Atomic Ruthenium‐Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives

Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, u...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 27; pp. e202320014 - n/a
Main Authors Li, Wulin, Zheng, Xiuhui, Xu, Bei‐Bei, Yang, Yue, Zhang, Yifei, Cai, Lingchao, Wang, Zhu‐Jun, Yao, Ye‐Feng, Nan, Bing, Li, Lina, Wang, Xue‐Lu, Feng, Xiang, Antonietti, Markus, Chen, Zupeng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. Here we report ruthenium single‐atom catalysts loaded on ultrathin CdS nanosheets (Ru1/CdS), which efficiently catalyze biomass‐derived α‐hydroxy acids to produce amino acids under visible light irradiation. The optimal system predominates the conventional thermocatalytic and photocatalytic systems in terms of conversion, selectivity, yield, and amino acid formation rates.
AbstractList Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine. Here we report ruthenium single‐atom catalysts loaded on ultrathin CdS nanosheets (Ru1/CdS), which efficiently catalyze biomass‐derived α‐hydroxy acids to produce amino acids under visible light irradiation. The optimal system predominates the conventional thermocatalytic and photocatalytic systems in terms of conversion, selectivity, yield, and amino acid formation rates.
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru /CdS). On a metal basis, the optimized Ru /CdS exhibits a maximal alanine formation rate of 26.0 mol  ⋅ g  ⋅ h , which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru /CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH -CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru 1 /CdS). On a metal basis, the optimized Ru 1 /CdS exhibits a maximal alanine formation rate of 26.0 mol Ala  ⋅ g Ru −1  ⋅ h −1 , which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru 1 /CdS to the facilitated charge separation and O−H bond dissociation of the α ‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH 3 −CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the sustainable production of amino acids from biomass‐derived hydroxy acids with high activity under visible‐light irradiation and mild conditions, using atomic ruthenium‐promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu−1 ⋅ h−1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O−H bond dissociation of the α‐hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique “double activation” mechanism of both the CH−OH and CH3−CH−OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Author Yao, Ye‐Feng
Li, Lina
Cai, Lingchao
Feng, Xiang
Xu, Bei‐Bei
Zhang, Yifei
Antonietti, Markus
Zheng, Xiuhui
Wang, Xue‐Lu
Chen, Zupeng
Li, Wulin
Yang, Yue
Wang, Zhu‐Jun
Nan, Bing
Author_xml – sequence: 1
  givenname: Wulin
  surname: Li
  fullname: Li, Wulin
  organization: Nanjing Forestry University
– sequence: 2
  givenname: Xiuhui
  surname: Zheng
  fullname: Zheng, Xiuhui
  organization: China University of Petroleum
– sequence: 3
  givenname: Bei‐Bei
  surname: Xu
  fullname: Xu, Bei‐Bei
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Yue
  surname: Yang
  fullname: Yang, Yue
  organization: Shanghai Tech University
– sequence: 5
  givenname: Yifei
  surname: Zhang
  fullname: Zhang, Yifei
  organization: Nanjing Forestry University
– sequence: 6
  givenname: Lingchao
  surname: Cai
  fullname: Cai, Lingchao
  organization: Nanjing Forestry University
– sequence: 7
  givenname: Zhu‐Jun
  surname: Wang
  fullname: Wang, Zhu‐Jun
  organization: Shanghai Tech University
– sequence: 8
  givenname: Ye‐Feng
  surname: Yao
  fullname: Yao, Ye‐Feng
  organization: East China Normal University
– sequence: 9
  givenname: Bing
  surname: Nan
  fullname: Nan, Bing
  organization: Shanghai Advanced Research Institute
– sequence: 10
  givenname: Lina
  surname: Li
  fullname: Li, Lina
  organization: Shanghai Advanced Research Institute
– sequence: 11
  givenname: Xue‐Lu
  surname: Wang
  fullname: Wang, Xue‐Lu
  email: xlwang@phy.ecnu.edu.cn
  organization: East China Normal University
– sequence: 12
  givenname: Xiang
  surname: Feng
  fullname: Feng, Xiang
  email: xiangfeng@upc.edu.cn
  organization: China University of Petroleum
– sequence: 13
  givenname: Markus
  surname: Antonietti
  fullname: Antonietti, Markus
  organization: Max-Planck Institute of Colloids and Interfaces, Research Campus Golm
– sequence: 14
  givenname: Zupeng
  orcidid: 0000-0002-7351-3240
  surname: Chen
  fullname: Chen, Zupeng
  email: czp@njfu.edu.cn
  organization: Nanjing Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38598078$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaD7aa49F0Esv3koaeyUf3W3aBkIamvRsZH0QBctKJDlhb_kJ_Y35JdGyaQqB0tMMw_OMxLwHaGcKk0HoHSULSgj7JCdnFowwYITQ-hXapw2jFXAOO6WvASouGrqHDlK6KrwQZPka7YFoWkG42Ec3XQ7eKfxzzpdmcrN_uP99FoMP2Wi8ktqXET6fR-u0wTZEfHYZclAyy3Gdi1dYPavswoSDxZ13U8CdcjphW7bgzy54mRL-YqK7ldndmvQG7Vo5JvP2qR6iX1-PLlbfq5Mf345X3UmlgENdaSIY57YVcik0aQdhCW0FFXQpm9IPlDLLhSEUGg0D1Qwo1IYpSdvBKtLAIfq43Xsdw81sUu69S8qMo5xMmFMPBJoGliDagn54gV6FOU7ld4XiDEgthCjU-ydqHrzR_XV0XsZ1_-eYBVhsARVDStHYZ4SSfpNWv0mrf06rCPULQbksN8fMUbrx31q71e7caNb_eaTvTo-P_rqPflipuA
CitedBy_id crossref_primary_10_1002_smll_202500253
crossref_primary_10_1002_aenm_202401838
crossref_primary_10_1007_s11426_024_2396_9
crossref_primary_10_1039_D4AY02142H
crossref_primary_10_1038_s41467_025_55930_x
crossref_primary_10_1002_ange_202408504
crossref_primary_10_1002_anie_202408504
crossref_primary_10_1039_D4EE03092C
crossref_primary_10_1021_acscatal_4c05235
crossref_primary_10_20517_microstructures_2024_49
Cites_doi 10.1021/acscatal.1c02551
10.1039/D1CS00039J
10.1021/jacs.7b08657
10.1021/jacs.1c08159
10.1063/1.323539
10.1016/j.biotechadv.2017.09.001
10.1016/j.rinp.2020.103058
10.1073/pnas.1800272115
10.1016/S2542-5196(21)00138-8
10.1038/nchem.1095
10.1002/adma.201700555
10.1002/anie.200300599
10.1016/j.biortech.2018.06.004
10.1016/j.pecs.2012.02.002
10.1021/jacs.1c02128
10.1016/j.chempr.2019.05.022
10.1002/ange.202207410
10.1007/s40843-021-1907-3
10.1093/nsr/nwy048
10.1038/ncomms11918
10.1021/acs.jpcc.5b00846
10.1007/s11426-018-9273-1
10.1016/j.jcdr.2013.05.002
10.1039/D0CY02358B
10.1039/c3gc41141a
10.1016/j.ijpharm.2021.121375
10.1002/cssc.202001561
10.1002/anie.202306452
10.1002/jlac.18500750103
10.1002/adma.202105482
10.1038/s41467-020-18532-3
10.1016/S1872-2067(21)63968-2
10.1002/anie.202109538
10.1038/s41565-018-0167-2
10.1039/D1CY01437D
10.1039/C5MH00160A
10.1002/ange.202306305
10.1016/j.biotechadv.2007.07.004
10.1002/anie.201912580
10.1021/cs300031d
10.1007/3-540-45989-8_1
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202320014
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38598078
10_1002_anie_202320014
ANIE202320014
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China-Outstanding Youth foundation (22322814)
  funderid: 22322814
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  funderid: 21KJA150003
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210608
– fundername: Key Technologies Research and Development Program
  funderid: 2023YFD2200505
– fundername: National Natural Science Foundation of China
  funderid: 22202105; 22072045
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210608
– fundername: National Natural Science Foundation of China
  grantid: 22072045
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: 21KJA150003
– fundername: Key Technologies Research and Development Program
  grantid: 2023YFD2200505
– fundername: National Natural Science Foundation of China-Outstanding Youth foundation (22322814)
  grantid: 22322814
– fundername: National Natural Science Foundation of China
  grantid: 22202105
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
M53
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3734-d08277f98a68d09b8f01981816a58f0b112f78e0135d3b1d23134e2ca19bfc053
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:09:42 EDT 2025
Fri Jul 25 12:00:37 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 01:47:35 EDT 2025
Wed Jan 22 17:18:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords amination
single-atom catalysis
photocatalysis
biomass derivatives
amino acids
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-d08277f98a68d09b8f01981816a58f0b112f78e0135d3b1d23134e2ca19bfc053
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7351-3240
PMID 38598078
PQID 3072304888
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_3035536389
proquest_journals_3072304888
pubmed_primary_38598078
crossref_primary_10_1002_anie_202320014
crossref_citationtrail_10_1002_anie_202320014
wiley_primary_10_1002_anie_202320014_ANIE202320014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 1, 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2022; 134
1850; 75
2018; 264
2021; 5
2013; 4
2019; 5
1977; 48
2003; 79
2020; 17
2020; 59
2020; 13
2017; 29
2012; 38
2020; 11
2022; 65
2022; 43
2018; 61
2021; 143
2021; 50
2011; 3
2022; 613
2017; 139
2023; 62
2016; 7
2013; 15
2012; 2
2018; 5
2021; 11
2021; 33
2016; 3
2023; 135
2018; 115
2008; 26
2017
2018; 30
2015; 119
2021; 60
2018; 36
2018; 13
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_49_2
Fang X. Z. (e_1_2_7_38_2) 2018; 30
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_1
Uneyama H. (e_1_2_7_3_2) 2017
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_2
References_xml – volume: 48
  start-page: 4729
  year: 1977
  end-page: 4733
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: E560
  year: 2021
  end-page: E569
  publication-title: Lancet Planet. Heath.
– volume: 79
  start-page: 1
  year: 2003
  end-page: 35
  publication-title: Adv. Bio. Eng/Biotechnol.
– volume: 11
  start-page: 4899
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 7
  year: 2016
  end-page: 10
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 642
  year: 2018
  end-page: 652
  publication-title: Natl. Sci. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 143
  start-page: 16358
  year: 2021
  end-page: 16363
  publication-title: J. Am. Chem. Soc.
– volume: 613
  year: 2022
  publication-title: Int. J. Pharm.
– volume: 4
  start-page: 112
  year: 2013
  end-page: 115
  publication-title: J. Cardiovasc. Dis. Res.
– volume: 139
  start-page: 15584
  year: 2017
  end-page: 15587
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1247
  year: 2012
  end-page: 1258
  publication-title: ACS Catal.
– volume: 143
  start-page: 10940
  year: 2021
  end-page: 10947
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 788
  year: 2004
  end-page: 824
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 22
  year: 2008
  end-page: 34
  publication-title: Biotechnol. Adv.
– volume: 36
  start-page: 14
  year: 2018
  end-page: 25
  publication-title: Biotechnol. Adv.
– volume: 264
  start-page: 370
  year: 2018
  end-page: 381
  publication-title: Bioresour. Technol.
– volume: 59
  start-page: 2289
  year: 2020
  end-page: 2293
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 2520
  year: 2019
  end-page: 2546
  publication-title: Chem.
– volume: 115
  start-page: 5093
  year: 2018
  end-page: 5098
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 5683
  year: 2020
  end-page: 5689
  publication-title: ChemSusChem
– volume: 134
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 22522
  year: 2021
  end-page: 22528
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  start-page: 1187
  year: 2018
  end-page: 1196
  publication-title: Sci. China Chem.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  publication-title: Nat. Chem.
– start-page: 273
  year: 2017
  end-page: 287
– volume: 43
  start-page: 1058
  year: 2022
  end-page: 1065
  publication-title: Chin. J. Catal.
– volume: 75
  start-page: 27
  year: 1850
  end-page: 45
  publication-title: Justus Liebigs Ann. Chem.
– volume: 17
  year: 2020
  publication-title: Results Phys.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 135
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 65
  start-page: 1285
  year: 2022
  end-page: 1293
  publication-title: Sci. China Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 11336
  year: 2021
  end-page: 11359
  publication-title: ACS Catal.
– volume: 13
  start-page: 702
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 2619
  year: 2013
  end-page: 2635
  publication-title: Green Chem.
– volume: 38
  start-page: 522
  year: 2012
  end-page: 550
  publication-title: Prog. Energy Combust. Sci.
– volume: 119
  start-page: 6696
  year: 2015
  end-page: 6702
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 11270
  year: 2021
  end-page: 11292
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 7134
  year: 2021
  end-page: 7140
  publication-title: Catal. Sci. Technol.
– volume: 7
  start-page: 11918
  year: 2016
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2354
  year: 2021
  end-page: 2360
  publication-title: Catal. Sci. Technol.
– ident: e_1_2_7_34_1
– ident: e_1_2_7_20_1
– ident: e_1_2_7_26_2
  doi: 10.1021/acscatal.1c02551
– ident: e_1_2_7_17_2
  doi: 10.1039/D1CS00039J
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.7b08657
– ident: e_1_2_7_46_1
  doi: 10.1021/jacs.1c08159
– ident: e_1_2_7_53_1
  doi: 10.1063/1.323539
– ident: e_1_2_7_6_2
  doi: 10.1016/j.biotechadv.2017.09.001
– start-page: 273
  volume-title: Amino Acid Fermentation, Vol. 159
  year: 2017
  ident: e_1_2_7_3_2
– ident: e_1_2_7_52_1
  doi: 10.1016/j.rinp.2020.103058
– ident: e_1_2_7_22_2
  doi: 10.1073/pnas.1800272115
– ident: e_1_2_7_2_2
  doi: 10.1016/S2542-5196(21)00138-8
– ident: e_1_2_7_30_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_7_47_1
– ident: e_1_2_7_40_2
  doi: 10.1002/adma.201700555
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.200300599
– ident: e_1_2_7_5_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_13_2
  doi: 10.1016/j.biortech.2018.06.004
– ident: e_1_2_7_14_2
  doi: 10.1016/j.pecs.2012.02.002
– ident: e_1_2_7_48_2
  doi: 10.1021/jacs.1c02128
– volume: 30
  year: 2018
  ident: e_1_2_7_38_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_15_2
  doi: 10.1016/j.chempr.2019.05.022
– ident: e_1_2_7_43_1
  doi: 10.1002/ange.202207410
– ident: e_1_2_7_29_1
  doi: 10.1007/s40843-021-1907-3
– ident: e_1_2_7_32_2
  doi: 10.1093/nsr/nwy048
– ident: e_1_2_7_49_2
  doi: 10.1038/ncomms11918
– ident: e_1_2_7_37_1
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.jpcc.5b00846
– ident: e_1_2_7_42_1
  doi: 10.1007/s11426-018-9273-1
– ident: e_1_2_7_7_2
  doi: 10.1016/j.jcdr.2013.05.002
– ident: e_1_2_7_25_2
  doi: 10.1039/D0CY02358B
– ident: e_1_2_7_19_2
  doi: 10.1039/c3gc41141a
– ident: e_1_2_7_4_2
  doi: 10.1016/j.ijpharm.2021.121375
– ident: e_1_2_7_23_1
  doi: 10.1002/cssc.202001561
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.202306452
– ident: e_1_2_7_10_2
  doi: 10.1002/jlac.18500750103
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202105482
– ident: e_1_2_7_1_1
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-020-18532-3
– ident: e_1_2_7_36_2
  doi: 10.1016/S1872-2067(21)63968-2
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.202109538
– ident: e_1_2_7_35_2
  doi: 10.1038/s41565-018-0167-2
– ident: e_1_2_7_39_2
  doi: 10.1039/D1CY01437D
– ident: e_1_2_7_54_1
  doi: 10.1039/C5MH00160A
– ident: e_1_2_7_28_1
  doi: 10.1002/ange.202306305
– ident: e_1_2_7_18_2
  doi: 10.1016/j.biotechadv.2007.07.004
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.201912580
– ident: e_1_2_7_9_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_50_1
  doi: 10.1021/cs300031d
– ident: e_1_2_7_8_2
  doi: 10.1007/3-540-45989-8_1
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.533675
Snippet Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen‐containing molecules. Here, we report the...
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202320014
SubjectTerms Alanine
Amination
Amino acids
Biomass
biomass derivatives
Cadmium
Cadmium sulfide
Density functional theory
Hydrogen bonds
Hydroxy acids
Irradiation
Lactic acid
Light irradiation
Nanoparticles
NMR
Nuclear magnetic resonance
photocatalysis
Ruthenium
single-atom catalysis
Sulfides
Sustainable production
Title Atomic Ruthenium‐Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202320014
https://www.ncbi.nlm.nih.gov/pubmed/38598078
https://www.proquest.com/docview/3072304888
https://www.proquest.com/docview/3035536389
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VvcCF9yNQKldC4uRtEmezyTHdtmortVoBlXqL_IqI6CZAEqT2xE_gN_aXMBNvQheEkODmJLbjeGbsT87MNwCvQ2KjtkpzLbXkkRI-R1Af8TTylcT10A8sBTifnsVH59HJxfTiVhS_44cYD9zIMvr1mgxcqmb3J2koRWBPKPk3eQURISg5bBEqejvyR4WonC68SAhOWegH1kY_3F1vvr4r_QY115Frv_Uc3gc5DNp5nHycdK2a6Otf-Bz_56sewL0VLmWZU6SHsGGrR3BnPqSDewyfs5YCmFnvEl-V3fLm2_dF78tnDZtLs8Rb7F13WZTGMkTCbPGhbuv-dOgK-2QLRy2LasDqgmXLsqpZpkvTMIpwYXslOSo1bB8t4mtPRt48gfPDg_fzI77K18C1mImIG4QTs1mRJjJOjJ-qpED8iIAgiOUUywqhXTFLLILOqREqMAgtRWRDLYNUFRpXg6ewWdWVfQ7Mxsoo7DSQKqboWRWqAsGh9nWsDTbzgA_yyvWKzJxyalzmjoY5zGki83EiPXgz1v_kaDz-WHNrEH--Mucmx4WQDs-TJPFgZ3yMAqC_K7KydUd1ELoJAoAePHNqM75KJNOUiP09CHvh_2UMeXZ2fDBevfiXRi_hLpYj51i8BZvtl86-QvjUqu3eRH4At-ARQg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4RAuQFgNCTQSiJMn3sZjHzg4M4lmSDIaQSLlZnqzsMjYgG1QOPEJ_Aq_kk_gS6jyhgaEkJBy4Oal2253V1U_d1e9AnjiEBu1FtKUXHLTE65lIqj3zNCzBEd7aNmaApyP5v70xHtxOjxdg29dLEzDD9EvuJFm1PaaFJwWpHd-soZSCPaAsn-TW5DX-lUe6PNP-NdWPJ9NcIifOs7-3vF4araJBUzpjlzPVDjvjUZJGHA_UFYoggSBDs5cts-HeCwQgySjQCM6GipX2AoxkOtpR3I7FIm0KFEEWv0rlEac6PonL3vGKgfVoQlocl2T8t53PJGWs7Pa3tV58Ddwu4qV68lu_zpcdN3U-Li8HVSlGMjPvzBI_lf9eAOutdCbRY2ubMKazm7CxrjLeHcL3kclxWiz2us_S6vl9y9fF7W7olZszNUSL7FX1VmSKs0Q7LPFm7zM6wWwc3wmWzTsuSjpLE9YtEyznEUyVQWjIB62m5IvVsEmqPQfa7714jacXMoX34H1LM_0PWDaF0rgQ20ufAoQFo5IEP9KS_pSYTUDzE5AYtnytVPakLO4YZp2Yhq4uB84A5715d81TCV_LLnVyVvcWqwiRltP-wNBEBjwuL-NA0AbSDzTeUVlEJ26hHENuNvIaf8qNxiGlLvAAKeWtr-0IY7ms73-7P6_VHoEG9Pjo8P4cDY_eABX8brX-FFvwXr5odLbiBZL8bDWTwavL1uQfwAS2Wwt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FiQRcEnZMAjQSiJMn3sZjHziYmYwyBEYjIFJupjcLKxk7xDYonPgEPoVf4Rf4Eqq8oQEhJKQcuNntdrvtruXZrnoF8MghNmotpCm55KYnXMtEUO-ZoWcJjvbQsjUlOL-c-_uH3vOj4dEafO1yYRp-iP6DG2lGba9JwU9VsvuTNJQysAdU_Juigrw2rPJAn3_El7bi6WyCK_zYcaZ7b8b7ZltXwJTuyPVMhW5vNErCgPuBskIRJIhz0HHZPh_itkAIkowCjeBoqFxhK4RArqcdye1QJNKiOhFo9Dc83wqpWMTkVU9Y5aA2NPlMrmtS2fuOJtJydlfnu-oGf8O2q1C59nXTLfjWPaUmxOV4UJViID_9QiD5Pz3Gq7DZAm8WNZpyDdZ0dh0uj7t6dzfgfVRShjarY_6ztFp-__xlUQcrasXGXC2xib2uTpJUaYZQny3e5WVef_46xzHZouHORTlnecKiZZrlLJKpKhil8LBnKUViFWyCKv-hZlsvbsLhhdzxLVjP8kzfAaZ9oQQOanPhU3qwcESC6Fda0pcKTzPA7OQjli1bOxUNOYkbnmknpoWL-4Uz4Enf_7ThKfljz51O3OLWXhUxWnr6OxAEgQEP-8O4APT7iGc6r6gPYlOXEK4Btxsx7S_lBsOQKhcY4NTC9pc5xNF8ttfv3f2Xkx7ApcVkGr-YzQ-24Qo2e00Q9Q6sl2eVvodQsRT3a-1k8Pai5fgHOoNq3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+Ruthenium-Promoted+Cadmium+Sulfide+for+Photocatalytic+Production+of+Amino+Acids+from+Biomass+Derivatives&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Wulin&rft.au=Zheng%2C+Xiuhui&rft.au=Xu%2C+Bei-Bei&rft.au=Yang%2C+Yue&rft.date=2024-07-01&rft.eissn=1521-3773&rft.spage=e202320014&rft_id=info:doi/10.1002%2Fanie.202320014&rft_id=info%3Apmid%2F38598078&rft.externalDocID=38598078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon