Selective Hydrodeoxygenation of Lignin‐Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts

The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio s...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 17; no. 23; pp. e202400644 - n/a
Main Authors Gan, Quan, Zhou, Weihao, Zhang, Xueping, Lin, Yamei, Huang, Shenlin, Lu, Guo‐Ping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity. Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites.
AbstractList The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H 2 pressure for 2 h (TOF 231 h −1 ). Compared with Ru/ZrO 2 , Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H pressure for 2 h (TOF 231 h ). Compared with Ru/ZrO , Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity. Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites.
The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
Author Gan, Quan
Lu, Guo‐Ping
Lin, Yamei
Zhang, Xueping
Huang, Shenlin
Zhou, Weihao
Author_xml – sequence: 1
  givenname: Quan
  surname: Gan
  fullname: Gan, Quan
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Weihao
  surname: Zhou
  fullname: Zhou, Weihao
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Xueping
  surname: Zhang
  fullname: Zhang, Xueping
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Yamei
  surname: Lin
  fullname: Lin, Yamei
  organization: Nanjing Normal University
– sequence: 5
  givenname: Shenlin
  surname: Huang
  fullname: Huang, Shenlin
  organization: Nanjing Forestry University
– sequence: 6
  givenname: Guo‐Ping
  orcidid: 0000-0003-4476-964X
  surname: Lu
  fullname: Lu, Guo‐Ping
  email: glu@njust.edu.cn
  organization: Nanjing Forestry University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38923356$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vFCEYh4mpsR969WhIvHjZlQGGWY5m_KjJGo1bE-OFsMw7WxoGVmBq5-bVm3-jf4ms29akifEEgef58fK-x-jABw8IPa7IvCKEPjcpmTkllBMiOL-HjqqF4LNa8M8Ht3tWHaLjlC4KQqQQD9AhW0jKWC2O0I8VODDZXgI-nboYOghX0wa8zjZ4HHq8tBtv_a_vP19CLFSHP5yDD84a_C74MEBMOAfcTsaFc7jS5QqHS4j4bPSblHUuxhcbTfBW49W43Ya4O_o45hJjxwG3Oms3pZweovu9dgkeXa8n6NPrV2ft6Wz5_s3b9sVyZljD-MyIUvua9qRjRDblP-ump7XRes05lZrIWrKOSMNYZSQIXUtd85rpnkroNQh2gp7tc7cxfB0hZTXYZMA57SGMSTHS0EYuymMFfXoHvQhj9KU6xSpOF4QRtgt8ck2N6wE6tY120HFSN00uAN8DJoaUIvTK2PynwTlq61RF1G6WajdLdTvLos3vaDfJ_xTkXvhmHUz_oVW7WrV_3d8_lrUI
CitedBy_id crossref_primary_10_3390_catal15030254
crossref_primary_10_1016_j_apcatb_2025_125285
crossref_primary_10_1016_j_fuel_2024_133622
Cites_doi 10.1016/j.memsci.2013.07.048
10.1039/C9GC02181G
10.1016/j.apcatb.2020.119542
10.1021/acscatal.2c00684
10.1016/j.rser.2021.111266
10.1021/acscatal.8b00584
10.1021/acssuschemeng.3c04713
10.1021/acssuschemeng.0c07292
10.1016/j.apcata.2023.119240
10.1016/j.cej.2011.09.010
10.1007/s40843-018-9282-1
10.1021/acs.inorgchem.3c01920
10.1039/D0GC03020A
10.1039/C8GC03951H
10.1016/j.catcom.2007.08.007
10.1006/jcat.1998.2237
10.1016/j.apcatb.2021.120270
10.1039/D1GC02790E
10.1016/j.jece.2022.108085
10.1016/j.catcom.2011.10.011
10.1021/acssuschemeng.7b01615
10.1021/jacs.2c08992
10.1002/cctc.201500345
10.1039/C8GC02001A
10.1039/C7GC00818J
10.1002/anie.201410633
10.1039/C6GC02265K
10.1016/j.enconman.2015.08.016
10.1038/s41467-022-29074-1
10.1021/acssuschemeng.3c08041
10.1016/j.cattod.2017.09.027
10.1021/acssuschemeng.7b01047
10.1021/acssuschemeng.1c02942
10.1016/j.mcat.2022.112503
10.1016/j.jclepro.2023.136705
10.1021/acssuschemeng.6b01580
10.1039/D1TA07673F
10.1016/j.apcatb.2020.118824
10.1016/j.renene.2019.10.160
10.1016/j.rser.2019.03.008
10.1021/acs.energyfuels.2c02913
10.1002/anie.202214881
10.3390/pr11072087
10.1016/j.apcatb.2023.123626
10.1021/cr200346z
10.1016/S1872-2067(21)63899-8
10.1016/j.mcat.2019.110695
10.1016/j.biombioe.2022.106448
10.1016/j.jiec.2017.06.013
10.1016/j.cclet.2021.06.045
10.1016/j.jechem.2022.12.020
10.1557/jmr.2006.0100
10.1134/S0965544118050080
10.1007/s12274-021-3526-5
10.1016/j.biortech.2022.128339
10.1016/j.apcatb.2020.118890
10.1016/j.apcata.2017.05.037
10.1021/jacs.0c09157
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202400644
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 38923356
10_1002_cssc_202400644
CSSC202400644
Genre article
Journal Article
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3734-c6892b2f0d3097096b7f25caab4429a09593d09c331c9e6a59a5453af29efae63
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 07:06:08 EDT 2025
Fri Jul 25 12:08:36 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Tue Jul 01 00:36:27 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Wed Jan 22 17:12:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords lignin-derived phenols
Ruthenium
Hydrodeoxygenation
Cyclohexanol
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-c6892b2f0d3097096b7f25caab4429a09593d09c331c9e6a59a5453af29efae63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4476-964X
PMID 38923356
PQID 3142803036
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_3072798373
proquest_journals_3142803036
pubmed_primary_38923356
crossref_citationtrail_10_1002_cssc_202400644
crossref_primary_10_1002_cssc_202400644
wiley_primary_10_1002_cssc_202400644_CSSC202400644
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 6, 2024
PublicationDateYYYYMMDD 2024-12-06
PublicationDate_xml – month: 12
  year: 2024
  text: December 6, 2024
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2023; 79
2021; 23
2020; 482
2015; 105
2023; 661
2013; 447
2008; 9
2021; 282
2012; 17
2024; 344
2023; 62
2018; 8
2020; 142(45
2022; 161
2006; 21
2019; 21
2022; 36
2022; 528
2022; 33
2021; 9
1998; 180
2023; 11
2018; 303
2021; 148
2015; 54
2020; 148
2020; 269
2023; 368
2023; 400
2022; 43
2018; 61
2024; 12
2019; 107
2021; 1
2016; 18
2011; 174
2015; 7
2022; 144
2016; 4
2021; 15
2018; 20(19
2012; 112
2020; 270
2017; 56
2022; 12
2022; 13
2017; 19
2021; 295
2022; 10
2017; 543
2018; 58
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Wang C. (e_1_2_7_41_1) 2021; 1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 482
  year: 2020
  publication-title: Mol. Catal.
– volume: 33
  start-page: 186
  issue: 1
  year: 2022
  end-page: 196
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 2087
  issue: 7
  year: 2023
  publication-title: Processes
– volume: 12
  start-page: 4618
  issue: 8
  year: 2022
  end-page: 4627
  publication-title: ACS Catal.
– volume: 18
  start-page: 6229
  issue: 23
  year: 2016
  end-page: 6235
  publication-title: Green Chem.
– volume: 62
  issue: 8
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 303
  start-page: 130
  year: 2018
  end-page: 135
  publication-title: Catal. Today
– volume: 9
  start-page: 14040
  issue: 42
  year: 2021
  end-page: 14050
  publication-title: ACS Sustainable Chem. Eng.
– volume: 270
  year: 2020
  publication-title: Appl. Catal. B
– volume: 23
  start-page: 8441
  issue: 21
  year: 2021
  end-page: 8447
  publication-title: Green Chem.
– volume: 4
  start-page: 5336
  issue: 10
  year: 2016
  end-page: 5346
  publication-title: ACS Sustainable Chem. Eng.
– volume: 144
  start-page: 20834
  issue: 45
  year: 2022
  end-page: 20846
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 807
  issue: 4
  year: 2006
  end-page: 810
  publication-title: J. Mater. Res.
– volume: 344
  year: 2024
  publication-title: Appl. Catal. B
– volume: 661
  year: 2023
  publication-title: Appl. Catal. A
– volume: 368
  year: 2023
  publication-title: Bioresour. Technol.
– volume: 21
  start-page: 5386
  issue: 19
  year: 2019
  end-page: 5393
  publication-title: Green Chem.
– volume: 528
  year: 2022
  publication-title: Mol. Catal.
– volume: 10
  issue: 4
  year: 2022
  publication-title: J. Environ. Chem. Eng.
– volume: 148
  start-page: 729
  year: 2020
  end-page: 738
  publication-title: Renewable Energy
– volume: 142(45
  start-page: 19239
  year: 2020
  end-page: 19248
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 25128
  issue: 44
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 180
  start-page: 1
  issue: 1
  year: 1998
  end-page: 13
  publication-title: J. Catal.
– volume: 5
  start-page: 8824
  issue: 10
  year: 2017
  end-page: 8835
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 8594
  issue: 10
  year: 2017
  end-page: 8601
  publication-title: ACS Sustainable Chem. Eng.
– volume: 543
  start-page: 10
  year: 2017
  end-page: 16
  publication-title: Appl. Catal. A
– volume: 13
  start-page: 1848
  issue: 1
  year: 2022
  publication-title: Nat. Commun.
– volume: 148
  year: 2021
  publication-title: Renewable Sustainable Energy Rev.
– volume: 7
  start-page: 2669
  issue: 17
  year: 2015
  end-page: 2674
  publication-title: ChemCatChem
– volume: 56
  start-page: 74
  year: 2017
  end-page: 81
  publication-title: J. Ind. Eng. Chem.
– volume: 20(19
  start-page: 4391
  year: 2018
  end-page: 4408
  publication-title: Green Chem.
– volume: 447
  start-page: 315
  year: 2013
  end-page: 324
  publication-title: J. Membr. Sci.
– volume: 17
  start-page: 54
  year: 2012
  end-page: 58
  publication-title: Catal. Commun.
– volume: 112
  start-page: 2714
  issue: 5
  year: 2012
  end-page: 2738
  publication-title: Chem. Rev.
– volume: 19
  start-page: 2535
  issue: 11
  year: 2017
  end-page: 2540
  publication-title: Green Chem.
– volume: 282
  year: 2021
  publication-title: Appl. Catal. B
– volume: 15
  start-page: 603
  issue: 1
  year: 2021
  end-page: 611
  publication-title: Nano Res.
– volume: 54
  start-page: 2784
  issue: 9
  year: 2015
  end-page: 2787
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 407
  issue: 5
  year: 2018
  end-page: 411
  publication-title: Pet. Chem.
– volume: 9
  start-page: 3083
  issue: 8
  year: 2021
  end-page: 3094
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 696
  issue: 5
  year: 2008
  end-page: 702
  publication-title: Catal. Commun.
– volume: 1
  start-page: 1422
  issue: 9
  year: 2021
  end-page: 1434
  publication-title: J. Am. Chem. Soc.
– volume: 174
  start-page: 236
  issue: 1
  year: 2011
  end-page: 241
  publication-title: Chem. Eng. J.
– volume: 295
  year: 2021
  publication-title: Appl. Catal. B
– volume: 23
  start-page: 1185
  issue: 3
  year: 2021
  end-page: 1192
  publication-title: Green Chem.
– volume: 107
  start-page: 232
  year: 2019
  end-page: 249
  publication-title: Renewable Sustainable Energy Rev.
– volume: 11
  start-page: 17646
  issue: 50
  year: 2023
  end-page: 17661
  publication-title: ACS Sustainable Chem. Eng.
– volume: 62
  start-page: 13069
  issue: 32
  year: 2023
  end-page: 13080
  publication-title: Inorg. Chem.
– volume: 79
  start-page: 535
  year: 2023
  end-page: 549
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 3800
  issue: 9
  year: 2024
  end-page: 3807
  publication-title: ACS Sustainable Chem. Eng.
– volume: 105
  start-page: 570
  year: 2015
  end-page: 577
  publication-title: Energy Convers. Manage.
– volume: 43
  start-page: 611
  issue: 3
  year: 2022
  end-page: 635
  publication-title: Chin. J. Catal.
– volume: 61
  start-page: 1339
  issue: 10
  year: 2018
  end-page: 1344
  publication-title: Sci. China Mater.
– volume: 161
  year: 2022
  publication-title: Biomass Bioenergy
– volume: 8
  start-page: 6495
  issue: 7
  year: 2018
  end-page: 6506
  publication-title: ACS Catal.
– volume: 400
  year: 2023
  publication-title: J. Cleaner Prod.
– volume: 269
  year: 2020
  publication-title: Appl. Catal. B
– volume: 21
  start-page: 1253
  issue: 6
  year: 2019
  end-page: 1257
  publication-title: Green Chem.
– volume: 36
  start-page: 14986
  issue: 24
  year: 2022
  end-page: 14993
  publication-title: Energy Fuels
– ident: e_1_2_7_8_1
  doi: 10.1016/j.memsci.2013.07.048
– ident: e_1_2_7_33_1
  doi: 10.1039/C9GC02181G
– ident: e_1_2_7_57_1
  doi: 10.1016/j.apcatb.2020.119542
– ident: e_1_2_7_59_1
  doi: 10.1021/acscatal.2c00684
– ident: e_1_2_7_1_1
  doi: 10.1016/j.rser.2021.111266
– ident: e_1_2_7_40_1
  doi: 10.1021/acscatal.8b00584
– ident: e_1_2_7_11_1
  doi: 10.1021/acssuschemeng.3c04713
– ident: e_1_2_7_52_1
  doi: 10.1021/acssuschemeng.0c07292
– ident: e_1_2_7_56_1
  doi: 10.1016/j.apcata.2023.119240
– ident: e_1_2_7_48_1
  doi: 10.1016/j.cej.2011.09.010
– ident: e_1_2_7_32_1
  doi: 10.1007/s40843-018-9282-1
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.inorgchem.3c01920
– ident: e_1_2_7_9_1
  doi: 10.1039/D0GC03020A
– ident: e_1_2_7_31_1
  doi: 10.1039/C8GC03951H
– ident: e_1_2_7_53_1
  doi: 10.1016/j.catcom.2007.08.007
– ident: e_1_2_7_49_1
  doi: 10.1006/jcat.1998.2237
– ident: e_1_2_7_50_1
  doi: 10.1016/j.apcatb.2021.120270
– ident: e_1_2_7_22_1
  doi: 10.1039/D1GC02790E
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jece.2022.108085
– ident: e_1_2_7_25_1
  doi: 10.1016/j.catcom.2011.10.011
– ident: e_1_2_7_28_1
  doi: 10.1021/acssuschemeng.7b01615
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.2c08992
– ident: e_1_2_7_26_1
  doi: 10.1002/cctc.201500345
– ident: e_1_2_7_30_1
  doi: 10.1039/C8GC02001A
– ident: e_1_2_7_6_1
  doi: 10.1039/C7GC00818J
– volume: 1
  start-page: 1422
  issue: 9
  year: 2021
  ident: e_1_2_7_41_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201410633
– ident: e_1_2_7_45_1
  doi: 10.1039/C6GC02265K
– ident: e_1_2_7_13_1
  doi: 10.1016/j.enconman.2015.08.016
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-022-29074-1
– ident: e_1_2_7_55_1
  doi: 10.1021/acssuschemeng.3c08041
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cattod.2017.09.027
– ident: e_1_2_7_15_1
  doi: 10.1021/acssuschemeng.7b01047
– ident: e_1_2_7_39_1
  doi: 10.1021/acssuschemeng.1c02942
– ident: e_1_2_7_21_1
  doi: 10.1016/j.mcat.2022.112503
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jclepro.2023.136705
– ident: e_1_2_7_27_1
  doi: 10.1021/acssuschemeng.6b01580
– ident: e_1_2_7_37_1
  doi: 10.1039/D1TA07673F
– ident: e_1_2_7_38_1
  doi: 10.1016/j.apcatb.2020.118824
– ident: e_1_2_7_16_1
  doi: 10.1016/j.renene.2019.10.160
– ident: e_1_2_7_5_1
  doi: 10.1016/j.rser.2019.03.008
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.energyfuels.2c02913
– ident: e_1_2_7_14_1
  doi: 10.1002/anie.202214881
– ident: e_1_2_7_46_1
  doi: 10.3390/pr11072087
– ident: e_1_2_7_34_1
  doi: 10.1016/j.apcatb.2023.123626
– ident: e_1_2_7_58_1
  doi: 10.1021/cr200346z
– ident: e_1_2_7_29_1
  doi: 10.1016/S1872-2067(21)63899-8
– ident: e_1_2_7_54_1
  doi: 10.1016/j.mcat.2019.110695
– ident: e_1_2_7_20_1
  doi: 10.1016/j.biombioe.2022.106448
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jiec.2017.06.013
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cclet.2021.06.045
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jechem.2022.12.020
– ident: e_1_2_7_47_1
  doi: 10.1557/jmr.2006.0100
– ident: e_1_2_7_23_1
  doi: 10.1134/S0965544118050080
– ident: e_1_2_7_36_1
  doi: 10.1007/s12274-021-3526-5
– ident: e_1_2_7_2_1
  doi: 10.1016/j.biortech.2022.128339
– ident: e_1_2_7_24_1
  doi: 10.1016/j.apcatb.2020.118890
– ident: e_1_2_7_51_1
  doi: 10.1016/j.apcata.2017.05.037
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.0c09157
SSID ssj0060966
Score 2.46721
Snippet The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion...
The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400644
SubjectTerms Catalysis
Catalysts
Catalytic activity
Cyclohexanol
Hydrodeoxygenation
Lignin
lignin-derived phenols
Phenols
Raw materials
Ruthenium
Substitution reactions
Zirconium dioxide
Title Selective Hydrodeoxygenation of Lignin‐Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202400644
https://www.ncbi.nlm.nih.gov/pubmed/38923356
https://www.proquest.com/docview/3142803036
https://www.proquest.com/docview/3072798373
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQL3CB8tUubZGRKnFKm9qJHR9RSrWqWlSxrVRxiWzHaSOWBDXZStsTV278Rn4JM84msKCqUrkliq04nvHMszPzhpBt54SSBdeBdEwGEbioQEusoZFwYTizJlGY73z8QYzPosPz-PyPLP6OH2I4cMOV4e01LnBtmt3fpKG2aZCCEGMgwaeDEcaALURFHwf-KAH43KcXJSIKYsH3etbGkO0ud1_2Sv9AzWXk6l3PwROi-0F3ESefd2at2bE3f_E5_s9XrZLHC1xK33WK9JQ8cNUz8jDty8E9J98nvmIOGEc6nudgdh2MBrTPS5bWBT0qL6qy-vntxz4o9bXL6cmlq5B1mB5j4gTATNrWNJ3baX2JSTX1lGL4KD0Fc-PTmnL6qbyC7XmpKdYaxSjgnPoI_KqcfaEpHjTNm7Z5Qc4O3p-m42BRxyGwXPIosCJRzLAizHmoJMjEyILFVmsTgTfUnhs5D5XlfM8qJ3SsNOA6rgumXKGd4C_JSlVXbp1QJ6SItIxlrmFfWSTGJpjJawGnutzZaESCXo6ZXZCcY62NadbRM7MMJzgbJnhE3g7tv3b0Hre23OzVIlss8ybjyFcXIgoYkTfDYxAM_nXRlatn0CYEiKgSmIkRWevUaXgVoEXGeQy9mVeKO8aQpZNJOty9uk-nDfIIr31AjtgkK-3VzG0BrGrNa790fgG5ZBx6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMqFb8pCASMhcUqb2okdH1FKtcBuhdithLhEtuPQiG1SNVmk5cSVG7-RX8KMswlaEEKCYxJbcTwznmdn5g0hT50TShZcB9IxGUTgogItsYZGwoXhzJpEYb7z9FiMT6JX7-I-mhBzYTp-iOHADS3Dr9do4Hggvf-TNdQ2DXIQYhAkOPXL5AqW9Ub6_MO3A4OUAITuE4wSEQWx4Ac9b2PI9jf7b_ql38DmJnb1zufoOjH9sLuYk497y9bs2c-_MDr-13fdINfW0JQ-73TpJrnkqltkO-0rwt0mX2e-aA6sj3S8ymHldTAcUEAvXFoXdFJ-qMrq-5dvh6DXn1xO35y6ComH6RRzJwBp0ram6cou6lPMq6kXFCNI6RxWHJ_ZlNP35QXs0EtNsdwoBgLn1AfhV-XyjKZ41rRq2uYOOTl6MU_HwbqUQ2C55FFgRaKYYUWY81BJEIqRBYut1iYCh6g9PXIeKsv5gVVO6FhpgHZcF0y5QjvB75Ktqq7cPUKdkCLSMpa5hq1lkRibYDKvBajqcmejEQl6QWZ2zXOO5TYWWcfQzDKc4GyY4BF5NrQ_7xg-_thyt9eLbG3pTcaRsi5EIDAiT4bHIBj88aIrVy-hTQgoUSUwEyOy0-nT8CoAjIzzGHozrxV_GUOWzmbpcHX_Xzo9Jtvj-XSSTV4ev35AruJ9H58jdslWe7F0DwFlteaRt6Mfbmcglg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSMClfJYuFDASEqe0WTux42OVZbVAW1VsK1VcIsdxaMQ2qZpspeXElVt_I7-EGWcTWBBCgmMcW3E8Y8-zPfOGkJfWCiVzrj1pmfQCMFGelphDI-Ii5cykkcJ45_0DMTkO3p6EJz9F8bf8EP2BG84Mt17jBD_P8p0fpKGmrpGCEH0gwaZfJzcC4StM3jB63xNIQYm7rRxGIvBCwYcdbaPPdlbbr5ql37DmKnR1tmd8h-iu163LyafteZNum8-_EDr-z2_dJetLYEp3W026R67Z8j65FXf54B6Qr1OXMgdWRzpZZLDuWugNqJ8TLa1yuld8LIvy25erEWj1pc3o4aktkXaY7mPkBOBM2lQ0XphZdYpRNdWMov8oPYL1xsU1ZfRDcQH780JTTDaKbsAZdS74ZTE_ozGeNC3qpn5Ijsevj-KJt0zk4BkueeAZESmWstzPuK8kyCSVOQuN1mkA5lA7cuTMV4bzoVFW6FBpAHZc50zZXFvBN8haWZV2k1ArpAi0DGWmYWOZR6mJMJTXAFC1mTXBgHidHBOzZDnHZBuzpOVnZgkOcNIP8IC86uuft_wef6y51alFspzndcKRsM5HGDAgL_rXIBi8dtGlreZQxweMqCIYiQF51KpT_ymAi4zzEFozpxR_6UMST6dx__T4Xxo9JzcPR-Nk783BuyfkNhY75xyxRdaai7l9ChCrSZ-5WfQd9SIfRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Hydrodeoxygenation+of+Lignin%E2%80%90Derived+Phenolic+Monomers+to+Cyclohexanol+over+Tungstated+Zirconia+Supported+Ruthenium+Catalysts&rft.jtitle=ChemSusChem&rft.au=Gan%2C+Quan&rft.au=Zhou%2C+Weihao&rft.au=Zhang%2C+Xueping&rft.au=Lin%2C+Yamei&rft.date=2024-12-06&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202400644&rft.externalDBID=10.1002%252Fcssc.202400644&rft.externalDocID=CSSC202400644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon