A PD‐L1‐targeting Regulator for Metabolic Reprogramming to Enhance Glutamine Inhibition‐Mediated Synergistic Antitumor Metabolic and Immune Therapy
Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation‐mediated glycolysis enhancement and PD‐L1 upregulation‐induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 6; pp. e2309094 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation‐mediated glycolysis enhancement and PD‐L1 upregulation‐induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD‐L1‐targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)‐loading zeolitic imidazolate framework (ZIF) with PD‐L1‐targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD‐L1 upregulation on tumor cells causes self‐amplifying accumulation of PMIR through PD‐L1 targeting, while also blocking PD‐L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD‐L1‐mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments.
A PD‐L1‐targeting metabolism and immune regulator (PMIR) is constructed for metabolic reprogramming. PMIR inhibits glutamine metabolism of tumor cells, while solves compensatory glycolysis and utilizes upregulated PD‐L1 for self‐amplifying accumulation. Cooperating with the immunogenic cell death through the disruption of the redox homeostasis, PMIR can evoke robust immune responses to suppress bilateral tumor progression and metastasis. |
---|---|
AbstractList | Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation‐mediated glycolysis enhancement and PD‐L1 upregulation‐induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD‐L1‐targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)‐loading zeolitic imidazolate framework (ZIF) with PD‐L1‐targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD‐L1 upregulation on tumor cells causes self‐amplifying accumulation of PMIR through PD‐L1 targeting, while also blocking PD‐L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD‐L1‐mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments.
A PD‐L1‐targeting metabolism and immune regulator (PMIR) is constructed for metabolic reprogramming. PMIR inhibits glutamine metabolism of tumor cells, while solves compensatory glycolysis and utilizes upregulated PD‐L1 for self‐amplifying accumulation. Cooperating with the immunogenic cell death through the disruption of the redox homeostasis, PMIR can evoke robust immune responses to suppress bilateral tumor progression and metastasis. Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation‐mediated glycolysis enhancement and PD‐L1 upregulation‐induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD‐L1‐targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)‐loading zeolitic imidazolate framework (ZIF) with PD‐L1‐targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD‐L1 upregulation on tumor cells causes self‐amplifying accumulation of PMIR through PD‐L1 targeting, while also blocking PD‐L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD‐L1‐mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments. Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation-mediated glycolysis enhancement and PD-L1 upregulation-induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD-L1-targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)-loading zeolitic imidazolate framework (ZIF) with PD-L1-targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD-L1 upregulation on tumor cells causes self-amplifying accumulation of PMIR through PD-L1 targeting, while also blocking PD-L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD-L1-mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments.Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation-mediated glycolysis enhancement and PD-L1 upregulation-induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD-L1-targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)-loading zeolitic imidazolate framework (ZIF) with PD-L1-targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD-L1 upregulation on tumor cells causes self-amplifying accumulation of PMIR through PD-L1 targeting, while also blocking PD-L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD-L1-mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments. |
Author | Huang, Qian‐Xiao Liu, Chuan‐Jun Zhang, Shun‐Kang Jin, Xiao‐Kang Qin, You‐Teng Zhang, Shi‐Man Zhang, Xian‐Zheng Liang, Jun‐Long |
Author_xml | – sequence: 1 givenname: Xiao‐Kang surname: Jin fullname: Jin, Xiao‐Kang organization: Wuhan University – sequence: 2 givenname: Shi‐Man surname: Zhang fullname: Zhang, Shi‐Man organization: Wuhan University – sequence: 3 givenname: Jun‐Long surname: Liang fullname: Liang, Jun‐Long organization: Wuhan University – sequence: 4 givenname: Shun‐Kang surname: Zhang fullname: Zhang, Shun‐Kang organization: Wuhan University – sequence: 5 givenname: You‐Teng surname: Qin fullname: Qin, You‐Teng organization: Wuhan University – sequence: 6 givenname: Qian‐Xiao surname: Huang fullname: Huang, Qian‐Xiao organization: Wuhan University – sequence: 7 givenname: Chuan‐Jun orcidid: 0000-0001-9543-7763 surname: Liu fullname: Liu, Chuan‐Jun email: cjliu@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Xian‐Zheng surname: Zhang fullname: Zhang, Xian‐Zheng email: xz-zhang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38014890$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFK0cUiQuXLBPb-eNj1Jay0q5AUM7RxJlkXSXO4jiq9sYjcOX1eBK82lJEJcTBtjT6fd945jtjJ3a0xNjLBJYJAH-LzYBLDlyAAiWfsEWS8iSWoNITtgAl0lhlsjhlZ9N0CwAqg-wZOxUFJLJQsGA_yujj5c9v39dJuDy6jryxXfSJurlHP7qoDWdDHuuxNzrUd27sHA7DgfJjdGW3aDVF1_3sMRQpWtmtqY03ow2OG2oMemqiz3tLrjOTDyal9cbPw1_GaJtoNQxzMLjZksPd_jl72mI_0Yv795x9eXd1c_E-Xn-4Xl2U61iLXMgYM0WoeCNrrrUWCARZUydhaFFQi6jznNIsQa4zKbloJNcAqWgwB12Ithbn7M3RN0z2dabJV4OZNPU9WhrnqeKFkjmXgmcBff0IvR1nZ8PvKq64CJDI0kC9uqfmeqCm2jkzoNtXv5cegOUR0G6cJkftA5JAdUi1OqRaPaQaBPKRQBuPhxV7h6b_t0wdZXemp_1_mlTl5ab8o_0FLTy7Qw |
CitedBy_id | crossref_primary_10_1002_adfm_202404822 crossref_primary_10_1016_j_jconrel_2025_113601 crossref_primary_10_1016_j_intimp_2024_113412 crossref_primary_10_1021_acsami_4c18641 crossref_primary_10_1016_j_cej_2024_158081 crossref_primary_10_1039_D4PY00591K crossref_primary_10_1002_advs_202409329 crossref_primary_10_1002_adma_202410957 crossref_primary_10_1002_adfm_202410142 crossref_primary_10_1021_acs_nanolett_4c04938 crossref_primary_10_1016_j_canlet_2024_217186 crossref_primary_10_1002_adma_202415550 crossref_primary_10_1186_s13046_024_02994_0 |
Cites_doi | 10.1038/s41586-021-03442-1 10.1021/acsnano.2c03587 10.1002/anie.202008858 10.1200/JCO.2021.39.15_suppl.4501 10.1016/j.mattod.2023.06.024 10.1002/anie.202103015 10.1002/advs.202103534 10.1002/adfm.202111784 10.1016/j.trecan.2021.04.003 10.1038/s41586-023-06299-8 10.1021/acs.nanolett.2c05029 10.1016/j.cell.2018.10.001 10.1038/s41577-020-0406-2 10.4049/jimmunol.0903586 10.1016/j.scib.2023.02.027 10.1002/adma.202105783 10.1002/adma.202200389 10.1002/adma.202007630 10.1002/advs.202003732 10.1186/s12943-021-01316-8 10.1016/j.tiv.2018.12.016 10.1021/acsami.1c13304 10.1074/jbc.M611376200 10.1016/j.biomaterials.2016.06.032 10.1016/j.gde.2022.101987 10.1038/nrc.2016.71 10.1021/acsnano.2c02605 10.1002/anie.201902714 10.1016/j.molcel.2020.10.015 10.1002/adma.202106654 10.1073/pnas.1611406113 10.1038/s41467-017-01050-0 10.1016/j.semcancer.2022.09.007 10.1021/acsami.2c00111 10.1038/s41577-019-0140-9 10.1002/adma.202205924 10.1126/science.aat1022 10.1038/s41565-018-0319-4 10.1016/j.cmet.2020.06.010 10.1002/adma.202001452 10.1016/j.jcis.2021.05.135 10.1126/sciadv.abo5285 10.1039/D3MH00748K 10.1021/acs.nanolett.2c02475 10.1016/j.cej.2022.134781 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202309094 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 38014890 10_1002_adma_202309094 ADMA202309094 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52073219; 52373304 – fundername: National Natural Science Foundation of China grantid: 52373304 – fundername: National Natural Science Foundation of China grantid: 52073219 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3734-a69ea92d4b2ccc3a0e06db164838efaac77e561a2c64423d42c0053da70c83fb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 17:25:03 EDT 2025 Sat Jul 26 03:27:41 EDT 2025 Mon Jul 21 05:16:08 EDT 2025 Tue Jul 01 00:54:41 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Jan 22 16:16:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | self-amplifying PD-L1 targeting drug delivering tumor immunotherapy metabolic reprogramming glutamine inhibition |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-a69ea92d4b2ccc3a0e06db164838efaac77e561a2c64423d42c0053da70c83fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9543-7763 |
PMID | 38014890 |
PQID | 2923243365 |
PQPubID | 2045203 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2894724326 proquest_journals_2923243365 pubmed_primary_38014890 crossref_primary_10_1002_adma_202309094 crossref_citationtrail_10_1002_adma_202309094 wiley_primary_10_1002_adma_202309094_ADMA202309094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022 2018; 16 175 2022 2023 2023; 77 68 23 2023; 10 2016 2021 2021 2021; 113 593 8 21 2021 2022; 13 16 2022 2021 2022; 86 7 14 2019 2016 2023; 14 102 68 2021; 601 2019 2016; 19 16 2021; 39 2020; 80 2017 2021; 8 33 2021 2007 2018 2019; 9 282 361 58 2022 2021; 22 20 2010 2020 2023; 185 32 620 2022 2021 2022 2020 2020; 34 34 34 59 32 2021; 60 2022 2019; 435 56 2022 2022 2022; 34 8 32 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_6_4 e_1_2_7_9_1 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_3 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_12_3 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_9_3 e_1_2_7_20_1 |
References_xml | – volume: 9 282 361 58 start-page: 704 7380 year: 2021 2007 2018 2019 publication-title: Adv. Sci. J. Biol. Chem. Science Angew. Chem., Int. Ed. – volume: 8 33 start-page: 902 year: 2017 2021 publication-title: Nat. Commun. Adv. Mater. – volume: 22 20 start-page: 6418 28 year: 2022 2021 publication-title: Nano Lett. Mol. Cancer – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 19 16 start-page: 324 619 year: 2019 2016 publication-title: Nat. Rev. Immunol. Nat. Rev. Cancer – volume: 34 34 34 59 32 year: 2022 2021 2022 2020 2020 publication-title: Adv. Mater. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. – volume: 16 175 start-page: 1780 year: 2022 2018 publication-title: ACS Nano Cell – volume: 77 68 23 start-page: 108 2659 year: 2022 2023 2023 publication-title: Curr. Opin. Genet. Dev. Mater. Today Nano Lett. – volume: 185 32 620 start-page: 1037 154 200 year: 2010 2020 2023 publication-title: J. Immunol. Cell Metab. Nature – volume: 80 start-page: 592 year: 2020 publication-title: Mol. Cell – volume: 10 start-page: 4365 year: 2023 publication-title: Mater. Horiz. – volume: 113 593 8 21 start-page: 282 151 year: 2016 2021 2021 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. Nature Adv. Sci. Nat. Rev. Immunol. – volume: 86 7 14 start-page: 1216 790 year: 2022 2021 2022 publication-title: Semin. Cancer Biol. Trends Cancer ACS Appl. Mater. Interfaces – volume: 39 start-page: 4501 year: 2021 publication-title: J. Clin. Oncol. – volume: 435 56 start-page: 41 year: 2022 2019 publication-title: Chem. Eng. J. Toxicol. In Vitro – volume: 14 102 68 start-page: 89 187 622 year: 2019 2016 2023 publication-title: Nat. Nanotechnol. Biomaterials Sci. Bull. – volume: 13 16 year: 2021 2022 publication-title: ACS Appl. Mater. Interfaces ACS Nano – volume: 34 8 32 year: 2022 2022 2022 publication-title: Adv. Mater. Sci. Adv. Adv. Funct. Mater. – volume: 601 start-page: 714 year: 2021 publication-title: J. Colloid Interface Sci. – ident: e_1_2_7_6_2 doi: 10.1038/s41586-021-03442-1 – ident: e_1_2_7_13_2 doi: 10.1021/acsnano.2c03587 – ident: e_1_2_7_12_4 doi: 10.1002/anie.202008858 – ident: e_1_2_7_8_1 doi: 10.1200/JCO.2021.39.15_suppl.4501 – ident: e_1_2_7_9_2 doi: 10.1016/j.mattod.2023.06.024 – ident: e_1_2_7_15_1 doi: 10.1002/anie.202103015 – ident: e_1_2_7_10_1 doi: 10.1002/advs.202103534 – ident: e_1_2_7_16_3 doi: 10.1002/adfm.202111784 – ident: e_1_2_7_2_2 doi: 10.1016/j.trecan.2021.04.003 – ident: e_1_2_7_4_3 doi: 10.1038/s41586-023-06299-8 – ident: e_1_2_7_9_3 doi: 10.1021/acs.nanolett.2c05029 – ident: e_1_2_7_3_2 doi: 10.1016/j.cell.2018.10.001 – ident: e_1_2_7_14_1 doi: 10.1002/anie.202103015 – ident: e_1_2_7_6_4 doi: 10.1038/s41577-020-0406-2 – ident: e_1_2_7_4_1 doi: 10.4049/jimmunol.0903586 – ident: e_1_2_7_18_3 doi: 10.1016/j.scib.2023.02.027 – ident: e_1_2_7_12_2 doi: 10.1002/adma.202105783 – ident: e_1_2_7_12_3 doi: 10.1002/adma.202200389 – ident: e_1_2_7_19_2 doi: 10.1002/adma.202007630 – ident: e_1_2_7_6_3 doi: 10.1002/advs.202003732 – ident: e_1_2_7_5_2 doi: 10.1186/s12943-021-01316-8 – ident: e_1_2_7_11_2 doi: 10.1016/j.tiv.2018.12.016 – ident: e_1_2_7_13_1 doi: 10.1021/acsami.1c13304 – ident: e_1_2_7_10_2 doi: 10.1074/jbc.M611376200 – ident: e_1_2_7_18_2 doi: 10.1016/j.biomaterials.2016.06.032 – ident: e_1_2_7_9_1 doi: 10.1016/j.gde.2022.101987 – ident: e_1_2_7_1_2 doi: 10.1038/nrc.2016.71 – ident: e_1_2_7_3_1 doi: 10.1021/acsnano.2c02605 – ident: e_1_2_7_10_4 doi: 10.1002/anie.201902714 – ident: e_1_2_7_7_1 doi: 10.1016/j.molcel.2020.10.015 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202106654 – ident: e_1_2_7_6_1 doi: 10.1073/pnas.1611406113 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-017-01050-0 – ident: e_1_2_7_2_1 doi: 10.1016/j.semcancer.2022.09.007 – ident: e_1_2_7_2_3 doi: 10.1021/acsami.2c00111 – ident: e_1_2_7_1_1 doi: 10.1038/s41577-019-0140-9 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202205924 – ident: e_1_2_7_10_3 doi: 10.1126/science.aat1022 – ident: e_1_2_7_18_1 doi: 10.1038/s41565-018-0319-4 – ident: e_1_2_7_4_2 doi: 10.1016/j.cmet.2020.06.010 – ident: e_1_2_7_12_5 doi: 10.1002/adma.202001452 – ident: e_1_2_7_20_1 doi: 10.1016/j.jcis.2021.05.135 – ident: e_1_2_7_16_2 doi: 10.1126/sciadv.abo5285 – ident: e_1_2_7_17_1 doi: 10.1039/D3MH00748K – ident: e_1_2_7_5_1 doi: 10.1021/acs.nanolett.2c02475 – ident: e_1_2_7_11_1 doi: 10.1016/j.cej.2022.134781 |
SSID | ssj0009606 |
Score | 2.5091476 |
Snippet | Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation‐mediated glycolysis enhancement and PD‐L1 upregulation‐induced immune... Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation-mediated glycolysis enhancement and PD-L1 upregulation-induced immune... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309094 |
SubjectTerms | B7-H1 Antigen - metabolism Cell death Cell Line, Tumor drug delivering Glutaminase Glutamine Glutamine - antagonists & inhibitors Glutamine - metabolism glutamine inhibition Glycolysis Homeostasis Humans Immune system Immunosuppressive Agents Immunotherapy Metabolic Reprogramming Metabolism Metal-organic frameworks Peptides self‐amplifying PD‐L1 targeting tumor immunotherapy Tumor Microenvironment Zeolites |
Title | A PD‐L1‐targeting Regulator for Metabolic Reprogramming to Enhance Glutamine Inhibition‐Mediated Synergistic Antitumor Metabolic and Immune Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202309094 https://www.ncbi.nlm.nih.gov/pubmed/38014890 https://www.proquest.com/docview/2923243365 https://www.proquest.com/docview/2894724326 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoyEhInNJmbW9iHyPa0iIWodJKvUV-TNSKNova7AFO_ASu_D1-CWM7m3ZBCAkuUeKMHceZ8Xx2xp8BXriWvLRTSMMSrXNZ4iQ3UlQ5F04qRx4C45zu7F25eyjfHE2PrqziT_wQ44RbsIzYXwcDN_Zi85I01PjIG0QQWtMQhTrhELAVUNH-JX9UgOeRbE9Mc11KtWRtLPjmavZVr_Qb1FxFrtH17NwCs6x0ijj5uLHo7Yb78guf4_-81W24OeBSVidFugPXsLsLN66wFd6D7zV7v_Xj67e3EzqkCHJKZ_tpN_v5OSP8y2bYk1qdnjhKH2K_zoJUP2fb3XFQMfaalN1QIrK97vjExpgxKnEWNw1Bzz58DusRI4E0q8Mq4sXZSsGm82wvLGtBdpA4Ee7D4c72wavdfNjZIXeiEjI3pUajuZeWO-eEKbAovaWRmxIKW2NcVSEBO8MdwTUuvOQu9BbeVIVTorXiAax18w4fAdPSI0dCWQJRTqvCWoNuItpWl95VrcogX37Zxg2052H3jdMmETbzJjR5MzZ5Bi9H-U-J8OOPkutLRWkGw79ouA4QVZAqZvB8vE0mG_7DmA7nC5JRWlYkxMsMHiYFGx8lApuP0kUGPKrJX-rQ1Fuzerx6_C-ZnsB1OpcpEn0d1vrzBT4loNXbZ9GYfgJyNyO0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8sFDASiFParO1N4gOHiG3ZpZsKla3UW3CcCa1os6jNCpUTj8CVx-BVeASehLHzUxaEkJB64BIpzsSx7Bn7G2f8DcBjU9AqbSIkt0QpTwbY97QUoceFkZGhFQLdnm6yFYx25Mvdwe4SfG3PwtT8EN2Gm7UMN19bA7cb0munrKE6d8RBhKEV-ShNXOUmnnwgr-342XhIQ_yE84316fOR1yQW8IwIhfR0oFArnsuMG2OE9tEP8owch0hEWGhtwhAJV2huCC1wkUturLLmOvRNJIpMUL3n4LxNI27p-ofbp4xV1iFw9H5i4CmqsOWJ9PnaYnsX18HfwO0iVnaL3cYV-NZ2Ux3j8m51XmWr5uMvDJL_VT9ehcsN9GZxbSvXYAnL63DpJ0LGG_AlZq-G3z99nvTpUgfJUznbxrc2y9nsiBHEZwlWZDkH-4bKm_C2QytVzdh6uWetiL0ge9ZUiGxc7u1nLiyOakxcXhTM2esTe-TScWSz2B6Unh8uVKzLnI3tyR1k05r24SbsnEnf3ILlclbiHWBK5siRgKRAlIPQzzKNpi-KQgW5CYuoB16rSqlpmN1tgpGDtOak5qkd4rQb4h487eTf15wmf5RcaTUzbea245Qri8KFCAY9eNQ9plnJ_mrSJc7mJBMpGZIQD3pwu9bo7lPCEhZFyu8Bd3r5lzak8TCJu7u7__LSQ7gwmiaTdDLe2rwHF6lc1oH3K7BcHc3xPuHKKnvgLJnBm7NW-R9oBoJN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TKGAkEKe0WdubxAcOUbdLl3arqrRSb8FxJrSizVZtVqiceASuvAWvwivwJB07P2VBCAmpBy6R4kzsyJ6xv3FmPgM8NwWt0iZGckuU8mWIPV9LEflcGBkbWiHQ7emON8LVHflmt787B9_aXJiaH6LbcLOW4eZra-BHebF0Thqqc8cbRBBakYvShFWu4elHctpOXo0GNMIvOB-ubC-v-s25Ar4RkZC-DhVqxXOZcWOM0AEGYZ6R3xCLGAutTRQhwQrNDYEFLnLJjdXVXEeBiUWRCar3ElyWIbVsYdjWOWGV9Qccu5_o-4oqbGkiA740-72zy-Bv2HYWKru1bngDvre9VIe4fFicVtmi-fQLgeT_1I034XoDvFlSW8otmMPyNlz7iY7xDnxN2Obgx-cv6z261CHyVM628L0942xyzAjgszFWZDcH-4bKm-C2QytVTdhKuWdtiL0ma9ZUiGxU7u1nLiiOahy7U1EwZ29PbcKlY8hmiU2Tnh7OVKzLnI1s3g6y7Zr04S7sXEjf3IP5clLiA2BK5siRYKRAlP0oyDKNpieKQoW5iYrYA7_VpNQ0vO72eJGDtGak5qkd4rQbYg9edvJHNaPJHyUXWsVMm5ntJOXKYnAhwr4Hz7rHNCfZH026xMmUZGIlIxLioQf3a4XumhKWrihWgQfcqeVfviFNBuOku3v4Ly89hSubg2G6PtpYewRXqVjWUfcLMF8dT_Exgcoqe-LsmMG7i9b4M1IugPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PD%E2%80%90L1%E2%80%90targeting+Regulator+for+Metabolic+Reprogramming+to+Enhance+Glutamine+Inhibition%E2%80%90Mediated+Synergistic+Antitumor+Metabolic+and+Immune+Therapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Xiao%E2%80%90Kang&rft.au=Zhang%2C+Shi%E2%80%90Man&rft.au=Liang%2C+Jun%E2%80%90Long&rft.au=Zhang%2C+Shun%E2%80%90Kang&rft.date=2024-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=6&rft_id=info:doi/10.1002%2Fadma.202309094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202309094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |