Atomic Ruthenium‐Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, u...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 27; pp. e202320014 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Here we report ruthenium single‐atom catalysts loaded on ultrathin CdS nanosheets (Ru1/CdS), which efficiently catalyze biomass‐derived α‐hydroxy acids to produce amino acids under visible light irradiation. The optimal system predominates the conventional thermocatalytic and photocatalytic systems in terms of conversion, selectivity, yield, and amino acid formation rates. |
---|---|
AbstractList | Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Here we report ruthenium single‐atom catalysts loaded on ultrathin CdS nanosheets (Ru1/CdS), which efficiently catalyze biomass‐derived α‐hydroxy acids to produce amino acids under visible light irradiation. The optimal system predominates the conventional thermocatalytic and photocatalytic systems in terms of conversion, selectivity, yield, and amino acid formation rates. Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru /CdS). On a metal basis, the optimized Ru /CdS exhibits a maximal alanine formation rate of 26.0 mol ⋅ g ⋅ h , which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru /CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH -CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru 1 /CdS). On a metal basis, the optimized Ru 1 /CdS exhibits a maximal alanine formation rate of 26.0 mol Ala ⋅ g Ru −1 ⋅ h −1 , which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru 1 /CdS to the facilitated charge separation and O−H bond dissociation of the α ‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH 3 −CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. |
Author | Yao, Ye‐Feng Li, Lina Cai, Lingchao Feng, Xiang Xu, Bei‐Bei Zhang, Yifei Antonietti, Markus Zheng, Xiuhui Wang, Xue‐Lu Chen, Zupeng Li, Wulin Yang, Yue Wang, Zhu‐Jun Nan, Bing |
Author_xml | – sequence: 1 givenname: Wulin surname: Li fullname: Li, Wulin organization: Nanjing Forestry University – sequence: 2 givenname: Xiuhui surname: Zheng fullname: Zheng, Xiuhui organization: China University of Petroleum – sequence: 3 givenname: Bei‐Bei surname: Xu fullname: Xu, Bei‐Bei organization: Nanjing University of Science and Technology – sequence: 4 givenname: Yue surname: Yang fullname: Yang, Yue organization: Shanghai Tech University – sequence: 5 givenname: Yifei surname: Zhang fullname: Zhang, Yifei organization: Nanjing Forestry University – sequence: 6 givenname: Lingchao surname: Cai fullname: Cai, Lingchao organization: Nanjing Forestry University – sequence: 7 givenname: Zhu‐Jun surname: Wang fullname: Wang, Zhu‐Jun organization: Shanghai Tech University – sequence: 8 givenname: Ye‐Feng surname: Yao fullname: Yao, Ye‐Feng organization: East China Normal University – sequence: 9 givenname: Bing surname: Nan fullname: Nan, Bing organization: Shanghai Advanced Research Institute – sequence: 10 givenname: Lina surname: Li fullname: Li, Lina organization: Shanghai Advanced Research Institute – sequence: 11 givenname: Xue‐Lu surname: Wang fullname: Wang, Xue‐Lu email: xlwang@phy.ecnu.edu.cn organization: East China Normal University – sequence: 12 givenname: Xiang surname: Feng fullname: Feng, Xiang email: xiangfeng@upc.edu.cn organization: China University of Petroleum – sequence: 13 givenname: Markus surname: Antonietti fullname: Antonietti, Markus organization: Max-Planck Institute of Colloids and Interfaces, Research Campus Golm – sequence: 14 givenname: Zupeng orcidid: 0000-0002-7351-3240 surname: Chen fullname: Chen, Zupeng email: czp@njfu.edu.cn organization: Nanjing Forestry University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38598078$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaD7aa49F0Esv3koaeyUf3W3aBkIamvRsZH0QBctKJDlhb_kJ_Y35JdGyaQqB0tMMw_OMxLwHaGcKk0HoHSULSgj7JCdnFowwYITQ-hXapw2jFXAOO6WvASouGrqHDlK6KrwQZPka7YFoWkG42Ec3XQ7eKfxzzpdmcrN_uP99FoMP2Wi8ktqXET6fR-u0wTZEfHYZclAyy3Gdi1dYPavswoSDxZ13U8CdcjphW7bgzy54mRL-YqK7ldndmvQG7Vo5JvP2qR6iX1-PLlbfq5Mf345X3UmlgENdaSIY57YVcik0aQdhCW0FFXQpm9IPlDLLhSEUGg0D1Qwo1IYpSdvBKtLAIfq43Xsdw81sUu69S8qMo5xMmFMPBJoGliDagn54gV6FOU7ld4XiDEgthCjU-ydqHrzR_XV0XsZ1_-eYBVhsARVDStHYZ4SSfpNWv0mrf06rCPULQbksN8fMUbrx31q71e7caNb_eaTvTo-P_rqPflipuA |
CitedBy_id | crossref_primary_10_1002_smll_202500253 crossref_primary_10_1002_aenm_202401838 crossref_primary_10_1007_s11426_024_2396_9 crossref_primary_10_1039_D4AY02142H crossref_primary_10_1038_s41467_025_55930_x crossref_primary_10_1002_ange_202408504 crossref_primary_10_1002_anie_202408504 crossref_primary_10_1039_D4EE03092C crossref_primary_10_1021_acscatal_4c05235 crossref_primary_10_20517_microstructures_2024_49 |
Cites_doi | 10.1021/acscatal.1c02551 10.1039/D1CS00039J 10.1021/jacs.7b08657 10.1021/jacs.1c08159 10.1063/1.323539 10.1016/j.biotechadv.2017.09.001 10.1016/j.rinp.2020.103058 10.1073/pnas.1800272115 10.1016/S2542-5196(21)00138-8 10.1038/nchem.1095 10.1002/adma.201700555 10.1002/anie.200300599 10.1016/j.biortech.2018.06.004 10.1016/j.pecs.2012.02.002 10.1021/jacs.1c02128 10.1016/j.chempr.2019.05.022 10.1002/ange.202207410 10.1007/s40843-021-1907-3 10.1093/nsr/nwy048 10.1038/ncomms11918 10.1021/acs.jpcc.5b00846 10.1007/s11426-018-9273-1 10.1016/j.jcdr.2013.05.002 10.1039/D0CY02358B 10.1039/c3gc41141a 10.1016/j.ijpharm.2021.121375 10.1002/cssc.202001561 10.1002/anie.202306452 10.1002/jlac.18500750103 10.1002/adma.202105482 10.1038/s41467-020-18532-3 10.1016/S1872-2067(21)63968-2 10.1002/anie.202109538 10.1038/s41565-018-0167-2 10.1039/D1CY01437D 10.1039/C5MH00160A 10.1002/ange.202306305 10.1016/j.biotechadv.2007.07.004 10.1002/anie.201912580 10.1021/cs300031d 10.1007/3-540-45989-8_1 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202320014 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38598078 10_1002_anie_202320014 ANIE202320014 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China-Outstanding Youth foundation (22322814) funderid: 22322814 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China funderid: 21KJA150003 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210608 – fundername: Key Technologies Research and Development Program funderid: 2023YFD2200505 – fundername: National Natural Science Foundation of China funderid: 22202105; 22072045 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210608 – fundername: National Natural Science Foundation of China grantid: 22072045 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China grantid: 21KJA150003 – fundername: Key Technologies Research and Development Program grantid: 2023YFD2200505 – fundername: National Natural Science Foundation of China-Outstanding Youth foundation (22322814) grantid: 22322814 – fundername: National Natural Science Foundation of China grantid: 22202105 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 M53 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3734-d08277f98a68d09b8f01981816a58f0b112f78e0135d3b1d23134e2ca19bfc053 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:09:42 EDT 2025 Fri Jul 25 12:00:37 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 01:47:35 EDT 2025 Wed Jan 22 17:18:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | amination single-atom catalysis photocatalysis biomass derivatives amino acids |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-d08277f98a68d09b8f01981816a58f0b112f78e0135d3b1d23134e2ca19bfc053 |
Notes | These authors contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7351-3240 |
PMID | 38598078 |
PQID | 3072304888 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3035536389 proquest_journals_3072304888 pubmed_primary_38598078 crossref_primary_10_1002_anie_202320014 crossref_citationtrail_10_1002_anie_202320014 wiley_primary_10_1002_anie_202320014_ANIE202320014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 1, 2024 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2022; 134 1850; 75 2018; 264 2021; 5 2013; 4 2019; 5 1977; 48 2003; 79 2020; 17 2020; 59 2020; 13 2017; 29 2012; 38 2020; 11 2022; 65 2022; 43 2018; 61 2021; 143 2021; 50 2011; 3 2022; 613 2017; 139 2023; 62 2016; 7 2013; 15 2012; 2 2018; 5 2021; 11 2021; 33 2016; 3 2023; 135 2018; 115 2008; 26 2017 2018; 30 2015; 119 2021; 60 2018; 36 2018; 13 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_49_2 Fang X. Z. (e_1_2_7_38_2) 2018; 30 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_1 Uneyama H. (e_1_2_7_3_2) 2017 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_2 |
References_xml | – volume: 48 start-page: 4729 year: 1977 end-page: 4733 publication-title: J. Appl. Phys. – volume: 5 start-page: E560 year: 2021 end-page: E569 publication-title: Lancet Planet. Heath. – volume: 79 start-page: 1 year: 2003 end-page: 35 publication-title: Adv. Bio. Eng/Biotechnol. – volume: 11 start-page: 4899 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 7 year: 2016 end-page: 10 publication-title: Mater. Horiz. – volume: 5 start-page: 642 year: 2018 end-page: 652 publication-title: Natl. Sci. Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 143 start-page: 16358 year: 2021 end-page: 16363 publication-title: J. Am. Chem. Soc. – volume: 613 year: 2022 publication-title: Int. J. Pharm. – volume: 4 start-page: 112 year: 2013 end-page: 115 publication-title: J. Cardiovasc. Dis. Res. – volume: 139 start-page: 15584 year: 2017 end-page: 15587 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1247 year: 2012 end-page: 1258 publication-title: ACS Catal. – volume: 143 start-page: 10940 year: 2021 end-page: 10947 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 788 year: 2004 end-page: 824 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 22 year: 2008 end-page: 34 publication-title: Biotechnol. Adv. – volume: 36 start-page: 14 year: 2018 end-page: 25 publication-title: Biotechnol. Adv. – volume: 264 start-page: 370 year: 2018 end-page: 381 publication-title: Bioresour. Technol. – volume: 59 start-page: 2289 year: 2020 end-page: 2293 publication-title: Angew. Chem. Int. Ed. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 2520 year: 2019 end-page: 2546 publication-title: Chem. – volume: 115 start-page: 5093 year: 2018 end-page: 5098 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 5683 year: 2020 end-page: 5689 publication-title: ChemSusChem – volume: 134 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 22522 year: 2021 end-page: 22528 publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 1187 year: 2018 end-page: 1196 publication-title: Sci. China Chem. – volume: 3 start-page: 634 year: 2011 end-page: 641 publication-title: Nat. Chem. – start-page: 273 year: 2017 end-page: 287 – volume: 43 start-page: 1058 year: 2022 end-page: 1065 publication-title: Chin. J. Catal. – volume: 75 start-page: 27 year: 1850 end-page: 45 publication-title: Justus Liebigs Ann. Chem. – volume: 17 year: 2020 publication-title: Results Phys. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 135 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 65 start-page: 1285 year: 2022 end-page: 1293 publication-title: Sci. China Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 11336 year: 2021 end-page: 11359 publication-title: ACS Catal. – volume: 13 start-page: 702 year: 2018 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 2619 year: 2013 end-page: 2635 publication-title: Green Chem. – volume: 38 start-page: 522 year: 2012 end-page: 550 publication-title: Prog. Energy Combust. Sci. – volume: 119 start-page: 6696 year: 2015 end-page: 6702 publication-title: J. Phys. Chem. C – volume: 50 start-page: 11270 year: 2021 end-page: 11292 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 7134 year: 2021 end-page: 7140 publication-title: Catal. Sci. Technol. – volume: 7 start-page: 11918 year: 2016 publication-title: Nat. Commun. – volume: 11 start-page: 2354 year: 2021 end-page: 2360 publication-title: Catal. Sci. Technol. – ident: e_1_2_7_34_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_26_2 doi: 10.1021/acscatal.1c02551 – ident: e_1_2_7_17_2 doi: 10.1039/D1CS00039J – ident: e_1_2_7_45_1 doi: 10.1021/jacs.7b08657 – ident: e_1_2_7_46_1 doi: 10.1021/jacs.1c08159 – ident: e_1_2_7_53_1 doi: 10.1063/1.323539 – ident: e_1_2_7_6_2 doi: 10.1016/j.biotechadv.2017.09.001 – start-page: 273 volume-title: Amino Acid Fermentation, Vol. 159 year: 2017 ident: e_1_2_7_3_2 – ident: e_1_2_7_52_1 doi: 10.1016/j.rinp.2020.103058 – ident: e_1_2_7_22_2 doi: 10.1073/pnas.1800272115 – ident: e_1_2_7_2_2 doi: 10.1016/S2542-5196(21)00138-8 – ident: e_1_2_7_30_1 doi: 10.1038/nchem.1095 – ident: e_1_2_7_47_1 – ident: e_1_2_7_40_2 doi: 10.1002/adma.201700555 – ident: e_1_2_7_11_2 doi: 10.1002/anie.200300599 – ident: e_1_2_7_5_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_13_2 doi: 10.1016/j.biortech.2018.06.004 – ident: e_1_2_7_14_2 doi: 10.1016/j.pecs.2012.02.002 – ident: e_1_2_7_48_2 doi: 10.1021/jacs.1c02128 – volume: 30 year: 2018 ident: e_1_2_7_38_2 publication-title: Adv. Mater. – ident: e_1_2_7_15_2 doi: 10.1016/j.chempr.2019.05.022 – ident: e_1_2_7_43_1 doi: 10.1002/ange.202207410 – ident: e_1_2_7_29_1 doi: 10.1007/s40843-021-1907-3 – ident: e_1_2_7_32_2 doi: 10.1093/nsr/nwy048 – ident: e_1_2_7_49_2 doi: 10.1038/ncomms11918 – ident: e_1_2_7_37_1 – ident: e_1_2_7_51_1 doi: 10.1021/acs.jpcc.5b00846 – ident: e_1_2_7_42_1 doi: 10.1007/s11426-018-9273-1 – ident: e_1_2_7_7_2 doi: 10.1016/j.jcdr.2013.05.002 – ident: e_1_2_7_25_2 doi: 10.1039/D0CY02358B – ident: e_1_2_7_19_2 doi: 10.1039/c3gc41141a – ident: e_1_2_7_4_2 doi: 10.1016/j.ijpharm.2021.121375 – ident: e_1_2_7_23_1 doi: 10.1002/cssc.202001561 – ident: e_1_2_7_44_1 doi: 10.1002/anie.202306452 – ident: e_1_2_7_10_2 doi: 10.1002/jlac.18500750103 – ident: e_1_2_7_41_1 doi: 10.1002/adma.202105482 – ident: e_1_2_7_1_1 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-020-18532-3 – ident: e_1_2_7_36_2 doi: 10.1016/S1872-2067(21)63968-2 – ident: e_1_2_7_33_2 doi: 10.1002/anie.202109538 – ident: e_1_2_7_35_2 doi: 10.1038/s41565-018-0167-2 – ident: e_1_2_7_39_2 doi: 10.1039/D1CY01437D – ident: e_1_2_7_54_1 doi: 10.1039/C5MH00160A – ident: e_1_2_7_28_1 doi: 10.1002/ange.202306305 – ident: e_1_2_7_18_2 doi: 10.1016/j.biotechadv.2007.07.004 – ident: e_1_2_7_21_2 doi: 10.1002/anie.201912580 – ident: e_1_2_7_9_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_50_1 doi: 10.1021/cs300031d – ident: e_1_2_7_8_2 doi: 10.1007/3-540-45989-8_1 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.533675 |
Snippet | Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the... Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202320014 |
SubjectTerms | Alanine Amination Amino acids Biomass biomass derivatives Cadmium Cadmium sulfide Density functional theory Hydrogen bonds Hydroxy acids Irradiation Lactic acid Light irradiation Nanoparticles NMR Nuclear magnetic resonance photocatalysis Ruthenium single-atom catalysis Sulfides Sustainable production |
Title | Atomic Ruthenium‐Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202320014 https://www.ncbi.nlm.nih.gov/pubmed/38598078 https://www.proquest.com/docview/3072304888 https://www.proquest.com/docview/3035536389 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvcCF9yNQKldC4uRtEmezyTHdtmortVoBlXqL_IqI6CZAEqT2xE_gN_aXMBNvQheEkODmJLbjeGbsT87MNwCvQ2KjtkpzLbXkkRI-R1Af8TTylcT10A8sBTifnsVH59HJxfTiVhS_44cYD9zIMvr1mgxcqmb3J2koRWBPKPk3eQURISg5bBEqejvyR4WonC68SAhOWegH1kY_3F1vvr4r_QY115Frv_Uc3gc5DNp5nHycdK2a6Otf-Bz_56sewL0VLmWZU6SHsGGrR3BnPqSDewyfs5YCmFnvEl-V3fLm2_dF78tnDZtLs8Rb7F13WZTGMkTCbPGhbuv-dOgK-2QLRy2LasDqgmXLsqpZpkvTMIpwYXslOSo1bB8t4mtPRt48gfPDg_fzI77K18C1mImIG4QTs1mRJjJOjJ-qpED8iIAgiOUUywqhXTFLLILOqREqMAgtRWRDLYNUFRpXg6ewWdWVfQ7Mxsoo7DSQKqboWRWqAsGh9nWsDTbzgA_yyvWKzJxyalzmjoY5zGki83EiPXgz1v_kaDz-WHNrEH--Mucmx4WQDs-TJPFgZ3yMAqC_K7KydUd1ELoJAoAePHNqM75KJNOUiP09CHvh_2UMeXZ2fDBevfiXRi_hLpYj51i8BZvtl86-QvjUqu3eRH4At-ARQg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4RAuQFgNCTQSiJMn3sZjHzg4M4lmSDIaQSLlZnqzsMjYgG1QOPEJ_Aq_kk_gS6jyhgaEkJBy4Oal2253V1U_d1e9AnjiEBu1FtKUXHLTE65lIqj3zNCzBEd7aNmaApyP5v70xHtxOjxdg29dLEzDD9EvuJFm1PaaFJwWpHd-soZSCPaAsn-TW5DX-lUe6PNP-NdWPJ9NcIifOs7-3vF4araJBUzpjlzPVDjvjUZJGHA_UFYoggSBDs5cts-HeCwQgySjQCM6GipX2AoxkOtpR3I7FIm0KFEEWv0rlEac6PonL3vGKgfVoQlocl2T8t53PJGWs7Pa3tV58Ddwu4qV68lu_zpcdN3U-Li8HVSlGMjPvzBI_lf9eAOutdCbRY2ubMKazm7CxrjLeHcL3kclxWiz2us_S6vl9y9fF7W7olZszNUSL7FX1VmSKs0Q7LPFm7zM6wWwc3wmWzTsuSjpLE9YtEyznEUyVQWjIB62m5IvVsEmqPQfa7714jacXMoX34H1LM_0PWDaF0rgQ20ufAoQFo5IEP9KS_pSYTUDzE5AYtnytVPakLO4YZp2Yhq4uB84A5715d81TCV_LLnVyVvcWqwiRltP-wNBEBjwuL-NA0AbSDzTeUVlEJ26hHENuNvIaf8qNxiGlLvAAKeWtr-0IY7ms73-7P6_VHoEG9Pjo8P4cDY_eABX8brX-FFvwXr5odLbiBZL8bDWTwavL1uQfwAS2Wwt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FiQRcEnZMAjQSiJMn3sZjHziYmYwyBEYjIFJupjcLKxk7xDYonPgEPoVf4Rf4Eqq8oQEhJKQcuNntdrvtruXZrnoF8MghNmotpCm55KYnXMtEUO-ZoWcJjvbQsjUlOL-c-_uH3vOj4dEafO1yYRp-iP6DG2lGba9JwU9VsvuTNJQysAdU_Juigrw2rPJAn3_El7bi6WyCK_zYcaZ7b8b7ZltXwJTuyPVMhW5vNErCgPuBskIRJIhz0HHZPh_itkAIkowCjeBoqFxhK4RArqcdye1QJNKiOhFo9Dc83wqpWMTkVU9Y5aA2NPlMrmtS2fuOJtJydlfnu-oGf8O2q1C59nXTLfjWPaUmxOV4UJViID_9QiD5Pz3Gq7DZAm8WNZpyDdZ0dh0uj7t6dzfgfVRShjarY_6ztFp-__xlUQcrasXGXC2xib2uTpJUaYZQny3e5WVef_46xzHZouHORTlnecKiZZrlLJKpKhil8LBnKUViFWyCKv-hZlsvbsLhhdzxLVjP8kzfAaZ9oQQOanPhU3qwcESC6Fda0pcKTzPA7OQjli1bOxUNOYkbnmknpoWL-4Uz4Enf_7ThKfljz51O3OLWXhUxWnr6OxAEgQEP-8O4APT7iGc6r6gPYlOXEK4Btxsx7S_lBsOQKhcY4NTC9pc5xNF8ttfv3f2Xkx7ApcVkGr-YzQ-24Qo2e00Q9Q6sl2eVvodQsRT3a-1k8Pai5fgHOoNq3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+Ruthenium-Promoted+Cadmium+Sulfide+for+Photocatalytic+Production+of+Amino+Acids+from+Biomass+Derivatives&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wulin&rft.au=Zheng%2C+Xiuhui&rft.au=Xu%2C+Bei-Bei&rft.au=Yang%2C+Yue&rft.date=2024-07-01&rft.eissn=1521-3773&rft.spage=e202320014&rft_id=info:doi/10.1002%2Fanie.202320014&rft_id=info%3Apmid%2F38598078&rft.externalDocID=38598078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |