Advances in Mn‐Based MOFs and Their Derivatives for High‐Performance Supercapacitor
As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materia...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 20; pp. e2308804 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future.
This review gives a timely and comprehensive introduction on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors. Specially, the recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor are highlighted. The challenges and outlooks of Mn‐MOFs and their derivatives for supercapacitors are also summarized. |
---|---|
AbstractList | As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future. As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future. This review gives a timely and comprehensive introduction on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors. Specially, the recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor are highlighted. The challenges and outlooks of Mn‐MOFs and their derivatives for supercapacitors are also summarized. As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future. |
Author | Li, Jianping Shu, Dong Cheng, Honghong Meng, Tao |
Author_xml | – sequence: 1 givenname: Honghong surname: Cheng fullname: Cheng, Honghong organization: Guangdong University of Education – sequence: 2 givenname: Jianping surname: Li fullname: Li, Jianping organization: Guangdong University of Education – sequence: 3 givenname: Tao surname: Meng fullname: Meng, Tao email: mengt@scnu.edu.cn organization: South China Normal University – sequence: 4 givenname: Dong orcidid: 0000-0001-6915-6714 surname: Shu fullname: Shu, Dong email: dshu@scnu.edu.cn organization: South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38073335$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEUhkVJaK7bLstAN9nYObqMR1q6SdMEbFKIQ5ZCoznTyMxoXMnjkF0foc_YJ6mMHQcCoSsdwfefy_8fkT3feSTkE4UhBWDnsW2aIQPGQUoQH8ghHVE-GEmm9nY1hQNyFOMcgFMmio_kgEsoOOf5IXkYVyvjLcbM-Wzq__7-89VErLLp7VXMjK-y2SO6kF1icCuzdKsE1l3Irt3Px8T-wJB-7bpBdtcvMFizMNYtu3BC9mvTRDzdvsfk_urb7OJ6MLn9fnMxngwsL7gYlLVipRVKliUwHNWitkwIQFZIwwAh3aEoci5KI6qKVlCkO42UVNGC0dzyY3K26bsI3a8e41K3LlpsGuOx66NmCpjiSnCR0C9v0HnXB5-20xzyXHJa5DRRn7dUX7ZY6UVwrQnP-sWyBAw3gA1djAHrHUJBrzPR60z0LpMkEG8EyaHkZeeXwbjmfZnayJ5cg8__GaLvppPJq_YfuH6gvA |
CitedBy_id | crossref_primary_10_1007_s12274_024_6817_9 crossref_primary_10_1007_s40242_024_4179_1 crossref_primary_10_1039_D4TC03273J crossref_primary_10_1515_revic_2024_0137 crossref_primary_10_1021_acsaem_4c02126 crossref_primary_10_1007_s12598_025_03245_7 crossref_primary_10_1002_smll_202409273 crossref_primary_10_1016_j_heliyon_2024_e41261 crossref_primary_10_1002_smll_202405769 crossref_primary_10_1016_j_ccr_2024_216231 crossref_primary_10_1016_j_est_2025_115410 crossref_primary_10_1016_j_est_2025_115840 crossref_primary_10_1021_acs_inorgchem_4c01791 crossref_primary_10_1002_batt_202400534 crossref_primary_10_1021_acsami_4c20184 crossref_primary_10_1016_j_cej_2024_155240 crossref_primary_10_1021_acs_energyfuels_4c02337 crossref_primary_10_1016_j_cej_2024_158711 crossref_primary_10_1039_D4TA04778H crossref_primary_10_1021_acs_inorgchem_4c04288 crossref_primary_10_1039_D4SC06182A crossref_primary_10_1002_ente_202401761 crossref_primary_10_1016_j_jallcom_2024_177898 crossref_primary_10_3390_met14080841 |
Cites_doi | 10.1016/j.esr.2019.01.006 10.1039/C9CC06791D 10.1002/smll.201907556 10.1039/D1DT01215K 10.1039/C1CS15196G 10.1021/acssuschemeng.9b06590 10.1021/jacs.7b12420 10.1016/j.cej.2021.131003 10.1016/j.rser.2015.12.249 10.1016/j.cej.2017.03.091 10.1016/j.electacta.2022.139872 10.1021/cm101238m 10.1039/C7TA05986H 10.1007/s10853-016-0344-3 10.1039/C7TA11173H 10.1016/j.ccr.2018.05.001 10.1039/C5CE01976A 10.1016/j.cej.2019.122210 10.1039/C8CS00829A 10.1002/adfm.202210002 10.1021/acs.chemmater.7b00441 10.1021/jacs.6b02540 10.1039/C8TA09528K 10.1016/j.jelechem.2021.114993 10.1016/j.matlet.2011.10.046 10.1016/j.electacta.2021.137739 10.1016/j.matt.2021.02.023 10.1016/j.ensm.2020.03.003 10.1039/D0TA09212F 10.1039/C6QI00348F 10.1016/j.electacta.2015.03.098 10.1016/j.jallcom.2019.01.157 10.1038/s41560-021-00917-3 10.1021/acs.cgd.9b00962 10.1002/aenm.201801307 10.1002/cssc.202201935 10.1016/j.jallcom.2020.154524 10.1039/C8NR01526K 10.1002/adfm.201402827 10.1002/advs.201700322 10.1002/aenm.201602733 10.1016/j.cej.2019.122982 10.1039/C8CS00337H 10.1016/j.jallcom.2022.164726 10.1016/j.ccr.2020.213221 10.1021/acs.chemmater.9b01101 10.1016/j.cej.2018.12.173 10.1002/adfm.201900532 10.1038/nmat3260 10.1016/j.ica.2020.119629 10.1016/j.electacta.2019.135327 10.1021/ja1028777 10.1016/j.colsurfa.2022.130244 10.1021/jacs.8b03235 10.1021/acsnano.5b01790 10.1038/378703a0 10.1002/adfm.201503662 10.1021/acs.chemrev.8b00252 10.1039/C7CS00315C 10.1007/s10853-017-1575-7 10.1016/j.rser.2019.109415 10.1016/j.jallcom.2019.04.027 10.1016/j.apcatb.2021.120881 10.1016/j.jpowsour.2023.232705 10.1016/j.jpowsour.2011.11.043 10.1021/acsami.9b12805 10.1021/acs.chemrev.5b00567 10.1039/C8TA00612A 10.1039/C9TA01628G 10.1016/j.jcis.2019.12.101 10.1021/acsami.7b09363 10.1021/cm900069f 10.1007/s40820-017-0144-6 10.1016/j.mssp.2023.107511 10.1016/j.jallcom.2021.162640 10.1016/j.electacta.2017.10.016 10.1016/j.joule.2020.11.010 10.1021/acs.accounts.6b00460 10.1038/s41596-022-00718-2 10.1021/acssuschemeng.6b01390 10.1002/adma.201501310 10.1016/j.jpowsour.2021.230077 10.1002/chem.202003220 10.1016/j.jpowsour.2012.05.087 10.3389/fchem.2019.00831 10.1021/acsaem.0c01969 10.1039/C9QI01204D 10.1016/j.materresbull.2021.111707 10.1021/nn2041279 10.1016/j.ccr.2022.214949 10.1039/C9NR02206F 10.1039/c2nr30936j 10.1021/ja205827z 10.1016/j.cej.2016.11.063 10.1016/j.mtcomm.2021.102057 10.1016/j.ccr.2021.213874 10.1002/smll.202100670 10.1039/C7TA01874F 10.1021/acs.inorgchem.0c00060 10.1039/c3cs00009e 10.1088/0957-4484/27/46/465402 10.1021/acsami.6b14801 10.1016/j.cej.2014.04.093 10.1021/acs.energyfuels.0c02998 10.1021/acs.chemrev.0c00345 10.1021/acs.chemrev.7b00091 10.1016/j.jallcom.2018.11.243 10.1002/advs.201901517 10.1002/asia.201900026 10.1016/j.chempr.2016.12.002 10.1039/C7TA05209J 10.1002/admi.202101599 10.1039/D0DT01666G 10.1021/am508119c 10.1016/j.cej.2022.139661 10.1007/s10853-018-2562-3 10.1007/s10008-023-05382-4 10.1039/C8EE02679C 10.1039/D0RA05494A 10.1039/b804126a 10.1016/j.chempr.2017.05.021 10.1016/j.colsurfa.2020.125011 10.1002/anie.201604313 10.1021/acsnano.7b02796 10.1016/j.jcis.2021.03.075 10.3390/nano12234257 10.1016/j.susmat.2023.e00678 10.1002/adma.201802569 10.1002/adma.201605902 10.1016/j.electacta.2021.139060 10.1039/C6NR02267G 10.1002/smll.201704435 10.1016/j.electacta.2018.06.009 10.1016/j.microc.2022.107506 10.1002/anie.202010093 10.1021/acs.chemrev.1c00978 10.1016/j.ceramint.2018.07.310 10.1038/natrevmats.2017.75 10.1016/S0025-5408(02)00845-0 10.1002/aenm.201800716 10.1021/acs.nanolett.6b05004 10.1002/aenm.201602391 10.1021/cm8032324 10.1002/er.8752 10.1016/j.jallcom.2019.153546 10.1039/C5TA05523G 10.1039/C3EE42613K 10.1021/am500339x 10.1016/j.jpowsour.2022.231594 10.1002/anie.201811126 10.1039/C6TA01377E 10.1002/anie.201902229 10.1002/smll.202002806 10.1016/j.apsusc.2019.01.140 10.1002/adfm.201909062 10.1002/adma.201705146 10.1016/j.gee.2017.05.003 10.1039/C8MH00133B 10.1038/nmat4738 10.1021/acs.nanolett.7b03507 10.1016/j.jallcom.2022.164876 10.1016/j.est.2019.101018 10.1007/s11051-022-05411-9 10.1002/er.4976 10.1002/adma.201702891 10.1002/celc.201600836 10.1039/C4TA02984D 10.1016/j.ijhydene.2014.04.050 10.1021/acsaem.7b00305 10.1021/acs.energyfuels.3c00332 10.1039/C5NR04421A 10.1039/C4CS00218K 10.1021/acsnano.5b05041 10.1039/D0QI00892C 10.1039/C6CS00426A 10.1115/1.4053246 10.1039/C1CS15060J 10.1021/acsnano.7b09062 10.1021/acsami.5b03414 10.1002/pssa.201700936 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202308804 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 38073335 10_1002_smll_202308804 SMLL202308804 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Guangzhou Basic and Applied Basic Research Project in China funderid: 202204400805 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2022A1515011906 – fundername: Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI funderid: 202208 – fundername: China Postdoctoral Science Foundation funderid: 2023M731153 – fundername: the quality and reform project of Guangdong province undergraduate teaching. funderid: XQSYS‐2222873 – fundername: Youth Innovation Talents Project of Guangdong Universities funderid: 2023KQNCX052 – fundername: Guangzhou Basic and Applied Basic Research Project in China grantid: 202204400805 – fundername: the quality and reform project of Guangdong province undergraduate teaching. grantid: XQSYS-2222873 – fundername: Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI grantid: 202208 – fundername: China Postdoctoral Science Foundation grantid: 2023M731153 – fundername: Youth Innovation Talents Project of Guangdong Universities grantid: 2023KQNCX052 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2022A1515011906 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYOK AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF A00 AEUQT AFPWT NPM P4E RWI WYJ 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3734-bf92bc498bb02e6f4fc2440e278a20e082991e334ba4dd1d07088a881917215c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 01:30:27 EDT 2025 Fri Jul 25 12:14:22 EDT 2025 Wed Feb 19 02:08:02 EST 2025 Tue Jul 01 02:54:51 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | metal organic frameworks manganese supercapacitors MOF derivatives |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-bf92bc498bb02e6f4fc2440e278a20e082991e334ba4dd1d07088a881917215c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6915-6714 |
PMID | 38073335 |
PQID | 3055831751 |
PQPubID | 1046358 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2902939434 proquest_journals_3055831751 pubmed_primary_38073335 crossref_primary_10_1002_smll_202308804 crossref_citationtrail_10_1002_smll_202308804 wiley_primary_10_1002_smll_202308804_SMLL202308804 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 282 2019; 11 2019; 12 2019; 14 2020; 16 2022; 24 2019; 19 2020; 601 1995; 378 2020; 563 2020; 12 2020; 10 2018; 44 2012; 11 2014; 252 2017; 313 2022; 179 2018; 6 2010; 22 2018; 8 2018; 5 2018; 215 2018; 1 2019; 24 2023; 452 2021; 438 2019; 26 2020; 335 2021; 393 2019; 29 2018; 30 2017; 320 2016; 49 2019; 792 2019; 7 2019; 9 2019; 6 2023; 560 2019; 31 2023; 162 2016; 10 2020; 821 2020; 387 2020; 34 2016; 18 2022; 911 2021; 50 2017; 256 2022; 910 2011; 133 2016; 4 2017; 52 2016; 3 2020; 30 2018; 118 2019; 48 2020; 28 2022; 12 2020; 830 2020; 26 2021; 370 2014; 39 2018; 12 2021; 60 2016; 27 2018; 10 2016; 8 2022; 17 2012; 41 2018; 14 2022; 19 2017; 5 2017; 7 2021; 26 2017; 2 2017; 3 2023; 33 2017; 4 2018; 369 2021; 882 2020; 120 2023; 37 2019; 55 2017; 46 2019; 58 2020; 59 2022; 539 2012; 203 2019; 361 2017; 9 2022; 655 2022; 897 2017; 117 2020; 8 2022; 122 2020; 7 2020; 3 2014; 2 2023; 27 2015; 44 2019; 478 2019; 116 2020; 49 2016; 116 2020; 44 2020; 410 2021; 594 2022; 406 2012; 68 2014; 7 2012; 216 2014; 6 2021; 505 2021; 8 2021; 6 2002; 37 2021; 5 2021; 4 2018; 140 2009; 21 2015; 3 2023; 16 2015; 167 2013; 42 2022; 46 2008 2019; 784 2017; 29 2020; 508 2015; 9 2015; 7 2016; 58 2016; 55 2015; 25 2015; 27 2017; 17 2017; 16 2017; 11 2021; 17 2010; 132 2023; 477 2019; 378 2019; 779 2016; 138 2022; 427 2012; 6 2012; 4 2018; 53 2022; 149 2022; 303 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_173_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_175_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_172_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – volume: 4 start-page: 1511 year: 2021 publication-title: Matter – volume: 46 start-page: 5730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 4257 year: 2022 publication-title: Nanomaterials – volume: 5 start-page: 394 year: 2018 publication-title: Mater. Horiz. – volume: 21 start-page: 2580 year: 2009 publication-title: Chem. Mater. – volume: 4 start-page: 4498 year: 2012 publication-title: Nanoscale – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 49 year: 2020 publication-title: Dalt. Trans. – volume: 7 start-page: 4101 year: 2020 publication-title: Inorg. Chem. Front. – volume: 393 year: 2021 publication-title: Electrochim. Acta – volume: 10 start-page: 377 year: 2016 publication-title: ACS Nano – volume: 320 start-page: 634 year: 2017 publication-title: Chem. Eng. J. – volume: 14 year: 2018 publication-title: Small – volume: 12 start-page: 2753 year: 2018 publication-title: ACS Nano – volume: 821 year: 2020 publication-title: J. Alloys Compd. – volume: 17 start-page: 7552 year: 2017 publication-title: Nano Lett. – volume: 882 year: 2021 publication-title: J. Electroanal. Chem. – volume: 120 start-page: 7642 year: 2020 publication-title: Chem. Rev. – volume: 7 start-page: 1725 year: 2019 publication-title: J. Mater. Chem. A – volume: 410 year: 2020 publication-title: Coord. Chem. Rev. – volume: 792 start-page: 487 year: 2019 publication-title: J. Alloys Compd. – volume: 313 start-page: 1623 year: 2017 publication-title: Chem. Eng. J. – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 50 start-page: 8372 year: 2021 publication-title: Dalt. Trans. – volume: 3 start-page: 1609 year: 2016 publication-title: Inorg. Chem. Front. – volume: 4 start-page: 1088 year: 2017 publication-title: ChemElectroChem – volume: 378 start-page: 703 year: 1995 publication-title: Nature – volume: 18 start-page: 450 year: 2016 publication-title: CrystEngComm – volume: 8 start-page: 3191 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 4432 year: 2018 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4695 year: 2015 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 369 start-page: 76 year: 2018 publication-title: Coord. Chem. Rev. – volume: 116 start-page: 2141 year: 2016 publication-title: Chem. Rev. – volume: 179 year: 2022 publication-title: Microchem. J. – volume: 508 year: 2020 publication-title: Inorganica Chim. Acta – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 48 start-page: 2535 year: 2019 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 57 year: 2017 publication-title: Nat. Mater. – volume: 16 year: 2023 publication-title: ChemSusChem – volume: 11 year: 2019 publication-title: Nanoscale – volume: 116 year: 2019 publication-title: Renew. Sustain. Energy Rev. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 9 start-page: 5254 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 478 start-page: 247 year: 2019 publication-title: Appl. Surf. Sci. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 9 start-page: 43 year: 2017 publication-title: Nano‐Micro Lett. – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 1 start-page: 1200 year: 2018 publication-title: ACS Appl. Energy. Mater. – volume: 6 start-page: 987 year: 2021 publication-title: Nat. Energy – volume: 37 start-page: 1539 year: 2002 publication-title: Mater. Res. Bull. – volume: 21 start-page: 1602 year: 2009 publication-title: Chem. Mater. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 31 start-page: 4490 year: 2019 publication-title: Chem. Mater. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 17 year: 2021 publication-title: Small – volume: 41 start-page: 1677 year: 2012 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 4120 year: 2010 publication-title: Chem. Mater. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 215 year: 2018 publication-title: Phys. Status Solidi – volume: 41 start-page: 797 year: 2012 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 8198 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 167 start-page: 412 year: 2015 publication-title: Electrochim. Acta – volume: 46 year: 2022 publication-title: Int. J. Energy Res. – volume: 25 start-page: 238 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 89 year: 2021 publication-title: Joule – volume: 6 start-page: 7214 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 6288 year: 2015 publication-title: ACS Nano – volume: 282 start-page: 1 year: 2018 publication-title: Electrochim. Acta – volume: 34 year: 2020 publication-title: Energy Fuels – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 26 year: 2019 publication-title: J. Energy Storage – volume: 216 start-page: 425 year: 2012 publication-title: J. Power Sources – volume: 37 start-page: 6248 year: 2023 publication-title: Energy Fuels – volume: 3 start-page: 152 year: 2017 publication-title: Chem – volume: 477 year: 2023 publication-title: Coord. Chem. Rev. – volume: 162 year: 2023 publication-title: Mater. Sci. Semicond. Process. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 911 year: 2023 publication-title: J. Solid State Electrochem. – volume: 252 start-page: 95 year: 2014 publication-title: Chem. Eng. J. – volume: 378 year: 2019 publication-title: Chem. Eng. J. – volume: 26 year: 2021 publication-title: Mater. Today. Commun. – volume: 560 year: 2023 publication-title: J. Power Sources – volume: 44 start-page: 3446 year: 2020 publication-title: Int. J. Energy Res. – volume: 7 start-page: 3655 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 19 year: 2022 publication-title: J. Electrochem. En. Conv. Stor. – volume: 6 start-page: 656 year: 2012 publication-title: ACS Nano – volume: 138 start-page: 6924 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 335 year: 2020 publication-title: Electrochim. Acta – volume: 25 start-page: 7530 year: 2015 publication-title: Adv. Funct. Mater. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 10 year: 2020 publication-title: RSC Adv. – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 8129 year: 2017 publication-title: Chem. Rev. – volume: 601 year: 2020 publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 49 start-page: 2796 year: 2016 publication-title: Acc. Chem. Res. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 218 year: 2017 publication-title: Green Energy Environ. – volume: 24 start-page: 38 year: 2019 publication-title: Energy Strategy Rev. – volume: 910 year: 2022 publication-title: J. Alloys Compd. – volume: 149 year: 2022 publication-title: Mater. Res. Bull. – volume: 46 start-page: 2660 year: 2017 publication-title: Chem. Soc. Rev. – volume: 16 year: 2020 publication-title: Small – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 58 start-page: 1975 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 39 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 5293 year: 2017 publication-title: ACS Nano – volume: 303 year: 2022 publication-title: Appl. Catal. B Environ. – volume: 256 start-page: 63 year: 2017 publication-title: Electrochim. Acta. – volume: 897 year: 2022 publication-title: J. Alloys Compd. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 19 start-page: 6503 year: 2019 publication-title: Cryst. Growth Des. – volume: 12 start-page: 418 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 1189 year: 2016 publication-title: Renew. Sustain. Energy. Rev. – volume: 7 start-page: 14 year: 2014 publication-title: Energy Environ. Sci. – volume: 594 start-page: 812 year: 2021 publication-title: J. Colloid. Interface Sci. – volume: 52 start-page: 446 year: 2017 publication-title: J. Mater. Sci. – volume: 3 year: 2017 publication-title: Nat. Rev. Mater. – volume: 830 year: 2020 publication-title: J. Alloys Compd. – volume: 4 start-page: 8283 year: 2016 publication-title: J. Mater. Chem. A – volume: 361 start-page: 1235 year: 2019 publication-title: Chem. Eng. J. – volume: 2 start-page: 52 year: 2017 publication-title: Chem – volume: 911 year: 2022 publication-title: J. Alloys Compd. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1331 year: 2019 publication-title: Chem. – An Asian J. – volume: 779 start-page: 550 year: 2019 publication-title: J. Alloys Compd. – volume: 26 year: 2020 publication-title: Chem. – A Eur. J. – volume: 6 start-page: 6754 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 122 year: 2020 publication-title: Energy Storage Mater. – volume: 37 year: 2023 publication-title: Sustain. Mater. Technol. – volume: 59 start-page: 6808 year: 2020 publication-title: Inorg. Chem. – volume: 563 start-page: 435 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 727 year: 2019 publication-title: Energy. Environ. Sci. – volume: 438 year: 2021 publication-title: Coord. Chem. Rev. – volume: 24 start-page: 23 year: 2022 publication-title: J. Nanopart. Res. – volume: 68 start-page: 126 year: 2012 publication-title: Mater. Lett. – volume: 5 start-page: 1297 year: 2017 publication-title: ACS Sustain. Chem. Eng. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 370 year: 2021 publication-title: Electrochim. Acta – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 539 year: 2022 publication-title: J. Power Sources – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 784 start-page: 869 year: 2019 publication-title: J. Alloys Compd. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 699 year: 2015 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 831 year: 2019 publication-title: Front. Chem. – volume: 505 year: 2021 publication-title: J. Power Sources – start-page: 3642 year: 2008 publication-title: Chem. Commun. – volume: 7 start-page: 718 year: 2020 publication-title: Inorg. Chem. Front. – volume: 53 year: 2018 publication-title: J. Mater. Sci. – volume: 655 year: 2022 publication-title: Colloids Surf. A Physicochem. Eng. Asp – volume: 118 start-page: 9233 year: 2018 publication-title: Chem. Rev. – volume: 203 start-page: 233 year: 2012 publication-title: J. Power Sources – volume: 42 start-page: 3127 year: 2013 publication-title: Chem. Soc. Rev. – volume: 122 year: 2022 publication-title: Chem. Rev. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 306 year: 2012 publication-title: Nat. Mater. – volume: 17 start-page: 2990 year: 2022 publication-title: Nat. Protoc. – volume: 53 start-page: 1346 year: 2018 publication-title: J. Mater. Sci. – volume: 17 start-page: 2788 year: 2017 publication-title: Nano Lett. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 406 year: 2022 publication-title: Electrochim. Acta – volume: 48 start-page: 2783 year: 2019 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 2618 year: 2017 publication-title: Chem. Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_7_1_1 doi: 10.1016/j.esr.2019.01.006 – ident: e_1_2_7_132_1 doi: 10.1039/C9CC06791D – ident: e_1_2_7_142_1 doi: 10.1002/smll.201907556 – ident: e_1_2_7_173_1 doi: 10.1039/D1DT01215K – ident: e_1_2_7_32_1 doi: 10.1039/C1CS15196G – ident: e_1_2_7_117_1 doi: 10.1021/acssuschemeng.9b06590 – ident: e_1_2_7_162_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_7_55_1 doi: 10.1016/j.cej.2021.131003 – ident: e_1_2_7_140_1 doi: 10.1016/j.rser.2015.12.249 – ident: e_1_2_7_157_1 doi: 10.1016/j.cej.2017.03.091 – ident: e_1_2_7_17_1 doi: 10.1016/j.electacta.2022.139872 – ident: e_1_2_7_66_1 doi: 10.1021/cm101238m – ident: e_1_2_7_78_1 doi: 10.1039/C7TA05986H – ident: e_1_2_7_178_1 doi: 10.1007/s10853-016-0344-3 – ident: e_1_2_7_16_1 doi: 10.1039/C7TA11173H – ident: e_1_2_7_41_1 doi: 10.1016/j.ccr.2018.05.001 – ident: e_1_2_7_127_1 doi: 10.1039/C5CE01976A – ident: e_1_2_7_164_1 doi: 10.1016/j.cej.2019.122210 – ident: e_1_2_7_97_1 doi: 10.1039/C8CS00829A – ident: e_1_2_7_136_1 doi: 10.1002/adfm.202210002 – ident: e_1_2_7_75_1 doi: 10.1021/acs.chemmater.7b00441 – ident: e_1_2_7_122_1 doi: 10.1021/jacs.6b02540 – ident: e_1_2_7_108_1 doi: 10.1039/C8TA09528K – ident: e_1_2_7_112_1 doi: 10.1016/j.jelechem.2021.114993 – ident: e_1_2_7_105_1 doi: 10.1016/j.matlet.2011.10.046 – ident: e_1_2_7_30_1 doi: 10.1016/j.electacta.2021.137739 – ident: e_1_2_7_130_1 doi: 10.1016/j.matt.2021.02.023 – ident: e_1_2_7_143_1 doi: 10.1016/j.ensm.2020.03.003 – ident: e_1_2_7_65_1 doi: 10.1039/D0TA09212F – ident: e_1_2_7_62_1 doi: 10.1039/C6QI00348F – ident: e_1_2_7_27_1 doi: 10.1016/j.electacta.2015.03.098 – ident: e_1_2_7_102_1 doi: 10.1016/j.jallcom.2019.01.157 – ident: e_1_2_7_7_1 doi: 10.1038/s41560-021-00917-3 – ident: e_1_2_7_85_1 doi: 10.1021/acs.cgd.9b00962 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201801307 – ident: e_1_2_7_96_1 doi: 10.1002/cssc.202201935 – ident: e_1_2_7_129_1 doi: 10.1016/j.jallcom.2020.154524 – ident: e_1_2_7_151_1 doi: 10.1039/C8NR01526K – ident: e_1_2_7_68_1 doi: 10.1002/adfm.201402827 – ident: e_1_2_7_12_1 doi: 10.1002/advs.201700322 – ident: e_1_2_7_71_1 doi: 10.1002/aenm.201602733 – ident: e_1_2_7_86_1 doi: 10.1016/j.cej.2019.122982 – ident: e_1_2_7_110_1 doi: 10.1039/C8CS00337H – ident: e_1_2_7_169_1 doi: 10.1016/j.jallcom.2022.164726 – ident: e_1_2_7_72_1 doi: 10.1016/j.ccr.2020.213221 – ident: e_1_2_7_171_1 doi: 10.1021/acs.chemmater.9b01101 – ident: e_1_2_7_90_1 doi: 10.1016/j.cej.2018.12.173 – ident: e_1_2_7_70_1 doi: 10.1002/adfm.201900532 – ident: e_1_2_7_9_1 doi: 10.1038/nmat3260 – ident: e_1_2_7_48_1 doi: 10.1016/j.ica.2020.119629 – ident: e_1_2_7_111_1 doi: 10.1016/j.electacta.2019.135327 – ident: e_1_2_7_35_1 doi: 10.1021/ja1028777 – ident: e_1_2_7_138_1 doi: 10.1016/j.colsurfa.2022.130244 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.8b03235 – ident: e_1_2_7_148_1 doi: 10.1021/acsnano.5b01790 – ident: e_1_2_7_34_1 doi: 10.1038/378703a0 – ident: e_1_2_7_174_1 doi: 10.1002/adfm.201503662 – ident: e_1_2_7_11_1 doi: 10.1021/acs.chemrev.8b00252 – ident: e_1_2_7_121_1 doi: 10.1039/C7CS00315C – ident: e_1_2_7_177_1 doi: 10.1007/s10853-017-1575-7 – ident: e_1_2_7_5_1 doi: 10.1016/j.rser.2019.109415 – ident: e_1_2_7_79_1 doi: 10.1016/j.jallcom.2019.04.027 – ident: e_1_2_7_126_1 doi: 10.1016/j.apcatb.2021.120881 – ident: e_1_2_7_131_1 doi: 10.1016/j.jpowsour.2023.232705 – ident: e_1_2_7_24_1 doi: 10.1016/j.jpowsour.2011.11.043 – ident: e_1_2_7_172_1 doi: 10.1021/acsami.9b12805 – ident: e_1_2_7_91_1 doi: 10.1021/acs.chemrev.5b00567 – ident: e_1_2_7_50_1 doi: 10.1039/C8TA00612A – ident: e_1_2_7_98_1 doi: 10.1039/C9TA01628G – ident: e_1_2_7_170_1 doi: 10.1016/j.jcis.2019.12.101 – ident: e_1_2_7_89_1 doi: 10.1021/acsami.7b09363 – ident: e_1_2_7_95_1 doi: 10.1021/cm900069f – ident: e_1_2_7_49_1 doi: 10.1007/s40820-017-0144-6 – ident: e_1_2_7_119_1 doi: 10.1016/j.mssp.2023.107511 – ident: e_1_2_7_159_1 doi: 10.1016/j.jallcom.2021.162640 – ident: e_1_2_7_179_1 doi: 10.1016/j.electacta.2017.10.016 – ident: e_1_2_7_8_1 doi: 10.1016/j.joule.2020.11.010 – ident: e_1_2_7_100_1 doi: 10.1021/acs.accounts.6b00460 – ident: e_1_2_7_46_1 doi: 10.1038/s41596-022-00718-2 – ident: e_1_2_7_18_1 doi: 10.1021/acssuschemeng.6b01390 – ident: e_1_2_7_153_1 doi: 10.1002/adma.201501310 – ident: e_1_2_7_134_1 doi: 10.1016/j.jpowsour.2021.230077 – ident: e_1_2_7_120_1 doi: 10.1002/chem.202003220 – ident: e_1_2_7_25_1 doi: 10.1016/j.jpowsour.2012.05.087 – ident: e_1_2_7_64_1 doi: 10.3389/fchem.2019.00831 – ident: e_1_2_7_29_1 doi: 10.1021/acsaem.0c01969 – ident: e_1_2_7_83_1 doi: 10.1039/C9QI01204D – ident: e_1_2_7_116_1 doi: 10.1016/j.materresbull.2021.111707 – ident: e_1_2_7_154_1 doi: 10.1021/nn2041279 – ident: e_1_2_7_54_1 doi: 10.1016/j.ccr.2022.214949 – ident: e_1_2_7_81_1 doi: 10.1039/C9NR02206F – ident: e_1_2_7_160_1 doi: 10.1039/c2nr30936j – ident: e_1_2_7_58_1 doi: 10.1021/ja205827z – ident: e_1_2_7_104_1 doi: 10.1016/j.cej.2016.11.063 – ident: e_1_2_7_180_1 doi: 10.1016/j.mtcomm.2021.102057 – ident: e_1_2_7_37_1 doi: 10.1016/j.ccr.2021.213874 – ident: e_1_2_7_146_1 doi: 10.1002/smll.202100670 – ident: e_1_2_7_61_1 doi: 10.1039/C7TA01874F – ident: e_1_2_7_101_1 doi: 10.1021/acs.inorgchem.0c00060 – ident: e_1_2_7_3_1 doi: 10.1039/c3cs00009e – ident: e_1_2_7_57_1 doi: 10.1088/0957-4484/27/46/465402 – ident: e_1_2_7_63_1 doi: 10.1021/acsami.6b14801 – ident: e_1_2_7_155_1 doi: 10.1016/j.cej.2014.04.093 – ident: e_1_2_7_167_1 doi: 10.1021/acs.energyfuels.0c02998 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.0c00345 – ident: e_1_2_7_76_1 doi: 10.1021/acs.chemrev.7b00091 – ident: e_1_2_7_13_1 doi: 10.1016/j.jallcom.2018.11.243 – ident: e_1_2_7_53_1 doi: 10.1002/advs.201901517 – ident: e_1_2_7_145_1 doi: 10.1002/asia.201900026 – ident: e_1_2_7_40_1 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_7_135_1 doi: 10.1039/C7TA05209J – ident: e_1_2_7_147_1 doi: 10.1002/admi.202101599 – ident: e_1_2_7_84_1 doi: 10.1039/D0DT01666G – ident: e_1_2_7_67_1 doi: 10.1021/am508119c – ident: e_1_2_7_31_1 doi: 10.1016/j.cej.2022.139661 – ident: e_1_2_7_47_1 doi: 10.1007/s10853-018-2562-3 – ident: e_1_2_7_113_1 doi: 10.1007/s10008-023-05382-4 – ident: e_1_2_7_99_1 doi: 10.1039/C8EE02679C – ident: e_1_2_7_149_1 doi: 10.1039/D0RA05494A – ident: e_1_2_7_94_1 doi: 10.1039/b804126a – ident: e_1_2_7_103_1 doi: 10.1016/j.chempr.2017.05.021 – ident: e_1_2_7_165_1 doi: 10.1016/j.colsurfa.2020.125011 – ident: e_1_2_7_38_1 doi: 10.1002/anie.201604313 – ident: e_1_2_7_106_1 doi: 10.1021/acsnano.7b02796 – ident: e_1_2_7_133_1 doi: 10.1016/j.jcis.2021.03.075 – ident: e_1_2_7_150_1 doi: 10.3390/nano12234257 – ident: e_1_2_7_175_1 doi: 10.1016/j.susmat.2023.e00678 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201802569 – ident: e_1_2_7_115_1 doi: 10.1002/adma.201605902 – ident: e_1_2_7_176_1 doi: 10.1016/j.electacta.2021.139060 – ident: e_1_2_7_128_1 doi: 10.1039/C6NR02267G – ident: e_1_2_7_141_1 doi: 10.1002/smll.201704435 – ident: e_1_2_7_20_1 doi: 10.1016/j.electacta.2018.06.009 – ident: e_1_2_7_45_1 doi: 10.1016/j.microc.2022.107506 – ident: e_1_2_7_73_1 doi: 10.1002/anie.202010093 – ident: e_1_2_7_74_1 doi: 10.1021/acs.chemrev.1c00978 – ident: e_1_2_7_152_1 doi: 10.1016/j.ceramint.2018.07.310 – ident: e_1_2_7_125_1 doi: 10.1038/natrevmats.2017.75 – ident: e_1_2_7_92_1 doi: 10.1016/S0025-5408(02)00845-0 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.201800716 – ident: e_1_2_7_42_1 doi: 10.1021/acs.nanolett.6b05004 – ident: e_1_2_7_56_1 doi: 10.1002/aenm.201602391 – ident: e_1_2_7_88_1 doi: 10.1021/cm8032324 – ident: e_1_2_7_93_1 doi: 10.1002/er.8752 – ident: e_1_2_7_137_1 doi: 10.1016/j.jallcom.2019.153546 – ident: e_1_2_7_21_1 doi: 10.1039/C5TA05523G – ident: e_1_2_7_6_1 doi: 10.1039/C3EE42613K – ident: e_1_2_7_114_1 doi: 10.1021/am500339x – ident: e_1_2_7_168_1 doi: 10.1016/j.jpowsour.2022.231594 – ident: e_1_2_7_44_1 doi: 10.1002/anie.201811126 – ident: e_1_2_7_158_1 doi: 10.1039/C6TA01377E – ident: e_1_2_7_109_1 doi: 10.1002/anie.201902229 – ident: e_1_2_7_23_1 doi: 10.1002/smll.202002806 – ident: e_1_2_7_139_1 doi: 10.1016/j.apsusc.2019.01.140 – ident: e_1_2_7_36_1 doi: 10.1002/adfm.201909062 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201705146 – ident: e_1_2_7_144_1 doi: 10.1016/j.gee.2017.05.003 – ident: e_1_2_7_52_1 doi: 10.1039/C8MH00133B – ident: e_1_2_7_2_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.7b03507 – ident: e_1_2_7_82_1 doi: 10.1016/j.jallcom.2022.164876 – ident: e_1_2_7_60_1 doi: 10.1016/j.est.2019.101018 – ident: e_1_2_7_80_1 doi: 10.1007/s11051-022-05411-9 – ident: e_1_2_7_28_1 doi: 10.1002/er.4976 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201702891 – ident: e_1_2_7_156_1 doi: 10.1002/celc.201600836 – ident: e_1_2_7_163_1 doi: 10.1039/C4TA02984D – ident: e_1_2_7_26_1 doi: 10.1016/j.ijhydene.2014.04.050 – ident: e_1_2_7_161_1 doi: 10.1021/acsaem.7b00305 – ident: e_1_2_7_107_1 doi: 10.1021/acs.energyfuels.3c00332 – ident: e_1_2_7_19_1 doi: 10.1039/C5NR04421A – ident: e_1_2_7_22_1 doi: 10.1039/C4CS00218K – ident: e_1_2_7_123_1 doi: 10.1021/acsnano.5b05041 – ident: e_1_2_7_124_1 doi: 10.1039/D0QI00892C – ident: e_1_2_7_51_1 doi: 10.1039/C6CS00426A – ident: e_1_2_7_118_1 doi: 10.1115/1.4053246 – ident: e_1_2_7_10_1 doi: 10.1039/C1CS15060J – ident: e_1_2_7_87_1 doi: 10.1021/acsnano.7b09062 – ident: e_1_2_7_77_1 doi: 10.1021/acsami.5b03414 – ident: e_1_2_7_166_1 doi: 10.1002/pssa.201700936 |
SSID | ssj0031247 |
Score | 2.592384 |
SecondaryResourceType | review_article |
Snippet | As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure... As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2308804 |
SubjectTerms | Capacitance Controllability Electrochemical analysis Energy storage Manganese Metal-organic frameworks MOF derivatives Pore size Porous materials Supercapacitors |
Title | Advances in Mn‐Based MOFs and Their Derivatives for High‐Performance Supercapacitor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308804 https://www.ncbi.nlm.nih.gov/pubmed/38073335 https://www.proquest.com/docview/3055831751 https://www.proquest.com/docview/2902939434 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4uQTbTZxjWSqEKCDaCm6R7TgSAgJqWg6c-AS-kS9hJmlTCkJIcEuUsex4PJ6XzMwzITtJTWjfDxPma20Z4FvDlE1iJpSWYeAlQRBioXDz3D_pyNOb2s2nKv6CH6L84YaWke_XaODaZHsj0tDs4R5DBwChYQkiISgmbCEquir5owQ4r_x0FfBZDIm3hqyNHt8bbz7ulb5BzXHkmruexizRw0EXGSd31X7PVO3LFz7H_7zVHJkZ4FJaLxbSPJlw6QKZ_sRWuEiu60W-QEZvU9pM31_fDsAFxrR50cioTmPaxqADPQLx55xOPKOAiClmkoDs5ahCgbb6T65rwU1b2E-6S6TTOG4fnrDBuQzMikBIZpKQGytDZYzHnZ_IxAJI8BwPlOaew2rdcN8JIY2Wcbwfw66ilFb5pyEgDCuWyWT6mLpVQgOunRUAIWvOSm2dciK0GJgGIGjAb1YIG-olsgPScjw74z4q6JZ5hBMWlRNWIbul_FNB1_Gj5MZQzdHAbLMI6c8UIiroeLt8DAaHURSdusd-FvHQA4iEtHoVslIsj7IrZO8XQtQqhOdK_mUMUat5dlberf2l0TqZgmtZpGBukMlet-82ASb1zFZuCh8ROAmr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VcgAOlL-WpS0YCYmT29T2Js6xf6sFNgXRreBm2Y4jVZS02uxy4MQj8Ix9ks4km7QLQkhwTDKWE9vj-eKZ-QbgVdGXNo7TgsfWeo741nHti5xLbVWaREWSpJQonB3FwxP19nO_jSakXJiGH6I7cCPNqPdrUnA6kN6-Zg2tvp6R7wAxNK5BdQtuU1lvos8_-NgxSEk0X3V9FbRanKi3Wt7GSGwvtl-0S7-BzUXsWhufwQq49rWbmJMvW7Op2_Lff2F0_K_vegD359CU7TZr6SEshfIR3LtBWPgYPu02IQMVOy1ZVl7--LmHVjBn2ftBxWyZszH5HdgBin-rGcUrhqCYUTAJyn64TlJgx7OLMPFoqT1uKZMncDI4HO8P-bw0A_cykYq7IhXOq1Q7F4kQF6rwiBOiIBJtRRQoYTfdCVIqZ1We7-S4sWhtdf13iCDDy1VYLs_L8BRYImzwElFkP3hlfdBBpp5804gFHZrOHvB2Yoyf85ZT-Ywz0zAuC0MDZroB68HrTv6iYez4o-RGO89mrrmVIQY0TaAKO37ZPUadI0eKLcP5rDIijRAlEbNeD9aa9dF1RQT-Usp-D0Q9y395B3OcjUbd1bN_afQC7gzH2ciM3hy9W4e7eF81EZkbsDydzMImoqape17rxRWtOg3H |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVkL0UP7bhQJGQuLkNrW9iX0s3a4K7JaKtqI3y3YcCbVNV5tdDpx4BJ6RJ2Em2U27IIQExyRj2bE9ni-ZmW8AXhVd6dLUFDx1LnDEt57rUORcaqdMlhRZZihReHiYHpyqd2fdsxtZ_A0_RPvDjTSjPq9JwUd5sX1NGlpdXpDrACE0bkF1C1ZUmhgq3tD72BJISbRedXkVNFqcmLfmtI2J2F5sv2iWfsOai9C1tj39u-Dmo25CTs63phO_Fb7-Quj4P691D9ZmwJTtNjvpPizF8gGs3qArfAifdpuAgYp9Ltmw_PHt-xu0gTkbfuhXzJU5OyGvA-uh-JeaT7xiCIkZhZKg7NF1igI7no7iOKCdDnigjB_BaX__ZO-Azwoz8CAzqbgvjPBBGe19ImJaqCIgSkiiyLQTSaR0XbMTpVTeqTzfyfFY0drp-tsQIUaQj2G5vCrjBrBMuBgkYshuDMqFqKM0gTzTiAQ9Gs4O8Pm62DBjLafiGRe24VsWlibMthPWgdet_Kjh6_ij5OZ8me1MbytL_GeaIBV2_LJ9jBpHbhRXxqtpZYVJECMRr14H1pvt0XZF9P1Sym4HRL3IfxmDPR4OBu3Vk39p9AJuH_X6dvD28P1TuIO3VROOuQnLk_E0PkPINPHPa634CXNoDHY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Mn%E2%80%90Based+MOFs+and+Their+Derivatives+for+High%E2%80%90Performance+Supercapacitor&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Honghong&rft.au=Li%2C+Jianping&rft.au=Meng%2C+Tao&rft.au=Dong+Shu&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=20&rft_id=info:doi/10.1002%2Fsmll.202308804&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |