Advances in Mn‐Based MOFs and Their Derivatives for High‐Performance Supercapacitor

As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materia...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 20; pp. e2308804 - n/a
Main Authors Cheng, Honghong, Li, Jianping, Meng, Tao, Shu, Dong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future. This review gives a timely and comprehensive introduction on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors. Specially, the recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor are highlighted. The challenges and outlooks of Mn‐MOFs and their derivatives for supercapacitors are also summarized.
AbstractList As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future.
As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn‐based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn‐based materials. Metal‐organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal‐based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn‐MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn‐based MOFs and their derivatives in the future. This review gives a timely and comprehensive introduction on the classification, design, preparation and application of Mn‐based MOFs and their derivatives for supercapacitors. Specially, the recent advancement of Mn‐based MOFs and their derivatives applied in supercapacitor are highlighted. The challenges and outlooks of Mn‐MOFs and their derivatives for supercapacitors are also summarized.
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure as well as environmental friendliness. However, due to poor conductivity and easy accumulation, the practical capacitance of Mn-based materials is far lower than that of theoretical value. Therefore, accurate structural adjustment and controllable strategies are urgently needed to optimize the electrochemical properties of Mn-based materials. Metal-organic frameworks (MOFs) are porous materials with high specific surface area (SSA), tunable pore size, and controllable structure. These features make them attractive as precursors or scaffold for the synthesis of metal-based materials and composites, which are important for electrochemical energy storage applications. Therefore, a timely and comprehensive review on the classification, design, preparation and application of Mn-based MOFs and their derivatives for supercapacitors has been given in this paper. The recent advancement of Mn-based MOFs and their derivatives applied in supercapacitor electrodes are particularly highlighted. Finally, the challenges faced by Mn-MOFs and their derivatives for supercapacitors are summarized, and strategies to further improve their performance are proposed. The aspiration is that this review will serve as a beneficial compass, guiding the logical creation of Mn-based MOFs and their derivatives in the future.
Author Li, Jianping
Shu, Dong
Cheng, Honghong
Meng, Tao
Author_xml – sequence: 1
  givenname: Honghong
  surname: Cheng
  fullname: Cheng, Honghong
  organization: Guangdong University of Education
– sequence: 2
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
  organization: Guangdong University of Education
– sequence: 3
  givenname: Tao
  surname: Meng
  fullname: Meng, Tao
  email: mengt@scnu.edu.cn
  organization: South China Normal University
– sequence: 4
  givenname: Dong
  orcidid: 0000-0001-6915-6714
  surname: Shu
  fullname: Shu, Dong
  email: dshu@scnu.edu.cn
  organization: South China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38073335$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVJaK7bLstAN9nYObqMR1q6SdMEbFKIQ5ZCoznTyMxoXMnjkF0foc_YJ6mMHQcCoSsdwfefy_8fkT3feSTkE4UhBWDnsW2aIQPGQUoQH8ghHVE-GEmm9nY1hQNyFOMcgFMmio_kgEsoOOf5IXkYVyvjLcbM-Wzq__7-89VErLLp7VXMjK-y2SO6kF1icCuzdKsE1l3Irt3Px8T-wJB-7bpBdtcvMFizMNYtu3BC9mvTRDzdvsfk_urb7OJ6MLn9fnMxngwsL7gYlLVipRVKliUwHNWitkwIQFZIwwAh3aEoci5KI6qKVlCkO42UVNGC0dzyY3K26bsI3a8e41K3LlpsGuOx66NmCpjiSnCR0C9v0HnXB5-20xzyXHJa5DRRn7dUX7ZY6UVwrQnP-sWyBAw3gA1djAHrHUJBrzPR60z0LpMkEG8EyaHkZeeXwbjmfZnayJ5cg8__GaLvppPJq_YfuH6gvA
CitedBy_id crossref_primary_10_1007_s12274_024_6817_9
crossref_primary_10_1007_s40242_024_4179_1
crossref_primary_10_1039_D4TC03273J
crossref_primary_10_1515_revic_2024_0137
crossref_primary_10_1021_acsaem_4c02126
crossref_primary_10_1007_s12598_025_03245_7
crossref_primary_10_1002_smll_202409273
crossref_primary_10_1016_j_heliyon_2024_e41261
crossref_primary_10_1002_smll_202405769
crossref_primary_10_1016_j_ccr_2024_216231
crossref_primary_10_1016_j_est_2025_115410
crossref_primary_10_1016_j_est_2025_115840
crossref_primary_10_1021_acs_inorgchem_4c01791
crossref_primary_10_1002_batt_202400534
crossref_primary_10_1021_acsami_4c20184
crossref_primary_10_1016_j_cej_2024_155240
crossref_primary_10_1021_acs_energyfuels_4c02337
crossref_primary_10_1016_j_cej_2024_158711
crossref_primary_10_1039_D4TA04778H
crossref_primary_10_1021_acs_inorgchem_4c04288
crossref_primary_10_1039_D4SC06182A
crossref_primary_10_1002_ente_202401761
crossref_primary_10_1016_j_jallcom_2024_177898
crossref_primary_10_3390_met14080841
Cites_doi 10.1016/j.esr.2019.01.006
10.1039/C9CC06791D
10.1002/smll.201907556
10.1039/D1DT01215K
10.1039/C1CS15196G
10.1021/acssuschemeng.9b06590
10.1021/jacs.7b12420
10.1016/j.cej.2021.131003
10.1016/j.rser.2015.12.249
10.1016/j.cej.2017.03.091
10.1016/j.electacta.2022.139872
10.1021/cm101238m
10.1039/C7TA05986H
10.1007/s10853-016-0344-3
10.1039/C7TA11173H
10.1016/j.ccr.2018.05.001
10.1039/C5CE01976A
10.1016/j.cej.2019.122210
10.1039/C8CS00829A
10.1002/adfm.202210002
10.1021/acs.chemmater.7b00441
10.1021/jacs.6b02540
10.1039/C8TA09528K
10.1016/j.jelechem.2021.114993
10.1016/j.matlet.2011.10.046
10.1016/j.electacta.2021.137739
10.1016/j.matt.2021.02.023
10.1016/j.ensm.2020.03.003
10.1039/D0TA09212F
10.1039/C6QI00348F
10.1016/j.electacta.2015.03.098
10.1016/j.jallcom.2019.01.157
10.1038/s41560-021-00917-3
10.1021/acs.cgd.9b00962
10.1002/aenm.201801307
10.1002/cssc.202201935
10.1016/j.jallcom.2020.154524
10.1039/C8NR01526K
10.1002/adfm.201402827
10.1002/advs.201700322
10.1002/aenm.201602733
10.1016/j.cej.2019.122982
10.1039/C8CS00337H
10.1016/j.jallcom.2022.164726
10.1016/j.ccr.2020.213221
10.1021/acs.chemmater.9b01101
10.1016/j.cej.2018.12.173
10.1002/adfm.201900532
10.1038/nmat3260
10.1016/j.ica.2020.119629
10.1016/j.electacta.2019.135327
10.1021/ja1028777
10.1016/j.colsurfa.2022.130244
10.1021/jacs.8b03235
10.1021/acsnano.5b01790
10.1038/378703a0
10.1002/adfm.201503662
10.1021/acs.chemrev.8b00252
10.1039/C7CS00315C
10.1007/s10853-017-1575-7
10.1016/j.rser.2019.109415
10.1016/j.jallcom.2019.04.027
10.1016/j.apcatb.2021.120881
10.1016/j.jpowsour.2023.232705
10.1016/j.jpowsour.2011.11.043
10.1021/acsami.9b12805
10.1021/acs.chemrev.5b00567
10.1039/C8TA00612A
10.1039/C9TA01628G
10.1016/j.jcis.2019.12.101
10.1021/acsami.7b09363
10.1021/cm900069f
10.1007/s40820-017-0144-6
10.1016/j.mssp.2023.107511
10.1016/j.jallcom.2021.162640
10.1016/j.electacta.2017.10.016
10.1016/j.joule.2020.11.010
10.1021/acs.accounts.6b00460
10.1038/s41596-022-00718-2
10.1021/acssuschemeng.6b01390
10.1002/adma.201501310
10.1016/j.jpowsour.2021.230077
10.1002/chem.202003220
10.1016/j.jpowsour.2012.05.087
10.3389/fchem.2019.00831
10.1021/acsaem.0c01969
10.1039/C9QI01204D
10.1016/j.materresbull.2021.111707
10.1021/nn2041279
10.1016/j.ccr.2022.214949
10.1039/C9NR02206F
10.1039/c2nr30936j
10.1021/ja205827z
10.1016/j.cej.2016.11.063
10.1016/j.mtcomm.2021.102057
10.1016/j.ccr.2021.213874
10.1002/smll.202100670
10.1039/C7TA01874F
10.1021/acs.inorgchem.0c00060
10.1039/c3cs00009e
10.1088/0957-4484/27/46/465402
10.1021/acsami.6b14801
10.1016/j.cej.2014.04.093
10.1021/acs.energyfuels.0c02998
10.1021/acs.chemrev.0c00345
10.1021/acs.chemrev.7b00091
10.1016/j.jallcom.2018.11.243
10.1002/advs.201901517
10.1002/asia.201900026
10.1016/j.chempr.2016.12.002
10.1039/C7TA05209J
10.1002/admi.202101599
10.1039/D0DT01666G
10.1021/am508119c
10.1016/j.cej.2022.139661
10.1007/s10853-018-2562-3
10.1007/s10008-023-05382-4
10.1039/C8EE02679C
10.1039/D0RA05494A
10.1039/b804126a
10.1016/j.chempr.2017.05.021
10.1016/j.colsurfa.2020.125011
10.1002/anie.201604313
10.1021/acsnano.7b02796
10.1016/j.jcis.2021.03.075
10.3390/nano12234257
10.1016/j.susmat.2023.e00678
10.1002/adma.201802569
10.1002/adma.201605902
10.1016/j.electacta.2021.139060
10.1039/C6NR02267G
10.1002/smll.201704435
10.1016/j.electacta.2018.06.009
10.1016/j.microc.2022.107506
10.1002/anie.202010093
10.1021/acs.chemrev.1c00978
10.1016/j.ceramint.2018.07.310
10.1038/natrevmats.2017.75
10.1016/S0025-5408(02)00845-0
10.1002/aenm.201800716
10.1021/acs.nanolett.6b05004
10.1002/aenm.201602391
10.1021/cm8032324
10.1002/er.8752
10.1016/j.jallcom.2019.153546
10.1039/C5TA05523G
10.1039/C3EE42613K
10.1021/am500339x
10.1016/j.jpowsour.2022.231594
10.1002/anie.201811126
10.1039/C6TA01377E
10.1002/anie.201902229
10.1002/smll.202002806
10.1016/j.apsusc.2019.01.140
10.1002/adfm.201909062
10.1002/adma.201705146
10.1016/j.gee.2017.05.003
10.1039/C8MH00133B
10.1038/nmat4738
10.1021/acs.nanolett.7b03507
10.1016/j.jallcom.2022.164876
10.1016/j.est.2019.101018
10.1007/s11051-022-05411-9
10.1002/er.4976
10.1002/adma.201702891
10.1002/celc.201600836
10.1039/C4TA02984D
10.1016/j.ijhydene.2014.04.050
10.1021/acsaem.7b00305
10.1021/acs.energyfuels.3c00332
10.1039/C5NR04421A
10.1039/C4CS00218K
10.1021/acsnano.5b05041
10.1039/D0QI00892C
10.1039/C6CS00426A
10.1115/1.4053246
10.1039/C1CS15060J
10.1021/acsnano.7b09062
10.1021/acsami.5b03414
10.1002/pssa.201700936
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202308804
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38073335
10_1002_smll_202308804
SMLL202308804
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Guangzhou Basic and Applied Basic Research Project in China
  funderid: 202204400805
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2022A1515011906
– fundername: Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI
  funderid: 202208
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M731153
– fundername: the quality and reform project of Guangdong province undergraduate teaching.
  funderid: XQSYS‐2222873
– fundername: Youth Innovation Talents Project of Guangdong Universities
  funderid: 2023KQNCX052
– fundername: Guangzhou Basic and Applied Basic Research Project in China
  grantid: 202204400805
– fundername: the quality and reform project of Guangdong province undergraduate teaching.
  grantid: XQSYS-2222873
– fundername: Open Fund of Energy and Materials Chemistry Joint Laboratory of SCNU and TINCI
  grantid: 202208
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M731153
– fundername: Youth Innovation Talents Project of Guangdong Universities
  grantid: 2023KQNCX052
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2022A1515011906
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
A00
AEUQT
AFPWT
NPM
P4E
RWI
WYJ
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3734-bf92bc498bb02e6f4fc2440e278a20e082991e334ba4dd1d07088a881917215c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 01:30:27 EDT 2025
Fri Jul 25 12:14:22 EDT 2025
Wed Feb 19 02:08:02 EST 2025
Tue Jul 01 02:54:51 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords metal organic frameworks
manganese
supercapacitors
MOF derivatives
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-bf92bc498bb02e6f4fc2440e278a20e082991e334ba4dd1d07088a881917215c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6915-6714
PMID 38073335
PQID 3055831751
PQPubID 1046358
PageCount 24
ParticipantIDs proquest_miscellaneous_2902939434
proquest_journals_3055831751
pubmed_primary_38073335
crossref_primary_10_1002_smll_202308804
crossref_citationtrail_10_1002_smll_202308804
wiley_primary_10_1002_smll_202308804_SMLL202308804
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 282
2019; 11
2019; 12
2019; 14
2020; 16
2022; 24
2019; 19
2020; 601
1995; 378
2020; 563
2020; 12
2020; 10
2018; 44
2012; 11
2014; 252
2017; 313
2022; 179
2018; 6
2010; 22
2018; 8
2018; 5
2018; 215
2018; 1
2019; 24
2023; 452
2021; 438
2019; 26
2020; 335
2021; 393
2019; 29
2018; 30
2017; 320
2016; 49
2019; 792
2019; 7
2019; 9
2019; 6
2023; 560
2019; 31
2023; 162
2016; 10
2020; 821
2020; 387
2020; 34
2016; 18
2022; 911
2021; 50
2017; 256
2022; 910
2011; 133
2016; 4
2017; 52
2016; 3
2020; 30
2018; 118
2019; 48
2020; 28
2022; 12
2020; 830
2020; 26
2021; 370
2014; 39
2018; 12
2021; 60
2016; 27
2018; 10
2016; 8
2022; 17
2012; 41
2018; 14
2022; 19
2017; 5
2017; 7
2021; 26
2017; 2
2017; 3
2023; 33
2017; 4
2018; 369
2021; 882
2020; 120
2023; 37
2019; 55
2017; 46
2019; 58
2020; 59
2022; 539
2012; 203
2019; 361
2017; 9
2022; 655
2022; 897
2017; 117
2020; 8
2022; 122
2020; 7
2020; 3
2014; 2
2023; 27
2015; 44
2019; 478
2019; 116
2020; 49
2016; 116
2020; 44
2020; 410
2021; 594
2022; 406
2012; 68
2014; 7
2012; 216
2014; 6
2021; 505
2021; 8
2021; 6
2002; 37
2021; 5
2021; 4
2018; 140
2009; 21
2015; 3
2023; 16
2015; 167
2013; 42
2022; 46
2008
2019; 784
2017; 29
2020; 508
2015; 9
2015; 7
2016; 58
2016; 55
2015; 25
2015; 27
2017; 17
2017; 16
2017; 11
2021; 17
2010; 132
2023; 477
2019; 378
2019; 779
2016; 138
2022; 427
2012; 6
2012; 4
2018; 53
2022; 149
2022; 303
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_173_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_175_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_172_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 4
  start-page: 1511
  year: 2021
  publication-title: Matter
– volume: 46
  start-page: 5730
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 4257
  year: 2022
  publication-title: Nanomaterials
– volume: 5
  start-page: 394
  year: 2018
  publication-title: Mater. Horiz.
– volume: 21
  start-page: 2580
  year: 2009
  publication-title: Chem. Mater.
– volume: 4
  start-page: 4498
  year: 2012
  publication-title: Nanoscale
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  year: 2020
  publication-title: Dalt. Trans.
– volume: 7
  start-page: 4101
  year: 2020
  publication-title: Inorg. Chem. Front.
– volume: 393
  year: 2021
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 377
  year: 2016
  publication-title: ACS Nano
– volume: 320
  start-page: 634
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 2753
  year: 2018
  publication-title: ACS Nano
– volume: 821
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 17
  start-page: 7552
  year: 2017
  publication-title: Nano Lett.
– volume: 882
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 120
  start-page: 7642
  year: 2020
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1725
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 410
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 792
  start-page: 487
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 313
  start-page: 1623
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 50
  start-page: 8372
  year: 2021
  publication-title: Dalt. Trans.
– volume: 3
  start-page: 1609
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 4
  start-page: 1088
  year: 2017
  publication-title: ChemElectroChem
– volume: 378
  start-page: 703
  year: 1995
  publication-title: Nature
– volume: 18
  start-page: 450
  year: 2016
  publication-title: CrystEngComm
– volume: 8
  start-page: 3191
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 4432
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4695
  year: 2015
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 369
  start-page: 76
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 116
  start-page: 2141
  year: 2016
  publication-title: Chem. Rev.
– volume: 179
  year: 2022
  publication-title: Microchem. J.
– volume: 508
  year: 2020
  publication-title: Inorganica Chim. Acta
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 48
  start-page: 2535
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 57
  year: 2017
  publication-title: Nat. Mater.
– volume: 16
  year: 2023
  publication-title: ChemSusChem
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 116
  year: 2019
  publication-title: Renew. Sustain. Energy Rev.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 9
  start-page: 5254
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 478
  start-page: 247
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 43
  year: 2017
  publication-title: Nano‐Micro Lett.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 1
  start-page: 1200
  year: 2018
  publication-title: ACS Appl. Energy. Mater.
– volume: 6
  start-page: 987
  year: 2021
  publication-title: Nat. Energy
– volume: 37
  start-page: 1539
  year: 2002
  publication-title: Mater. Res. Bull.
– volume: 21
  start-page: 1602
  year: 2009
  publication-title: Chem. Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 31
  start-page: 4490
  year: 2019
  publication-title: Chem. Mater.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 41
  start-page: 1677
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 4120
  year: 2010
  publication-title: Chem. Mater.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 215
  year: 2018
  publication-title: Phys. Status Solidi
– volume: 41
  start-page: 797
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 8198
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 167
  start-page: 412
  year: 2015
  publication-title: Electrochim. Acta
– volume: 46
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 25
  start-page: 238
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 89
  year: 2021
  publication-title: Joule
– volume: 6
  start-page: 7214
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 6288
  year: 2015
  publication-title: ACS Nano
– volume: 282
  start-page: 1
  year: 2018
  publication-title: Electrochim. Acta
– volume: 34
  year: 2020
  publication-title: Energy Fuels
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 26
  year: 2019
  publication-title: J. Energy Storage
– volume: 216
  start-page: 425
  year: 2012
  publication-title: J. Power Sources
– volume: 37
  start-page: 6248
  year: 2023
  publication-title: Energy Fuels
– volume: 3
  start-page: 152
  year: 2017
  publication-title: Chem
– volume: 477
  year: 2023
  publication-title: Coord. Chem. Rev.
– volume: 162
  year: 2023
  publication-title: Mater. Sci. Semicond. Process.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 911
  year: 2023
  publication-title: J. Solid State Electrochem.
– volume: 252
  start-page: 95
  year: 2014
  publication-title: Chem. Eng. J.
– volume: 378
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 26
  year: 2021
  publication-title: Mater. Today. Commun.
– volume: 560
  year: 2023
  publication-title: J. Power Sources
– volume: 44
  start-page: 3446
  year: 2020
  publication-title: Int. J. Energy Res.
– volume: 7
  start-page: 3655
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  year: 2022
  publication-title: J. Electrochem. En. Conv. Stor.
– volume: 6
  start-page: 656
  year: 2012
  publication-title: ACS Nano
– volume: 138
  start-page: 6924
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 335
  year: 2020
  publication-title: Electrochim. Acta
– volume: 25
  start-page: 7530
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2020
  publication-title: RSC Adv.
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 8129
  year: 2017
  publication-title: Chem. Rev.
– volume: 601
  year: 2020
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 49
  start-page: 2796
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 218
  year: 2017
  publication-title: Green Energy Environ.
– volume: 24
  start-page: 38
  year: 2019
  publication-title: Energy Strategy Rev.
– volume: 910
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 149
  year: 2022
  publication-title: Mater. Res. Bull.
– volume: 46
  start-page: 2660
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 1975
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 11
  start-page: 5293
  year: 2017
  publication-title: ACS Nano
– volume: 303
  year: 2022
  publication-title: Appl. Catal. B Environ.
– volume: 256
  start-page: 63
  year: 2017
  publication-title: Electrochim. Acta.
– volume: 897
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 6503
  year: 2019
  publication-title: Cryst. Growth Des.
– volume: 12
  start-page: 418
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 1189
  year: 2016
  publication-title: Renew. Sustain. Energy. Rev.
– volume: 7
  start-page: 14
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 594
  start-page: 812
  year: 2021
  publication-title: J. Colloid. Interface Sci.
– volume: 52
  start-page: 446
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 3
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 830
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 8283
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 361
  start-page: 1235
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 52
  year: 2017
  publication-title: Chem
– volume: 911
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1331
  year: 2019
  publication-title: Chem. – An Asian J.
– volume: 779
  start-page: 550
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 26
  year: 2020
  publication-title: Chem. – A Eur. J.
– volume: 6
  start-page: 6754
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 122
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 37
  year: 2023
  publication-title: Sustain. Mater. Technol.
– volume: 59
  start-page: 6808
  year: 2020
  publication-title: Inorg. Chem.
– volume: 563
  start-page: 435
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 727
  year: 2019
  publication-title: Energy. Environ. Sci.
– volume: 438
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 24
  start-page: 23
  year: 2022
  publication-title: J. Nanopart. Res.
– volume: 68
  start-page: 126
  year: 2012
  publication-title: Mater. Lett.
– volume: 5
  start-page: 1297
  year: 2017
  publication-title: ACS Sustain. Chem. Eng.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 370
  year: 2021
  publication-title: Electrochim. Acta
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 539
  year: 2022
  publication-title: J. Power Sources
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 784
  start-page: 869
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 699
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 831
  year: 2019
  publication-title: Front. Chem.
– volume: 505
  year: 2021
  publication-title: J. Power Sources
– start-page: 3642
  year: 2008
  publication-title: Chem. Commun.
– volume: 7
  start-page: 718
  year: 2020
  publication-title: Inorg. Chem. Front.
– volume: 53
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 655
  year: 2022
  publication-title: Colloids Surf. A Physicochem. Eng. Asp
– volume: 118
  start-page: 9233
  year: 2018
  publication-title: Chem. Rev.
– volume: 203
  start-page: 233
  year: 2012
  publication-title: J. Power Sources
– volume: 42
  start-page: 3127
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 122
  year: 2022
  publication-title: Chem. Rev.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 306
  year: 2012
  publication-title: Nat. Mater.
– volume: 17
  start-page: 2990
  year: 2022
  publication-title: Nat. Protoc.
– volume: 53
  start-page: 1346
  year: 2018
  publication-title: J. Mater. Sci.
– volume: 17
  start-page: 2788
  year: 2017
  publication-title: Nano Lett.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 406
  year: 2022
  publication-title: Electrochim. Acta
– volume: 48
  start-page: 2783
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 2618
  year: 2017
  publication-title: Chem. Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_1_1
  doi: 10.1016/j.esr.2019.01.006
– ident: e_1_2_7_132_1
  doi: 10.1039/C9CC06791D
– ident: e_1_2_7_142_1
  doi: 10.1002/smll.201907556
– ident: e_1_2_7_173_1
  doi: 10.1039/D1DT01215K
– ident: e_1_2_7_32_1
  doi: 10.1039/C1CS15196G
– ident: e_1_2_7_117_1
  doi: 10.1021/acssuschemeng.9b06590
– ident: e_1_2_7_162_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_7_55_1
  doi: 10.1016/j.cej.2021.131003
– ident: e_1_2_7_140_1
  doi: 10.1016/j.rser.2015.12.249
– ident: e_1_2_7_157_1
  doi: 10.1016/j.cej.2017.03.091
– ident: e_1_2_7_17_1
  doi: 10.1016/j.electacta.2022.139872
– ident: e_1_2_7_66_1
  doi: 10.1021/cm101238m
– ident: e_1_2_7_78_1
  doi: 10.1039/C7TA05986H
– ident: e_1_2_7_178_1
  doi: 10.1007/s10853-016-0344-3
– ident: e_1_2_7_16_1
  doi: 10.1039/C7TA11173H
– ident: e_1_2_7_41_1
  doi: 10.1016/j.ccr.2018.05.001
– ident: e_1_2_7_127_1
  doi: 10.1039/C5CE01976A
– ident: e_1_2_7_164_1
  doi: 10.1016/j.cej.2019.122210
– ident: e_1_2_7_97_1
  doi: 10.1039/C8CS00829A
– ident: e_1_2_7_136_1
  doi: 10.1002/adfm.202210002
– ident: e_1_2_7_75_1
  doi: 10.1021/acs.chemmater.7b00441
– ident: e_1_2_7_122_1
  doi: 10.1021/jacs.6b02540
– ident: e_1_2_7_108_1
  doi: 10.1039/C8TA09528K
– ident: e_1_2_7_112_1
  doi: 10.1016/j.jelechem.2021.114993
– ident: e_1_2_7_105_1
  doi: 10.1016/j.matlet.2011.10.046
– ident: e_1_2_7_30_1
  doi: 10.1016/j.electacta.2021.137739
– ident: e_1_2_7_130_1
  doi: 10.1016/j.matt.2021.02.023
– ident: e_1_2_7_143_1
  doi: 10.1016/j.ensm.2020.03.003
– ident: e_1_2_7_65_1
  doi: 10.1039/D0TA09212F
– ident: e_1_2_7_62_1
  doi: 10.1039/C6QI00348F
– ident: e_1_2_7_27_1
  doi: 10.1016/j.electacta.2015.03.098
– ident: e_1_2_7_102_1
  doi: 10.1016/j.jallcom.2019.01.157
– ident: e_1_2_7_7_1
  doi: 10.1038/s41560-021-00917-3
– ident: e_1_2_7_85_1
  doi: 10.1021/acs.cgd.9b00962
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201801307
– ident: e_1_2_7_96_1
  doi: 10.1002/cssc.202201935
– ident: e_1_2_7_129_1
  doi: 10.1016/j.jallcom.2020.154524
– ident: e_1_2_7_151_1
  doi: 10.1039/C8NR01526K
– ident: e_1_2_7_68_1
  doi: 10.1002/adfm.201402827
– ident: e_1_2_7_12_1
  doi: 10.1002/advs.201700322
– ident: e_1_2_7_71_1
  doi: 10.1002/aenm.201602733
– ident: e_1_2_7_86_1
  doi: 10.1016/j.cej.2019.122982
– ident: e_1_2_7_110_1
  doi: 10.1039/C8CS00337H
– ident: e_1_2_7_169_1
  doi: 10.1016/j.jallcom.2022.164726
– ident: e_1_2_7_72_1
  doi: 10.1016/j.ccr.2020.213221
– ident: e_1_2_7_171_1
  doi: 10.1021/acs.chemmater.9b01101
– ident: e_1_2_7_90_1
  doi: 10.1016/j.cej.2018.12.173
– ident: e_1_2_7_70_1
  doi: 10.1002/adfm.201900532
– ident: e_1_2_7_9_1
  doi: 10.1038/nmat3260
– ident: e_1_2_7_48_1
  doi: 10.1016/j.ica.2020.119629
– ident: e_1_2_7_111_1
  doi: 10.1016/j.electacta.2019.135327
– ident: e_1_2_7_35_1
  doi: 10.1021/ja1028777
– ident: e_1_2_7_138_1
  doi: 10.1016/j.colsurfa.2022.130244
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.8b03235
– ident: e_1_2_7_148_1
  doi: 10.1021/acsnano.5b01790
– ident: e_1_2_7_34_1
  doi: 10.1038/378703a0
– ident: e_1_2_7_174_1
  doi: 10.1002/adfm.201503662
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.chemrev.8b00252
– ident: e_1_2_7_121_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_7_177_1
  doi: 10.1007/s10853-017-1575-7
– ident: e_1_2_7_5_1
  doi: 10.1016/j.rser.2019.109415
– ident: e_1_2_7_79_1
  doi: 10.1016/j.jallcom.2019.04.027
– ident: e_1_2_7_126_1
  doi: 10.1016/j.apcatb.2021.120881
– ident: e_1_2_7_131_1
  doi: 10.1016/j.jpowsour.2023.232705
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpowsour.2011.11.043
– ident: e_1_2_7_172_1
  doi: 10.1021/acsami.9b12805
– ident: e_1_2_7_91_1
  doi: 10.1021/acs.chemrev.5b00567
– ident: e_1_2_7_50_1
  doi: 10.1039/C8TA00612A
– ident: e_1_2_7_98_1
  doi: 10.1039/C9TA01628G
– ident: e_1_2_7_170_1
  doi: 10.1016/j.jcis.2019.12.101
– ident: e_1_2_7_89_1
  doi: 10.1021/acsami.7b09363
– ident: e_1_2_7_95_1
  doi: 10.1021/cm900069f
– ident: e_1_2_7_49_1
  doi: 10.1007/s40820-017-0144-6
– ident: e_1_2_7_119_1
  doi: 10.1016/j.mssp.2023.107511
– ident: e_1_2_7_159_1
  doi: 10.1016/j.jallcom.2021.162640
– ident: e_1_2_7_179_1
  doi: 10.1016/j.electacta.2017.10.016
– ident: e_1_2_7_8_1
  doi: 10.1016/j.joule.2020.11.010
– ident: e_1_2_7_100_1
  doi: 10.1021/acs.accounts.6b00460
– ident: e_1_2_7_46_1
  doi: 10.1038/s41596-022-00718-2
– ident: e_1_2_7_18_1
  doi: 10.1021/acssuschemeng.6b01390
– ident: e_1_2_7_153_1
  doi: 10.1002/adma.201501310
– ident: e_1_2_7_134_1
  doi: 10.1016/j.jpowsour.2021.230077
– ident: e_1_2_7_120_1
  doi: 10.1002/chem.202003220
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jpowsour.2012.05.087
– ident: e_1_2_7_64_1
  doi: 10.3389/fchem.2019.00831
– ident: e_1_2_7_29_1
  doi: 10.1021/acsaem.0c01969
– ident: e_1_2_7_83_1
  doi: 10.1039/C9QI01204D
– ident: e_1_2_7_116_1
  doi: 10.1016/j.materresbull.2021.111707
– ident: e_1_2_7_154_1
  doi: 10.1021/nn2041279
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ccr.2022.214949
– ident: e_1_2_7_81_1
  doi: 10.1039/C9NR02206F
– ident: e_1_2_7_160_1
  doi: 10.1039/c2nr30936j
– ident: e_1_2_7_58_1
  doi: 10.1021/ja205827z
– ident: e_1_2_7_104_1
  doi: 10.1016/j.cej.2016.11.063
– ident: e_1_2_7_180_1
  doi: 10.1016/j.mtcomm.2021.102057
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ccr.2021.213874
– ident: e_1_2_7_146_1
  doi: 10.1002/smll.202100670
– ident: e_1_2_7_61_1
  doi: 10.1039/C7TA01874F
– ident: e_1_2_7_101_1
  doi: 10.1021/acs.inorgchem.0c00060
– ident: e_1_2_7_3_1
  doi: 10.1039/c3cs00009e
– ident: e_1_2_7_57_1
  doi: 10.1088/0957-4484/27/46/465402
– ident: e_1_2_7_63_1
  doi: 10.1021/acsami.6b14801
– ident: e_1_2_7_155_1
  doi: 10.1016/j.cej.2014.04.093
– ident: e_1_2_7_167_1
  doi: 10.1021/acs.energyfuels.0c02998
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.0c00345
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.chemrev.7b00091
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jallcom.2018.11.243
– ident: e_1_2_7_53_1
  doi: 10.1002/advs.201901517
– ident: e_1_2_7_145_1
  doi: 10.1002/asia.201900026
– ident: e_1_2_7_40_1
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_7_135_1
  doi: 10.1039/C7TA05209J
– ident: e_1_2_7_147_1
  doi: 10.1002/admi.202101599
– ident: e_1_2_7_84_1
  doi: 10.1039/D0DT01666G
– ident: e_1_2_7_67_1
  doi: 10.1021/am508119c
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cej.2022.139661
– ident: e_1_2_7_47_1
  doi: 10.1007/s10853-018-2562-3
– ident: e_1_2_7_113_1
  doi: 10.1007/s10008-023-05382-4
– ident: e_1_2_7_99_1
  doi: 10.1039/C8EE02679C
– ident: e_1_2_7_149_1
  doi: 10.1039/D0RA05494A
– ident: e_1_2_7_94_1
  doi: 10.1039/b804126a
– ident: e_1_2_7_103_1
  doi: 10.1016/j.chempr.2017.05.021
– ident: e_1_2_7_165_1
  doi: 10.1016/j.colsurfa.2020.125011
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.201604313
– ident: e_1_2_7_106_1
  doi: 10.1021/acsnano.7b02796
– ident: e_1_2_7_133_1
  doi: 10.1016/j.jcis.2021.03.075
– ident: e_1_2_7_150_1
  doi: 10.3390/nano12234257
– ident: e_1_2_7_175_1
  doi: 10.1016/j.susmat.2023.e00678
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201802569
– ident: e_1_2_7_115_1
  doi: 10.1002/adma.201605902
– ident: e_1_2_7_176_1
  doi: 10.1016/j.electacta.2021.139060
– ident: e_1_2_7_128_1
  doi: 10.1039/C6NR02267G
– ident: e_1_2_7_141_1
  doi: 10.1002/smll.201704435
– ident: e_1_2_7_20_1
  doi: 10.1016/j.electacta.2018.06.009
– ident: e_1_2_7_45_1
  doi: 10.1016/j.microc.2022.107506
– ident: e_1_2_7_73_1
  doi: 10.1002/anie.202010093
– ident: e_1_2_7_74_1
  doi: 10.1021/acs.chemrev.1c00978
– ident: e_1_2_7_152_1
  doi: 10.1016/j.ceramint.2018.07.310
– ident: e_1_2_7_125_1
  doi: 10.1038/natrevmats.2017.75
– ident: e_1_2_7_92_1
  doi: 10.1016/S0025-5408(02)00845-0
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.201800716
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.nanolett.6b05004
– ident: e_1_2_7_56_1
  doi: 10.1002/aenm.201602391
– ident: e_1_2_7_88_1
  doi: 10.1021/cm8032324
– ident: e_1_2_7_93_1
  doi: 10.1002/er.8752
– ident: e_1_2_7_137_1
  doi: 10.1016/j.jallcom.2019.153546
– ident: e_1_2_7_21_1
  doi: 10.1039/C5TA05523G
– ident: e_1_2_7_6_1
  doi: 10.1039/C3EE42613K
– ident: e_1_2_7_114_1
  doi: 10.1021/am500339x
– ident: e_1_2_7_168_1
  doi: 10.1016/j.jpowsour.2022.231594
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201811126
– ident: e_1_2_7_158_1
  doi: 10.1039/C6TA01377E
– ident: e_1_2_7_109_1
  doi: 10.1002/anie.201902229
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.202002806
– ident: e_1_2_7_139_1
  doi: 10.1016/j.apsusc.2019.01.140
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.201909062
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201705146
– ident: e_1_2_7_144_1
  doi: 10.1016/j.gee.2017.05.003
– ident: e_1_2_7_52_1
  doi: 10.1039/C8MH00133B
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.7b03507
– ident: e_1_2_7_82_1
  doi: 10.1016/j.jallcom.2022.164876
– ident: e_1_2_7_60_1
  doi: 10.1016/j.est.2019.101018
– ident: e_1_2_7_80_1
  doi: 10.1007/s11051-022-05411-9
– ident: e_1_2_7_28_1
  doi: 10.1002/er.4976
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201702891
– ident: e_1_2_7_156_1
  doi: 10.1002/celc.201600836
– ident: e_1_2_7_163_1
  doi: 10.1039/C4TA02984D
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ijhydene.2014.04.050
– ident: e_1_2_7_161_1
  doi: 10.1021/acsaem.7b00305
– ident: e_1_2_7_107_1
  doi: 10.1021/acs.energyfuels.3c00332
– ident: e_1_2_7_19_1
  doi: 10.1039/C5NR04421A
– ident: e_1_2_7_22_1
  doi: 10.1039/C4CS00218K
– ident: e_1_2_7_123_1
  doi: 10.1021/acsnano.5b05041
– ident: e_1_2_7_124_1
  doi: 10.1039/D0QI00892C
– ident: e_1_2_7_51_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_7_118_1
  doi: 10.1115/1.4053246
– ident: e_1_2_7_10_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_7_87_1
  doi: 10.1021/acsnano.7b09062
– ident: e_1_2_7_77_1
  doi: 10.1021/acsami.5b03414
– ident: e_1_2_7_166_1
  doi: 10.1002/pssa.201700936
SSID ssj0031247
Score 2.592384
SecondaryResourceType review_article
Snippet As the most widely used metal material in supercapacitors, manganese (Mn)‐based materials possess the merits of high theoretical capacitance, stable structure...
As the most widely used metal material in supercapacitors, manganese (Mn)-based materials possess the merits of high theoretical capacitance, stable structure...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2308804
SubjectTerms Capacitance
Controllability
Electrochemical analysis
Energy storage
Manganese
Metal-organic frameworks
MOF derivatives
Pore size
Porous materials
Supercapacitors
Title Advances in Mn‐Based MOFs and Their Derivatives for High‐Performance Supercapacitor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202308804
https://www.ncbi.nlm.nih.gov/pubmed/38073335
https://www.proquest.com/docview/3055831751
https://www.proquest.com/docview/2902939434
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZA4uQTbTZxjWSqEKCDaCm6R7TgSAgJqWg6c-AS-kS9hJmlTCkJIcEuUsex4PJ6XzMwzITtJTWjfDxPma20Z4FvDlE1iJpSWYeAlQRBioXDz3D_pyNOb2s2nKv6CH6L84YaWke_XaODaZHsj0tDs4R5DBwChYQkiISgmbCEquir5owQ4r_x0FfBZDIm3hqyNHt8bbz7ulb5BzXHkmruexizRw0EXGSd31X7PVO3LFz7H_7zVHJkZ4FJaLxbSPJlw6QKZ_sRWuEiu60W-QEZvU9pM31_fDsAFxrR50cioTmPaxqADPQLx55xOPKOAiClmkoDs5ahCgbb6T65rwU1b2E-6S6TTOG4fnrDBuQzMikBIZpKQGytDZYzHnZ_IxAJI8BwPlOaew2rdcN8JIY2Wcbwfw66ilFb5pyEgDCuWyWT6mLpVQgOunRUAIWvOSm2dciK0GJgGIGjAb1YIG-olsgPScjw74z4q6JZ5hBMWlRNWIbul_FNB1_Gj5MZQzdHAbLMI6c8UIiroeLt8DAaHURSdusd-FvHQA4iEtHoVslIsj7IrZO8XQtQqhOdK_mUMUat5dlberf2l0TqZgmtZpGBukMlet-82ASb1zFZuCh8ROAmr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VcgAOlL-WpS0YCYmT29T2Js6xf6sFNgXRreBm2Y4jVZS02uxy4MQj8Ix9ks4km7QLQkhwTDKWE9vj-eKZ-QbgVdGXNo7TgsfWeo741nHti5xLbVWaREWSpJQonB3FwxP19nO_jSakXJiGH6I7cCPNqPdrUnA6kN6-Zg2tvp6R7wAxNK5BdQtuU1lvos8_-NgxSEk0X3V9FbRanKi3Wt7GSGwvtl-0S7-BzUXsWhufwQq49rWbmJMvW7Op2_Lff2F0_K_vegD359CU7TZr6SEshfIR3LtBWPgYPu02IQMVOy1ZVl7--LmHVjBn2ftBxWyZszH5HdgBin-rGcUrhqCYUTAJyn64TlJgx7OLMPFoqT1uKZMncDI4HO8P-bw0A_cykYq7IhXOq1Q7F4kQF6rwiBOiIBJtRRQoYTfdCVIqZ1We7-S4sWhtdf13iCDDy1VYLs_L8BRYImzwElFkP3hlfdBBpp5804gFHZrOHvB2Yoyf85ZT-Ywz0zAuC0MDZroB68HrTv6iYez4o-RGO89mrrmVIQY0TaAKO37ZPUadI0eKLcP5rDIijRAlEbNeD9aa9dF1RQT-Usp-D0Q9y395B3OcjUbd1bN_afQC7gzH2ciM3hy9W4e7eF81EZkbsDydzMImoqape17rxRWtOg3H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVkL0UP7bhQJGQuLkNrW9iX0s3a4K7JaKtqI3y3YcCbVNV5tdDpx4BJ6RJ2Em2U27IIQExyRj2bE9ni-ZmW8AXhVd6dLUFDx1LnDEt57rUORcaqdMlhRZZihReHiYHpyqd2fdsxtZ_A0_RPvDjTSjPq9JwUd5sX1NGlpdXpDrACE0bkF1C1ZUmhgq3tD72BJISbRedXkVNFqcmLfmtI2J2F5sv2iWfsOai9C1tj39u-Dmo25CTs63phO_Fb7-Quj4P691D9ZmwJTtNjvpPizF8gGs3qArfAifdpuAgYp9Ltmw_PHt-xu0gTkbfuhXzJU5OyGvA-uh-JeaT7xiCIkZhZKg7NF1igI7no7iOKCdDnigjB_BaX__ZO-Azwoz8CAzqbgvjPBBGe19ImJaqCIgSkiiyLQTSaR0XbMTpVTeqTzfyfFY0drp-tsQIUaQj2G5vCrjBrBMuBgkYshuDMqFqKM0gTzTiAQ9Gs4O8Pm62DBjLafiGRe24VsWlibMthPWgdet_Kjh6_ij5OZ8me1MbytL_GeaIBV2_LJ9jBpHbhRXxqtpZYVJECMRr14H1pvt0XZF9P1Sym4HRL3IfxmDPR4OBu3Vk39p9AJuH_X6dvD28P1TuIO3VROOuQnLk_E0PkPINPHPa634CXNoDHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Mn%E2%80%90Based+MOFs+and+Their+Derivatives+for+High%E2%80%90Performance+Supercapacitor&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cheng%2C+Honghong&rft.au=Li%2C+Jianping&rft.au=Meng%2C+Tao&rft.au=Dong+Shu&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=20&rft_id=info:doi/10.1002%2Fsmll.202308804&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon