Two‐dimensional Cu Plates with Steady Fluid Fields for High‐rate Nitrate Electroreduction to Ammonia and Efficient Zn‐Nitrate Batteries

Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 18; pp. e202401924 - n/a
Main Authors Zhou, Limin, Chen, Xueqiu, Zhu, Shaojun, You, Kun, Wang, Zheng‐Jun, Fan, Ru, Li, Jun, Yuan, Yifei, Wang, Xin, Wang, Jichang, Chen, Yihuang, Jin, Huile, Wang, Shun, Lv, Jing‐Jing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 24.04.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202401924

Cover

Loading…
Abstract Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. The performance of nitrate electroreduction reaction (eNO3−RR) could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas in a microfluid flow cell to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency, exceptional long‐term electrolysis, and could be extended to assemble efficient Zn‐nitrate batteries.
AbstractList Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3−RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm−2, and a record‐high yield rate of 3.14 mmol cm−2 h−1. Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm−2 and NH3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO3−RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis. The performance of nitrate electroreduction reaction (eNO3−RR) could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas in a microfluid flow cell to construct a steady fluid field. The developed eNO3−RR setup provided superior NH3 Faradaic efficiency, exceptional long‐term electrolysis, and could be extended to assemble efficient Zn‐nitrate batteries.
Nitrate electroreduction reaction (eNO 3 − RR) to ammonia (NH 3 ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO 3 − RR could be significantly boosted by introducing two‐dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO 3 − RR setup provided superior NH 3 Faradaic efficiency (FE) of 99 %, exceptional long‐term electrolysis for 120 h at 200 mA cm −2 , and a record‐high yield rate of 3.14 mmol cm −2  h −1 . Furthermore, the proposed strategy was successfully extended to the Zn‐nitrate battery system, providing a power density of 12.09 mW cm −2 and NH 3 FE of 85.4 %, outperforming the state‐of‐the‐art eNO 3 − RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high‐efficiency NH 3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Nitrate electroreduction reaction (eNO RR) to ammonia (NH ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO RR setup provided superior NH Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm , and a record-high yield rate of 3.14 mmol cm  h . Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm and NH FE of 85.4 %, outperforming the state-of-the-art eNO RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Author Wang, Shun
Wang, Xin
Zhou, Limin
You, Kun
Li, Jun
Wang, Jichang
Chen, Yihuang
Fan, Ru
Chen, Xueqiu
Jin, Huile
Zhu, Shaojun
Yuan, Yifei
Wang, Zheng‐Jun
Lv, Jing‐Jing
Author_xml – sequence: 1
  givenname: Limin
  surname: Zhou
  fullname: Zhou, Limin
  organization: Wenzhou University
– sequence: 2
  givenname: Xueqiu
  surname: Chen
  fullname: Chen, Xueqiu
  organization: Wenzhou University
– sequence: 3
  givenname: Shaojun
  surname: Zhu
  fullname: Zhu, Shaojun
  organization: Wenzhou University
– sequence: 4
  givenname: Kun
  surname: You
  fullname: You, Kun
  organization: Wenzhou University
– sequence: 5
  givenname: Zheng‐Jun
  surname: Wang
  fullname: Wang, Zheng‐Jun
  email: zhengjunwang@wzu.edu.cn
  organization: Wenzhou University
– sequence: 6
  givenname: Ru
  surname: Fan
  fullname: Fan, Ru
  organization: Wenzhou University
– sequence: 7
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices
– sequence: 8
  givenname: Yifei
  surname: Yuan
  fullname: Yuan, Yifei
  organization: Wenzhou University
– sequence: 9
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: City University of Hong Kong
– sequence: 10
  givenname: Jichang
  surname: Wang
  fullname: Wang, Jichang
  organization: University of Windsor
– sequence: 11
  givenname: Yihuang
  surname: Chen
  fullname: Chen, Yihuang
  organization: Wenzhou University
– sequence: 12
  givenname: Huile
  surname: Jin
  fullname: Jin, Huile
  email: huilejin@wzu.edu.cn
  organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices
– sequence: 13
  givenname: Shun
  orcidid: 0000-0001-5305-5134
  surname: Wang
  fullname: Wang, Shun
  email: Shunwang@wzu.edu.cn
  organization: Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices
– sequence: 14
  givenname: Jing‐Jing
  surname: Lv
  fullname: Lv, Jing‐Jing
  email: jjlyu@wzu.edu.cn
  organization: Wenzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38366134$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qVDEYhoNU7I9uXUrATTcz5m_OyVmOw4wtlCpYN25CJvmOTclJapLDMDtvQPAavRIzTkehIK6-LJ7nhbzvKToKMQBCLymZUkLYGx0cTBlhgtCOiSfohM4YnfC25Uf1LTiftHJGj9FpzneVl5I0z9Axl7xpKBcn6PvNJv789sO6AUJ2MWiPFyP-4HWBjDeu3OKPBbTd4pUfncUrB95m3MeEL9yX22qmSuJrV37fpQdTUkxgR1NqGi4Rz4chBqexDhYv-94ZB6Hgz6G6B-2tLgWSg_wcPe21z_Di4Z6hT6vlzeJicvX-3eVifjUxvOWifslq3piZIXomme6g7ToGFGjTzIgQEmS7BkZaLVkrobO01y0nVsh1ZxojgJ-h833ufYpfR8hFDS4b8F4HiGNWrGOSCSGapqKvH6F3cUy1p6w4EUR0lLId9eqBGtcDWHWf3KDTVh2KroDYAybFnBP0yriidx3VCpxXlKjdnmq3p_qzZ9Wmj7RD8j-Fbi9snIftf2g1v75c_nV_AZmBtdI
CitedBy_id crossref_primary_10_1002_adfm_202420282
crossref_primary_10_1002_adfm_202501527
crossref_primary_10_1038_s41467_025_56039_x
crossref_primary_10_1002_aenm_202401834
crossref_primary_10_1016_j_jcis_2024_06_213
crossref_primary_10_1039_D4CC05762G
crossref_primary_10_1002_advs_202416053
crossref_primary_10_1002_adfm_202408834
crossref_primary_10_1002_adfm_202411491
crossref_primary_10_1002_aenm_202402970
Cites_doi 10.1016/j.cej.2021.133495
10.1039/D2GC04368H
10.1016/j.apcatb.2022.121811
10.1002/adfm.202301884
10.1016/j.mtphys.2022.100619
10.1002/smll.202310597
10.1038/s41560-021-00920-8
10.1002/bte2.20220023
10.1002/adfm.202210238
10.1016/j.jpowsour.2014.07.036
10.1038/s41929-019-0280-0
10.1021/acs.accounts.8b00070
10.1002/aenm.202103872
10.1021/acs.accounts.8b00010
10.1002/anie.201915992
10.1016/j.jcat.2012.02.013
10.1016/j.ijhydene.2020.09.265
10.1002/anie.202211373
10.1002/anie.202202556
10.1007/s12274-022-4863-8
10.1021/jacs.8b08379
10.1016/j.cej.2022.135104
10.1016/j.jcis.2022.09.012
10.1016/j.ijheatmasstransfer.2013.12.023
10.1038/ncomms9561
10.1002/adma.201803111
10.1016/j.jcp.2007.09.003
10.1038/s41560-020-0654-1
10.1038/s41929-019-0252-4
10.1126/science.aar6611
10.1039/D2TA01772E
10.1002/anie.202015713
10.1038/205278a0
10.1002/smtd.202200790
10.1038/nmat2297
10.1002/aenm.201902020
10.1021/acscentsci.1c00370
10.1038/s41467-022-29428-9
10.1039/D1EE00806D
10.1021/es102692b
10.1002/advs.202004523
10.1016/j.jcis.2022.09.049
10.1016/j.coastaleng.2019.02.004
10.1016/j.jaerosci.2019.05.001
10.1038/s41467-022-35533-6
10.1002/bte2.20220029
10.1021/acsami.2c12175
10.1021/acsenergylett.1c01614
10.1038/s41467-020-20397-5
10.1002/admi.201600118
10.1039/D1CY01090E
10.1002/smll.202004526
10.1016/j.apcatb.2021.120829
10.1002/cey2.328
10.1007/s12274-021-3951-5
10.1002/advs.201802109
10.1002/smll.202106961
10.1016/j.jcat.2021.03.034
10.1016/j.jcis.2021.05.061
10.1038/s41929-018-0092-7
10.1016/j.jallcom.2020.158549
10.1016/j.applthermaleng.2019.114464
10.1021/jacs.0c00418
10.1021/jacs.0c01970
10.1038/s41586-019-1260-x
10.1038/s41467-021-23115-x
10.1038/s41929-020-00566-x
10.1126/sciadv.abd2569
10.1002/smll.201700264
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202401924
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38366134
10_1002_anie_202401924
ANIE202401924
Genre article
Journal Article
GrantInformation_xml – fundername: Chinese education ministry's Chunhui program
  funderid: 202200767
– fundername: Wenzhou Association for Science and Technology Service Technology Innovation Project
  funderid: jczc15
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LQ23B030001
– fundername: National Natural Science Foundation of China
  funderid: 52201227; 52272088; 52331009; 21972106
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LQ23B030001
– fundername: Wenzhou Association for Science and Technology Service Technology Innovation Project
  grantid: jczc15
– fundername: Chinese education ministry's Chunhui program
  grantid: 202200767
– fundername: National Natural Science Foundation of China
  grantid: 52272088
– fundername: National Natural Science Foundation of China
  grantid: 52201227
– fundername: National Natural Science Foundation of China
  grantid: 52331009
– fundername: National Natural Science Foundation of China
  grantid: 21972106
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
AEUQT
AFPWT
NPM
RWI
VQA
WRC
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3734-78da36c5c0a582a9e7992e1e16650448e87be207a8278e9d1fa730d48b9c6c4e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:10:03 EDT 2025
Fri Jul 25 10:02:01 EDT 2025
Wed Feb 19 02:10:05 EST 2025
Tue Jul 01 01:47:31 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Wed Jun 11 08:25:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Cu plates
Fluid field
Nitrate electroreduction reaction
Zn-nitrate battery
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-78da36c5c0a582a9e7992e1e16650448e87be207a8278e9d1fa730d48b9c6c4e3
Notes These authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5305-5134
PMID 38366134
PQID 3040491126
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2928244466
proquest_journals_3040491126
pubmed_primary_38366134
crossref_citationtrail_10_1002_anie_202401924
crossref_primary_10_1002_anie_202401924
wiley_primary_10_1002_anie_202401924_ANIE202401924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 24, 2024
PublicationDateYYYYMMDD 2024-04-24
PublicationDate_xml – month: 04
  year: 2024
  text: April 24, 2024
  day: 24
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 360
2023; 33
2007; 227
2023; 5
2020; 164
2021; 600
2022; 23
2020; 16
2020; 59
2008; 7
2023; 2
2020; 10
2023; 629
2020; 6
2020; 5
2023; 25
2021; 398
2018; 1
2012; 290
2018; 30
2017; 365
2021; 46
2021; 8
2015; 1
2021; 7
2021; 6
2015; 6
2021; 4
2018; 140
2019; 6
1965; 205
2019; 2
2020; 142
2021; 862
2019; 147
2022; 317
2022; 435
2022; 433
2021; 14
2010; 44
2021; 15
2021; 12
2016; 3
2021; 11
2023
2022
2022; 61
2022; 6
2017; 13
2022; 12
2022; 13
2022; 14
2019; 135
2022; 15
2018; 51
2022; 1
2022; 10
2019; 570
2021; 60
2014; 71
2014; 269
2022; 18
2022; 301
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
Burén S. (e_1_2_7_7_1) 2017; 365
e_1_2_7_19_2
e_1_2_7_17_2
Zheng Z. (e_1_2_7_20_2) 2022
e_1_2_7_83_2
e_1_2_7_81_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_87_2
e_1_2_7_85_1
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_92_2
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_96_2
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_82_2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_2
e_1_2_7_61_2
Lv J.-J. (e_1_2_7_33_2) 2022
e_1_2_7_40_2
Dixon A. G. (e_1_2_7_78_2) 2015; 1
e_1_2_7_86_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_2
e_1_2_7_93_2
e_1_2_7_70_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_1
e_1_2_7_57_2
e_1_2_7_38_1
e_1_2_7_59_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  publication-title: J. Am. Chem. Soc.
– year: 2023
  publication-title: Small
– volume: 365
  start-page: 1
  year: 2017
  end-page: 9
  publication-title: FEMS Microbiol. Lett.
– volume: 2
  start-page: 290
  year: 2019
  end-page: 296
  publication-title: Nat. Catal.
– volume: 6
  start-page: 3676
  year: 2021
  end-page: 3685
  publication-title: ACS Energy Lett.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 71
  start-page: 349
  year: 2014
  end-page: 360
  publication-title: Int. J. Heat Mass Transfer
– volume: 15
  start-page: 3050
  year: 2021
  end-page: 3055
  publication-title: Nano Res.
– volume: 227
  start-page: 1267
  year: 2007
  end-page: 1285
  publication-title: J. Comput. Phys.
– volume: 2
  year: 2023
  publication-title: Battery Energy
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  publication-title: Angew. Chem. Int. Ed.
– volume: 317
  year: 2022
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 9590
  year: 2010
  end-page: 9596
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  publication-title: Nat. Mater.
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 910
  year: 2018
  end-page: 918
  publication-title: Acc. Chem. Res.
– volume: 205
  start-page: 278
  year: 1965
  end-page: 278
  publication-title: Nature
– year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 7899
  year: 2022
  publication-title: Nat. Commun.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 8561
  year: 2015
  publication-title: Nat. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 7
  start-page: 1066
  year: 2021
  end-page: 1072
  publication-title: ACS Cent. Sci.
– volume: 15
  start-page: 8914
  year: 2022
  end-page: 8921
  publication-title: Nano Res.
– volume: 14
  start-page: 3938
  year: 2021
  end-page: 3944
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1803111
  year: 2018
  end-page: 1803119
  publication-title: Adv. Mater.
– volume: 10
  start-page: 12669
  year: 2022
  end-page: 12678
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 377
  year: 2019
  end-page: 380
  publication-title: Nat. Catal.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 135
  start-page: 72
  year: 2019
  end-page: 85
  publication-title: J. Aerosol Sci.
– volume: 164
  year: 2020
  publication-title: Appl. Therm. Eng.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 119
  year: 2021
  end-page: 133
  publication-title: Int. J. Hydrogen Energy
– volume: 290
  start-page: 18
  year: 2012
  end-page: 25
  publication-title: J. Catal.
– volume: 147
  start-page: 43
  year: 2019
  end-page: 62
  publication-title: Coastal Eng.
– volume: 1
  start-page: 3
  year: 2015
  publication-title: Catalyst
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 6
  start-page: 1026
  year: 2021
  end-page: 1034
  publication-title: Nat. Energy
– volume: 862
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  publication-title: Nat. Energy
– volume: 60
  start-page: 8798
  year: 2021
  end-page: 8802
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 1
  year: 2022
  publication-title: Battery Energy
– volume: 11
  start-page: 6825
  year: 2021
  end-page: 6831
  publication-title: Catal. Sci. Technol.
– volume: 8
  year: 2021
  publication-title: Adv. Sci. (Weinh)
– volume: 14
  start-page: 49650
  year: 2022
  end-page: 49657
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 140
  start-page: 13387
  year: 2018
  end-page: 13391
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 490
  year: 2018
  end-page: 500
  publication-title: Nat. Catal.
– volume: 269
  start-page: 104
  year: 2014
  end-page: 110
  publication-title: J. Power Sources
– volume: 13
  start-page: 1700264
  year: 2017
  end-page: 1700274
  publication-title: Small
– volume: 398
  start-page: 185
  year: 2021
  end-page: 191
  publication-title: J. Catal.
– volume: 13
  start-page: 1877
  year: 2022
  publication-title: Nat. Commun.
– volume: 629
  start-page: 563
  year: 2023
  end-page: 570
  publication-title: J. Colloid Interface Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– start-page: 1
  year: 2022
  end-page: 11
  publication-title: Carbon Energy
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  publication-title: Nature
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 23
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 51
  start-page: 1590
  year: 2018
  end-page: 1598
  publication-title: Acc. Chem. Res.
– volume: 301
  year: 2022
  publication-title: Appl. Catal. B
– volume: 600
  start-page: 620
  year: 2021
  end-page: 628
  publication-title: J. Colloid Interface Sci.
– volume: 25
  start-page: 1326
  year: 2023
  end-page: 1331
  publication-title: Green Chem.
– volume: 360
  year: 2018
  publication-title: Science
– volume: 4
  start-page: 157
  year: 2021
  end-page: 163
  publication-title: Nat. Catal.
– volume: 16
  start-page: 7627
  year: 2020
  end-page: 7637
  publication-title: J. Am. Chem. Soc.
– volume: 629
  start-page: 950
  year: 2023
  end-page: 957
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 136
  year: 2021
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed. Engl.
– ident: e_1_2_7_45_2
  doi: 10.1016/j.cej.2021.133495
– ident: e_1_2_7_43_2
  doi: 10.1039/D2GC04368H
– ident: e_1_2_7_62_2
  doi: 10.1016/j.apcatb.2022.121811
– ident: e_1_2_7_93_2
  doi: 10.1002/adfm.202301884
– ident: e_1_2_7_66_2
  doi: 10.1016/j.mtphys.2022.100619
– ident: e_1_2_7_73_1
  doi: 10.1002/smll.202310597
– ident: e_1_2_7_82_2
  doi: 10.1038/s41560-021-00920-8
– ident: e_1_2_7_21_2
  doi: 10.1002/bte2.20220023
– ident: e_1_2_7_72_2
  doi: 10.1002/adfm.202210238
– ident: e_1_2_7_44_2
  doi: 10.1016/j.jpowsour.2014.07.036
– year: 2022
  ident: e_1_2_7_33_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_11_1
– ident: e_1_2_7_9_2
  doi: 10.1038/s41929-019-0280-0
– ident: e_1_2_7_83_2
  doi: 10.1021/acs.accounts.8b00070
– ident: e_1_2_7_74_1
– ident: e_1_2_7_24_2
  doi: 10.1002/aenm.202103872
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.accounts.8b00010
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201915992
– ident: e_1_2_7_30_2
  doi: 10.1016/j.jcat.2012.02.013
– ident: e_1_2_7_34_2
  doi: 10.1016/j.ijhydene.2020.09.265
– ident: e_1_2_7_61_2
  doi: 10.1002/anie.201915992
– ident: e_1_2_7_87_2
  doi: 10.1002/anie.202211373
– ident: e_1_2_7_2_2
  doi: 10.1002/anie.202202556
– ident: e_1_2_7_65_2
  doi: 10.1007/s12274-022-4863-8
– ident: e_1_2_7_39_1
– ident: e_1_2_7_8_1
– volume: 365
  start-page: 1
  year: 2017
  ident: e_1_2_7_7_1
  publication-title: FEMS Microbiol. Lett.
– ident: e_1_2_7_47_2
  doi: 10.1021/jacs.8b08379
– ident: e_1_2_7_64_2
  doi: 10.1016/j.cej.2022.135104
– ident: e_1_2_7_58_2
  doi: 10.1016/j.jcis.2022.09.012
– ident: e_1_2_7_79_1
  doi: 10.1016/j.ijheatmasstransfer.2013.12.023
– ident: e_1_2_7_40_2
  doi: 10.1038/ncomms9561
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201803111
– ident: e_1_2_7_76_2
  doi: 10.1016/j.jcp.2007.09.003
– ident: e_1_2_7_51_2
  doi: 10.1038/s41560-020-0654-1
– volume: 1
  start-page: 3
  year: 2015
  ident: e_1_2_7_78_2
  publication-title: Catalyst
– ident: e_1_2_7_32_1
– ident: e_1_2_7_13_2
  doi: 10.1038/s41929-019-0252-4
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201803111
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_7_46_1
– ident: e_1_2_7_60_2
  doi: 10.1039/D2TA01772E
– ident: e_1_2_7_69_1
  doi: 10.1002/anie.202015713
– ident: e_1_2_7_84_1
  doi: 10.1038/205278a0
– ident: e_1_2_7_49_1
  doi: 10.1002/smtd.202200790
– ident: e_1_2_7_71_2
  doi: 10.1038/nmat2297
– ident: e_1_2_7_81_1
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201902020
– ident: e_1_2_7_53_2
  doi: 10.1021/acscentsci.1c00370
– ident: e_1_2_7_77_2
  doi: 10.1038/s41467-022-29428-9
– ident: e_1_2_7_19_2
  doi: 10.1039/D1EE00806D
– ident: e_1_2_7_89_2
  doi: 10.1021/es102692b
– ident: e_1_2_7_55_2
  doi: 10.1002/advs.202004523
– ident: e_1_2_7_70_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_59_2
  doi: 10.1016/j.jcis.2022.09.049
– ident: e_1_2_7_80_1
  doi: 10.1016/j.coastaleng.2019.02.004
– ident: e_1_2_7_75_2
  doi: 10.1016/j.jaerosci.2019.05.001
– ident: e_1_2_7_86_2
  doi: 10.1038/s41467-022-35533-6
– ident: e_1_2_7_14_1
– ident: e_1_2_7_85_1
– ident: e_1_2_7_22_2
  doi: 10.1002/bte2.20220029
– ident: e_1_2_7_67_2
  doi: 10.1021/acsami.2c12175
– ident: e_1_2_7_3_2
  doi: 10.1021/acsenergylett.1c01614
– ident: e_1_2_7_17_2
  doi: 10.1038/s41467-020-20397-5
– ident: e_1_2_7_38_1
  doi: 10.1002/admi.201600118
– ident: e_1_2_7_92_2
  doi: 10.1039/D1CY01090E
– ident: e_1_2_7_1_1
– ident: e_1_2_7_63_1
– ident: e_1_2_7_94_1
– ident: e_1_2_7_27_2
  doi: 10.1002/smll.202004526
– ident: e_1_2_7_90_2
  doi: 10.1016/j.apcatb.2021.120829
– ident: e_1_2_7_41_2
  doi: 10.1002/cey2.328
– ident: e_1_2_7_91_1
– ident: e_1_2_7_57_2
  doi: 10.1007/s12274-021-3951-5
– ident: e_1_2_7_48_2
  doi: 10.1002/advs.201802109
– ident: e_1_2_7_25_2
  doi: 10.1002/smll.202106961
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jcat.2021.03.034
– ident: e_1_2_7_56_2
  doi: 10.1016/j.jcis.2021.05.061
– ident: e_1_2_7_10_2
  doi: 10.1038/s41929-018-0092-7
– ident: e_1_2_7_31_2
  doi: 10.1016/j.jallcom.2020.158549
– ident: e_1_2_7_35_2
  doi: 10.1016/j.applthermaleng.2019.114464
– ident: e_1_2_7_52_2
  doi: 10.1021/jacs.0c00418
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.0c01970
– ident: e_1_2_7_12_2
  doi: 10.1038/s41586-019-1260-x
– ident: e_1_2_7_88_1
– ident: e_1_2_7_54_2
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_7_96_2
  doi: 10.1038/s41929-020-00566-x
– ident: e_1_2_7_18_1
– start-page: 1
  year: 2022
  ident: e_1_2_7_20_2
  publication-title: Carbon Energy
– ident: e_1_2_7_50_1
– ident: e_1_2_7_95_2
  doi: 10.1126/sciadv.abd2569
– ident: e_1_2_7_42_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_23_1
– ident: e_1_2_7_68_1
  doi: 10.1002/smll.201700264
SSID ssj0028806
Score 2.5027997
Snippet Nitrate electroreduction reaction (eNO3−RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and...
Nitrate electroreduction reaction (eNO 3 − RR) to ammonia (NH 3 ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and...
Nitrate electroreduction reaction (eNO RR) to ammonia (NH ) provides a promising strategy for nitrogen utilization, while achieving high selectivity and...
Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202401924
SubjectTerms Ammonia
Carrier gases
Catalysts
Cu plates
Electrocatalysts
Electrolysis
Electrowinning
Fluid field
Infrared spectroscopy
Nitrate electroreduction reaction
Nitrates
Plates
Zn-nitrate battery
Title Two‐dimensional Cu Plates with Steady Fluid Fields for High‐rate Nitrate Electroreduction to Ammonia and Efficient Zn‐Nitrate Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202401924
https://www.ncbi.nlm.nih.gov/pubmed/38366134
https://www.proquest.com/docview/3040491126
https://www.proquest.com/docview/2928244466
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhl-TSNk0f26RlAoWenNiS_NBxWXZJC11CSCD0YmR5DEsXb8muKcmpf6CQ39hf0hlr7XRbSqG5-aGRZWlG-iSNvhHirWYYjxgHiQ3DQMeVDAoZq0CW9NwVsoosLw18nCanl_rDVXz1yyl-zw_RL7ixZbT9NRu4LZYn96ShfAKb5nc0IvEcgjphdthiVHTe80dJUk5_vEipgKPQd6yNoTzZFN8clf6AmpvItR16Jo-F7QrtPU4-Hzer4tjd_sbn-JC_eiIerXEpDL0i7YktrJ-KnVEXDm5ffL_4uvjx7a7kaACeyQNGDZzNGasCr-YCuwaXNzCZN7MSJuwZtwSCxMCuJCTJnBQwnbVsuDD20XeumTiWVQNWCxiyScws2LqEcctsQQMifKpJthPzbKA0uX8mLifji9FpsI7lEDiVKk21X1qVuNiFNs6kNZgaIzHCKCGISFNEzNICZZjaTKYZmjKqLPU9pc4K4xKnUT0X2_WixpcCUjQYOUVYprJaY0L5ECasDFaJlGmRDkTQtWXu1kTnHG9jnnuKZplzJed9JQ_Euz79F0_x8deUh51q5GtTX-aKukFt-CTWQBz1r6lxeOfF1rholrk0ZBKat84H4oVXqf5TKlOEkRRlLlvF-EcZ8uH0_bi_e_U_Qgdil695T0zqQ7G9um7wNUGrVfGmNZ-fH2Mc9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLrz5YKGAkpJ7SJrbz8HG17GoL7QqhrVRxsRzHkVZdZavuRhWc-ANI_EZ-CTPxJmiLEBIc43gcx56xP9vjbwDeSILxzsVBYsIwkHHJg5zHIuAFptucl5GhrYGzSTI-l-8u4tabkO7CeH6IbsONLKMZr8nAaUP6-BdrKF3BxgUeTkm0iLgL9yisNwUxePuxY5DiqJ7-gpEQAcWhb3kbQ368Kb85L_0GNjexazP5jB5C3lbb-5xcHtWr_Mh-ucXo-F__9QgerKEp63tdegx3XPUEtgdtRLgd-Da9Wfz4-r2ggACezIMNavZhTnCV0YYuI-_g4jMbzetZwUbkHLdkiIoZeZOgJNFSsMmsIcRlQx-A55q4Y0k72GrB-mQVM8NMVbBhQ26BcyL7VKFsK-YJQXF9vwvno-F0MA7W4RwCK1IhsfkLIxIb29DEGTfKpUpxF7koQZSIq0SXpbnjYWoynmZOFVFpcPgpZJYrm1jpxB5sVYvKPQWWOuUiKxDOlEZKl2A5CAtL5cqE8zRPexC0nantmuucQm7MtWdp5poaWXeN3IPDLv-VZ_n4Y86DVjf02tqXWuBIKBVdxurB6-41dg4dvpjKLeql5gqtQtLpeQ_2vU51nxKZQJgksHDeaMZf6qD7k5Nh9_TsX4RewfZ4enaqT08m75_DfUqnIzIuD2BrdV27F4i0VvnLxpZ-AtfMIQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7oCuqL98voqhEEn7rbJuklj8M4ZdfLsMguLL6ENElhcOgsO1NEn_wDgr_RX-I5zbQ6igj62DQnTZNzku_k8h2AZ5JgvPdplJk4jmRa86jiqYi4w3Rb8ToxtDTwZpYdnMiXp-npT7f4Az_EsOBGltGN12TgZ67e_0EaSjew0b_DGYl8iItwSWZoMQSL3g4EUhy1M9wvEiKiMPQ9bWPM97flt6el37DmNnTt5p7yOpi-1uHIyfu9dl3t2U-_EDr-z2_dgGsbYMrGQZNuwgXf3IIrkz4e3G34cvxh-e3zV0fhAAKVB5u07GhBYJXRci6js8HuIysX7dyxko7GrRhiYkZnSVCSSCnYbN7R4bJpCL9zTsyxpBtsvWRjsom5YaZxbNpRW-CMyN41KNuLBTpQ9O7vwEk5PZ4cRJtgDpEVuZDY-s6IzKY2NmnBjfK5UtwnPskQI6KP6Iu88jzOTcHzwiuX1AYHHyeLStnMSi_uwk6zbPx9YLlXPrECwUxtpPQZloOgsFa-zjjPq3wEUd-X2m6YzingxkIHjmauqZH10MgjeD7kPwscH3_Mudurht7Y-koLHAeloqtYI3g6vMbOoa0X0_hlu9JcoU1I2jsfwb2gUsOnRCEQJAksnHeK8Zc66PHscDo8PfgXoSdw-ehFqV8fzl49hKuUTPtjXO7Czvq89Y8QZq2rx50lfQd4aR_H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two%E2%80%90dimensional+Cu+Plates+with+Steady+Fluid+Fields+for+High%E2%80%90rate+Nitrate+Electroreduction+to+Ammonia+and+Efficient+Zn%E2%80%90Nitrate+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Limin&rft.au=Chen%2C+Xueqiu&rft.au=Zhu%2C+Shaojun&rft.au=You%2C+Kun&rft.date=2024-04-24&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=18&rft_id=info:doi/10.1002%2Fanie.202401924&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon