From Lead Iodide to a Radical Form Lead‐Iodide Superlattice: High Conductance Gain and Broader Band for Photoconductive Response

Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superl...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 9; pp. 2692 - 2695
Main Authors Wang, Guan‐E, Xu, Gang, Zhang, Ning‐Ning, Yao, Ming‐Shui, Wang, Ming‐Sheng, Guo, Guo‐Cong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 25.02.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice. Lead the way: The first lead‐iodide superlattice constructed from non‐ionic organic molecules and PbI2 through van der Waals interactions is a new type of inorganic–organic hybrid and has a radical and a non‐radical form. The radical form has an almost five orders of magnitude greater conductivity and broader band photoconductive response than that of the non‐radical form or pure PbI2.
AbstractList Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice.
Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI and the non-radical form of the superlattice.
Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI 2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI 2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI 2 and the non‐radical form of the superlattice.
Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non‐radical forms. The non‐radical form has a non‐ionic structure that differs from the common ionic structures for inorganic–organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis‐IR), than pure PbI2 and the non‐radical form of the superlattice. Lead the way: The first lead‐iodide superlattice constructed from non‐ionic organic molecules and PbI2 through van der Waals interactions is a new type of inorganic–organic hybrid and has a radical and a non‐radical form. The radical form has an almost five orders of magnitude greater conductivity and broader band photoconductive response than that of the non‐radical form or pure PbI2.
Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice.Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of tetraethylbenzidine (EtDAB) into interlamination of the established 2D PbI2 semiconductor through a mild solution method yielded the first lead iodide superlattice, EtDAB⋅4PbI2 (EtDAB=tetraethylbenzidine), with radical and non-radical forms. The non-radical form has a non-ionic structure that differs from the common ionic structures for inorganic-organic hybrid lead halides. The radical form shows five orders of magnitude greater conductance and broader photoconductive response range (UV/Vis → UV/Vis-IR), than pure PbI2 and the non-radical form of the superlattice.
Author Wang, Guan‐E
Zhang, Ning‐Ning
Wang, Ming‐Sheng
Xu, Gang
Yao, Ming‐Shui
Guo, Guo‐Cong
Author_xml – sequence: 1
  givenname: Guan‐E
  surname: Wang
  fullname: Wang, Guan‐E
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ning‐Ning
  surname: Zhang
  fullname: Zhang, Ning‐Ning
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Ming‐Shui
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ming‐Sheng
  orcidid: 0000-0002-2400-719X
  surname: Wang
  fullname: Wang, Ming‐Sheng
  email: mswang@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Guo‐Cong
  surname: Guo
  fullname: Guo, Guo‐Cong
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30614186$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URNuFK0dkiQuXLP6XxMutXXXblVaACpytiT2hrrL2Yieg3hBPwDPyJGSVLUiVEKfxaL5vZM3vlByFGJCQ55zNOWPiNQSPc8G45qIs1SNywkvBC1nX8mh8KymLWpf8mJzmfDvyWrPqCTmWrOKK6-qE_FiluKUbBEfX0XmHtI8U6DU4b6Gjq5im6a_vPw_zD8MOUwd97y2-oVf-8w1dxuAG20OwSC_BBwrB0fMUwWGi5_umjYm-v4l9tBPqvyK9xryLIeNT8riFLuOzQ52RT6uLj8urYvPucr082xRW1lIVlbZStsCsFS0X0LZ1WzXKtY1qGJO1ErrhFS7QOmBQs6rSmmMtpFpYp6xAOSOvpr27FL8MmHuz9dli10HAOGQjeKVKNWpiRF8-QG_jkML4u5HSQolSjbedkRcHami26Mwu-S2kO3N_3RFQE2BTzDlha6zvofcx9Al8Zzgz-xDNPkTzJ8RRmz_Q7jf_U1hMwjff4d1_aHP2dn3x1_0N0bKvYg
CitedBy_id crossref_primary_10_1021_acs_inorgchem_3c00410
crossref_primary_10_1039_D2QI01441F
crossref_primary_10_1039_C9TC01967G
crossref_primary_10_1039_D2CC05407H
crossref_primary_10_1002_chem_202005402
crossref_primary_10_1021_jacs_1c09235
crossref_primary_10_1021_acsami_1c12764
crossref_primary_10_1021_acs_cgd_3c00769
crossref_primary_10_1002_advs_202302978
crossref_primary_10_1021_acs_inorgchem_2c01019
crossref_primary_10_1002_anie_202313165
crossref_primary_10_1021_acs_inorgchem_1c02316
crossref_primary_10_1002_aenm_202102820
crossref_primary_10_1021_acs_cgd_4c00192
crossref_primary_10_1039_D3QI00040K
crossref_primary_10_1016_j_inoche_2019_107610
crossref_primary_10_1002_chem_201903403
crossref_primary_10_1016_j_cclet_2021_08_029
crossref_primary_10_1039_D0CS00148A
crossref_primary_10_1021_acsami_0c16107
crossref_primary_10_1039_C9QI00730J
crossref_primary_10_1021_acs_cgd_0c01074
crossref_primary_10_1038_s41467_020_14986_7
crossref_primary_10_1039_D4QI00941J
crossref_primary_10_1016_j_cclet_2021_10_015
crossref_primary_10_1002_ange_202313165
crossref_primary_10_1039_C9DT04116H
crossref_primary_10_1021_acsphotonics_9b00122
crossref_primary_10_1039_C9DT03835C
crossref_primary_10_1039_C9TC00851A
crossref_primary_10_1039_C9QI01037H
crossref_primary_10_1002_adma_201900326
crossref_primary_10_1039_D2CC02703H
crossref_primary_10_1002_adfm_202212907
crossref_primary_10_1021_acs_cgd_1c00938
Cites_doi 10.1002/aelm.201700045
10.1038/nphys0010
10.1038/nmat3518
10.1021/jacs.6b01502
10.1126/science.1228604
10.1016/j.actamat.2006.04.021
10.1021/jacs.6b09345
10.1002/adma.201405378
10.1126/science.aac9439
10.1021/cm500242h
10.1021/jacs.7b11915
10.1039/C6NR02039A
10.1038/nmat3386
10.1039/C5CS00094G
10.1088/1361-6528/aaaf0f
10.1021/acsami.7b17603
10.1002/adma.201800973
10.1021/acs.chemrev.5b00715
10.1021/acs.chemmater.8b02989
10.1038/nature23668
10.1021/jacs.8b03009
10.1016/j.cclet.2015.01.020
10.1039/C1CS15270J
10.1021/acs.chemrev.6b00558
10.1038/nmat4205
10.1002/anie.201710021
10.1002/adma.201503340
10.1021/ja300368x
10.1002/anie.201703675
10.1039/b920118a
10.1103/PhysRevB.82.180520
10.1038/s41598-017-16086-x
10.1021/acsnano.6b04165
10.1038/nature25774
10.1021/acs.nanolett.5b02619
10.1021/jo061809i
10.1038/nphys360
10.1038/nnano.2014.150
10.1002/ange.201710021
10.1002/ange.201703675
10.1002/aenm.201801509
10.1038/nmat4014
10.1002/smll.201702024
10.1002/adma.201801418
10.1021/acs.accounts.5b00444
10.1021/acssuschemeng.8b02842
10.1126/science.1245473
10.1021/acs.jpclett.6b01147
10.1002/adma.201602157
10.1002/admi.201701169
10.1002/adfm.201701342
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201812554
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2695
ExternalDocumentID 30614186
10_1002_anie_201812554
ANIE201812554
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Young Scientists Fund
  funderid: 21801243
– fundername: National Natural Science Foundation of China
  funderid: 21822109; 21773245
– fundername: the Strategic Priority Research Program, CAS
  funderid: XDB20000000
– fundername: Scientific Research and Equipment Development Project, CAS
  funderid: YZ201609
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
– fundername: Key Research Program of Frontier Science, CAS
  funderid: QYZDB-SSW-SLH023; QYZDB-SSW-SLH020
– fundername: National Key R&D Program of China
  funderid: 2017YFA0206802
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2017J05034; 2016J06006
– fundername: Scientific Research and Equipment Development Project, CAS
  grantid: 2017
– fundername: Young Scientists Fund
  grantid: 21801243
– fundername: Key Research Program of Frontier Science, CAS
  grantid: QYZDB-SSW-SLH020
– fundername: National Natural Science Foundation of China
  grantid: 21773245
– fundername: NSF of Fujian Province
  grantid: 2017J05034
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J05034
– fundername: Key Research Program of Frontier Science, CAS
  grantid: QYZDB-SSW-SLH023
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  grantid: 2018
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2016J06006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3734-68c33fa0cc2f12aff7f6b4dfb4b0037428b16e9ecda0a7066881e72349cd4c2e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:41:30 EDT 2025
Fri Jul 25 10:41:15 EDT 2025
Mon Jul 21 05:58:20 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Tue Jul 01 02:26:41 EDT 2025
Wed Jan 22 16:49:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords inorganic-organic hybrids
lead halides
radicals
semiconductors
superlattices
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-68c33fa0cc2f12aff7f6b4dfb4b0037428b16e9ecda0a7066881e72349cd4c2e3
Notes Dedicated to Prof. Jin‐Shun Huang on the occasion of his 80th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2400-719X
PMID 30614186
PQID 2182425414
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_2164546882
proquest_journals_2182425414
pubmed_primary_30614186
crossref_citationtrail_10_1002_anie_201812554
crossref_primary_10_1002_anie_201812554
wiley_primary_10_1002_anie_201812554_ANIE201812554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 25, 2019
PublicationDateYYYYMMDD 2019-02-25
PublicationDate_xml – month: 02
  year: 2019
  text: February 25, 2019
  day: 25
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2006; 71
2018; 29
2015; 15
2017; 7
2015; 14
2017; 3
2018; 140
2006; 54
2017; 27
2016; 10
2014; 26
2013; 342
2017 2017; 56 129
2006; 2
2012; 11
2017; 117
2010; 82
2018; 6
2017; 549
2015; 26
2018; 8
2016; 7
2015; 27
2012; 134
2018; 5
2010; 46
2013; 12
2015; 44
2018; 555
2017; 13
2016; 353
2014; 13
2005; 1
2018; 30
2016; 138
2016; 116
2014; 9
2016; 28
2018; 10
2016; 49
2016; 8
2012; 338
2012; 41
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_47_3
e_1_2_2_49_1
e_1_2_2_6_2
e_1_2_2_20_3
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_1
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_34_1
e_1_2_2_57_2
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_52_1
e_1_2_2_31_2
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_16_2
e_1_2_2_54_2
e_1_2_2_35_1
e_1_2_2_50_1
References_xml – volume: 46
  start-page: 1649
  year: 2010
  end-page: 1651
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1701169
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 353
  start-page: 9439
  year: 2016
  publication-title: Science
– volume: 29
  start-page: 174001
  year: 2018
  publication-title: Nanotechnology
– volume: 56 129
  start-page: 16067 16283
  year: 2017 2017
  end-page: 16072 16288
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 12375
  year: 2018
  end-page: 12384
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 1700045
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 549
  start-page: 370
  year: 2017
  end-page: 373
  publication-title: Nature
– volume: 11
  start-page: 764
  year: 2012
  end-page: 767
  publication-title: Nat. Mater.
– volume: 13
  start-page: 1702024
  year: 2017
  publication-title: Small
– volume: 49
  start-page: 562
  year: 2016
  end-page: 572
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 2735
  year: 2016
  end-page: 2741
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 39
  year: 2005
  end-page: 41
  publication-title: Nat. Phys.
– volume: 117
  start-page: 6225
  year: 2017
  end-page: 6331
  publication-title: Chem. Rev.
– volume: 26
  start-page: 504
  year: 2015
  end-page: 508
  publication-title: Chin. Chem. Lett.
– volume: 9
  start-page: 676
  year: 2014
  end-page: 681
  publication-title: Nat. Nanotechnol.
– volume: 140
  start-page: 6754
  year: 2018
  end-page: 6757
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2113
  year: 2015
  end-page: 2120
  publication-title: Adv. Mater.
– volume: 44
  start-page: 3023
  year: 2015
  end-page: 3035
  publication-title: Chem. Soc. Rev.
– volume: 30
  start-page: 1801418
  year: 2018
  publication-title: Adv. Mater.
– volume: 82
  start-page: 180520
  year: 2010
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 2313
  year: 2014
  end-page: 2317
  publication-title: Chem. Mater.
– volume: 14
  start-page: 301
  year: 2015
  end-page: 306
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1800973
  year: 2018
  publication-title: Adv. Mater.
– volume: 54
  start-page: 3899
  year: 2006
  end-page: 3905
  publication-title: Acta Mater.
– volume: 134
  start-page: 7584
  year: 2012
  end-page: 7587
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5143
  year: 2016
  end-page: 5149
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 6589
  year: 2018
  end-page: 6613
  publication-title: Chem. Mater.
– volume: 41
  start-page: 2283
  year: 2012
  end-page: 2307
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 544
  year: 2006
  end-page: 550
  publication-title: Nat. Phys.
– volume: 13
  start-page: 897
  year: 2014
  end-page: 903
  publication-title: Nat. Mater.
– volume: 10
  start-page: 8067
  year: 2016
  end-page: 8077
  publication-title: ACS Nano
– volume: 116
  start-page: 4558
  year: 2016
  end-page: 4596
  publication-title: Chem. Rev.
– volume: 27
  start-page: 6575
  year: 2015
  end-page: 6581
  publication-title: Adv. Mater.
– volume: 138
  start-page: 14772
  year: 2016
  end-page: 14782
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1463
  year: 2018
  end-page: 1467
  publication-title: ACS Appl. Mater. Interfaces
– volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  publication-title: Science
– volume: 140
  start-page: 493
  year: 2018
  end-page: 498
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15389
  year: 2016
  end-page: 15413
  publication-title: Nanoscale
– volume: 56 129
  start-page: 9704 9836
  year: 2017 2017
  end-page: 9709 9841
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 342
  start-page: 317
  year: 2013
  end-page: 318
  publication-title: Science
– volume: 71
  start-page: 9849
  year: 2006
  publication-title: J. Org. Chem.
– volume: 555
  start-page: 231
  year: 2018
  end-page: 236
  publication-title: Nature
– volume: 7
  start-page: 16091
  year: 2017
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1801509
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1701342
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 6777
  year: 2015
  end-page: 6784
  publication-title: Nano Lett.
– volume: 28
  start-page: 9133
  year: 2016
  end-page: 9141
  publication-title: Adv. Mater.
– volume: 12
  start-page: 246
  year: 2013
  end-page: 252
  publication-title: Nat. Mater.
– ident: e_1_2_2_40_1
– ident: e_1_2_2_10_2
  doi: 10.1002/aelm.201700045
– ident: e_1_2_2_33_1
  doi: 10.1038/nphys0010
– ident: e_1_2_2_36_2
  doi: 10.1038/nmat3518
– ident: e_1_2_2_3_2
  doi: 10.1021/jacs.6b01502
– ident: e_1_2_2_46_2
  doi: 10.1126/science.1228604
– ident: e_1_2_2_50_1
  doi: 10.1016/j.actamat.2006.04.021
– ident: e_1_2_2_52_1
  doi: 10.1021/jacs.6b09345
– ident: e_1_2_2_9_2
  doi: 10.1002/adma.201405378
– ident: e_1_2_2_29_2
  doi: 10.1126/science.aac9439
– ident: e_1_2_2_27_2
  doi: 10.1021/cm500242h
– ident: e_1_2_2_15_1
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.7b11915
– ident: e_1_2_2_14_1
  doi: 10.1039/C6NR02039A
– ident: e_1_2_2_26_2
  doi: 10.1038/nmat3386
– ident: e_1_2_2_21_2
  doi: 10.1039/C5CS00094G
– ident: e_1_2_2_2_2
  doi: 10.1088/1361-6528/aaaf0f
– ident: e_1_2_2_38_2
  doi: 10.1021/acsami.7b17603
– ident: e_1_2_2_41_2
  doi: 10.1002/adma.201800973
– ident: e_1_2_2_51_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_2_59_2
  doi: 10.1021/acs.chemmater.8b02989
– ident: e_1_2_2_17_2
  doi: 10.1038/nature23668
– ident: e_1_2_2_37_2
  doi: 10.1021/jacs.8b03009
– ident: e_1_2_2_54_2
  doi: 10.1016/j.cclet.2015.01.020
– ident: e_1_2_2_18_1
  doi: 10.1039/C1CS15270J
– ident: e_1_2_2_22_1
– ident: e_1_2_2_30_1
– ident: e_1_2_2_4_2
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_2_39_1
  doi: 10.1038/nmat4205
– ident: e_1_2_2_47_2
  doi: 10.1002/anie.201710021
– ident: e_1_2_2_11_2
  doi: 10.1002/adma.201503340
– ident: e_1_2_2_24_2
  doi: 10.1021/ja300368x
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201703675
– ident: e_1_2_2_5_2
  doi: 10.1039/b920118a
– ident: e_1_2_2_25_2
  doi: 10.1103/PhysRevB.82.180520
– ident: e_1_2_2_55_2
  doi: 10.1038/s41598-017-16086-x
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_12_2
  doi: 10.1021/acsnano.6b04165
– ident: e_1_2_2_34_1
  doi: 10.1038/nature25774
– ident: e_1_2_2_23_2
  doi: 10.1021/acs.nanolett.5b02619
– ident: e_1_2_2_35_1
– ident: e_1_2_2_48_1
  doi: 10.1021/jo061809i
– ident: e_1_2_2_31_2
  doi: 10.1038/nphys360
– ident: e_1_2_2_32_2
  doi: 10.1038/nnano.2014.150
– ident: e_1_2_2_47_3
  doi: 10.1002/ange.201710021
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201703675
– ident: e_1_2_2_42_2
  doi: 10.1002/aenm.201801509
– ident: e_1_2_2_56_1
– ident: e_1_2_2_53_1
– ident: e_1_2_2_44_2
  doi: 10.1038/nmat4014
– ident: e_1_2_2_49_1
  doi: 10.1002/smll.201702024
– ident: e_1_2_2_43_2
  doi: 10.1002/adma.201801418
– ident: e_1_2_2_57_2
  doi: 10.1021/acs.accounts.5b00444
– ident: e_1_2_2_19_1
– ident: e_1_2_2_6_2
  doi: 10.1021/acssuschemeng.8b02842
– ident: e_1_2_2_45_2
  doi: 10.1126/science.1245473
– ident: e_1_2_2_58_2
  doi: 10.1021/acs.jpclett.6b01147
– ident: e_1_2_2_8_2
  doi: 10.1002/adma.201602157
– ident: e_1_2_2_28_2
  doi: 10.1002/admi.201701169
– ident: e_1_2_2_13_2
  doi: 10.1002/adfm.201701342
SSID ssj0028806
Score 2.4754083
Snippet Superlattice materials offer new opportunities to modify optical and electrical properties of recently emerging 2D materials. The insertion of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2692
SubjectTerms Conductance
Electrical properties
Halides
inorganic–organic hybrids
Iodides
lead halides
Optical properties
radicals
Resistance
semiconductors
Superlattices
Title From Lead Iodide to a Radical Form Lead‐Iodide Superlattice: High Conductance Gain and Broader Band for Photoconductive Response
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812554
https://www.ncbi.nlm.nih.gov/pubmed/30614186
https://www.proquest.com/docview/2182425414
https://www.proquest.com/docview/2164546882
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3CB8t52i4yExCltYjsvbu2q2xaJCi1U6i3yK2rVNq52s5eeKn4Bv5Ff0hk7CSwVQoJbLNuKH2PPZ3vmG0Le5bGMUzyW5NbwSNjYRiXXeZRqA_quUFx5R-FPx9nhifh4mp7-4sUf-CGGCzdcGX6_xgUu1WLnJ2koemCjaRZoKFCJsAmjwRaiotnAH8VAOIN7EecRRqHvWRtjtrNafVUr3YOaq8jVq57pEyL7RgeLk4vtZau29c1vfI7_06t18rjDpXQ3CNJT8sA2z8jDSR8O7jn5Np27K4oROemRM-fG0tZRSWfSP_TQKWBfn_vj9nuX_2V5jZeFLZrXfaBoUEInrkF-WZQ0eiDPGyobQ_fmDs2p6R4mAEPTz2eudToUhc2YzoIdr31BTqb7XyeHURfAIdI85yLKCs15LWOtWZ0wWdd5nSlhaiWU571hhUoyW1ptZCxzAD9FkdiccVFqIzSz_CVZa1xjXxNaCiWhdipMIUWm01LHqeJ1DggyrgG0jUjUT2ClO3ZzDLJxWQVeZlbhyFbDyI7I-6H8deD1-GPJcS8PVbe-FxXy3sNuJxLIfjtkw4zgc4tsrFtiGWRLgz6xEXkV5Gj4FceDeFJkI8K8NPylDdXu8dH-kNr4l0qb5BF8l94bPx2TtXa-tFuAp1r1xq-ZO5rjFpc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZRLedOFAkZC4pQ2sZ0Xt3bpsgvtCi2txC3yK6IC4mrJXjghfgG_sb-kHjsJWhBCgqNjW_Fj7Plsz3wD8CyPRZzisSQ3mkXcxCYqmcqjVGmn7wrJpHcUPp5n01P--n3aWxOiL0zghxgu3HBl-P0aFzheSO_9ZA1FF2y0zXIqyunEq3ANw3ojff7LxcAgRZ14BgcjxiKMQ9_zNsZ0b73-ul76DWyuY1evfCY3QPbNDjYnH3dXrdxVX39hdPyvft2ErQ6akv0gS7fgimluw-a4jwh3B75PlvYzwaCcZGb1mTaktUSQhfBvPWTi4K_Pvfj2o8t_tzrH-8IWLexeELQpIWPbIMUsCht5Jc4aIhpNDpYWLarJASYcjCZvP9jWqlDU7cdkEUx5zV04nRyejKdRF8MhUixnPMoKxVgtYqVonVBR13mdSa5ryaWnvqGFTDJTGqVFLHKHf4oiMTllvFSaK2rYPdhobGO2gZRcClc75boQPFNpqeJUsjp3IDKuHW4bQdTPYKU6gnOMs_GpCtTMtMKRrYaRHcHzofx5oPb4Y8mdXiCqbol_qZD63m14PHHZT4dsNyP44iIaY1dYBgnTXJ_oCO4HQRp-xfAsnhTZCKgXh7-0odqfzw6H1IN_qfQENqcnx0fV0Wz-5iFcd99L75yf7sBGu1yZRw5etfKxX0CXAP0asw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALr1JYKGAkpJ7SOrbz4tZuG7o8VtVCpd4iP0VVSFZL9sIJ8Qv4jfwSPHYSWKoKCY6ObcWPseezPfMNQs8zIkgCx5LMaBZxQ0xUMJVFidJO3-WSSe8o_HaaHp3wV6fJ6W9e_IEfYrhwg5Xh92tY4HNtd3-RhoIHNphmOQ3lVOJVdI2npIDgDQezgUCKOukM_kWMRRCGvqdtJHR3tf6qWrqANVehq9c95S0k-lYHk5PznWUrd9SXPwgd_6dbt9HNDpjivSBJd9AVU99FN8Z9PLgN9K1cNJ8whOTEk0afaYPbBgs8E_6lB5cO_PrcH1-_d_nvlnO4LWzBvu4FBosSPG5qIJgFUcMvxVmNRa3x_qIBe2q8DwkHovHxh6ZtVCjqdmM8C4a85h46KQ_fj4-iLoJDpFjGeJTmijEriFLUxlRYm9lUcm0ll574huYyTk1hlBZEZA795HlsMsp4oTRX1LBNtFY3tXmAcMGlcLUTrnPBU5UUiiSS2cxBSGIdahuhqJ_ASnX05hBl42MViJlpBSNbDSM7QttD-Xkg9ri05FYvD1W3wD9XQHzvtjseu-xnQ7abEXhvEbVpllAG6NJcn-gI3Q9yNPyKwUk8ztMRol4a_tKGam86ORxSD_-l0lN0_figrN5Mpq8foXX3ufCe-ckWWmsXS_PYYatWPvHL5yeUIxli
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Lead+Iodide+to+a+Radical+Form+Lead%E2%80%90Iodide+Superlattice%3A+High+Conductance+Gain+and+Broader+Band+for+Photoconductive+Response&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guan%E2%80%90E+Wang&rft.au=Xu%2C+Gang&rft.au=Ning%E2%80%90Ning+Zhang&rft.au=Ming%E2%80%90Shui+Yao&rft.date=2019-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=9&rft.spage=2692&rft.epage=2695&rft_id=info:doi/10.1002%2Fanie.201812554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon