Selective Hydrodeoxygenation of Lignin‐Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts
The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio s...
Saved in:
Published in | ChemSusChem Vol. 17; no. 23; pp. e202400644 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.
This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity. Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites. |
---|---|
AbstractList | The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H
2
pressure for 2 h (TOF 231 h
−1
). Compared with Ru/ZrO
2
, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol
via
hydrodeoxygenation reactions over this catalyst. The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H pressure for 2 h (TOF 231 h ). Compared with Ru/ZrO , Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity. Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites. The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h−1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron‐rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst.The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion since cyclohexanol is an important industrial raw material. This study has disclosed a series of tungstated zirconia with different Zr/W ratio supported Ru catalysts (Ru/xZrW, x means the molar ration of Zr/W) for the hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. Among these catalysts, Ru/16ZrW has the best catalytic activity, which can achieve 92 % yield of cyclohexanol under the conditions of 180 °C and 1 MPa H2 pressure for 2 h (TOF 231 h-1). Compared with Ru/ZrO2, Ru/16ZrW has smaller particles, more dispersed and electron-rich Ru species, significant hydrogen spillover and more acid sites, which are the main reason for its excellent performance on this reaction. Apart from guaiacol, other methoxy substitution phenols and organosolv lignin can also be converted into cyclohexanol via hydrodeoxygenation reactions over this catalyst. |
Author | Gan, Quan Lu, Guo‐Ping Lin, Yamei Zhang, Xueping Huang, Shenlin Zhou, Weihao |
Author_xml | – sequence: 1 givenname: Quan surname: Gan fullname: Gan, Quan organization: Nanjing University of Science and Technology – sequence: 2 givenname: Weihao surname: Zhou fullname: Zhou, Weihao organization: Nanjing University of Science and Technology – sequence: 3 givenname: Xueping surname: Zhang fullname: Zhang, Xueping organization: Nanjing University of Science and Technology – sequence: 4 givenname: Yamei surname: Lin fullname: Lin, Yamei organization: Nanjing Normal University – sequence: 5 givenname: Shenlin surname: Huang fullname: Huang, Shenlin organization: Nanjing Forestry University – sequence: 6 givenname: Guo‐Ping orcidid: 0000-0003-4476-964X surname: Lu fullname: Lu, Guo‐Ping email: glu@njust.edu.cn organization: Nanjing Forestry University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38923356$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vFCEYh4mpsR969WhIvHjZlQGGWY5m_KjJGo1bE-OFsMw7WxoGVmBq5-bVm3-jf4ms29akifEEgef58fK-x-jABw8IPa7IvCKEPjcpmTkllBMiOL-HjqqF4LNa8M8Ht3tWHaLjlC4KQqQQD9AhW0jKWC2O0I8VODDZXgI-nboYOghX0wa8zjZ4HHq8tBtv_a_vP19CLFSHP5yDD84a_C74MEBMOAfcTsaFc7jS5QqHS4j4bPSblHUuxhcbTfBW49W43Ya4O_o45hJjxwG3Oms3pZweovu9dgkeXa8n6NPrV2ft6Wz5_s3b9sVyZljD-MyIUvua9qRjRDblP-ump7XRes05lZrIWrKOSMNYZSQIXUtd85rpnkroNQh2gp7tc7cxfB0hZTXYZMA57SGMSTHS0EYuymMFfXoHvQhj9KU6xSpOF4QRtgt8ck2N6wE6tY120HFSN00uAN8DJoaUIvTK2PynwTlq61RF1G6WajdLdTvLos3vaDfJ_xTkXvhmHUz_oVW7WrV_3d8_lrUI |
CitedBy_id | crossref_primary_10_3390_catal15030254 crossref_primary_10_1016_j_apcatb_2025_125285 crossref_primary_10_1016_j_fuel_2024_133622 |
Cites_doi | 10.1016/j.memsci.2013.07.048 10.1039/C9GC02181G 10.1016/j.apcatb.2020.119542 10.1021/acscatal.2c00684 10.1016/j.rser.2021.111266 10.1021/acscatal.8b00584 10.1021/acssuschemeng.3c04713 10.1021/acssuschemeng.0c07292 10.1016/j.apcata.2023.119240 10.1016/j.cej.2011.09.010 10.1007/s40843-018-9282-1 10.1021/acs.inorgchem.3c01920 10.1039/D0GC03020A 10.1039/C8GC03951H 10.1016/j.catcom.2007.08.007 10.1006/jcat.1998.2237 10.1016/j.apcatb.2021.120270 10.1039/D1GC02790E 10.1016/j.jece.2022.108085 10.1016/j.catcom.2011.10.011 10.1021/acssuschemeng.7b01615 10.1021/jacs.2c08992 10.1002/cctc.201500345 10.1039/C8GC02001A 10.1039/C7GC00818J 10.1002/anie.201410633 10.1039/C6GC02265K 10.1016/j.enconman.2015.08.016 10.1038/s41467-022-29074-1 10.1021/acssuschemeng.3c08041 10.1016/j.cattod.2017.09.027 10.1021/acssuschemeng.7b01047 10.1021/acssuschemeng.1c02942 10.1016/j.mcat.2022.112503 10.1016/j.jclepro.2023.136705 10.1021/acssuschemeng.6b01580 10.1039/D1TA07673F 10.1016/j.apcatb.2020.118824 10.1016/j.renene.2019.10.160 10.1016/j.rser.2019.03.008 10.1021/acs.energyfuels.2c02913 10.1002/anie.202214881 10.3390/pr11072087 10.1016/j.apcatb.2023.123626 10.1021/cr200346z 10.1016/S1872-2067(21)63899-8 10.1016/j.mcat.2019.110695 10.1016/j.biombioe.2022.106448 10.1016/j.jiec.2017.06.013 10.1016/j.cclet.2021.06.045 10.1016/j.jechem.2022.12.020 10.1557/jmr.2006.0100 10.1134/S0965544118050080 10.1007/s12274-021-3526-5 10.1016/j.biortech.2022.128339 10.1016/j.apcatb.2020.118890 10.1016/j.apcata.2017.05.037 10.1021/jacs.0c09157 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202400644 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | n/a |
ExternalDocumentID | 38923356 10_1002_cssc_202400644 CSSC202400644 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3734-c6892b2f0d3097096b7f25caab4429a09593d09c331c9e6a59a5453af29efae63 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 07:06:08 EDT 2025 Fri Jul 25 12:08:36 EDT 2025 Mon Jul 21 06:01:01 EDT 2025 Tue Jul 01 00:36:27 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Wed Jan 22 17:12:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | lignin-derived phenols Ruthenium Hydrodeoxygenation Cyclohexanol |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-c6892b2f0d3097096b7f25caab4429a09593d09c331c9e6a59a5453af29efae63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4476-964X |
PMID | 38923356 |
PQID | 3142803036 |
PQPubID | 986333 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3072798373 proquest_journals_3142803036 pubmed_primary_38923356 crossref_citationtrail_10_1002_cssc_202400644 crossref_primary_10_1002_cssc_202400644 wiley_primary_10_1002_cssc_202400644_CSSC202400644 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 6, 2024 |
PublicationDateYYYYMMDD | 2024-12-06 |
PublicationDate_xml | – month: 12 year: 2024 text: December 6, 2024 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2023; 79 2021; 23 2020; 482 2015; 105 2023; 661 2013; 447 2008; 9 2021; 282 2012; 17 2024; 344 2023; 62 2018; 8 2020; 142(45 2022; 161 2006; 21 2019; 21 2022; 36 2022; 528 2022; 33 2021; 9 1998; 180 2023; 11 2018; 303 2021; 148 2015; 54 2020; 148 2020; 269 2023; 368 2023; 400 2022; 43 2018; 61 2024; 12 2019; 107 2021; 1 2016; 18 2011; 174 2015; 7 2022; 144 2016; 4 2021; 15 2018; 20(19 2012; 112 2020; 270 2017; 56 2022; 12 2022; 13 2017; 19 2021; 295 2022; 10 2017; 543 2018; 58 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Wang C. (e_1_2_7_41_1) 2021; 1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 482 year: 2020 publication-title: Mol. Catal. – volume: 33 start-page: 186 issue: 1 year: 2022 end-page: 196 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 2087 issue: 7 year: 2023 publication-title: Processes – volume: 12 start-page: 4618 issue: 8 year: 2022 end-page: 4627 publication-title: ACS Catal. – volume: 18 start-page: 6229 issue: 23 year: 2016 end-page: 6235 publication-title: Green Chem. – volume: 62 issue: 8 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 303 start-page: 130 year: 2018 end-page: 135 publication-title: Catal. Today – volume: 9 start-page: 14040 issue: 42 year: 2021 end-page: 14050 publication-title: ACS Sustainable Chem. Eng. – volume: 270 year: 2020 publication-title: Appl. Catal. B – volume: 23 start-page: 8441 issue: 21 year: 2021 end-page: 8447 publication-title: Green Chem. – volume: 4 start-page: 5336 issue: 10 year: 2016 end-page: 5346 publication-title: ACS Sustainable Chem. Eng. – volume: 144 start-page: 20834 issue: 45 year: 2022 end-page: 20846 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 807 issue: 4 year: 2006 end-page: 810 publication-title: J. Mater. Res. – volume: 344 year: 2024 publication-title: Appl. Catal. B – volume: 661 year: 2023 publication-title: Appl. Catal. A – volume: 368 year: 2023 publication-title: Bioresour. Technol. – volume: 21 start-page: 5386 issue: 19 year: 2019 end-page: 5393 publication-title: Green Chem. – volume: 528 year: 2022 publication-title: Mol. Catal. – volume: 10 issue: 4 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 148 start-page: 729 year: 2020 end-page: 738 publication-title: Renewable Energy – volume: 142(45 start-page: 19239 year: 2020 end-page: 19248 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 25128 issue: 44 year: 2021 publication-title: J. Mater. Chem. A – volume: 180 start-page: 1 issue: 1 year: 1998 end-page: 13 publication-title: J. Catal. – volume: 5 start-page: 8824 issue: 10 year: 2017 end-page: 8835 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 8594 issue: 10 year: 2017 end-page: 8601 publication-title: ACS Sustainable Chem. Eng. – volume: 543 start-page: 10 year: 2017 end-page: 16 publication-title: Appl. Catal. A – volume: 13 start-page: 1848 issue: 1 year: 2022 publication-title: Nat. Commun. – volume: 148 year: 2021 publication-title: Renewable Sustainable Energy Rev. – volume: 7 start-page: 2669 issue: 17 year: 2015 end-page: 2674 publication-title: ChemCatChem – volume: 56 start-page: 74 year: 2017 end-page: 81 publication-title: J. Ind. Eng. Chem. – volume: 20(19 start-page: 4391 year: 2018 end-page: 4408 publication-title: Green Chem. – volume: 447 start-page: 315 year: 2013 end-page: 324 publication-title: J. Membr. Sci. – volume: 17 start-page: 54 year: 2012 end-page: 58 publication-title: Catal. Commun. – volume: 112 start-page: 2714 issue: 5 year: 2012 end-page: 2738 publication-title: Chem. Rev. – volume: 19 start-page: 2535 issue: 11 year: 2017 end-page: 2540 publication-title: Green Chem. – volume: 282 year: 2021 publication-title: Appl. Catal. B – volume: 15 start-page: 603 issue: 1 year: 2021 end-page: 611 publication-title: Nano Res. – volume: 54 start-page: 2784 issue: 9 year: 2015 end-page: 2787 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 407 issue: 5 year: 2018 end-page: 411 publication-title: Pet. Chem. – volume: 9 start-page: 3083 issue: 8 year: 2021 end-page: 3094 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 696 issue: 5 year: 2008 end-page: 702 publication-title: Catal. Commun. – volume: 1 start-page: 1422 issue: 9 year: 2021 end-page: 1434 publication-title: J. Am. Chem. Soc. – volume: 174 start-page: 236 issue: 1 year: 2011 end-page: 241 publication-title: Chem. Eng. J. – volume: 295 year: 2021 publication-title: Appl. Catal. B – volume: 23 start-page: 1185 issue: 3 year: 2021 end-page: 1192 publication-title: Green Chem. – volume: 107 start-page: 232 year: 2019 end-page: 249 publication-title: Renewable Sustainable Energy Rev. – volume: 11 start-page: 17646 issue: 50 year: 2023 end-page: 17661 publication-title: ACS Sustainable Chem. Eng. – volume: 62 start-page: 13069 issue: 32 year: 2023 end-page: 13080 publication-title: Inorg. Chem. – volume: 79 start-page: 535 year: 2023 end-page: 549 publication-title: J. Energy Chem. – volume: 12 start-page: 3800 issue: 9 year: 2024 end-page: 3807 publication-title: ACS Sustainable Chem. Eng. – volume: 105 start-page: 570 year: 2015 end-page: 577 publication-title: Energy Convers. Manage. – volume: 43 start-page: 611 issue: 3 year: 2022 end-page: 635 publication-title: Chin. J. Catal. – volume: 61 start-page: 1339 issue: 10 year: 2018 end-page: 1344 publication-title: Sci. China Mater. – volume: 161 year: 2022 publication-title: Biomass Bioenergy – volume: 8 start-page: 6495 issue: 7 year: 2018 end-page: 6506 publication-title: ACS Catal. – volume: 400 year: 2023 publication-title: J. Cleaner Prod. – volume: 269 year: 2020 publication-title: Appl. Catal. B – volume: 21 start-page: 1253 issue: 6 year: 2019 end-page: 1257 publication-title: Green Chem. – volume: 36 start-page: 14986 issue: 24 year: 2022 end-page: 14993 publication-title: Energy Fuels – ident: e_1_2_7_8_1 doi: 10.1016/j.memsci.2013.07.048 – ident: e_1_2_7_33_1 doi: 10.1039/C9GC02181G – ident: e_1_2_7_57_1 doi: 10.1016/j.apcatb.2020.119542 – ident: e_1_2_7_59_1 doi: 10.1021/acscatal.2c00684 – ident: e_1_2_7_1_1 doi: 10.1016/j.rser.2021.111266 – ident: e_1_2_7_40_1 doi: 10.1021/acscatal.8b00584 – ident: e_1_2_7_11_1 doi: 10.1021/acssuschemeng.3c04713 – ident: e_1_2_7_52_1 doi: 10.1021/acssuschemeng.0c07292 – ident: e_1_2_7_56_1 doi: 10.1016/j.apcata.2023.119240 – ident: e_1_2_7_48_1 doi: 10.1016/j.cej.2011.09.010 – ident: e_1_2_7_32_1 doi: 10.1007/s40843-018-9282-1 – ident: e_1_2_7_12_1 doi: 10.1021/acs.inorgchem.3c01920 – ident: e_1_2_7_9_1 doi: 10.1039/D0GC03020A – ident: e_1_2_7_31_1 doi: 10.1039/C8GC03951H – ident: e_1_2_7_53_1 doi: 10.1016/j.catcom.2007.08.007 – ident: e_1_2_7_49_1 doi: 10.1006/jcat.1998.2237 – ident: e_1_2_7_50_1 doi: 10.1016/j.apcatb.2021.120270 – ident: e_1_2_7_22_1 doi: 10.1039/D1GC02790E – ident: e_1_2_7_42_1 doi: 10.1016/j.jece.2022.108085 – ident: e_1_2_7_25_1 doi: 10.1016/j.catcom.2011.10.011 – ident: e_1_2_7_28_1 doi: 10.1021/acssuschemeng.7b01615 – ident: e_1_2_7_19_1 doi: 10.1021/jacs.2c08992 – ident: e_1_2_7_26_1 doi: 10.1002/cctc.201500345 – ident: e_1_2_7_30_1 doi: 10.1039/C8GC02001A – ident: e_1_2_7_6_1 doi: 10.1039/C7GC00818J – volume: 1 start-page: 1422 issue: 9 year: 2021 ident: e_1_2_7_41_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_7_1 doi: 10.1002/anie.201410633 – ident: e_1_2_7_45_1 doi: 10.1039/C6GC02265K – ident: e_1_2_7_13_1 doi: 10.1016/j.enconman.2015.08.016 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-022-29074-1 – ident: e_1_2_7_55_1 doi: 10.1021/acssuschemeng.3c08041 – ident: e_1_2_7_44_1 doi: 10.1016/j.cattod.2017.09.027 – ident: e_1_2_7_15_1 doi: 10.1021/acssuschemeng.7b01047 – ident: e_1_2_7_39_1 doi: 10.1021/acssuschemeng.1c02942 – ident: e_1_2_7_21_1 doi: 10.1016/j.mcat.2022.112503 – ident: e_1_2_7_3_1 doi: 10.1016/j.jclepro.2023.136705 – ident: e_1_2_7_27_1 doi: 10.1021/acssuschemeng.6b01580 – ident: e_1_2_7_37_1 doi: 10.1039/D1TA07673F – ident: e_1_2_7_38_1 doi: 10.1016/j.apcatb.2020.118824 – ident: e_1_2_7_16_1 doi: 10.1016/j.renene.2019.10.160 – ident: e_1_2_7_5_1 doi: 10.1016/j.rser.2019.03.008 – ident: e_1_2_7_17_1 doi: 10.1021/acs.energyfuels.2c02913 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202214881 – ident: e_1_2_7_46_1 doi: 10.3390/pr11072087 – ident: e_1_2_7_34_1 doi: 10.1016/j.apcatb.2023.123626 – ident: e_1_2_7_58_1 doi: 10.1021/cr200346z – ident: e_1_2_7_29_1 doi: 10.1016/S1872-2067(21)63899-8 – ident: e_1_2_7_54_1 doi: 10.1016/j.mcat.2019.110695 – ident: e_1_2_7_20_1 doi: 10.1016/j.biombioe.2022.106448 – ident: e_1_2_7_43_1 doi: 10.1016/j.jiec.2017.06.013 – ident: e_1_2_7_4_1 doi: 10.1016/j.cclet.2021.06.045 – ident: e_1_2_7_18_1 doi: 10.1016/j.jechem.2022.12.020 – ident: e_1_2_7_47_1 doi: 10.1557/jmr.2006.0100 – ident: e_1_2_7_23_1 doi: 10.1134/S0965544118050080 – ident: e_1_2_7_36_1 doi: 10.1007/s12274-021-3526-5 – ident: e_1_2_7_2_1 doi: 10.1016/j.biortech.2022.128339 – ident: e_1_2_7_24_1 doi: 10.1016/j.apcatb.2020.118890 – ident: e_1_2_7_51_1 doi: 10.1016/j.apcata.2017.05.037 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.0c09157 |
SSID | ssj0060966 |
Score | 2.46721 |
Snippet | The selective hydrodeoxygenation (HDO) of lignin‐derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion... The selective hydrodeoxygenation (HDO) of lignin-derived methoxyphenols to cyclohexanol is one of the most significant transformation in biomass conversion... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202400644 |
SubjectTerms | Catalysis Catalysts Catalytic activity Cyclohexanol Hydrodeoxygenation Lignin lignin-derived phenols Phenols Raw materials Ruthenium Substitution reactions Zirconium dioxide |
Title | Selective Hydrodeoxygenation of Lignin‐Derived Phenolic Monomers to Cyclohexanol over Tungstated Zirconia Supported Ruthenium Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202400644 https://www.ncbi.nlm.nih.gov/pubmed/38923356 https://www.proquest.com/docview/3142803036 https://www.proquest.com/docview/3072798373 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQL3CB8tUubZGRKnFKm9qJHR9RSrWqWlSxrVRxiWzHaSOWBDXZStsTV278Rn4JM84msKCqUrkliq04nvHMszPzhpBt54SSBdeBdEwGEbioQEusoZFwYTizJlGY73z8QYzPosPz-PyPLP6OH2I4cMOV4e01LnBtmt3fpKG2aZCCEGMgwaeDEcaALURFHwf-KAH43KcXJSIKYsH3etbGkO0ud1_2Sv9AzWXk6l3PwROi-0F3ESefd2at2bE3f_E5_s9XrZLHC1xK33WK9JQ8cNUz8jDty8E9J98nvmIOGEc6nudgdh2MBrTPS5bWBT0qL6qy-vntxz4o9bXL6cmlq5B1mB5j4gTATNrWNJ3baX2JSTX1lGL4KD0Fc-PTmnL6qbyC7XmpKdYaxSjgnPoI_KqcfaEpHjTNm7Z5Qc4O3p-m42BRxyGwXPIosCJRzLAizHmoJMjEyILFVmsTgTfUnhs5D5XlfM8qJ3SsNOA6rgumXKGd4C_JSlVXbp1QJ6SItIxlrmFfWSTGJpjJawGnutzZaESCXo6ZXZCcY62NadbRM7MMJzgbJnhE3g7tv3b0Hre23OzVIlss8ybjyFcXIgoYkTfDYxAM_nXRlatn0CYEiKgSmIkRWevUaXgVoEXGeQy9mVeKO8aQpZNJOty9uk-nDfIIr31AjtgkK-3VzG0BrGrNa790fgG5ZBx6 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMqFb8pCASMhcUqb2okdH1FKtcBuhdithLhEtuPQiG1SNVmk5cSVG7-RX8KMswlaEEKCYxJbcTwznmdn5g0hT50TShZcB9IxGUTgogItsYZGwoXhzJpEYb7z9FiMT6JX7-I-mhBzYTp-iOHADS3Dr9do4Hggvf-TNdQ2DXIQYhAkOPXL5AqW9Ub6_MO3A4OUAITuE4wSEQWx4Ac9b2PI9jf7b_ql38DmJnb1zufoOjH9sLuYk497y9bs2c-_MDr-13fdINfW0JQ-73TpJrnkqltkO-0rwt0mX2e-aA6sj3S8ymHldTAcUEAvXFoXdFJ-qMrq-5dvh6DXn1xO35y6ComH6RRzJwBp0ram6cou6lPMq6kXFCNI6RxWHJ_ZlNP35QXs0EtNsdwoBgLn1AfhV-XyjKZ41rRq2uYOOTl6MU_HwbqUQ2C55FFgRaKYYUWY81BJEIqRBYut1iYCh6g9PXIeKsv5gVVO6FhpgHZcF0y5QjvB75Ktqq7cPUKdkCLSMpa5hq1lkRibYDKvBajqcmejEQl6QWZ2zXOO5TYWWcfQzDKc4GyY4BF5NrQ_7xg-_thyt9eLbG3pTcaRsi5EIDAiT4bHIBj88aIrVy-hTQgoUSUwEyOy0-nT8CoAjIzzGHozrxV_GUOWzmbpcHX_Xzo9Jtvj-XSSTV4ev35AruJ9H58jdslWe7F0DwFlteaRt6Mfbmcglg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSMClfJYuFDASEqe0WTux42OVZbVAW1VsK1VcIsdxaMQ2qZpspeXElVt_I7-EGWcTWBBCgmMcW3E8Y8-zPfOGkJfWCiVzrj1pmfQCMFGelphDI-Ii5cykkcJ45_0DMTkO3p6EJz9F8bf8EP2BG84Mt17jBD_P8p0fpKGmrpGCEH0gwaZfJzcC4StM3jB63xNIQYm7rRxGIvBCwYcdbaPPdlbbr5ql37DmKnR1tmd8h-iu163LyafteZNum8-_EDr-z2_dJetLYEp3W026R67Z8j65FXf54B6Qr1OXMgdWRzpZZLDuWugNqJ8TLa1yuld8LIvy25erEWj1pc3o4aktkXaY7mPkBOBM2lQ0XphZdYpRNdWMov8oPYL1xsU1ZfRDcQH780JTTDaKbsAZdS74ZTE_ozGeNC3qpn5Ijsevj-KJt0zk4BkueeAZESmWstzPuK8kyCSVOQuN1mkA5lA7cuTMV4bzoVFW6FBpAHZc50zZXFvBN8haWZV2k1ArpAi0DGWmYWOZR6mJMJTXAFC1mTXBgHidHBOzZDnHZBuzpOVnZgkOcNIP8IC86uuft_wef6y51alFspzndcKRsM5HGDAgL_rXIBi8dtGlreZQxweMqCIYiQF51KpT_ymAi4zzEFozpxR_6UMST6dx__T4Xxo9JzcPR-Nk783BuyfkNhY75xyxRdaai7l9ChCrSZ-5WfQd9SIfRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Hydrodeoxygenation+of+Lignin%E2%80%90Derived+Phenolic+Monomers+to+Cyclohexanol+over+Tungstated+Zirconia+Supported+Ruthenium+Catalysts&rft.jtitle=ChemSusChem&rft.au=Gan%2C+Quan&rft.au=Zhou%2C+Weihao&rft.au=Zhang%2C+Xueping&rft.au=Lin%2C+Yamei&rft.date=2024-12-06&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202400644&rft.externalDBID=10.1002%252Fcssc.202400644&rft.externalDocID=CSSC202400644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |