Two‐dimensional Cu Plates with Steady Fluid Fields for High‐rate Nitrate Electroreduction to Ammonia and Efficient Zn‐Nitrate Batteries
Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 18; pp. e202401924 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.04.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202401924 |
Cover
Loading…
Abstract | Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
The performance of nitrate electroreduction reaction (eNO3−RR) could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas in a microfluid flow cell to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency, exceptional long‐term electrolysis, and could be extended to assemble efficient Zn‐nitrate batteries. |
---|---|
AbstractList | Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. The performance of nitrate electroreduction reaction (eNO3−RR) could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas in a microfluid flow cell to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency, exceptional long‐term electrolysis, and could be extended to assemble efficient Zn‐nitrate batteries. Nitrate electroreduction reaction (eNO 3 − RR) to ammonia (NH 3 ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO 3 − RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO 3 − RR setup provided superior NH 3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm −2 , and a record‐high yield rate of 3.14 mmol cm −2 h −1 . Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm −2 and NH 3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO 3 − RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH 3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. Nitrate electroreduction reaction (eNO RR) to ammonia (NH ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO RR setup provided superior NH Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm , and a record-high yield rate of 3.14 mmol cm h . Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm and NH FE of 85.4 %, outperforming the state-of-the-art eNO RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. |
Author | Wang, Shun Wang, Xin Zhou, Limin You, Kun Li, Jun Wang, Jichang Chen, Yihuang Fan, Ru Chen, Xueqiu Jin, Huile Zhu, Shaojun Yuan, Yifei Wang, Zheng‐Jun Lv, Jing‐Jing |
Author_xml | – sequence: 1 givenname: Limin surname: Zhou fullname: Zhou, Limin organization: Wenzhou University – sequence: 2 givenname: Xueqiu surname: Chen fullname: Chen, Xueqiu organization: Wenzhou University – sequence: 3 givenname: Shaojun surname: Zhu fullname: Zhu, Shaojun organization: Wenzhou University – sequence: 4 givenname: Kun surname: You fullname: You, Kun organization: Wenzhou University – sequence: 5 givenname: Zheng‐Jun surname: Wang fullname: Wang, Zheng‐Jun email: zhengjunwang@wzu.edu.cn organization: Wenzhou University – sequence: 6 givenname: Ru surname: Fan fullname: Fan, Ru organization: Wenzhou University – sequence: 7 givenname: Jun surname: Li fullname: Li, Jun organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices – sequence: 8 givenname: Yifei surname: Yuan fullname: Yuan, Yifei organization: Wenzhou University – sequence: 9 givenname: Xin surname: Wang fullname: Wang, Xin organization: City University of Hong Kong – sequence: 10 givenname: Jichang surname: Wang fullname: Wang, Jichang organization: University of Windsor – sequence: 11 givenname: Yihuang surname: Chen fullname: Chen, Yihuang organization: Wenzhou University – sequence: 12 givenname: Huile surname: Jin fullname: Jin, Huile email: huilejin@wzu.edu.cn organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices – sequence: 13 givenname: Shun orcidid: 0000-0001-5305-5134 surname: Wang fullname: Wang, Shun email: Shunwang@wzu.edu.cn organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices – sequence: 14 givenname: Jing‐Jing surname: Lv fullname: Lv, Jing‐Jing email: jjlyu@wzu.edu.cn organization: Wenzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38366134$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qVDEYhoNU7I9uXUrATTcz5m_OyVmOw4wtlCpYN25CJvmOTclJapLDMDtvQPAavRIzTkehIK6-LJ7nhbzvKToKMQBCLymZUkLYGx0cTBlhgtCOiSfohM4YnfC25Uf1LTiftHJGj9FpzneVl5I0z9Axl7xpKBcn6PvNJv789sO6AUJ2MWiPFyP-4HWBjDeu3OKPBbTd4pUfncUrB95m3MeEL9yX22qmSuJrV37fpQdTUkxgR1NqGi4Rz4chBqexDhYv-94ZB6Hgz6G6B-2tLgWSg_wcPe21z_Di4Z6hT6vlzeJicvX-3eVifjUxvOWifslq3piZIXomme6g7ToGFGjTzIgQEmS7BkZaLVkrobO01y0nVsh1ZxojgJ-h833ufYpfR8hFDS4b8F4HiGNWrGOSCSGapqKvH6F3cUy1p6w4EUR0lLId9eqBGtcDWHWf3KDTVh2KroDYAybFnBP0yriidx3VCpxXlKjdnmq3p_qzZ9Wmj7RD8j-Fbi9snIftf2g1v75c_nV_AZmBtdI |
CitedBy_id | crossref_primary_10_1002_adfm_202420282 crossref_primary_10_1002_adfm_202501527 crossref_primary_10_1038_s41467_025_56039_x crossref_primary_10_1002_aenm_202401834 crossref_primary_10_1016_j_jcis_2024_06_213 crossref_primary_10_1039_D4CC05762G crossref_primary_10_1002_advs_202416053 crossref_primary_10_1002_adfm_202408834 crossref_primary_10_1002_adfm_202411491 crossref_primary_10_1002_aenm_202402970 |
Cites_doi | 10.1016/j.cej.2021.133495 10.1039/D2GC04368H 10.1016/j.apcatb.2022.121811 10.1002/adfm.202301884 10.1016/j.mtphys.2022.100619 10.1002/smll.202310597 10.1038/s41560-021-00920-8 10.1002/bte2.20220023 10.1002/adfm.202210238 10.1016/j.jpowsour.2014.07.036 10.1038/s41929-019-0280-0 10.1021/acs.accounts.8b00070 10.1002/aenm.202103872 10.1021/acs.accounts.8b00010 10.1002/anie.201915992 10.1016/j.jcat.2012.02.013 10.1016/j.ijhydene.2020.09.265 10.1002/anie.202211373 10.1002/anie.202202556 10.1007/s12274-022-4863-8 10.1021/jacs.8b08379 10.1016/j.cej.2022.135104 10.1016/j.jcis.2022.09.012 10.1016/j.ijheatmasstransfer.2013.12.023 10.1038/ncomms9561 10.1002/adma.201803111 10.1016/j.jcp.2007.09.003 10.1038/s41560-020-0654-1 10.1038/s41929-019-0252-4 10.1126/science.aar6611 10.1039/D2TA01772E 10.1002/anie.202015713 10.1038/205278a0 10.1002/smtd.202200790 10.1038/nmat2297 10.1002/aenm.201902020 10.1021/acscentsci.1c00370 10.1038/s41467-022-29428-9 10.1039/D1EE00806D 10.1021/es102692b 10.1002/advs.202004523 10.1016/j.jcis.2022.09.049 10.1016/j.coastaleng.2019.02.004 10.1016/j.jaerosci.2019.05.001 10.1038/s41467-022-35533-6 10.1002/bte2.20220029 10.1021/acsami.2c12175 10.1021/acsenergylett.1c01614 10.1038/s41467-020-20397-5 10.1002/admi.201600118 10.1039/D1CY01090E 10.1002/smll.202004526 10.1016/j.apcatb.2021.120829 10.1002/cey2.328 10.1007/s12274-021-3951-5 10.1002/advs.201802109 10.1002/smll.202106961 10.1016/j.jcat.2021.03.034 10.1016/j.jcis.2021.05.061 10.1038/s41929-018-0092-7 10.1016/j.jallcom.2020.158549 10.1016/j.applthermaleng.2019.114464 10.1021/jacs.0c00418 10.1021/jacs.0c01970 10.1038/s41586-019-1260-x 10.1038/s41467-021-23115-x 10.1038/s41929-020-00566-x 10.1126/sciadv.abd2569 10.1002/smll.201700264 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202401924 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38366134 10_1002_anie_202401924 ANIE202401924 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Chinese education ministry's Chunhui program funderid: 202200767 – fundername: Wenzhou Association for Science and Technology Service Technology Innovation Project funderid: jczc15 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LQ23B030001 – fundername: National Natural Science Foundation of China funderid: 52201227; 52272088; 52331009; 21972106 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ23B030001 – fundername: Wenzhou Association for Science and Technology Service Technology Innovation Project grantid: jczc15 – fundername: Chinese education ministry's Chunhui program grantid: 202200767 – fundername: National Natural Science Foundation of China grantid: 52272088 – fundername: National Natural Science Foundation of China grantid: 52201227 – fundername: National Natural Science Foundation of China grantid: 52331009 – fundername: National Natural Science Foundation of China grantid: 21972106 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3734-78da36c5c0a582a9e7992e1e16650448e87be207a8278e9d1fa730d48b9c6c4e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:10:03 EDT 2025 Fri Jul 25 10:02:01 EDT 2025 Wed Feb 19 02:10:05 EST 2025 Tue Jul 01 01:47:31 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Wed Jun 11 08:25:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Cu plates Fluid field Nitrate electroreduction reaction Zn-nitrate battery |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-78da36c5c0a582a9e7992e1e16650448e87be207a8278e9d1fa730d48b9c6c4e3 |
Notes | These authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5305-5134 |
PMID | 38366134 |
PQID | 3040491126 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2928244466 proquest_journals_3040491126 pubmed_primary_38366134 crossref_citationtrail_10_1002_anie_202401924 crossref_primary_10_1002_anie_202401924 wiley_primary_10_1002_anie_202401924_ANIE202401924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 24, 2024 |
PublicationDateYYYYMMDD | 2024-04-24 |
PublicationDate_xml | – month: 04 year: 2024 text: April 24, 2024 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 360 2023; 33 2007; 227 2023; 5 2020; 164 2021; 600 2022; 23 2020; 16 2020; 59 2008; 7 2023; 2 2020; 10 2023; 629 2020; 6 2020; 5 2023; 25 2021; 398 2018; 1 2012; 290 2018; 30 2017; 365 2021; 46 2021; 8 2015; 1 2021; 7 2021; 6 2015; 6 2021; 4 2018; 140 2019; 6 1965; 205 2019; 2 2020; 142 2021; 862 2019; 147 2022; 317 2022; 435 2022; 433 2021; 14 2010; 44 2021; 15 2021; 12 2016; 3 2021; 11 2023 2022 2022; 61 2022; 6 2017; 13 2022; 12 2022; 13 2022; 14 2019; 135 2022; 15 2018; 51 2022; 1 2022; 10 2019; 570 2021; 60 2014; 71 2014; 269 2022; 18 2022; 301 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 Burén S. (e_1_2_7_7_1) 2017; 365 e_1_2_7_19_2 e_1_2_7_17_2 Zheng Z. (e_1_2_7_20_2) 2022 e_1_2_7_83_2 e_1_2_7_81_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_87_2 e_1_2_7_85_1 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_92_2 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_96_2 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_82_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_2 e_1_2_7_61_2 Lv J.-J. (e_1_2_7_33_2) 2022 e_1_2_7_40_2 Dixon A. G. (e_1_2_7_78_2) 2015; 1 e_1_2_7_86_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_2 e_1_2_7_93_2 e_1_2_7_70_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_57_2 e_1_2_7_38_1 e_1_2_7_59_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 142 start-page: 7036 year: 2020 end-page: 7046 publication-title: J. Am. Chem. Soc. – year: 2023 publication-title: Small – volume: 365 start-page: 1 year: 2017 end-page: 9 publication-title: FEMS Microbiol. Lett. – volume: 2 start-page: 290 year: 2019 end-page: 296 publication-title: Nat. Catal. – volume: 6 start-page: 3676 year: 2021 end-page: 3685 publication-title: ACS Energy Lett. – volume: 18 year: 2022 publication-title: Small – volume: 71 start-page: 349 year: 2014 end-page: 360 publication-title: Int. J. Heat Mass Transfer – volume: 15 start-page: 3050 year: 2021 end-page: 3055 publication-title: Nano Res. – volume: 227 start-page: 1267 year: 2007 end-page: 1285 publication-title: J. Comput. Phys. – volume: 2 year: 2023 publication-title: Battery Energy – volume: 6 year: 2022 publication-title: Small Methods – volume: 59 start-page: 5350 year: 2020 end-page: 5354 publication-title: Angew. Chem. Int. Ed. – volume: 317 year: 2022 publication-title: Appl. Catal. B – volume: 44 start-page: 9590 year: 2010 end-page: 9596 publication-title: Environ. Sci. Technol. – volume: 7 start-page: 845 year: 2008 end-page: 854 publication-title: Nat. Mater. – volume: 59 start-page: 5350 year: 2020 end-page: 5354 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 910 year: 2018 end-page: 918 publication-title: Acc. Chem. Res. – volume: 205 start-page: 278 year: 1965 end-page: 278 publication-title: Nature – year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 7899 year: 2022 publication-title: Nat. Commun. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 6 start-page: 8561 year: 2015 publication-title: Nat. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 7 start-page: 1066 year: 2021 end-page: 1072 publication-title: ACS Cent. Sci. – volume: 15 start-page: 8914 year: 2022 end-page: 8921 publication-title: Nano Res. – volume: 14 start-page: 3938 year: 2021 end-page: 3944 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1803111 year: 2018 end-page: 1803119 publication-title: Adv. Mater. – volume: 10 start-page: 12669 year: 2022 end-page: 12678 publication-title: J. Mater. Chem. A – volume: 2 start-page: 377 year: 2019 end-page: 380 publication-title: Nat. Catal. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 135 start-page: 72 year: 2019 end-page: 85 publication-title: J. Aerosol Sci. – volume: 164 year: 2020 publication-title: Appl. Therm. Eng. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 46 start-page: 119 year: 2021 end-page: 133 publication-title: Int. J. Hydrogen Energy – volume: 290 start-page: 18 year: 2012 end-page: 25 publication-title: J. Catal. – volume: 147 start-page: 43 year: 2019 end-page: 62 publication-title: Coastal Eng. – volume: 1 start-page: 3 year: 2015 publication-title: Catalyst – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 5 year: 2023 publication-title: Carbon Energy – volume: 6 start-page: 1026 year: 2021 end-page: 1034 publication-title: Nat. Energy – volume: 862 year: 2021 publication-title: J. Alloys Compd. – volume: 5 start-page: 605 year: 2020 end-page: 613 publication-title: Nat. Energy – volume: 60 start-page: 8798 year: 2021 end-page: 8802 publication-title: Angew. Chem. Int. Ed. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 1 year: 2022 publication-title: Battery Energy – volume: 11 start-page: 6825 year: 2021 end-page: 6831 publication-title: Catal. Sci. Technol. – volume: 8 year: 2021 publication-title: Adv. Sci. (Weinh) – volume: 14 start-page: 49650 year: 2022 end-page: 49657 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 140 start-page: 13387 year: 2018 end-page: 13391 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 490 year: 2018 end-page: 500 publication-title: Nat. Catal. – volume: 269 start-page: 104 year: 2014 end-page: 110 publication-title: J. Power Sources – volume: 13 start-page: 1700264 year: 2017 end-page: 1700274 publication-title: Small – volume: 398 start-page: 185 year: 2021 end-page: 191 publication-title: J. Catal. – volume: 13 start-page: 1877 year: 2022 publication-title: Nat. Commun. – volume: 629 start-page: 563 year: 2023 end-page: 570 publication-title: J. Colloid Interface Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – start-page: 1 year: 2022 end-page: 11 publication-title: Carbon Energy – volume: 570 start-page: 504 year: 2019 end-page: 508 publication-title: Nature – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 23 year: 2022 publication-title: Mater. Today Phys. – volume: 51 start-page: 1590 year: 2018 end-page: 1598 publication-title: Acc. Chem. Res. – volume: 301 year: 2022 publication-title: Appl. Catal. B – volume: 600 start-page: 620 year: 2021 end-page: 628 publication-title: J. Colloid Interface Sci. – volume: 25 start-page: 1326 year: 2023 end-page: 1331 publication-title: Green Chem. – volume: 360 year: 2018 publication-title: Science – volume: 4 start-page: 157 year: 2021 end-page: 163 publication-title: Nat. Catal. – volume: 16 start-page: 7627 year: 2020 end-page: 7637 publication-title: J. Am. Chem. Soc. – volume: 629 start-page: 950 year: 2023 end-page: 957 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 136 year: 2021 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. Engl. – ident: e_1_2_7_45_2 doi: 10.1016/j.cej.2021.133495 – ident: e_1_2_7_43_2 doi: 10.1039/D2GC04368H – ident: e_1_2_7_62_2 doi: 10.1016/j.apcatb.2022.121811 – ident: e_1_2_7_93_2 doi: 10.1002/adfm.202301884 – ident: e_1_2_7_66_2 doi: 10.1016/j.mtphys.2022.100619 – ident: e_1_2_7_73_1 doi: 10.1002/smll.202310597 – ident: e_1_2_7_82_2 doi: 10.1038/s41560-021-00920-8 – ident: e_1_2_7_21_2 doi: 10.1002/bte2.20220023 – ident: e_1_2_7_72_2 doi: 10.1002/adfm.202210238 – ident: e_1_2_7_44_2 doi: 10.1016/j.jpowsour.2014.07.036 – year: 2022 ident: e_1_2_7_33_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_11_1 – ident: e_1_2_7_9_2 doi: 10.1038/s41929-019-0280-0 – ident: e_1_2_7_83_2 doi: 10.1021/acs.accounts.8b00070 – ident: e_1_2_7_74_1 – ident: e_1_2_7_24_2 doi: 10.1002/aenm.202103872 – ident: e_1_2_7_15_2 doi: 10.1021/acs.accounts.8b00010 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201915992 – ident: e_1_2_7_30_2 doi: 10.1016/j.jcat.2012.02.013 – ident: e_1_2_7_34_2 doi: 10.1016/j.ijhydene.2020.09.265 – ident: e_1_2_7_61_2 doi: 10.1002/anie.201915992 – ident: e_1_2_7_87_2 doi: 10.1002/anie.202211373 – ident: e_1_2_7_2_2 doi: 10.1002/anie.202202556 – ident: e_1_2_7_65_2 doi: 10.1007/s12274-022-4863-8 – ident: e_1_2_7_39_1 – ident: e_1_2_7_8_1 – volume: 365 start-page: 1 year: 2017 ident: e_1_2_7_7_1 publication-title: FEMS Microbiol. Lett. – ident: e_1_2_7_47_2 doi: 10.1021/jacs.8b08379 – ident: e_1_2_7_64_2 doi: 10.1016/j.cej.2022.135104 – ident: e_1_2_7_58_2 doi: 10.1016/j.jcis.2022.09.012 – ident: e_1_2_7_79_1 doi: 10.1016/j.ijheatmasstransfer.2013.12.023 – ident: e_1_2_7_40_2 doi: 10.1038/ncomms9561 – ident: e_1_2_7_16_2 doi: 10.1002/adma.201803111 – ident: e_1_2_7_76_2 doi: 10.1016/j.jcp.2007.09.003 – ident: e_1_2_7_51_2 doi: 10.1038/s41560-020-0654-1 – volume: 1 start-page: 3 year: 2015 ident: e_1_2_7_78_2 publication-title: Catalyst – ident: e_1_2_7_32_1 – ident: e_1_2_7_13_2 doi: 10.1038/s41929-019-0252-4 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201803111 – ident: e_1_2_7_4_1 doi: 10.1126/science.aar6611 – ident: e_1_2_7_46_1 – ident: e_1_2_7_60_2 doi: 10.1039/D2TA01772E – ident: e_1_2_7_69_1 doi: 10.1002/anie.202015713 – ident: e_1_2_7_84_1 doi: 10.1038/205278a0 – ident: e_1_2_7_49_1 doi: 10.1002/smtd.202200790 – ident: e_1_2_7_71_2 doi: 10.1038/nmat2297 – ident: e_1_2_7_81_1 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201902020 – ident: e_1_2_7_53_2 doi: 10.1021/acscentsci.1c00370 – ident: e_1_2_7_77_2 doi: 10.1038/s41467-022-29428-9 – ident: e_1_2_7_19_2 doi: 10.1039/D1EE00806D – ident: e_1_2_7_89_2 doi: 10.1021/es102692b – ident: e_1_2_7_55_2 doi: 10.1002/advs.202004523 – ident: e_1_2_7_70_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_59_2 doi: 10.1016/j.jcis.2022.09.049 – ident: e_1_2_7_80_1 doi: 10.1016/j.coastaleng.2019.02.004 – ident: e_1_2_7_75_2 doi: 10.1016/j.jaerosci.2019.05.001 – ident: e_1_2_7_86_2 doi: 10.1038/s41467-022-35533-6 – ident: e_1_2_7_14_1 – ident: e_1_2_7_85_1 – ident: e_1_2_7_22_2 doi: 10.1002/bte2.20220029 – ident: e_1_2_7_67_2 doi: 10.1021/acsami.2c12175 – ident: e_1_2_7_3_2 doi: 10.1021/acsenergylett.1c01614 – ident: e_1_2_7_17_2 doi: 10.1038/s41467-020-20397-5 – ident: e_1_2_7_38_1 doi: 10.1002/admi.201600118 – ident: e_1_2_7_92_2 doi: 10.1039/D1CY01090E – ident: e_1_2_7_1_1 – ident: e_1_2_7_63_1 – ident: e_1_2_7_94_1 – ident: e_1_2_7_27_2 doi: 10.1002/smll.202004526 – ident: e_1_2_7_90_2 doi: 10.1016/j.apcatb.2021.120829 – ident: e_1_2_7_41_2 doi: 10.1002/cey2.328 – ident: e_1_2_7_91_1 – ident: e_1_2_7_57_2 doi: 10.1007/s12274-021-3951-5 – ident: e_1_2_7_48_2 doi: 10.1002/advs.201802109 – ident: e_1_2_7_25_2 doi: 10.1002/smll.202106961 – ident: e_1_2_7_36_1 doi: 10.1016/j.jcat.2021.03.034 – ident: e_1_2_7_56_2 doi: 10.1016/j.jcis.2021.05.061 – ident: e_1_2_7_10_2 doi: 10.1038/s41929-018-0092-7 – ident: e_1_2_7_31_2 doi: 10.1016/j.jallcom.2020.158549 – ident: e_1_2_7_35_2 doi: 10.1016/j.applthermaleng.2019.114464 – ident: e_1_2_7_52_2 doi: 10.1021/jacs.0c00418 – ident: e_1_2_7_6_1 doi: 10.1021/jacs.0c01970 – ident: e_1_2_7_12_2 doi: 10.1038/s41586-019-1260-x – ident: e_1_2_7_88_1 – ident: e_1_2_7_54_2 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_7_96_2 doi: 10.1038/s41929-020-00566-x – ident: e_1_2_7_18_1 – start-page: 1 year: 2022 ident: e_1_2_7_20_2 publication-title: Carbon Energy – ident: e_1_2_7_50_1 – ident: e_1_2_7_95_2 doi: 10.1126/sciadv.abd2569 – ident: e_1_2_7_42_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_23_1 – ident: e_1_2_7_68_1 doi: 10.1002/smll.201700264 |
SSID | ssj0028806 |
Score | 2.5027997 |
Snippet | Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and... Nitrate electroreduction reaction (eNO 3 − RR) to ammonia (NH 3 ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and... Nitrate electroreduction reaction (eNO RR) to ammonia (NH ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and... Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202401924 |
SubjectTerms | Ammonia Carrier gases Catalysts Cu plates Electrocatalysts Electrolysis Electrowinning Fluid field Infrared spectroscopy Nitrate electroreduction reaction Nitrates Plates Zn-nitrate battery |
Title | Two‐dimensional Cu Plates with Steady Fluid Fields for High‐rate Nitrate Electroreduction to Ammonia and Efficient Zn‐Nitrate Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401924 https://www.ncbi.nlm.nih.gov/pubmed/38366134 https://www.proquest.com/docview/3040491126 https://www.proquest.com/docview/2928244466 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhl-TSNk0f26RlAoWenNiS_NBxWXZJC11CSCD0YmR5DEsXb8muKcmpf6CQ39hf0hlr7XRbSqG5-aGRZWlG-iSNvhHirWYYjxgHiQ3DQMeVDAoZq0CW9NwVsoosLw18nCanl_rDVXz1yyl-zw_RL7ixZbT9NRu4LZYn96ShfAKb5nc0IvEcgjphdthiVHTe80dJUk5_vEipgKPQd6yNoTzZFN8clf6AmpvItR16Jo-F7QrtPU4-Hzer4tjd_sbn-JC_eiIerXEpDL0i7YktrJ-KnVEXDm5ffL_4uvjx7a7kaACeyQNGDZzNGasCr-YCuwaXNzCZN7MSJuwZtwSCxMCuJCTJnBQwnbVsuDD20XeumTiWVQNWCxiyScws2LqEcctsQQMifKpJthPzbKA0uX8mLifji9FpsI7lEDiVKk21X1qVuNiFNs6kNZgaIzHCKCGISFNEzNICZZjaTKYZmjKqLPU9pc4K4xKnUT0X2_WixpcCUjQYOUVYprJaY0L5ECasDFaJlGmRDkTQtWXu1kTnHG9jnnuKZplzJed9JQ_Euz79F0_x8deUh51q5GtTX-aKukFt-CTWQBz1r6lxeOfF1rholrk0ZBKat84H4oVXqf5TKlOEkRRlLlvF-EcZ8uH0_bi_e_U_Qgdil695T0zqQ7G9um7wNUGrVfGmNZ-fH2Mc9Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLrz5YKGAkpJ7SJrbz8HG17GoL7QqhrVRxsRzHkVZdZavuRhWc-ANI_EZ-CTPxJmiLEBIc43gcx56xP9vjbwDeSILxzsVBYsIwkHHJg5zHIuAFptucl5GhrYGzSTI-l-8u4tabkO7CeH6IbsONLKMZr8nAaUP6-BdrKF3BxgUeTkm0iLgL9yisNwUxePuxY5DiqJ7-gpEQAcWhb3kbQ368Kb85L_0GNjexazP5jB5C3lbb-5xcHtWr_Mh-ucXo-F__9QgerKEp63tdegx3XPUEtgdtRLgd-Da9Wfz4-r2ggACezIMNavZhTnCV0YYuI-_g4jMbzetZwUbkHLdkiIoZeZOgJNFSsMmsIcRlQx-A55q4Y0k72GrB-mQVM8NMVbBhQ26BcyL7VKFsK-YJQXF9vwvno-F0MA7W4RwCK1IhsfkLIxIb29DEGTfKpUpxF7koQZSIq0SXpbnjYWoynmZOFVFpcPgpZJYrm1jpxB5sVYvKPQWWOuUiKxDOlEZKl2A5CAtL5cqE8zRPexC0nantmuucQm7MtWdp5poaWXeN3IPDLv-VZ_n4Y86DVjf02tqXWuBIKBVdxurB6-41dg4dvpjKLeql5gqtQtLpeQ_2vU51nxKZQJgksHDeaMZf6qD7k5Nh9_TsX4RewfZ4enaqT08m75_DfUqnIzIuD2BrdV27F4i0VvnLxpZ-AtfMIQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oCuqL98voqhEEn7rbJuklj8M4ZdfLsMguLL6ENElhcOgsO1NEn_wDgr_RX-I5zbQ6igj62DQnTZNzku_k8h2AZ5JgvPdplJk4jmRa86jiqYi4w3Rb8ToxtDTwZpYdnMiXp-npT7f4Az_EsOBGltGN12TgZ67e_0EaSjew0b_DGYl8iItwSWZoMQSL3g4EUhy1M9wvEiKiMPQ9bWPM97flt6el37DmNnTt5p7yOpi-1uHIyfu9dl3t2U-_EDr-z2_dgGsbYMrGQZNuwgXf3IIrkz4e3G34cvxh-e3zV0fhAAKVB5u07GhBYJXRci6js8HuIysX7dyxko7GrRhiYkZnSVCSSCnYbN7R4bJpCL9zTsyxpBtsvWRjsom5YaZxbNpRW-CMyN41KNuLBTpQ9O7vwEk5PZ4cRJtgDpEVuZDY-s6IzKY2NmnBjfK5UtwnPskQI6KP6Iu88jzOTcHzwiuX1AYHHyeLStnMSi_uwk6zbPx9YLlXPrECwUxtpPQZloOgsFa-zjjPq3wEUd-X2m6YzingxkIHjmauqZH10MgjeD7kPwscH3_Mudurht7Y-koLHAeloqtYI3g6vMbOoa0X0_hlu9JcoU1I2jsfwb2gUsOnRCEQJAksnHeK8Zc66PHscDo8PfgXoSdw-ehFqV8fzl49hKuUTPtjXO7Czvq89Y8QZq2rx50lfQd4aR_H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90dimensional+Cu+Plates+with+Steady+Fluid+Fields+for+High%E2%80%90rate+Nitrate+Electroreduction+to+Ammonia+and+Efficient+Zn%E2%80%90Nitrate+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Limin&rft.au=Chen%2C+Xueqiu&rft.au=Zhu%2C+Shaojun&rft.au=You%2C+Kun&rft.date=2024-04-24&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=18&rft_id=info:doi/10.1002%2Fanie.202401924&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |