Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance

Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lea...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 31
Main Authors Zhao, Lei, Liu, Qing, Gao, Jing, Zhang, Shujun, Li, Jing‐Feng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2017
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201701824

Cover

Loading…
Abstract Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. AgNbO3 lead‐free antiferroelectric ceramic is reported to be a promising candidate for energy storage applications. A great breakthrough with high recoverable energy density up to 4.2 J cm−3 and good thermal stability with minimal variation (±5%) over a temperature range of 20–120 °C is achieved in Ta‐modified AgNbO3 ceramics. This is possible because of the enhanced dielectric breakdown strength and antiferroelectricity.
AbstractList Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. AgNbO3 lead‐free antiferroelectric ceramic is reported to be a promising candidate for energy storage applications. A great breakthrough with high recoverable energy density up to 4.2 J cm−3 and good thermal stability with minimal variation (±5%) over a temperature range of 20–120 °C is achieved in Ta‐modified AgNbO3 ceramics. This is possible because of the enhanced dielectric breakdown strength and antiferroelectricity.
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm-3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm-1 versus 175 kV cm-1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm-3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm-1 versus 175 kV cm-1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O 3 ‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm −3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm −1 versus 175 kV cm −1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm versus 175 kV cm for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
Author Liu, Qing
Li, Jing‐Feng
Gao, Jing
Zhao, Lei
Zhang, Shujun
Author_xml – sequence: 1
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: Tsinghua University
– sequence: 2
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
  organization: Tsinghua University
– sequence: 3
  givenname: Jing
  surname: Gao
  fullname: Gao, Jing
  organization: Tsinghua University
– sequence: 4
  givenname: Shujun
  surname: Zhang
  fullname: Zhang, Shujun
  email: shujun@uow.edu.au
  organization: University of Wollongong
– sequence: 5
  givenname: Jing‐Feng
  surname: Li
  fullname: Li, Jing‐Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28628242$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq2KqizQK0cUqZdesh07dhwfV3yUSsuHBJw4RI4zXowSmzreor31J_Q39pc0qwUqISFOM4fnmRnNu0O2fPBIyD6FKQVg33Tb6ykDKoFWjH8gEyoYzTkosUUmoAqRq5JX22RnGO4BQJVQfiLbrCrZiLMJuZ2jbv_-_nMSEbOZT85ijAE7NCk6k1257hfG7NyFRifMrrVPult3jy7dZaducZcde4yLVXaVQtQLzC4x2hB77Q3ukY9WdwN-fqq75Obk-PrwNJ9ffP9xOJvnppAFz0spW0SFlW0qKRCLggrJ0dpGKj52CqyRQrdoSisM5QotLxRig4oJqYtil3zdzH2I4ecSh1T3bjDYddpjWA41VZQyAFrCiH55hd6HZfTjdSM1fgWYEmvq4IlaNj229UN0vY6r-vltIzDdACaGYYhoXxAK9TqXep1L_ZLLKPBXgnFJJxd8itp1b2tqoz26DlfvLKlnR2ez_-4_jdaiew
CitedBy_id crossref_primary_10_1007_s10854_024_12379_w
crossref_primary_10_1007_s10854_020_04249_y
crossref_primary_10_1002_admt_202101530
crossref_primary_10_1063_1_5090444
crossref_primary_10_1016_j_mtphys_2022_100681
crossref_primary_10_1103_PhysRevB_100_220103
crossref_primary_10_1111_jace_18526
crossref_primary_10_1039_D5TC00155B
crossref_primary_10_1557_jmr_2020_300
crossref_primary_10_1007_s10853_022_07964_5
crossref_primary_10_1039_C8TC04096F
crossref_primary_10_1063_5_0198962
crossref_primary_10_1021_acsaelm_4c01623
crossref_primary_10_1038_s41467_023_36919_w
crossref_primary_10_1016_j_jallcom_2021_162934
crossref_primary_10_1016_j_materresbull_2019_01_029
crossref_primary_10_1016_j_jeurceramsoc_2019_07_037
crossref_primary_10_1021_jacs_3c13405
crossref_primary_10_1016_j_ceramint_2018_05_154
crossref_primary_10_1002_smll_202206662
crossref_primary_10_1016_j_cej_2020_124158
crossref_primary_10_1016_j_jeurceramsoc_2023_01_036
crossref_primary_10_1039_D0TA02285C
crossref_primary_10_1039_C9TA05446D
crossref_primary_10_1016_j_est_2022_105591
crossref_primary_10_1007_s42864_022_00179_w
crossref_primary_10_1016_j_ceramint_2019_06_237
crossref_primary_10_1002_adma_202201333
crossref_primary_10_1016_j_cej_2022_134660
crossref_primary_10_1103_PhysRevMaterials_7_114407
crossref_primary_10_1063_1_5111360
crossref_primary_10_1039_D1TA08167E
crossref_primary_10_1016_j_ceramint_2020_02_135
crossref_primary_10_1016_j_cej_2022_136729
crossref_primary_10_1016_j_matpr_2021_07_419
crossref_primary_10_26599_JAC_2024_9220946
crossref_primary_10_1039_C9NR05282H
crossref_primary_10_1063_1_5000980
crossref_primary_10_1088_1361_6463_ab87c2
crossref_primary_10_1039_C9TC02197C
crossref_primary_10_1016_j_ceramint_2023_08_016
crossref_primary_10_4191_kcers_2019_56_1_02
crossref_primary_10_1016_j_jmst_2018_06_008
crossref_primary_10_1021_jacs_8b13827
crossref_primary_10_1021_acsami_1c19459
crossref_primary_10_1111_jace_17415
crossref_primary_10_1002_adfm_202311944
crossref_primary_10_1088_0256_307X_38_3_037701
crossref_primary_10_1016_j_cej_2022_134678
crossref_primary_10_1007_s10854_024_13812_w
crossref_primary_10_1021_acsaelm_4c00878
crossref_primary_10_1088_1361_6633_ab49d6
crossref_primary_10_1039_C9TC02172H
crossref_primary_10_1063_1_5080538
crossref_primary_10_1039_D0EE02104K
crossref_primary_10_1016_j_cej_2024_154926
crossref_primary_10_1039_D2TA01577C
crossref_primary_10_1016_j_compositesb_2021_109027
crossref_primary_10_1016_j_cej_2019_123729
crossref_primary_10_1016_j_jmat_2023_10_002
crossref_primary_10_1021_acs_chemmater_2c01241
crossref_primary_10_1111_jace_17785
crossref_primary_10_1111_jace_17669
crossref_primary_10_1039_C9TA02053E
crossref_primary_10_1557_s43578_020_00085_2
crossref_primary_10_1016_j_cej_2021_129808
crossref_primary_10_1038_s41467_023_37469_x
crossref_primary_10_1039_D2TA02534E
crossref_primary_10_1016_j_jscs_2023_101617
crossref_primary_10_1016_j_cej_2022_136505
crossref_primary_10_3390_molecules26020481
crossref_primary_10_1021_acssuschemeng_1c08121
crossref_primary_10_1021_acsami_9b09552
crossref_primary_10_1016_j_jeurceramsoc_2019_07_047
crossref_primary_10_1016_j_ceramint_2017_11_018
crossref_primary_10_1016_j_nanoen_2020_105012
crossref_primary_10_1111_ijac_14892
crossref_primary_10_1007_s10854_023_11623_z
crossref_primary_10_1039_D3TA04033J
crossref_primary_10_1016_j_jeurceramsoc_2020_09_017
crossref_primary_10_1111_jace_16309
crossref_primary_10_1016_j_cej_2021_130800
crossref_primary_10_1021_acssuschemeng_0c08714
crossref_primary_10_1039_C9TC01414D
crossref_primary_10_1016_j_mseb_2023_117025
crossref_primary_10_1039_D0TC00589D
crossref_primary_10_1016_j_physb_2024_416385
crossref_primary_10_1021_acsami_4c08183
crossref_primary_10_1039_D3TC03815G
crossref_primary_10_1063_5_0108805
crossref_primary_10_1557_s43578_021_00180_y
crossref_primary_10_1021_acsami_2c11691
crossref_primary_10_1557_s43578_020_00007_2
crossref_primary_10_1002_smll_202106515
crossref_primary_10_1016_j_mtchem_2021_100485
crossref_primary_10_1007_s11664_022_09684_7
crossref_primary_10_1007_s40145_020_0367_8
crossref_primary_10_1007_s10854_021_05626_x
crossref_primary_10_1016_j_scriptamat_2023_115295
crossref_primary_10_1021_acsaem_2c02664
crossref_primary_10_1016_j_scriptamat_2024_116426
crossref_primary_10_1038_s41563_020_0704_x
crossref_primary_10_1088_1402_4896_ad1634
crossref_primary_10_1002_adfm_202425711
crossref_primary_10_1016_j_cej_2023_142862
crossref_primary_10_1039_D3TA03294A
crossref_primary_10_1021_acsami_4c09282
crossref_primary_10_1111_jace_18977
crossref_primary_10_1557_s43578_020_00082_5
crossref_primary_10_3390_ma12010119
crossref_primary_10_1039_C9MH00352E
crossref_primary_10_1007_s10854_022_07737_5
crossref_primary_10_1007_s10854_022_09781_7
crossref_primary_10_1016_j_ceramint_2020_09_144
crossref_primary_10_1007_s10854_020_02922_w
crossref_primary_10_1039_C8TA10075F
crossref_primary_10_1063_5_0088282
crossref_primary_10_1016_j_jeurceramsoc_2020_05_076
crossref_primary_10_1111_jace_19919
crossref_primary_10_1016_j_ceramint_2018_11_018
crossref_primary_10_1016_j_susmat_2019_e00092
crossref_primary_10_1039_D0MH00253D
crossref_primary_10_1039_D1TA04504K
crossref_primary_10_1039_C9TC06256D
crossref_primary_10_1021_acsami_3c03296
crossref_primary_10_1021_acs_chemrev_0c01264
crossref_primary_10_1021_acssuschemeng_1c00303
crossref_primary_10_1021_acsami_1c23914
crossref_primary_10_1039_D3TA03491G
crossref_primary_10_1039_D3DT02864J
crossref_primary_10_1007_s10853_021_06684_6
crossref_primary_10_1016_j_jmat_2020_11_016
crossref_primary_10_1021_acsami_2c11599
crossref_primary_10_1039_D0NR05709F
crossref_primary_10_13168_cs_2019_0019
crossref_primary_10_26599_JAC_2024_9220937
crossref_primary_10_1016_j_cej_2020_127375
crossref_primary_10_1063_1_5044712
crossref_primary_10_1111_jace_19808
crossref_primary_10_1016_j_cej_2020_127368
crossref_primary_10_1039_D4TA05920D
crossref_primary_10_1039_C9TA00995G
crossref_primary_10_1016_j_jeurceramsoc_2021_12_028
crossref_primary_10_1039_D0TC04381H
crossref_primary_10_1021_jacs_3c06912
crossref_primary_10_1039_D2TA03602A
crossref_primary_10_1002_aelm_201901366
crossref_primary_10_1039_C8TA07364C
crossref_primary_10_1002_adfm_201807321
crossref_primary_10_1007_s10854_021_06689_6
crossref_primary_10_1016_j_jmat_2023_11_003
crossref_primary_10_1016_j_scriptamat_2020_04_040
crossref_primary_10_1007_s10854_020_03918_2
crossref_primary_10_1016_j_matlet_2019_03_035
crossref_primary_10_1039_D3QI01924A
crossref_primary_10_1007_s13391_021_00328_2
crossref_primary_10_1016_j_jeurceramsoc_2021_07_062
crossref_primary_10_1016_j_jeurceramsoc_2020_09_032
crossref_primary_10_1007_s10853_021_06465_1
crossref_primary_10_1021_acs_chemmater_8b04470
crossref_primary_10_1021_acsaem_1c00704
crossref_primary_10_1039_C9TC04738G
crossref_primary_10_1111_jace_17834
crossref_primary_10_1016_j_jmat_2021_04_001
crossref_primary_10_1039_C9QI01416K
crossref_primary_10_1016_j_cej_2021_133441
crossref_primary_10_1021_acsami_4c12369
crossref_primary_10_1002_adfm_201801504
crossref_primary_10_1016_j_cej_2021_133447
crossref_primary_10_1038_s41427_018_0013_x
crossref_primary_10_3390_cryst13010086
crossref_primary_10_1021_acsami_0c08737
crossref_primary_10_1016_j_jallcom_2022_164579
crossref_primary_10_1002_aelm_202200930
crossref_primary_10_1016_j_ceramint_2020_01_174
crossref_primary_10_1016_j_cej_2020_127945
crossref_primary_10_1016_j_ceramint_2018_07_182
crossref_primary_10_1007_s40145_021_0500_3
crossref_primary_10_1016_j_jeurceramsoc_2022_06_077
crossref_primary_10_1111_jace_16878
crossref_primary_10_1126_sciadv_aba0367
crossref_primary_10_1021_acsami_1c14151
crossref_primary_10_1111_jace_15780
crossref_primary_10_1063_1_5055297
crossref_primary_10_1002_adfm_202110478
crossref_primary_10_1021_acsami_4c11161
crossref_primary_10_1007_s12598_022_02150_7
crossref_primary_10_1007_s10854_018_0522_y
crossref_primary_10_1007_s40145_020_0358_9
crossref_primary_10_1111_jace_15517
crossref_primary_10_1002_adfm_201706211
crossref_primary_10_1038_s41467_020_17664_w
crossref_primary_10_1016_j_materresbull_2023_112157
crossref_primary_10_1111_jace_17814
crossref_primary_10_1016_j_nanoen_2019_02_003
crossref_primary_10_1021_acsami_4c12219
crossref_primary_10_1557_s43578_020_00093_2
crossref_primary_10_1021_acs_chemmater_0c03685
crossref_primary_10_1016_j_cej_2021_133584
crossref_primary_10_1039_C9DT01738K
crossref_primary_10_1016_j_jallcom_2024_174710
crossref_primary_10_1557_jmr_2020_291
crossref_primary_10_1007_s10832_022_00279_6
crossref_primary_10_1016_j_jeurceramsoc_2022_05_062
crossref_primary_10_1039_D4TC04400B
crossref_primary_10_1088_1361_648X_ab7ba3
crossref_primary_10_1016_j_cej_2023_142251
crossref_primary_10_1016_j_ceramint_2020_01_276
crossref_primary_10_1111_jace_17705
crossref_primary_10_1016_j_jeurceramsoc_2023_06_037
crossref_primary_10_1002_smll_202208105
crossref_primary_10_1016_j_actamat_2020_01_032
crossref_primary_10_1002_pssr_201800007
crossref_primary_10_1016_j_ceramint_2018_07_161
crossref_primary_10_1016_j_cej_2021_131047
crossref_primary_10_1007_s10854_020_03602_5
crossref_primary_10_1016_j_jeurceramsoc_2021_02_013
crossref_primary_10_15251_DJNB_2022_174_1431
crossref_primary_10_1557_s43578_020_00018_z
crossref_primary_10_1021_acsami_2c16577
crossref_primary_10_1038_s41467_025_56443_3
crossref_primary_10_1557_jmr_2020_286
crossref_primary_10_1063_1_5061749
crossref_primary_10_3390_nano12050730
crossref_primary_10_1021_acsami_9b10819
crossref_primary_10_1039_D0NR04479B
crossref_primary_10_1039_D0TA00216J
crossref_primary_10_1007_s10853_023_09038_6
crossref_primary_10_1016_j_jeurceramsoc_2020_03_070
crossref_primary_10_3390_ma14247854
crossref_primary_10_1016_j_ceramint_2022_06_184
crossref_primary_10_3390_ma16114144
crossref_primary_10_1021_acsami_2c05205
crossref_primary_10_1002_smll_202306803
crossref_primary_10_1016_j_ceramint_2021_04_060
crossref_primary_10_1007_s43207_023_00322_4
crossref_primary_10_1039_D0TA11187B
crossref_primary_10_1021_jacs_0c00480
crossref_primary_10_1016_j_ceramint_2022_05_011
crossref_primary_10_1002_adem_202300321
crossref_primary_10_1007_s10853_021_06353_8
crossref_primary_10_1016_j_cej_2022_141023
crossref_primary_10_1016_j_mtcomm_2024_110624
crossref_primary_10_1038_s41427_022_00426_z
crossref_primary_10_1016_j_nanoen_2024_109394
crossref_primary_10_1002_advs_202300227
crossref_primary_10_1063_5_0200472
crossref_primary_10_1021_jacs_3c02811
crossref_primary_10_1039_C8EE03287D
crossref_primary_10_1016_j_jeurceramsoc_2025_117284
crossref_primary_10_1039_D1TA02853G
crossref_primary_10_1021_acsnano_0c00791
crossref_primary_10_1021_acsami_2c06889
crossref_primary_10_3390_ma16020492
crossref_primary_10_1016_j_jallcom_2018_11_371
crossref_primary_10_1016_j_jeurceramsoc_2024_116928
crossref_primary_10_1007_s12598_022_02176_x
crossref_primary_10_1016_j_ceramint_2024_07_316
crossref_primary_10_5488_CMP_24_13702
crossref_primary_10_1016_j_cej_2024_149154
crossref_primary_10_1039_C9TA05182A
crossref_primary_10_1016_j_cej_2023_141490
crossref_primary_10_1021_acsami_1c25234
crossref_primary_10_1021_acs_nanolett_4c03382
crossref_primary_10_1016_j_ceramint_2021_11_197
crossref_primary_10_1103_PhysRevB_110_064305
crossref_primary_10_1039_D0TA03526B
crossref_primary_10_1039_C8TC04447C
crossref_primary_10_3390_ma17102277
crossref_primary_10_1016_j_actamat_2018_09_056
crossref_primary_10_1002_anie_202401221
crossref_primary_10_1002_aenm_201803048
crossref_primary_10_1016_j_ceramint_2017_12_146
crossref_primary_10_1049_ema3_70004
crossref_primary_10_1016_j_cej_2024_152786
crossref_primary_10_1016_j_mtcomm_2024_108435
crossref_primary_10_1021_acsaelm_4c00679
crossref_primary_10_1002_adma_202310559
crossref_primary_10_1021_acsami_7b17382
crossref_primary_10_1039_D2TA08523B
crossref_primary_10_1021_acsami_0c13057
crossref_primary_10_1063_1_5110527
crossref_primary_10_1016_j_nanoen_2024_109493
crossref_primary_10_1002_smll_202206125
crossref_primary_10_1016_j_ceramint_2021_10_035
crossref_primary_10_1016_j_ensm_2021_01_023
crossref_primary_10_2109_jcersj2_22161
crossref_primary_10_1002_adma_202205787
crossref_primary_10_1021_acsaem_1c02964
crossref_primary_10_1016_j_jallcom_2023_172147
crossref_primary_10_1039_D4TA02246G
crossref_primary_10_1021_acsami_2c14234
crossref_primary_10_1016_j_jallcom_2018_06_199
crossref_primary_10_1016_j_jallcom_2023_170081
crossref_primary_10_1088_1361_6463_ac46ed
crossref_primary_10_1016_j_jallcom_2020_156132
crossref_primary_10_1016_j_ceramint_2022_01_202
crossref_primary_10_1016_j_jmat_2022_04_002
crossref_primary_10_1021_acssuschemeng_3c03618
crossref_primary_10_3390_coatings12121826
crossref_primary_10_1016_j_jallcom_2024_176390
crossref_primary_10_1039_C9TC01014A
crossref_primary_10_1016_j_ceramint_2021_08_039
crossref_primary_10_1016_j_jeurceramsoc_2018_09_041
crossref_primary_10_1039_C9TA00463G
crossref_primary_10_1039_D3DT03139J
crossref_primary_10_1016_j_jallcom_2023_169575
crossref_primary_10_35848_1347_4065_ac7ea7
crossref_primary_10_1016_j_cej_2022_135065
crossref_primary_10_1021_acsaem_1c00474
crossref_primary_10_1063_1_5143612
crossref_primary_10_1021_acsami_2c16021
crossref_primary_10_1016_j_cej_2024_156447
crossref_primary_10_1016_j_ceramint_2022_02_248
crossref_primary_10_1016_j_compositesb_2021_108815
crossref_primary_10_1021_acsami_0c16197
crossref_primary_10_1021_acsami_9b13215
crossref_primary_10_1016_j_cej_2023_145386
crossref_primary_10_1039_C8TC05458D
crossref_primary_10_1016_j_materresbull_2024_112924
crossref_primary_10_1016_j_cej_2024_150901
crossref_primary_10_1063_1_5075719
crossref_primary_10_1021_acsami_2c02086
crossref_primary_10_1039_D2TA04200B
crossref_primary_10_1021_acssuschemeng_8b02821
crossref_primary_10_1039_C8TA09353A
crossref_primary_10_1039_C9TC05637H
crossref_primary_10_1142_S2010135X18200047
crossref_primary_10_1021_acsami_3c10240
crossref_primary_10_1002_adfm_202302683
crossref_primary_10_1007_s00339_025_08239_x
crossref_primary_10_1063_1_5035263
crossref_primary_10_1016_j_nanoen_2022_107577
crossref_primary_10_1049_iet_nde_2017_0007
crossref_primary_10_1111_jace_18091
crossref_primary_10_1021_acs_nanolett_2c04972
crossref_primary_10_1016_j_cej_2023_147672
crossref_primary_10_1039_C9TC05528B
crossref_primary_10_1146_annurev_matsci_070317_124435
crossref_primary_10_1007_s00339_022_06024_8
crossref_primary_10_1021_acsami_0c06298
crossref_primary_10_26599_JAC_2023_9220745
crossref_primary_10_1063_5_0100614
crossref_primary_10_1007_s10854_020_04952_w
crossref_primary_10_1039_D3TC03477A
crossref_primary_10_1039_C8TC06549G
crossref_primary_10_1002_adfm_202105060
crossref_primary_10_1016_j_cej_2022_137389
crossref_primary_10_1016_j_jallcom_2019_05_092
crossref_primary_10_1007_s10854_023_11180_5
crossref_primary_10_1016_j_jmat_2021_11_014
crossref_primary_10_1016_j_cej_2021_132534
crossref_primary_10_1021_acsaem_4c01193
crossref_primary_10_1021_acsaem_9b01550
crossref_primary_10_1039_D2TA09395B
crossref_primary_10_1016_j_actamat_2023_119135
crossref_primary_10_1016_j_cej_2023_145363
crossref_primary_10_1016_j_jmat_2021_09_007
crossref_primary_10_1016_j_commatsci_2022_111394
crossref_primary_10_1111_jace_19270
crossref_primary_10_1039_C8TC02801J
crossref_primary_10_1016_j_cej_2021_130475
crossref_primary_10_1007_s10853_020_04361_8
crossref_primary_10_1039_D1SC02729H
crossref_primary_10_1021_jacs_2c12200
crossref_primary_10_1021_jacs_4c02868
crossref_primary_10_34133_energymatadv_0025
crossref_primary_10_1063_1_5034038
crossref_primary_10_1002_inf2_12488
crossref_primary_10_1080_00150193_2022_2115792
crossref_primary_10_1016_j_jallcom_2019_03_304
crossref_primary_10_1039_D0TA08345C
crossref_primary_10_1021_acsami_2c05168
crossref_primary_10_1039_D3EE01545A
crossref_primary_10_1016_j_jeurceramsoc_2025_117218
crossref_primary_10_1016_j_cej_2023_147527
crossref_primary_10_1016_j_jeurceramsoc_2023_12_036
crossref_primary_10_1021_acsami_4c17212
crossref_primary_10_1021_acssuschemeng_8b01926
crossref_primary_10_1016_j_cej_2022_139222
crossref_primary_10_1116_6_0004162
crossref_primary_10_1039_D0TC01383H
crossref_primary_10_1063_5_0084467
crossref_primary_10_1016_j_matlet_2018_11_105
crossref_primary_10_1039_D1TA00973G
crossref_primary_10_1007_s40820_023_01036_2
crossref_primary_10_1007_s10854_018_9793_6
crossref_primary_10_1016_j_compscitech_2021_108942
crossref_primary_10_1021_jacs_9b05124
crossref_primary_10_1038_s41467_022_30821_7
crossref_primary_10_1016_j_actamat_2022_117931
crossref_primary_10_1016_j_ceramint_2019_05_096
crossref_primary_10_1016_j_cej_2021_129379
crossref_primary_10_1002_advs_202103842
crossref_primary_10_1016_j_nanoen_2019_104264
crossref_primary_10_1016_j_mssp_2024_109218
crossref_primary_10_1016_j_cej_2020_124879
crossref_primary_10_1142_S2010135X22420036
crossref_primary_10_1016_j_cej_2021_131465
crossref_primary_10_1002_adfm_201900918
crossref_primary_10_1016_j_cej_2021_130130
crossref_primary_10_1016_j_jeurceramsoc_2018_02_026
crossref_primary_10_1002_adfm_202000191
crossref_primary_10_1002_inf2_12147
crossref_primary_10_1021_acs_chemmater_0c01692
crossref_primary_10_1016_j_cej_2021_132540
crossref_primary_10_1016_j_ceramint_2019_10_047
crossref_primary_10_1016_j_ceramint_2024_04_325
crossref_primary_10_1016_j_susmat_2022_e00428
crossref_primary_10_1142_S2010135X22420061
crossref_primary_10_1016_j_jmat_2021_02_018
crossref_primary_10_1063_5_0094131
crossref_primary_10_1016_j_cej_2020_125639
crossref_primary_10_1016_j_cej_2024_151046
crossref_primary_10_54227_mlab_20230028
crossref_primary_10_1016_j_cej_2024_151043
crossref_primary_10_1039_D1TA07643D
crossref_primary_10_1016_j_pmatsci_2022_101046
crossref_primary_10_1016_j_jeurceramsoc_2019_03_030
crossref_primary_10_34133_2022_9782343
crossref_primary_10_1002_adfm_202302995
crossref_primary_10_3390_ma14237188
crossref_primary_10_1016_j_ceramint_2022_02_106
crossref_primary_10_1007_s10853_021_06148_x
crossref_primary_10_1021_acsami_0c00831
crossref_primary_10_1007_s40145_021_0516_8
crossref_primary_10_1007_s10854_024_14004_2
crossref_primary_10_1007_s10853_021_06480_2
crossref_primary_10_1007_s10854_021_06299_2
crossref_primary_10_1016_j_cej_2023_147974
crossref_primary_10_1021_acsaem_8b01099
crossref_primary_10_1021_acs_nanolett_4c05972
crossref_primary_10_1002_pc_26818
crossref_primary_10_1016_j_matdes_2020_109020
crossref_primary_10_1016_j_nanoen_2018_07_055
crossref_primary_10_1021_acs_nanolett_3c02929
crossref_primary_10_1016_j_cej_2020_125625
crossref_primary_10_1016_j_mtphys_2024_101545
crossref_primary_10_1021_acsami_2c20508
crossref_primary_10_1021_acsami_9b20803
crossref_primary_10_1016_j_mtphys_2024_101420
crossref_primary_10_1039_D0TC02377A
crossref_primary_10_1039_D2TA08074E
crossref_primary_10_1111_jace_16094
crossref_primary_10_1016_j_jmat_2022_03_004
crossref_primary_10_1021_acsami_0c09876
crossref_primary_10_1039_D2TA00380E
crossref_primary_10_1002_smll_202302376
crossref_primary_10_7498_aps_69_20200213
crossref_primary_10_1016_j_jmat_2019_03_006
crossref_primary_10_1103_PhysRevMaterials_4_104417
crossref_primary_10_1039_D3TC00220A
crossref_primary_10_1007_s42452_020_03862_0
crossref_primary_10_1039_D2TA10098C
crossref_primary_10_1039_D0EE03094E
crossref_primary_10_1039_C9TA02149C
crossref_primary_10_1007_s10904_022_02418_6
crossref_primary_10_1007_s43207_024_00410_z
crossref_primary_10_1016_j_cap_2021_01_006
crossref_primary_10_1557_s43578_021_00410_3
crossref_primary_10_1039_C9QI00383E
crossref_primary_10_1039_D0TA03540H
crossref_primary_10_1016_j_cej_2022_136315
crossref_primary_10_1016_j_pmatsci_2018_12_005
crossref_primary_10_1016_j_cej_2020_127151
crossref_primary_10_7498_aps_72_20230389
crossref_primary_10_1142_S2010135X18300050
crossref_primary_10_1016_j_jeurceramsoc_2023_03_031
crossref_primary_10_1002_adma_202302554
crossref_primary_10_1039_D4TA00867G
crossref_primary_10_1002_smll_202400997
crossref_primary_10_1111_jace_19226
crossref_primary_10_1016_j_jmat_2019_06_003
crossref_primary_10_1016_j_matdes_2021_109666
crossref_primary_10_1016_j_jmat_2020_06_005
crossref_primary_10_1016_j_jallcom_2024_177518
crossref_primary_10_1039_C9TC03597D
crossref_primary_10_1002_adma_202420258
crossref_primary_10_1016_j_cej_2021_129861
crossref_primary_10_1039_C8TA12232F
crossref_primary_10_1039_D1RA01203G
crossref_primary_10_1142_S2010135X18300062
crossref_primary_10_1016_j_cej_2020_128231
crossref_primary_10_1016_j_cej_2021_131959
crossref_primary_10_1021_acssuschemeng_0c05265
crossref_primary_10_1039_C9TC04320A
crossref_primary_10_1007_s10832_022_00283_w
crossref_primary_10_1007_s10854_022_08383_7
crossref_primary_10_1039_C8TC05451G
crossref_primary_10_1021_acsami_3c09630
crossref_primary_10_1007_s10854_021_07511_z
crossref_primary_10_1063_1_5141852
crossref_primary_10_1063_5_0137616
crossref_primary_10_1016_j_jmat_2024_03_014
crossref_primary_10_1016_j_jmat_2022_09_008
crossref_primary_10_1016_j_jmat_2022_09_007
crossref_primary_10_1016_j_jmat_2018_05_006
crossref_primary_10_1063_5_0030279
crossref_primary_10_1016_j_jeurceramsoc_2019_05_056
crossref_primary_10_1142_S2010135X18300049
crossref_primary_10_1103_PhysRevApplied_19_054058
crossref_primary_10_1039_C9TA01165J
crossref_primary_10_3390_coatings13030534
crossref_primary_10_1039_C9TA11314B
crossref_primary_10_1002_aenm_201903338
crossref_primary_10_1557_s43578_022_00568_4
crossref_primary_10_1038_s41467_020_18665_5
crossref_primary_10_1007_s10854_021_06841_2
crossref_primary_10_1016_j_jallcom_2019_152695
crossref_primary_10_1021_acsami_3c18103
crossref_primary_10_1016_j_ceramint_2020_06_100
crossref_primary_10_1016_j_ceramint_2019_07_097
crossref_primary_10_1039_C9TC06218A
crossref_primary_10_1039_C8TA07303A
crossref_primary_10_1002_smll_202306486
crossref_primary_10_1007_s12598_023_02452_4
crossref_primary_10_1088_1402_4896_ad1907
crossref_primary_10_1039_C8TC03181A
crossref_primary_10_1111_jace_19776
crossref_primary_10_1107_S2052252519007711
crossref_primary_10_1038_s41467_025_56194_1
crossref_primary_10_1063_5_0158219
crossref_primary_10_1111_jace_19774
crossref_primary_10_1111_jace_19410
crossref_primary_10_1063_5_0220887
crossref_primary_10_1039_D0TC01711F
crossref_primary_10_1039_D4TC02538E
crossref_primary_10_1039_D2TC00056C
crossref_primary_10_1016_j_ceramint_2024_01_416
crossref_primary_10_1039_D3TC02971A
crossref_primary_10_1016_j_jeurceramsoc_2024_03_002
crossref_primary_10_1016_j_jeurceramsoc_2024_04_049
crossref_primary_10_1039_C9TC05672F
crossref_primary_10_1111_jace_19669
crossref_primary_10_1007_s10854_022_08830_5
crossref_primary_10_1016_j_ceramint_2021_05_308
crossref_primary_10_1142_S2010135X1850039X
crossref_primary_10_1002_aelm_201900698
crossref_primary_10_1002_ente_202100777
crossref_primary_10_1016_j_jallcom_2020_154611
crossref_primary_10_1021_acsnano_4c02168
crossref_primary_10_3390_ma16206753
crossref_primary_10_1021_acsami_2c01507
crossref_primary_10_1002_admt_201800111
crossref_primary_10_1111_jace_17486
crossref_primary_10_1016_j_cej_2020_128032
crossref_primary_10_1039_D3CP00607G
crossref_primary_10_1002_adma_201802155
crossref_primary_10_1016_j_cej_2023_144086
crossref_primary_10_1039_C9TC02088H
crossref_primary_10_1016_j_nanoen_2018_10_041
crossref_primary_10_1088_1361_6463_ac1136
crossref_primary_10_1002_smll_202202575
crossref_primary_10_1016_j_ceramint_2020_06_003
crossref_primary_10_1039_D2TA00905F
crossref_primary_10_1021_acs_chemrev_9b00507
crossref_primary_10_1051_e3sconf_202450903002
crossref_primary_10_1002_smll_202400686
crossref_primary_10_1021_acsami_2c17170
crossref_primary_10_1021_acsomega_2c07646
crossref_primary_10_1016_j_jmat_2022_01_007
crossref_primary_10_1103_PhysRevB_104_174104
crossref_primary_10_1039_D3TA04605B
crossref_primary_10_1016_j_materresbull_2019_02_002
crossref_primary_10_1016_j_cej_2021_132612
crossref_primary_10_1016_j_jmat_2022_01_001
crossref_primary_10_1007_s10854_023_10968_9
crossref_primary_10_1016_j_pmatsci_2021_100836
crossref_primary_10_1016_j_pmatsci_2021_100837
crossref_primary_10_1088_2053_1591_ab56f1
crossref_primary_10_1021_acsami_1c06075
crossref_primary_10_1002_aelm_202200793
crossref_primary_10_1002_ange_202401221
crossref_primary_10_1016_j_jmat_2021_08_005
crossref_primary_10_1007_s10853_020_05353_4
crossref_primary_10_1016_j_est_2024_113599
crossref_primary_10_1007_s10854_023_10593_6
crossref_primary_10_1063_5_0018373
crossref_primary_10_1016_j_ceramint_2022_08_208
crossref_primary_10_1021_acsanm_2c01132
crossref_primary_10_1016_j_cej_2021_133814
crossref_primary_10_1016_j_jallcom_2017_08_169
crossref_primary_10_20517_microstructures_2023_39
Cites_doi 10.1111/jace.13412
10.1016/j.jallcom.2014.09.171
10.1002/adma.201402106
10.1126/science.1216744
10.1038/ncomms3487
10.1111/j.1551-2916.2011.04731.x
10.1002/adma.201601727
10.1016/j.jallcom.2013.09.052
10.1016/j.ceramint.2014.09.041
10.1063/1.4803941
10.1016/j.jeurceramsoc.2014.01.016
10.1080/01411598308244116
10.1039/C6TA04107H
10.1107/S0108270100006806
10.1111/j.1551-2916.2009.03109.x
10.1080/01411598708220073
10.1016/j.jeurceramsoc.2016.05.017
10.1063/1.4720146
10.1038/nature14647
10.1016/j.ssc.2014.12.004
10.1109/20.911847
10.1016/j.jmat.2015.12.002
10.1016/j.pmatsci.2010.04.004
10.1063/1.4923373
10.1016/j.matlet.2014.08.133
10.1021/cm103389q
10.1039/C6TC03289C
10.1111/jace.13737
10.1063/1.2751136
10.1126/science.1127798
10.1016/j.jeurceramsoc.2015.04.007
10.1039/C6TA06353E
10.1103/PhysRevB.73.235111
10.1038/ncomms2747
10.1080/0141159021000009007
10.1107/S0567739476001551
10.1103/PhysRevB.79.104113
10.1021/cm101263p
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201701824
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28628242
10_1002_adma_201701824
ADMA201701824
Genre article
Journal Article
GrantInformation_xml – fundername: No. 60 Chinese Post‐doc Foundation
  funderid: 2016M600086
– fundername: Ministry of Science and Technology of China
  funderid: 2015CB654605
– fundername: Australian Research Council
  funderid: FT140100698
– fundername: National Natural Science Foundation of China
  funderid: 51332002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3734-677dee9e8fb875ee331574effb79457490fc75adec6f5c149ef439eebe9257a33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:04:41 EDT 2025
Sun Jul 13 03:56:54 EDT 2025
Mon Jul 21 05:42:01 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 00:44:34 EDT 2025
Wed Jan 22 17:06:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords lead-free materials
thermal stability
energy storage
antiferroelectric materials
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-677dee9e8fb875ee331574effb79457490fc75adec6f5c149ef439eebe9257a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28628242
PQID 1928602950
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_1911200160
proquest_journals_1928602950
pubmed_primary_28628242
crossref_primary_10_1002_adma_201701824
crossref_citationtrail_10_1002_adma_201701824
wiley_primary_10_1002_adma_201701824_ADMA201701824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Aug
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2010; 55
2013; 4
2012; 100
2006; 73
2015; 523
2015; 622
1987; 8
2015; 204
1983; 3
2015; 98
2014; 26
2007; 90
2013; 102
2017; 29
2015; 106
2006; 313
2016; 36
2003; 76
2014; 137
2016; 4
1976; 32
2010; 22
2009; 79
2016; 2
2009; 92
2000; 56
2015; 41
2011; 94
2001; 37
2011; 23
1960
2012; 335
2014; 94
2014; 34
2014; 585
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Wang T. (e_1_2_5_28_1) 2014; 94
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
Pauling L. (e_1_2_5_40_1) 1960
References_xml – volume: 98
  start-page: 1175
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 35
  start-page: 2775
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 4
  start-page: 13778
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2487
  year: 2013
  publication-title: Nat. Commun.
– volume: 204
  start-page: 19
  year: 2015
  publication-title: Solid State Commun.
– volume: 94
  start-page: 4352
  year: 2014
  publication-title: J. Am. Ceram. Soc.
– year: 1960
– volume: 37
  start-page: 324
  year: 2001
  publication-title: IEEE Trans. Magn.
– volume: 4
  start-page: 17279
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1732
  year: 2013
  publication-title: Nat. Commun.
– volume: 76
  start-page: 611
  year: 2003
  publication-title: Phase Transitions
– volume: 73
  start-page: 23511
  year: 2006
  publication-title: Phys. Rev. B
– volume: 313
  start-page: 334
  year: 2006
  publication-title: Science
– volume: 22
  start-page: 4987
  year: 2010
  publication-title: Chem. Mater.
– volume: 102
  start-page: 172906
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 335
  start-page: 1326
  year: 2012
  publication-title: Science
– volume: 622
  start-page: 162
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 90
  start-page: 252907
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 2692
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 8
  start-page: 273
  year: 1987
  publication-title: Phase Transit.
– volume: 23
  start-page: 1643
  year: 2011
  publication-title: Chem. Mater.
– volume: 94
  start-page: 4382
  year: 2011
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 131
  year: 1983
  publication-title: Phase Transit.
– volume: 34
  start-page: 1761
  year: 2014
  publication-title: J. Eur. Ceram. Soc.
– volume: 106
  start-page: 262901
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 916
  year: 2000
  publication-title: Acta Crystallogr., Sect. C
– volume: 26
  start-page: 6244
  year: 2014
  publication-title: Adv. Mater.
– volume: 36
  start-page: 3347
  year: 2016
  publication-title: J. Eur. Ceram. Soc.
– volume: 32
  start-page: 751
  year: 1976
  publication-title: Acta Crystallogr., Sect. A
– volume: 29
  start-page: 1601727
  year: 2017
  publication-title: Adv. Mater.
– volume: 55
  start-page: 840
  year: 2010
  publication-title: Prog. Mater. Sci.
– volume: 41
  start-page: 1139
  year: 2015
  publication-title: Ceram. Int.
– volume: 137
  start-page: 79
  year: 2014
  publication-title: Mater. Lett.
– volume: 2
  start-page: 1
  year: 2016
  publication-title: J. Materiomics
– volume: 92
  start-page: 1871
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 523
  start-page: 576
  year: 2015
  publication-title: Nature
– volume: 79
  start-page: 104113
  year: 2009
  publication-title: Phys. Rev. B
– volume: 100
  start-page: 212902
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 8380
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 585
  start-page: 14
  year: 2014
  publication-title: J. Alloys Compd.
– ident: e_1_2_5_10_1
  doi: 10.1111/jace.13412
– ident: e_1_2_5_12_1
  doi: 10.1016/j.jallcom.2014.09.171
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201402106
– ident: e_1_2_5_6_1
  doi: 10.1126/science.1216744
– ident: e_1_2_5_7_1
  doi: 10.1038/ncomms3487
– ident: e_1_2_5_25_1
  doi: 10.1111/j.1551-2916.2011.04731.x
– ident: e_1_2_5_1_1
  doi: 10.1002/adma.201601727
– ident: e_1_2_5_29_1
  doi: 10.1016/j.jallcom.2013.09.052
– ident: e_1_2_5_9_1
  doi: 10.1016/j.ceramint.2014.09.041
– ident: e_1_2_5_34_1
  doi: 10.1063/1.4803941
– ident: e_1_2_5_20_1
  doi: 10.1016/j.jeurceramsoc.2014.01.016
– ident: e_1_2_5_22_1
  doi: 10.1080/01411598308244116
– ident: e_1_2_5_26_1
  doi: 10.1039/C6TA04107H
– volume: 94
  start-page: 4352
  year: 2014
  ident: e_1_2_5_28_1
  publication-title: J. Am. Ceram. Soc.
– ident: e_1_2_5_37_1
  doi: 10.1107/S0108270100006806
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1551-2916.2009.03109.x
– ident: e_1_2_5_23_1
  doi: 10.1080/01411598708220073
– ident: e_1_2_5_33_1
  doi: 10.1016/j.jeurceramsoc.2016.05.017
– ident: e_1_2_5_35_1
  doi: 10.1063/1.4720146
– ident: e_1_2_5_4_1
  doi: 10.1038/nature14647
– ident: e_1_2_5_24_1
  doi: 10.1016/j.ssc.2014.12.004
– ident: e_1_2_5_3_1
  doi: 10.1109/20.911847
– ident: e_1_2_5_13_1
  doi: 10.1016/j.jmat.2015.12.002
– ident: e_1_2_5_36_1
  doi: 10.1016/j.pmatsci.2010.04.004
– ident: e_1_2_5_11_1
  doi: 10.1063/1.4923373
– ident: e_1_2_5_31_1
  doi: 10.1016/j.matlet.2014.08.133
– ident: e_1_2_5_21_1
  doi: 10.1021/cm103389q
– volume-title: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry
  year: 1960
  ident: e_1_2_5_40_1
– ident: e_1_2_5_14_1
  doi: 10.1039/C6TC03289C
– ident: e_1_2_5_27_1
  doi: 10.1111/jace.13737
– ident: e_1_2_5_17_1
  doi: 10.1063/1.2751136
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1127798
– ident: e_1_2_5_32_1
  doi: 10.1016/j.jeurceramsoc.2015.04.007
– ident: e_1_2_5_15_1
  doi: 10.1039/C6TA06353E
– ident: e_1_2_5_39_1
  doi: 10.1103/PhysRevB.73.235111
– ident: e_1_2_5_5_1
  doi: 10.1038/ncomms2747
– ident: e_1_2_5_16_1
  doi: 10.1080/0141159021000009007
– ident: e_1_2_5_38_1
  doi: 10.1107/S0567739476001551
– ident: e_1_2_5_18_1
  doi: 10.1103/PhysRevB.79.104113
– ident: e_1_2_5_19_1
  doi: 10.1021/cm101263p
SSID ssj0009606
Score 2.6841934
Snippet Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms antiferroelectric materials
Antiferroelectricity
Bulk density
Ceramics
Dielectric breakdown
Dielectric strength
Electron diffraction
Energy storage
Ferroelectric materials
Flux density
Hysteresis loops
Lead free
Lead zirconate titanates
lead‐free materials
Materials science
Niobium
Tantalum
Thermal stability
Zirconium
Title Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701824
https://www.ncbi.nlm.nih.gov/pubmed/28628242
https://www.proquest.com/docview/1928602950
https://www.proquest.com/docview/1911200160
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6rbp87ioiwiK-ADBQ2mSCSzKrqy7F0_-BH-jv8SZdLfrKiLoLaUJbTOZyTfpzDcAe0YbiciKJCNJDopCX9Eu6VsV25gcnwCNY_u8SE5vo7O7-O5TFn_FD1EfuLFmOHvNCl6q58MxaWhpHG8Q84lnIROCcsAWo6KrMX8Uw3NHtidjP0-ibMTa2AgPJ4dP7krfoOYkcnVbT2seytFLVxEnDweDvjrQL1_4HP_zVQswN8SlolktpEWYws4SzH5iK1yGey7H-f761uohiiYHGWGv163q6LS1uG5zkLW4aJOF6KO4KTnPklt81Cs4nkScuERDcU1-PpkxcTlOWliB29bJzdGpP6zN4GuZyshP0tQg5phZRR4PSVsGcRqhtYoUnFp5w-o0Lg3qxMaa3DC0BH2QlkxORqKUchWmO90OroMIUpUandkgV0mkApORE6aVssaYNG9g5oE_kk2hh8TlXD_jsagol8OCJ62oJ82D_br_U0XZ8WPPrZGoi6HqPhcEebkuVx43PNitb5PS8Z-UsoPdAfchmOpKdHuwVi2R-lE0mtzYKPQgdIL-5R2K5vF5s77a-MugTZjhdhWWuAXT_d4Atwkq9dWOU4cPl1gLlA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROJQeKJQ-0vJwJSROgU2c53FVWC2vFSqLVKmHKLbH0qrVbrXdvXDiJ_Ab-SXMOJtsl6pCojcnsRXH47G_cWa-Adgz2khEViQZSTJQFPqKdknfqtjGZPgEaBzbZy_pXken3-Lam5BjYSp-iObAjTXDrdes4HwgfThnDS2NIw5iQvEsjF7ACqf15iQGR1_nDFIM0B3dnoz9PImymrexFR4utl_cl_4Cm4vY1W0-ndeg6m5XPic_DqYTdaBvHjE6_td3rcPaDJqKdjWXNmAJh2_g1R-EhZvwnTNy3t_edcaIos1-Rjgej6pUOgMtrgbsZy16A1okJij6JYdacolPewW7lIhjF2sorsjUp5VMXM7jFt7Cdee4_6Xrz9Iz-FqmMvKTNDWIOWZWkdFDApdBnEZorSIdp1LesjqNS4M6sbEmSwwtoR-kWZPTOlFK-Q6Wh6MhfgARpCo1OrNBrpJIBSYjO0wrZY0xad7CzAO_Fk6hZ9zlnELjZ1GxLocFD1rRDJoH-039XxVrxz9rbtWyLmba-7sg1MupufK45cHn5jHpHf9MKYc4mnIdQqouS7cH76s50ryKWpMlG4UehE7ST_ShaB9dtJurj89ptAsvu_2L8-L8pHf2CVb5fuWluAXLk_EUtwk5TdSO040HR-sPrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJqHxwBiDEQbMk5B4CjSx8--xGlSMbRUaICHxEMX2WaqYWtS1L3viI_AZ-STcOW1KN02TxpuT2Irj89m_c-5-B7BnjZWIrEhSSTJQNIaadsnQ6cQlZPhEaD3bZzc9uVSnV8nVkyj-mh-iOXBjzfDrNSv4rXWHM9LQynreIOYTz2O1AC9VShrDsOj7jECK8bln25NJWKQqn9I2tuLD-fbz29IfWHMeuvq9p_Maqmmva5eTm4PxSB-YX78ROj7ns1ZhZQJMRbueSW_gBfbXYPkJXeFbuOZ8nA93950homizlxEOh4M6kU7PiPMee1mLbo-WiBGKi4oDLbnEZ72CHUrEsY80FOdk6NM6Js5mUQvrcNk5vvh0Ek6SM4RGZlKFaZZZxAJzp8nkIXHLKMkUOqdJw6lUtJzJksqiSV1iyA5DR9gHac4UtEpUUm7AYn_Qx00QUaYza3IXFTpVOrI5WWFGa2etzYoW5gGEU9mUZsJczgk0fpQ153Jc8qCVzaAFsN_Uv605O_5ac3sq6nKiuz9LwrycmKtIWgF8bB6T1vGvlKqPgzHXIZzqc3QH8K6eIs2rqDXZsSoOIPaC_kcfyvbRt3ZztfU_jT7A0tlRp_z6ufvlPbzi27WL4jYsjoZj3CHYNNK7XjMeAST7DmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead-Free+Antiferroelectric+Silver+Niobate+Tantalate+with+High+Energy+Storage+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Lei&rft.au=Liu%2C+Qing&rft.au=Gao%2C+Jing&rft.au=Zhang%2C+Shujun&rft.date=2017-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201701824&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon