From Lead Iodide to a Radical Form Lead‐Iodide Superlattice: High Conductance Gain and Broader Band for Photoconductive Response
Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superl...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 9; pp. 2692 - 2695 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
25.02.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice.
Lead the way: The first lead‐iodide superlattice constructed from non‐ionic organic molecules and PbI2 through van der Waals interactions is a new type of inorganic–organic hybrid and has a radical and a non‐radical form. The radical form has an almost five orders of magnitude greater conductivity and broader band photoconductive response than that of the non‐radical form or pure PbI2. |
---|---|
AbstractList | Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice. Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI and the non-radical form of the superlattice. Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI 2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI 2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI 2 and the non‐radical form of the superlattice. Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice. Lead the way: The first lead‐iodide superlattice constructed from non‐ionic organic molecules and PbI2 through van der Waals interactions is a new type of inorganic–organic hybrid and has a radical and a non‐radical form. The radical form has an almost five orders of magnitude greater conductivity and broader band photoconductive response than that of the non‐radical form or pure PbI2. Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice.Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice. |
Author | Wang, Guan‐E Zhang, Ning‐Ning Wang, Ming‐Sheng Xu, Gang Yao, Ming‐Shui Guo, Guo‐Cong |
Author_xml | – sequence: 1 givenname: Guan‐E surname: Wang fullname: Wang, Guan‐E organization: Chinese Academy of Sciences – sequence: 2 givenname: Gang surname: Xu fullname: Xu, Gang organization: Chinese Academy of Sciences – sequence: 3 givenname: Ning‐Ning surname: Zhang fullname: Zhang, Ning‐Ning organization: Chinese Academy of Sciences – sequence: 4 givenname: Ming‐Shui surname: Yao fullname: Yao, Ming‐Shui organization: Chinese Academy of Sciences – sequence: 5 givenname: Ming‐Sheng orcidid: 0000-0002-2400-719X surname: Wang fullname: Wang, Ming‐Sheng email: mswang@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Guo‐Cong surname: Guo fullname: Guo, Guo‐Cong organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30614186$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URNuFK0dkiQuXLP6XxMutXXXblVaACpytiT2hrrL2Yieg3hBPwDPyJGSVLUiVEKfxaL5vZM3vlByFGJCQ55zNOWPiNQSPc8G45qIs1SNywkvBC1nX8mh8KymLWpf8mJzmfDvyWrPqCTmWrOKK6-qE_FiluKUbBEfX0XmHtI8U6DU4b6Gjq5im6a_vPw_zD8MOUwd97y2-oVf-8w1dxuAG20OwSC_BBwrB0fMUwWGi5_umjYm-v4l9tBPqvyK9xryLIeNT8riFLuOzQ52RT6uLj8urYvPucr082xRW1lIVlbZStsCsFS0X0LZ1WzXKtY1qGJO1ErrhFS7QOmBQs6rSmmMtpFpYp6xAOSOvpr27FL8MmHuz9dli10HAOGQjeKVKNWpiRF8-QG_jkML4u5HSQolSjbedkRcHami26Mwu-S2kO3N_3RFQE2BTzDlha6zvofcx9Al8Zzgz-xDNPkTzJ8RRmz_Q7jf_U1hMwjff4d1_aHP2dn3x1_0N0bKvYg |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_3c00410 crossref_primary_10_1039_D2QI01441F crossref_primary_10_1039_C9TC01967G crossref_primary_10_1039_D2CC05407H crossref_primary_10_1002_chem_202005402 crossref_primary_10_1021_jacs_1c09235 crossref_primary_10_1021_acsami_1c12764 crossref_primary_10_1021_acs_cgd_3c00769 crossref_primary_10_1002_advs_202302978 crossref_primary_10_1021_acs_inorgchem_2c01019 crossref_primary_10_1002_anie_202313165 crossref_primary_10_1021_acs_inorgchem_1c02316 crossref_primary_10_1002_aenm_202102820 crossref_primary_10_1021_acs_cgd_4c00192 crossref_primary_10_1039_D3QI00040K crossref_primary_10_1016_j_inoche_2019_107610 crossref_primary_10_1002_chem_201903403 crossref_primary_10_1016_j_cclet_2021_08_029 crossref_primary_10_1039_D0CS00148A crossref_primary_10_1021_acsami_0c16107 crossref_primary_10_1039_C9QI00730J crossref_primary_10_1021_acs_cgd_0c01074 crossref_primary_10_1038_s41467_020_14986_7 crossref_primary_10_1039_D4QI00941J crossref_primary_10_1016_j_cclet_2021_10_015 crossref_primary_10_1002_ange_202313165 crossref_primary_10_1039_C9DT04116H crossref_primary_10_1021_acsphotonics_9b00122 crossref_primary_10_1039_C9DT03835C crossref_primary_10_1039_C9TC00851A crossref_primary_10_1039_C9QI01037H crossref_primary_10_1002_adma_201900326 crossref_primary_10_1039_D2CC02703H crossref_primary_10_1002_adfm_202212907 crossref_primary_10_1021_acs_cgd_1c00938 |
Cites_doi | 10.1002/aelm.201700045 10.1038/nphys0010 10.1038/nmat3518 10.1021/jacs.6b01502 10.1126/science.1228604 10.1016/j.actamat.2006.04.021 10.1021/jacs.6b09345 10.1002/adma.201405378 10.1126/science.aac9439 10.1021/cm500242h 10.1021/jacs.7b11915 10.1039/C6NR02039A 10.1038/nmat3386 10.1039/C5CS00094G 10.1088/1361-6528/aaaf0f 10.1021/acsami.7b17603 10.1002/adma.201800973 10.1021/acs.chemrev.5b00715 10.1021/acs.chemmater.8b02989 10.1038/nature23668 10.1021/jacs.8b03009 10.1016/j.cclet.2015.01.020 10.1039/C1CS15270J 10.1021/acs.chemrev.6b00558 10.1038/nmat4205 10.1002/anie.201710021 10.1002/adma.201503340 10.1021/ja300368x 10.1002/anie.201703675 10.1039/b920118a 10.1103/PhysRevB.82.180520 10.1038/s41598-017-16086-x 10.1021/acsnano.6b04165 10.1038/nature25774 10.1021/acs.nanolett.5b02619 10.1021/jo061809i 10.1038/nphys360 10.1038/nnano.2014.150 10.1002/ange.201710021 10.1002/ange.201703675 10.1002/aenm.201801509 10.1038/nmat4014 10.1002/smll.201702024 10.1002/adma.201801418 10.1021/acs.accounts.5b00444 10.1021/acssuschemeng.8b02842 10.1126/science.1245473 10.1021/acs.jpclett.6b01147 10.1002/adma.201602157 10.1002/admi.201701169 10.1002/adfm.201701342 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201812554 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2695 |
ExternalDocumentID | 30614186 10_1002_anie_201812554 ANIE201812554 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Young Scientists Fund funderid: 21801243 – fundername: National Natural Science Foundation of China funderid: 21822109; 21773245 – fundername: the Strategic Priority Research Program, CAS funderid: XDB20000000 – fundername: Scientific Research and Equipment Development Project, CAS funderid: YZ201609 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences – fundername: Key Research Program of Frontier Science, CAS funderid: QYZDB-SSW-SLH023; QYZDB-SSW-SLH020 – fundername: National Key R&D Program of China funderid: 2017YFA0206802 – fundername: Natural Science Foundation of Fujian Province funderid: 2017J05034; 2016J06006 – fundername: Scientific Research and Equipment Development Project, CAS grantid: 2017 – fundername: Young Scientists Fund grantid: 21801243 – fundername: Key Research Program of Frontier Science, CAS grantid: QYZDB-SSW-SLH020 – fundername: National Natural Science Foundation of China grantid: 21773245 – fundername: NSF of Fujian Province grantid: 2017J05034 – fundername: Natural Science Foundation of Fujian Province grantid: 2017J05034 – fundername: Key Research Program of Frontier Science, CAS grantid: QYZDB-SSW-SLH023 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences grantid: 2018 – fundername: Natural Science Foundation of Fujian Province grantid: 2016J06006 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3734-68c33fa0cc2f12aff7f6b4dfb4b0037428b16e9ecda0a7066881e72349cd4c2e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:41:30 EDT 2025 Fri Jul 25 10:41:15 EDT 2025 Mon Jul 21 05:58:20 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Tue Jul 01 02:26:41 EDT 2025 Wed Jan 22 16:49:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | inorganic-organic hybrids lead halides radicals semiconductors superlattices |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-68c33fa0cc2f12aff7f6b4dfb4b0037428b16e9ecda0a7066881e72349cd4c2e3 |
Notes | Dedicated to Prof. Jin‐Shun Huang on the occasion of his 80th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2400-719X |
PMID | 30614186 |
PQID | 2182425414 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2164546882 proquest_journals_2182425414 pubmed_primary_30614186 crossref_citationtrail_10_1002_anie_201812554 crossref_primary_10_1002_anie_201812554 wiley_primary_10_1002_anie_201812554_ANIE201812554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 25, 2019 |
PublicationDateYYYYMMDD | 2019-02-25 |
PublicationDate_xml | – month: 02 year: 2019 text: February 25, 2019 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2006; 71 2018; 29 2015; 15 2017; 7 2015; 14 2017; 3 2018; 140 2006; 54 2017; 27 2016; 10 2014; 26 2013; 342 2017 2017; 56 129 2006; 2 2012; 11 2017; 117 2010; 82 2018; 6 2017; 549 2015; 26 2018; 8 2016; 7 2015; 27 2012; 134 2018; 5 2010; 46 2013; 12 2015; 44 2018; 555 2017; 13 2016; 353 2014; 13 2005; 1 2018; 30 2016; 138 2016; 116 2014; 9 2016; 28 2018; 10 2016; 49 2016; 8 2012; 338 2012; 41 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_47_3 e_1_2_2_49_1 e_1_2_2_6_2 e_1_2_2_20_3 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_19_1 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_34_1 e_1_2_2_57_2 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_52_1 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_16_2 e_1_2_2_54_2 e_1_2_2_35_1 e_1_2_2_50_1 |
References_xml | – volume: 46 start-page: 1649 year: 2010 end-page: 1651 publication-title: Chem. Commun. – volume: 5 start-page: 1701169 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 353 start-page: 9439 year: 2016 publication-title: Science – volume: 29 start-page: 174001 year: 2018 publication-title: Nanotechnology – volume: 56 129 start-page: 16067 16283 year: 2017 2017 end-page: 16072 16288 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 12375 year: 2018 end-page: 12384 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 1700045 year: 2017 publication-title: Adv. Electron. Mater. – volume: 549 start-page: 370 year: 2017 end-page: 373 publication-title: Nature – volume: 11 start-page: 764 year: 2012 end-page: 767 publication-title: Nat. Mater. – volume: 13 start-page: 1702024 year: 2017 publication-title: Small – volume: 49 start-page: 562 year: 2016 end-page: 572 publication-title: Acc. Chem. Res. – volume: 7 start-page: 2735 year: 2016 end-page: 2741 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 39 year: 2005 end-page: 41 publication-title: Nat. Phys. – volume: 117 start-page: 6225 year: 2017 end-page: 6331 publication-title: Chem. Rev. – volume: 26 start-page: 504 year: 2015 end-page: 508 publication-title: Chin. Chem. Lett. – volume: 9 start-page: 676 year: 2014 end-page: 681 publication-title: Nat. Nanotechnol. – volume: 140 start-page: 6754 year: 2018 end-page: 6757 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2113 year: 2015 end-page: 2120 publication-title: Adv. Mater. – volume: 44 start-page: 3023 year: 2015 end-page: 3035 publication-title: Chem. Soc. Rev. – volume: 30 start-page: 1801418 year: 2018 publication-title: Adv. Mater. – volume: 82 start-page: 180520 year: 2010 publication-title: Phys. Rev. B – volume: 26 start-page: 2313 year: 2014 end-page: 2317 publication-title: Chem. Mater. – volume: 14 start-page: 301 year: 2015 end-page: 306 publication-title: Nat. Mater. – volume: 30 start-page: 1800973 year: 2018 publication-title: Adv. Mater. – volume: 54 start-page: 3899 year: 2006 end-page: 3905 publication-title: Acta Mater. – volume: 134 start-page: 7584 year: 2012 end-page: 7587 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5143 year: 2016 end-page: 5149 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 6589 year: 2018 end-page: 6613 publication-title: Chem. Mater. – volume: 41 start-page: 2283 year: 2012 end-page: 2307 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 544 year: 2006 end-page: 550 publication-title: Nat. Phys. – volume: 13 start-page: 897 year: 2014 end-page: 903 publication-title: Nat. Mater. – volume: 10 start-page: 8067 year: 2016 end-page: 8077 publication-title: ACS Nano – volume: 116 start-page: 4558 year: 2016 end-page: 4596 publication-title: Chem. Rev. – volume: 27 start-page: 6575 year: 2015 end-page: 6581 publication-title: Adv. Mater. – volume: 138 start-page: 14772 year: 2016 end-page: 14782 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1463 year: 2018 end-page: 1467 publication-title: ACS Appl. Mater. Interfaces – volume: 338 start-page: 643 year: 2012 end-page: 647 publication-title: Science – volume: 140 start-page: 493 year: 2018 end-page: 498 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15389 year: 2016 end-page: 15413 publication-title: Nanoscale – volume: 56 129 start-page: 9704 9836 year: 2017 2017 end-page: 9709 9841 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 342 start-page: 317 year: 2013 end-page: 318 publication-title: Science – volume: 71 start-page: 9849 year: 2006 publication-title: J. Org. Chem. – volume: 555 start-page: 231 year: 2018 end-page: 236 publication-title: Nature – volume: 7 start-page: 16091 year: 2017 publication-title: Sci. Rep. – volume: 8 start-page: 1801509 year: 2018 publication-title: Adv. Energy Mater. – volume: 27 start-page: 1701342 year: 2017 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 6777 year: 2015 end-page: 6784 publication-title: Nano Lett. – volume: 28 start-page: 9133 year: 2016 end-page: 9141 publication-title: Adv. Mater. – volume: 12 start-page: 246 year: 2013 end-page: 252 publication-title: Nat. Mater. – ident: e_1_2_2_40_1 – ident: e_1_2_2_10_2 doi: 10.1002/aelm.201700045 – ident: e_1_2_2_33_1 doi: 10.1038/nphys0010 – ident: e_1_2_2_36_2 doi: 10.1038/nmat3518 – ident: e_1_2_2_3_2 doi: 10.1021/jacs.6b01502 – ident: e_1_2_2_46_2 doi: 10.1126/science.1228604 – ident: e_1_2_2_50_1 doi: 10.1016/j.actamat.2006.04.021 – ident: e_1_2_2_52_1 doi: 10.1021/jacs.6b09345 – ident: e_1_2_2_9_2 doi: 10.1002/adma.201405378 – ident: e_1_2_2_29_2 doi: 10.1126/science.aac9439 – ident: e_1_2_2_27_2 doi: 10.1021/cm500242h – ident: e_1_2_2_15_1 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.7b11915 – ident: e_1_2_2_14_1 doi: 10.1039/C6NR02039A – ident: e_1_2_2_26_2 doi: 10.1038/nmat3386 – ident: e_1_2_2_21_2 doi: 10.1039/C5CS00094G – ident: e_1_2_2_2_2 doi: 10.1088/1361-6528/aaaf0f – ident: e_1_2_2_38_2 doi: 10.1021/acsami.7b17603 – ident: e_1_2_2_41_2 doi: 10.1002/adma.201800973 – ident: e_1_2_2_51_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_2_59_2 doi: 10.1021/acs.chemmater.8b02989 – ident: e_1_2_2_17_2 doi: 10.1038/nature23668 – ident: e_1_2_2_37_2 doi: 10.1021/jacs.8b03009 – ident: e_1_2_2_54_2 doi: 10.1016/j.cclet.2015.01.020 – ident: e_1_2_2_18_1 doi: 10.1039/C1CS15270J – ident: e_1_2_2_22_1 – ident: e_1_2_2_30_1 – ident: e_1_2_2_4_2 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_2_39_1 doi: 10.1038/nmat4205 – ident: e_1_2_2_47_2 doi: 10.1002/anie.201710021 – ident: e_1_2_2_11_2 doi: 10.1002/adma.201503340 – ident: e_1_2_2_24_2 doi: 10.1021/ja300368x – ident: e_1_2_2_20_2 doi: 10.1002/anie.201703675 – ident: e_1_2_2_5_2 doi: 10.1039/b920118a – ident: e_1_2_2_25_2 doi: 10.1103/PhysRevB.82.180520 – ident: e_1_2_2_55_2 doi: 10.1038/s41598-017-16086-x – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_12_2 doi: 10.1021/acsnano.6b04165 – ident: e_1_2_2_34_1 doi: 10.1038/nature25774 – ident: e_1_2_2_23_2 doi: 10.1021/acs.nanolett.5b02619 – ident: e_1_2_2_35_1 – ident: e_1_2_2_48_1 doi: 10.1021/jo061809i – ident: e_1_2_2_31_2 doi: 10.1038/nphys360 – ident: e_1_2_2_32_2 doi: 10.1038/nnano.2014.150 – ident: e_1_2_2_47_3 doi: 10.1002/ange.201710021 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201703675 – ident: e_1_2_2_42_2 doi: 10.1002/aenm.201801509 – ident: e_1_2_2_56_1 – ident: e_1_2_2_53_1 – ident: e_1_2_2_44_2 doi: 10.1038/nmat4014 – ident: e_1_2_2_49_1 doi: 10.1002/smll.201702024 – ident: e_1_2_2_43_2 doi: 10.1002/adma.201801418 – ident: e_1_2_2_57_2 doi: 10.1021/acs.accounts.5b00444 – ident: e_1_2_2_19_1 – ident: e_1_2_2_6_2 doi: 10.1021/acssuschemeng.8b02842 – ident: e_1_2_2_45_2 doi: 10.1126/science.1245473 – ident: e_1_2_2_58_2 doi: 10.1021/acs.jpclett.6b01147 – ident: e_1_2_2_8_2 doi: 10.1002/adma.201602157 – ident: e_1_2_2_28_2 doi: 10.1002/admi.201701169 – ident: e_1_2_2_13_2 doi: 10.1002/adfm.201701342 |
SSID | ssj0028806 |
Score | 2.4754083 |
Snippet | Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2692 |
SubjectTerms | Conductance Electrical properties Halides inorganic–organic hybrids Iodides lead halides Optical properties radicals Resistance semiconductors Superlattices |
Title | From Lead Iodide to a Radical Form Lead‐Iodide Superlattice: High Conductance Gain and Broader Band for Photoconductive Response |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812554 https://www.ncbi.nlm.nih.gov/pubmed/30614186 https://www.proquest.com/docview/2182425414 https://www.proquest.com/docview/2164546882 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3CB8t52i4yExCltYjsvbu2q2xaJCi1U6i3yK2rVNq52s5eeKn4Bv5Ff0hk7CSwVQoJbLNuKH2PPZ3vmG0Le5bGMUzyW5NbwSNjYRiXXeZRqA_quUFx5R-FPx9nhifh4mp7-4sUf-CGGCzdcGX6_xgUu1WLnJ2koemCjaRZoKFCJsAmjwRaiotnAH8VAOIN7EecRRqHvWRtjtrNafVUr3YOaq8jVq57pEyL7RgeLk4vtZau29c1vfI7_06t18rjDpXQ3CNJT8sA2z8jDSR8O7jn5Np27K4oROemRM-fG0tZRSWfSP_TQKWBfn_vj9nuX_2V5jZeFLZrXfaBoUEInrkF-WZQ0eiDPGyobQ_fmDs2p6R4mAEPTz2eudToUhc2YzoIdr31BTqb7XyeHURfAIdI85yLKCs15LWOtWZ0wWdd5nSlhaiWU571hhUoyW1ptZCxzAD9FkdiccVFqIzSz_CVZa1xjXxNaCiWhdipMIUWm01LHqeJ1DggyrgG0jUjUT2ClO3ZzDLJxWQVeZlbhyFbDyI7I-6H8deD1-GPJcS8PVbe-FxXy3sNuJxLIfjtkw4zgc4tsrFtiGWRLgz6xEXkV5Gj4FceDeFJkI8K8NPylDdXu8dH-kNr4l0qb5BF8l94bPx2TtXa-tFuAp1r1xq-ZO5rjFpc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedOFAkZC4pQ2sZ0Xt3bpsgvtCi2txC3yK6IC4mrJXjghfgG_sb-kHjsJWhBCgqNjW_Fj7Plsz3wD8CyPRZzisSQ3mkXcxCYqmcqjVGmn7wrJpHcUPp5n01P--n3aWxOiL0zghxgu3HBl-P0aFzheSO_9ZA1FF2y0zXIqyunEq3ANw3ojff7LxcAgRZ14BgcjxiKMQ9_zNsZ0b73-ul76DWyuY1evfCY3QPbNDjYnH3dXrdxVX39hdPyvft2ErQ6akv0gS7fgimluw-a4jwh3B75PlvYzwaCcZGb1mTaktUSQhfBvPWTi4K_Pvfj2o8t_tzrH-8IWLexeELQpIWPbIMUsCht5Jc4aIhpNDpYWLarJASYcjCZvP9jWqlDU7cdkEUx5zV04nRyejKdRF8MhUixnPMoKxVgtYqVonVBR13mdSa5ryaWnvqGFTDJTGqVFLHKHf4oiMTllvFSaK2rYPdhobGO2gZRcClc75boQPFNpqeJUsjp3IDKuHW4bQdTPYKU6gnOMs_GpCtTMtMKRrYaRHcHzofx5oPb4Y8mdXiCqbol_qZD63m14PHHZT4dsNyP44iIaY1dYBgnTXJ_oCO4HQRp-xfAsnhTZCKgXh7-0odqfzw6H1IN_qfQENqcnx0fV0Wz-5iFcd99L75yf7sBGu1yZRw5etfKxX0CXAP0asw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALr1JYKGAkpJ7SOrbz4tZuG7o8VtVCpd4iP0VVSFZL9sIJ8Qv4jfwSPHYSWKoKCY6ObcWPseezPfMNQs8zIkgCx5LMaBZxQ0xUMJVFidJO3-WSSe8o_HaaHp3wV6fJ6W9e_IEfYrhwg5Xh92tY4HNtd3-RhoIHNphmOQ3lVOJVdI2npIDgDQezgUCKOukM_kWMRRCGvqdtJHR3tf6qWrqANVehq9c95S0k-lYHk5PznWUrd9SXPwgd_6dbt9HNDpjivSBJd9AVU99FN8Z9PLgN9K1cNJ8whOTEk0afaYPbBgs8E_6lB5cO_PrcH1-_d_nvlnO4LWzBvu4FBosSPG5qIJgFUcMvxVmNRa3x_qIBe2q8DwkHovHxh6ZtVCjqdmM8C4a85h46KQ_fj4-iLoJDpFjGeJTmijEriFLUxlRYm9lUcm0ll574huYyTk1hlBZEZA795HlsMsp4oTRX1LBNtFY3tXmAcMGlcLUTrnPBU5UUiiSS2cxBSGIdahuhqJ_ASnX05hBl42MViJlpBSNbDSM7QttD-Xkg9ri05FYvD1W3wD9XQHzvtjseu-xnQ7abEXhvEbVpllAG6NJcn-gI3Q9yNPyKwUk8ztMRol4a_tKGam86ORxSD_-l0lN0_figrN5Mpq8foXX3ufCe-ckWWmsXS_PYYatWPvHL5yeUIxli |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Lead+Iodide+to+a+Radical+Form+Lead%E2%80%90Iodide+Superlattice%3A+High+Conductance+Gain+and+Broader+Band+for+Photoconductive+Response&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guan%E2%80%90E+Wang&rft.au=Xu%2C+Gang&rft.au=Ning%E2%80%90Ning+Zhang&rft.au=Ming%E2%80%90Shui+Yao&rft.date=2019-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=9&rft.spage=2692&rft.epage=2695&rft_id=info:doi/10.1002%2Fanie.201812554&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |