80%90Yeob+Han&rft.au=Kim%2C+Sungho&rft.au=Ryu%2C+Jaegeon&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fadma.202203194&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |