Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lea...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 31 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201701824 |
Cover
Loading…
Abstract | Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
AgNbO3 lead‐free antiferroelectric ceramic is reported to be a promising candidate for energy storage applications. A great breakthrough with high recoverable energy density up to 4.2 J cm−3 and good thermal stability with minimal variation (±5%) over a temperature range of 20–120 °C is achieved in Ta‐modified AgNbO3 ceramics. This is possible because of the enhanced dielectric breakdown strength and antiferroelectricity. |
---|---|
AbstractList | Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.
AgNbO3 lead‐free antiferroelectric ceramic is reported to be a promising candidate for energy storage applications. A great breakthrough with high recoverable energy density up to 4.2 J cm−3 and good thermal stability with minimal variation (±5%) over a temperature range of 20–120 °C is achieved in Ta‐modified AgNbO3 ceramics. This is possible because of the enhanced dielectric breakdown strength and antiferroelectricity. Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm-3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm-1 versus 175 kV cm-1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O3 -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm-3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm-1 versus 175 kV cm-1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O 3 ‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm −3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm −1 versus 175 kV cm −1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O3‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm−3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm−1 versus 175 kV cm−1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La-doped Pb(Zr,Ti)O -based ceramics, lead-free alternatives are highly desired due to the environmental concerns, and AgNbO has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20-120 °C, can be achieved in Ta-modified AgNbO ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B-site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected-area electron diffraction measurements. Additionally, Ta addition in AgNbO leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm versus 175 kV cm for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density. |
Author | Liu, Qing Li, Jing‐Feng Gao, Jing Zhao, Lei Zhang, Shujun |
Author_xml | – sequence: 1 givenname: Lei surname: Zhao fullname: Zhao, Lei organization: Tsinghua University – sequence: 2 givenname: Qing surname: Liu fullname: Liu, Qing organization: Tsinghua University – sequence: 3 givenname: Jing surname: Gao fullname: Gao, Jing organization: Tsinghua University – sequence: 4 givenname: Shujun surname: Zhang fullname: Zhang, Shujun email: shujun@uow.edu.au organization: University of Wollongong – sequence: 5 givenname: Jing‐Feng surname: Li fullname: Li, Jing‐Feng email: jingfeng@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28628242$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1P3DAQhq2KqizQK0cUqZdesh07dhwfV3yUSsuHBJw4RI4zXowSmzreor31J_Q39pc0qwUqISFOM4fnmRnNu0O2fPBIyD6FKQVg33Tb6ykDKoFWjH8gEyoYzTkosUUmoAqRq5JX22RnGO4BQJVQfiLbrCrZiLMJuZ2jbv_-_nMSEbOZT85ijAE7NCk6k1257hfG7NyFRifMrrVPult3jy7dZaducZcde4yLVXaVQtQLzC4x2hB77Q3ukY9WdwN-fqq75Obk-PrwNJ9ffP9xOJvnppAFz0spW0SFlW0qKRCLggrJ0dpGKj52CqyRQrdoSisM5QotLxRig4oJqYtil3zdzH2I4ecSh1T3bjDYddpjWA41VZQyAFrCiH55hd6HZfTjdSM1fgWYEmvq4IlaNj229UN0vY6r-vltIzDdACaGYYhoXxAK9TqXep1L_ZLLKPBXgnFJJxd8itp1b2tqoz26DlfvLKlnR2ez_-4_jdaiew |
CitedBy_id | crossref_primary_10_1007_s10854_024_12379_w crossref_primary_10_1007_s10854_020_04249_y crossref_primary_10_1002_admt_202101530 crossref_primary_10_1063_1_5090444 crossref_primary_10_1016_j_mtphys_2022_100681 crossref_primary_10_1103_PhysRevB_100_220103 crossref_primary_10_1111_jace_18526 crossref_primary_10_1039_D5TC00155B crossref_primary_10_1557_jmr_2020_300 crossref_primary_10_1007_s10853_022_07964_5 crossref_primary_10_1039_C8TC04096F crossref_primary_10_1063_5_0198962 crossref_primary_10_1021_acsaelm_4c01623 crossref_primary_10_1038_s41467_023_36919_w crossref_primary_10_1016_j_jallcom_2021_162934 crossref_primary_10_1016_j_materresbull_2019_01_029 crossref_primary_10_1016_j_jeurceramsoc_2019_07_037 crossref_primary_10_1021_jacs_3c13405 crossref_primary_10_1016_j_ceramint_2018_05_154 crossref_primary_10_1002_smll_202206662 crossref_primary_10_1016_j_cej_2020_124158 crossref_primary_10_1016_j_jeurceramsoc_2023_01_036 crossref_primary_10_1039_D0TA02285C crossref_primary_10_1039_C9TA05446D crossref_primary_10_1016_j_est_2022_105591 crossref_primary_10_1007_s42864_022_00179_w crossref_primary_10_1016_j_ceramint_2019_06_237 crossref_primary_10_1002_adma_202201333 crossref_primary_10_1016_j_cej_2022_134660 crossref_primary_10_1103_PhysRevMaterials_7_114407 crossref_primary_10_1063_1_5111360 crossref_primary_10_1039_D1TA08167E crossref_primary_10_1016_j_ceramint_2020_02_135 crossref_primary_10_1016_j_cej_2022_136729 crossref_primary_10_1016_j_matpr_2021_07_419 crossref_primary_10_26599_JAC_2024_9220946 crossref_primary_10_1039_C9NR05282H crossref_primary_10_1063_1_5000980 crossref_primary_10_1088_1361_6463_ab87c2 crossref_primary_10_1039_C9TC02197C crossref_primary_10_1016_j_ceramint_2023_08_016 crossref_primary_10_4191_kcers_2019_56_1_02 crossref_primary_10_1016_j_jmst_2018_06_008 crossref_primary_10_1021_jacs_8b13827 crossref_primary_10_1021_acsami_1c19459 crossref_primary_10_1111_jace_17415 crossref_primary_10_1002_adfm_202311944 crossref_primary_10_1088_0256_307X_38_3_037701 crossref_primary_10_1016_j_cej_2022_134678 crossref_primary_10_1007_s10854_024_13812_w crossref_primary_10_1021_acsaelm_4c00878 crossref_primary_10_1088_1361_6633_ab49d6 crossref_primary_10_1039_C9TC02172H crossref_primary_10_1063_1_5080538 crossref_primary_10_1039_D0EE02104K crossref_primary_10_1016_j_cej_2024_154926 crossref_primary_10_1039_D2TA01577C crossref_primary_10_1016_j_compositesb_2021_109027 crossref_primary_10_1016_j_cej_2019_123729 crossref_primary_10_1016_j_jmat_2023_10_002 crossref_primary_10_1021_acs_chemmater_2c01241 crossref_primary_10_1111_jace_17785 crossref_primary_10_1111_jace_17669 crossref_primary_10_1039_C9TA02053E crossref_primary_10_1557_s43578_020_00085_2 crossref_primary_10_1016_j_cej_2021_129808 crossref_primary_10_1038_s41467_023_37469_x crossref_primary_10_1039_D2TA02534E crossref_primary_10_1016_j_jscs_2023_101617 crossref_primary_10_1016_j_cej_2022_136505 crossref_primary_10_3390_molecules26020481 crossref_primary_10_1021_acssuschemeng_1c08121 crossref_primary_10_1021_acsami_9b09552 crossref_primary_10_1016_j_jeurceramsoc_2019_07_047 crossref_primary_10_1016_j_ceramint_2017_11_018 crossref_primary_10_1016_j_nanoen_2020_105012 crossref_primary_10_1111_ijac_14892 crossref_primary_10_1007_s10854_023_11623_z crossref_primary_10_1039_D3TA04033J crossref_primary_10_1016_j_jeurceramsoc_2020_09_017 crossref_primary_10_1111_jace_16309 crossref_primary_10_1016_j_cej_2021_130800 crossref_primary_10_1021_acssuschemeng_0c08714 crossref_primary_10_1039_C9TC01414D crossref_primary_10_1016_j_mseb_2023_117025 crossref_primary_10_1039_D0TC00589D crossref_primary_10_1016_j_physb_2024_416385 crossref_primary_10_1021_acsami_4c08183 crossref_primary_10_1039_D3TC03815G crossref_primary_10_1063_5_0108805 crossref_primary_10_1557_s43578_021_00180_y crossref_primary_10_1021_acsami_2c11691 crossref_primary_10_1557_s43578_020_00007_2 crossref_primary_10_1002_smll_202106515 crossref_primary_10_1016_j_mtchem_2021_100485 crossref_primary_10_1007_s11664_022_09684_7 crossref_primary_10_1007_s40145_020_0367_8 crossref_primary_10_1007_s10854_021_05626_x crossref_primary_10_1016_j_scriptamat_2023_115295 crossref_primary_10_1021_acsaem_2c02664 crossref_primary_10_1016_j_scriptamat_2024_116426 crossref_primary_10_1038_s41563_020_0704_x crossref_primary_10_1088_1402_4896_ad1634 crossref_primary_10_1002_adfm_202425711 crossref_primary_10_1016_j_cej_2023_142862 crossref_primary_10_1039_D3TA03294A crossref_primary_10_1021_acsami_4c09282 crossref_primary_10_1111_jace_18977 crossref_primary_10_1557_s43578_020_00082_5 crossref_primary_10_3390_ma12010119 crossref_primary_10_1039_C9MH00352E crossref_primary_10_1007_s10854_022_07737_5 crossref_primary_10_1007_s10854_022_09781_7 crossref_primary_10_1016_j_ceramint_2020_09_144 crossref_primary_10_1007_s10854_020_02922_w crossref_primary_10_1039_C8TA10075F crossref_primary_10_1063_5_0088282 crossref_primary_10_1016_j_jeurceramsoc_2020_05_076 crossref_primary_10_1111_jace_19919 crossref_primary_10_1016_j_ceramint_2018_11_018 crossref_primary_10_1016_j_susmat_2019_e00092 crossref_primary_10_1039_D0MH00253D crossref_primary_10_1039_D1TA04504K crossref_primary_10_1039_C9TC06256D crossref_primary_10_1021_acsami_3c03296 crossref_primary_10_1021_acs_chemrev_0c01264 crossref_primary_10_1021_acssuschemeng_1c00303 crossref_primary_10_1021_acsami_1c23914 crossref_primary_10_1039_D3TA03491G crossref_primary_10_1039_D3DT02864J crossref_primary_10_1007_s10853_021_06684_6 crossref_primary_10_1016_j_jmat_2020_11_016 crossref_primary_10_1021_acsami_2c11599 crossref_primary_10_1039_D0NR05709F crossref_primary_10_13168_cs_2019_0019 crossref_primary_10_26599_JAC_2024_9220937 crossref_primary_10_1016_j_cej_2020_127375 crossref_primary_10_1063_1_5044712 crossref_primary_10_1111_jace_19808 crossref_primary_10_1016_j_cej_2020_127368 crossref_primary_10_1039_D4TA05920D crossref_primary_10_1039_C9TA00995G crossref_primary_10_1016_j_jeurceramsoc_2021_12_028 crossref_primary_10_1039_D0TC04381H crossref_primary_10_1021_jacs_3c06912 crossref_primary_10_1039_D2TA03602A crossref_primary_10_1002_aelm_201901366 crossref_primary_10_1039_C8TA07364C crossref_primary_10_1002_adfm_201807321 crossref_primary_10_1007_s10854_021_06689_6 crossref_primary_10_1016_j_jmat_2023_11_003 crossref_primary_10_1016_j_scriptamat_2020_04_040 crossref_primary_10_1007_s10854_020_03918_2 crossref_primary_10_1016_j_matlet_2019_03_035 crossref_primary_10_1039_D3QI01924A crossref_primary_10_1007_s13391_021_00328_2 crossref_primary_10_1016_j_jeurceramsoc_2021_07_062 crossref_primary_10_1016_j_jeurceramsoc_2020_09_032 crossref_primary_10_1007_s10853_021_06465_1 crossref_primary_10_1021_acs_chemmater_8b04470 crossref_primary_10_1021_acsaem_1c00704 crossref_primary_10_1039_C9TC04738G crossref_primary_10_1111_jace_17834 crossref_primary_10_1016_j_jmat_2021_04_001 crossref_primary_10_1039_C9QI01416K crossref_primary_10_1016_j_cej_2021_133441 crossref_primary_10_1021_acsami_4c12369 crossref_primary_10_1002_adfm_201801504 crossref_primary_10_1016_j_cej_2021_133447 crossref_primary_10_1038_s41427_018_0013_x crossref_primary_10_3390_cryst13010086 crossref_primary_10_1021_acsami_0c08737 crossref_primary_10_1016_j_jallcom_2022_164579 crossref_primary_10_1002_aelm_202200930 crossref_primary_10_1016_j_ceramint_2020_01_174 crossref_primary_10_1016_j_cej_2020_127945 crossref_primary_10_1016_j_ceramint_2018_07_182 crossref_primary_10_1007_s40145_021_0500_3 crossref_primary_10_1016_j_jeurceramsoc_2022_06_077 crossref_primary_10_1111_jace_16878 crossref_primary_10_1126_sciadv_aba0367 crossref_primary_10_1021_acsami_1c14151 crossref_primary_10_1111_jace_15780 crossref_primary_10_1063_1_5055297 crossref_primary_10_1002_adfm_202110478 crossref_primary_10_1021_acsami_4c11161 crossref_primary_10_1007_s12598_022_02150_7 crossref_primary_10_1007_s10854_018_0522_y crossref_primary_10_1007_s40145_020_0358_9 crossref_primary_10_1111_jace_15517 crossref_primary_10_1002_adfm_201706211 crossref_primary_10_1038_s41467_020_17664_w crossref_primary_10_1016_j_materresbull_2023_112157 crossref_primary_10_1111_jace_17814 crossref_primary_10_1016_j_nanoen_2019_02_003 crossref_primary_10_1021_acsami_4c12219 crossref_primary_10_1557_s43578_020_00093_2 crossref_primary_10_1021_acs_chemmater_0c03685 crossref_primary_10_1016_j_cej_2021_133584 crossref_primary_10_1039_C9DT01738K crossref_primary_10_1016_j_jallcom_2024_174710 crossref_primary_10_1557_jmr_2020_291 crossref_primary_10_1007_s10832_022_00279_6 crossref_primary_10_1016_j_jeurceramsoc_2022_05_062 crossref_primary_10_1039_D4TC04400B crossref_primary_10_1088_1361_648X_ab7ba3 crossref_primary_10_1016_j_cej_2023_142251 crossref_primary_10_1016_j_ceramint_2020_01_276 crossref_primary_10_1111_jace_17705 crossref_primary_10_1016_j_jeurceramsoc_2023_06_037 crossref_primary_10_1002_smll_202208105 crossref_primary_10_1016_j_actamat_2020_01_032 crossref_primary_10_1002_pssr_201800007 crossref_primary_10_1016_j_ceramint_2018_07_161 crossref_primary_10_1016_j_cej_2021_131047 crossref_primary_10_1007_s10854_020_03602_5 crossref_primary_10_1016_j_jeurceramsoc_2021_02_013 crossref_primary_10_15251_DJNB_2022_174_1431 crossref_primary_10_1557_s43578_020_00018_z crossref_primary_10_1021_acsami_2c16577 crossref_primary_10_1038_s41467_025_56443_3 crossref_primary_10_1557_jmr_2020_286 crossref_primary_10_1063_1_5061749 crossref_primary_10_3390_nano12050730 crossref_primary_10_1021_acsami_9b10819 crossref_primary_10_1039_D0NR04479B crossref_primary_10_1039_D0TA00216J crossref_primary_10_1007_s10853_023_09038_6 crossref_primary_10_1016_j_jeurceramsoc_2020_03_070 crossref_primary_10_3390_ma14247854 crossref_primary_10_1016_j_ceramint_2022_06_184 crossref_primary_10_3390_ma16114144 crossref_primary_10_1021_acsami_2c05205 crossref_primary_10_1002_smll_202306803 crossref_primary_10_1016_j_ceramint_2021_04_060 crossref_primary_10_1007_s43207_023_00322_4 crossref_primary_10_1039_D0TA11187B crossref_primary_10_1021_jacs_0c00480 crossref_primary_10_1016_j_ceramint_2022_05_011 crossref_primary_10_1002_adem_202300321 crossref_primary_10_1007_s10853_021_06353_8 crossref_primary_10_1016_j_cej_2022_141023 crossref_primary_10_1016_j_mtcomm_2024_110624 crossref_primary_10_1038_s41427_022_00426_z crossref_primary_10_1016_j_nanoen_2024_109394 crossref_primary_10_1002_advs_202300227 crossref_primary_10_1063_5_0200472 crossref_primary_10_1021_jacs_3c02811 crossref_primary_10_1039_C8EE03287D crossref_primary_10_1016_j_jeurceramsoc_2025_117284 crossref_primary_10_1039_D1TA02853G crossref_primary_10_1021_acsnano_0c00791 crossref_primary_10_1021_acsami_2c06889 crossref_primary_10_3390_ma16020492 crossref_primary_10_1016_j_jallcom_2018_11_371 crossref_primary_10_1016_j_jeurceramsoc_2024_116928 crossref_primary_10_1007_s12598_022_02176_x crossref_primary_10_1016_j_ceramint_2024_07_316 crossref_primary_10_5488_CMP_24_13702 crossref_primary_10_1016_j_cej_2024_149154 crossref_primary_10_1039_C9TA05182A crossref_primary_10_1016_j_cej_2023_141490 crossref_primary_10_1021_acsami_1c25234 crossref_primary_10_1021_acs_nanolett_4c03382 crossref_primary_10_1016_j_ceramint_2021_11_197 crossref_primary_10_1103_PhysRevB_110_064305 crossref_primary_10_1039_D0TA03526B crossref_primary_10_1039_C8TC04447C crossref_primary_10_3390_ma17102277 crossref_primary_10_1016_j_actamat_2018_09_056 crossref_primary_10_1002_anie_202401221 crossref_primary_10_1002_aenm_201803048 crossref_primary_10_1016_j_ceramint_2017_12_146 crossref_primary_10_1049_ema3_70004 crossref_primary_10_1016_j_cej_2024_152786 crossref_primary_10_1016_j_mtcomm_2024_108435 crossref_primary_10_1021_acsaelm_4c00679 crossref_primary_10_1002_adma_202310559 crossref_primary_10_1021_acsami_7b17382 crossref_primary_10_1039_D2TA08523B crossref_primary_10_1021_acsami_0c13057 crossref_primary_10_1063_1_5110527 crossref_primary_10_1016_j_nanoen_2024_109493 crossref_primary_10_1002_smll_202206125 crossref_primary_10_1016_j_ceramint_2021_10_035 crossref_primary_10_1016_j_ensm_2021_01_023 crossref_primary_10_2109_jcersj2_22161 crossref_primary_10_1002_adma_202205787 crossref_primary_10_1021_acsaem_1c02964 crossref_primary_10_1016_j_jallcom_2023_172147 crossref_primary_10_1039_D4TA02246G crossref_primary_10_1021_acsami_2c14234 crossref_primary_10_1016_j_jallcom_2018_06_199 crossref_primary_10_1016_j_jallcom_2023_170081 crossref_primary_10_1088_1361_6463_ac46ed crossref_primary_10_1016_j_jallcom_2020_156132 crossref_primary_10_1016_j_ceramint_2022_01_202 crossref_primary_10_1016_j_jmat_2022_04_002 crossref_primary_10_1021_acssuschemeng_3c03618 crossref_primary_10_3390_coatings12121826 crossref_primary_10_1016_j_jallcom_2024_176390 crossref_primary_10_1039_C9TC01014A crossref_primary_10_1016_j_ceramint_2021_08_039 crossref_primary_10_1016_j_jeurceramsoc_2018_09_041 crossref_primary_10_1039_C9TA00463G crossref_primary_10_1039_D3DT03139J crossref_primary_10_1016_j_jallcom_2023_169575 crossref_primary_10_35848_1347_4065_ac7ea7 crossref_primary_10_1016_j_cej_2022_135065 crossref_primary_10_1021_acsaem_1c00474 crossref_primary_10_1063_1_5143612 crossref_primary_10_1021_acsami_2c16021 crossref_primary_10_1016_j_cej_2024_156447 crossref_primary_10_1016_j_ceramint_2022_02_248 crossref_primary_10_1016_j_compositesb_2021_108815 crossref_primary_10_1021_acsami_0c16197 crossref_primary_10_1021_acsami_9b13215 crossref_primary_10_1016_j_cej_2023_145386 crossref_primary_10_1039_C8TC05458D crossref_primary_10_1016_j_materresbull_2024_112924 crossref_primary_10_1016_j_cej_2024_150901 crossref_primary_10_1063_1_5075719 crossref_primary_10_1021_acsami_2c02086 crossref_primary_10_1039_D2TA04200B crossref_primary_10_1021_acssuschemeng_8b02821 crossref_primary_10_1039_C8TA09353A crossref_primary_10_1039_C9TC05637H crossref_primary_10_1142_S2010135X18200047 crossref_primary_10_1021_acsami_3c10240 crossref_primary_10_1002_adfm_202302683 crossref_primary_10_1007_s00339_025_08239_x crossref_primary_10_1063_1_5035263 crossref_primary_10_1016_j_nanoen_2022_107577 crossref_primary_10_1049_iet_nde_2017_0007 crossref_primary_10_1111_jace_18091 crossref_primary_10_1021_acs_nanolett_2c04972 crossref_primary_10_1016_j_cej_2023_147672 crossref_primary_10_1039_C9TC05528B crossref_primary_10_1146_annurev_matsci_070317_124435 crossref_primary_10_1007_s00339_022_06024_8 crossref_primary_10_1021_acsami_0c06298 crossref_primary_10_26599_JAC_2023_9220745 crossref_primary_10_1063_5_0100614 crossref_primary_10_1007_s10854_020_04952_w crossref_primary_10_1039_D3TC03477A crossref_primary_10_1039_C8TC06549G crossref_primary_10_1002_adfm_202105060 crossref_primary_10_1016_j_cej_2022_137389 crossref_primary_10_1016_j_jallcom_2019_05_092 crossref_primary_10_1007_s10854_023_11180_5 crossref_primary_10_1016_j_jmat_2021_11_014 crossref_primary_10_1016_j_cej_2021_132534 crossref_primary_10_1021_acsaem_4c01193 crossref_primary_10_1021_acsaem_9b01550 crossref_primary_10_1039_D2TA09395B crossref_primary_10_1016_j_actamat_2023_119135 crossref_primary_10_1016_j_cej_2023_145363 crossref_primary_10_1016_j_jmat_2021_09_007 crossref_primary_10_1016_j_commatsci_2022_111394 crossref_primary_10_1111_jace_19270 crossref_primary_10_1039_C8TC02801J crossref_primary_10_1016_j_cej_2021_130475 crossref_primary_10_1007_s10853_020_04361_8 crossref_primary_10_1039_D1SC02729H crossref_primary_10_1021_jacs_2c12200 crossref_primary_10_1021_jacs_4c02868 crossref_primary_10_34133_energymatadv_0025 crossref_primary_10_1063_1_5034038 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1080_00150193_2022_2115792 crossref_primary_10_1016_j_jallcom_2019_03_304 crossref_primary_10_1039_D0TA08345C crossref_primary_10_1021_acsami_2c05168 crossref_primary_10_1039_D3EE01545A crossref_primary_10_1016_j_jeurceramsoc_2025_117218 crossref_primary_10_1016_j_cej_2023_147527 crossref_primary_10_1016_j_jeurceramsoc_2023_12_036 crossref_primary_10_1021_acsami_4c17212 crossref_primary_10_1021_acssuschemeng_8b01926 crossref_primary_10_1016_j_cej_2022_139222 crossref_primary_10_1116_6_0004162 crossref_primary_10_1039_D0TC01383H crossref_primary_10_1063_5_0084467 crossref_primary_10_1016_j_matlet_2018_11_105 crossref_primary_10_1039_D1TA00973G crossref_primary_10_1007_s40820_023_01036_2 crossref_primary_10_1007_s10854_018_9793_6 crossref_primary_10_1016_j_compscitech_2021_108942 crossref_primary_10_1021_jacs_9b05124 crossref_primary_10_1038_s41467_022_30821_7 crossref_primary_10_1016_j_actamat_2022_117931 crossref_primary_10_1016_j_ceramint_2019_05_096 crossref_primary_10_1016_j_cej_2021_129379 crossref_primary_10_1002_advs_202103842 crossref_primary_10_1016_j_nanoen_2019_104264 crossref_primary_10_1016_j_mssp_2024_109218 crossref_primary_10_1016_j_cej_2020_124879 crossref_primary_10_1142_S2010135X22420036 crossref_primary_10_1016_j_cej_2021_131465 crossref_primary_10_1002_adfm_201900918 crossref_primary_10_1016_j_cej_2021_130130 crossref_primary_10_1016_j_jeurceramsoc_2018_02_026 crossref_primary_10_1002_adfm_202000191 crossref_primary_10_1002_inf2_12147 crossref_primary_10_1021_acs_chemmater_0c01692 crossref_primary_10_1016_j_cej_2021_132540 crossref_primary_10_1016_j_ceramint_2019_10_047 crossref_primary_10_1016_j_ceramint_2024_04_325 crossref_primary_10_1016_j_susmat_2022_e00428 crossref_primary_10_1142_S2010135X22420061 crossref_primary_10_1016_j_jmat_2021_02_018 crossref_primary_10_1063_5_0094131 crossref_primary_10_1016_j_cej_2020_125639 crossref_primary_10_1016_j_cej_2024_151046 crossref_primary_10_54227_mlab_20230028 crossref_primary_10_1016_j_cej_2024_151043 crossref_primary_10_1039_D1TA07643D crossref_primary_10_1016_j_pmatsci_2022_101046 crossref_primary_10_1016_j_jeurceramsoc_2019_03_030 crossref_primary_10_34133_2022_9782343 crossref_primary_10_1002_adfm_202302995 crossref_primary_10_3390_ma14237188 crossref_primary_10_1016_j_ceramint_2022_02_106 crossref_primary_10_1007_s10853_021_06148_x crossref_primary_10_1021_acsami_0c00831 crossref_primary_10_1007_s40145_021_0516_8 crossref_primary_10_1007_s10854_024_14004_2 crossref_primary_10_1007_s10853_021_06480_2 crossref_primary_10_1007_s10854_021_06299_2 crossref_primary_10_1016_j_cej_2023_147974 crossref_primary_10_1021_acsaem_8b01099 crossref_primary_10_1021_acs_nanolett_4c05972 crossref_primary_10_1002_pc_26818 crossref_primary_10_1016_j_matdes_2020_109020 crossref_primary_10_1016_j_nanoen_2018_07_055 crossref_primary_10_1021_acs_nanolett_3c02929 crossref_primary_10_1016_j_cej_2020_125625 crossref_primary_10_1016_j_mtphys_2024_101545 crossref_primary_10_1021_acsami_2c20508 crossref_primary_10_1021_acsami_9b20803 crossref_primary_10_1016_j_mtphys_2024_101420 crossref_primary_10_1039_D0TC02377A crossref_primary_10_1039_D2TA08074E crossref_primary_10_1111_jace_16094 crossref_primary_10_1016_j_jmat_2022_03_004 crossref_primary_10_1021_acsami_0c09876 crossref_primary_10_1039_D2TA00380E crossref_primary_10_1002_smll_202302376 crossref_primary_10_7498_aps_69_20200213 crossref_primary_10_1016_j_jmat_2019_03_006 crossref_primary_10_1103_PhysRevMaterials_4_104417 crossref_primary_10_1039_D3TC00220A crossref_primary_10_1007_s42452_020_03862_0 crossref_primary_10_1039_D2TA10098C crossref_primary_10_1039_D0EE03094E crossref_primary_10_1039_C9TA02149C crossref_primary_10_1007_s10904_022_02418_6 crossref_primary_10_1007_s43207_024_00410_z crossref_primary_10_1016_j_cap_2021_01_006 crossref_primary_10_1557_s43578_021_00410_3 crossref_primary_10_1039_C9QI00383E crossref_primary_10_1039_D0TA03540H crossref_primary_10_1016_j_cej_2022_136315 crossref_primary_10_1016_j_pmatsci_2018_12_005 crossref_primary_10_1016_j_cej_2020_127151 crossref_primary_10_7498_aps_72_20230389 crossref_primary_10_1142_S2010135X18300050 crossref_primary_10_1016_j_jeurceramsoc_2023_03_031 crossref_primary_10_1002_adma_202302554 crossref_primary_10_1039_D4TA00867G crossref_primary_10_1002_smll_202400997 crossref_primary_10_1111_jace_19226 crossref_primary_10_1016_j_jmat_2019_06_003 crossref_primary_10_1016_j_matdes_2021_109666 crossref_primary_10_1016_j_jmat_2020_06_005 crossref_primary_10_1016_j_jallcom_2024_177518 crossref_primary_10_1039_C9TC03597D crossref_primary_10_1002_adma_202420258 crossref_primary_10_1016_j_cej_2021_129861 crossref_primary_10_1039_C8TA12232F crossref_primary_10_1039_D1RA01203G crossref_primary_10_1142_S2010135X18300062 crossref_primary_10_1016_j_cej_2020_128231 crossref_primary_10_1016_j_cej_2021_131959 crossref_primary_10_1021_acssuschemeng_0c05265 crossref_primary_10_1039_C9TC04320A crossref_primary_10_1007_s10832_022_00283_w crossref_primary_10_1007_s10854_022_08383_7 crossref_primary_10_1039_C8TC05451G crossref_primary_10_1021_acsami_3c09630 crossref_primary_10_1007_s10854_021_07511_z crossref_primary_10_1063_1_5141852 crossref_primary_10_1063_5_0137616 crossref_primary_10_1016_j_jmat_2024_03_014 crossref_primary_10_1016_j_jmat_2022_09_008 crossref_primary_10_1016_j_jmat_2022_09_007 crossref_primary_10_1016_j_jmat_2018_05_006 crossref_primary_10_1063_5_0030279 crossref_primary_10_1016_j_jeurceramsoc_2019_05_056 crossref_primary_10_1142_S2010135X18300049 crossref_primary_10_1103_PhysRevApplied_19_054058 crossref_primary_10_1039_C9TA01165J crossref_primary_10_3390_coatings13030534 crossref_primary_10_1039_C9TA11314B crossref_primary_10_1002_aenm_201903338 crossref_primary_10_1557_s43578_022_00568_4 crossref_primary_10_1038_s41467_020_18665_5 crossref_primary_10_1007_s10854_021_06841_2 crossref_primary_10_1016_j_jallcom_2019_152695 crossref_primary_10_1021_acsami_3c18103 crossref_primary_10_1016_j_ceramint_2020_06_100 crossref_primary_10_1016_j_ceramint_2019_07_097 crossref_primary_10_1039_C9TC06218A crossref_primary_10_1039_C8TA07303A crossref_primary_10_1002_smll_202306486 crossref_primary_10_1007_s12598_023_02452_4 crossref_primary_10_1088_1402_4896_ad1907 crossref_primary_10_1039_C8TC03181A crossref_primary_10_1111_jace_19776 crossref_primary_10_1107_S2052252519007711 crossref_primary_10_1038_s41467_025_56194_1 crossref_primary_10_1063_5_0158219 crossref_primary_10_1111_jace_19774 crossref_primary_10_1111_jace_19410 crossref_primary_10_1063_5_0220887 crossref_primary_10_1039_D0TC01711F crossref_primary_10_1039_D4TC02538E crossref_primary_10_1039_D2TC00056C crossref_primary_10_1016_j_ceramint_2024_01_416 crossref_primary_10_1039_D3TC02971A crossref_primary_10_1016_j_jeurceramsoc_2024_03_002 crossref_primary_10_1016_j_jeurceramsoc_2024_04_049 crossref_primary_10_1039_C9TC05672F crossref_primary_10_1111_jace_19669 crossref_primary_10_1007_s10854_022_08830_5 crossref_primary_10_1016_j_ceramint_2021_05_308 crossref_primary_10_1142_S2010135X1850039X crossref_primary_10_1002_aelm_201900698 crossref_primary_10_1002_ente_202100777 crossref_primary_10_1016_j_jallcom_2020_154611 crossref_primary_10_1021_acsnano_4c02168 crossref_primary_10_3390_ma16206753 crossref_primary_10_1021_acsami_2c01507 crossref_primary_10_1002_admt_201800111 crossref_primary_10_1111_jace_17486 crossref_primary_10_1016_j_cej_2020_128032 crossref_primary_10_1039_D3CP00607G crossref_primary_10_1002_adma_201802155 crossref_primary_10_1016_j_cej_2023_144086 crossref_primary_10_1039_C9TC02088H crossref_primary_10_1016_j_nanoen_2018_10_041 crossref_primary_10_1088_1361_6463_ac1136 crossref_primary_10_1002_smll_202202575 crossref_primary_10_1016_j_ceramint_2020_06_003 crossref_primary_10_1039_D2TA00905F crossref_primary_10_1021_acs_chemrev_9b00507 crossref_primary_10_1051_e3sconf_202450903002 crossref_primary_10_1002_smll_202400686 crossref_primary_10_1021_acsami_2c17170 crossref_primary_10_1021_acsomega_2c07646 crossref_primary_10_1016_j_jmat_2022_01_007 crossref_primary_10_1103_PhysRevB_104_174104 crossref_primary_10_1039_D3TA04605B crossref_primary_10_1016_j_materresbull_2019_02_002 crossref_primary_10_1016_j_cej_2021_132612 crossref_primary_10_1016_j_jmat_2022_01_001 crossref_primary_10_1007_s10854_023_10968_9 crossref_primary_10_1016_j_pmatsci_2021_100836 crossref_primary_10_1016_j_pmatsci_2021_100837 crossref_primary_10_1088_2053_1591_ab56f1 crossref_primary_10_1021_acsami_1c06075 crossref_primary_10_1002_aelm_202200793 crossref_primary_10_1002_ange_202401221 crossref_primary_10_1016_j_jmat_2021_08_005 crossref_primary_10_1007_s10853_020_05353_4 crossref_primary_10_1016_j_est_2024_113599 crossref_primary_10_1007_s10854_023_10593_6 crossref_primary_10_1063_5_0018373 crossref_primary_10_1016_j_ceramint_2022_08_208 crossref_primary_10_1021_acsanm_2c01132 crossref_primary_10_1016_j_cej_2021_133814 crossref_primary_10_1016_j_jallcom_2017_08_169 crossref_primary_10_20517_microstructures_2023_39 |
Cites_doi | 10.1111/jace.13412 10.1016/j.jallcom.2014.09.171 10.1002/adma.201402106 10.1126/science.1216744 10.1038/ncomms3487 10.1111/j.1551-2916.2011.04731.x 10.1002/adma.201601727 10.1016/j.jallcom.2013.09.052 10.1016/j.ceramint.2014.09.041 10.1063/1.4803941 10.1016/j.jeurceramsoc.2014.01.016 10.1080/01411598308244116 10.1039/C6TA04107H 10.1107/S0108270100006806 10.1111/j.1551-2916.2009.03109.x 10.1080/01411598708220073 10.1016/j.jeurceramsoc.2016.05.017 10.1063/1.4720146 10.1038/nature14647 10.1016/j.ssc.2014.12.004 10.1109/20.911847 10.1016/j.jmat.2015.12.002 10.1016/j.pmatsci.2010.04.004 10.1063/1.4923373 10.1016/j.matlet.2014.08.133 10.1021/cm103389q 10.1039/C6TC03289C 10.1111/jace.13737 10.1063/1.2751136 10.1126/science.1127798 10.1016/j.jeurceramsoc.2015.04.007 10.1039/C6TA06353E 10.1103/PhysRevB.73.235111 10.1038/ncomms2747 10.1080/0141159021000009007 10.1107/S0567739476001551 10.1103/PhysRevB.79.104113 10.1021/cm101263p |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201701824 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 28628242 10_1002_adma_201701824 ADMA201701824 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: No. 60 Chinese Post‐doc Foundation funderid: 2016M600086 – fundername: Ministry of Science and Technology of China funderid: 2015CB654605 – fundername: Australian Research Council funderid: FT140100698 – fundername: National Natural Science Foundation of China funderid: 51332002 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3734-677dee9e8fb875ee331574effb79457490fc75adec6f5c149ef439eebe9257a33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:04:41 EDT 2025 Sun Jul 13 03:56:54 EDT 2025 Mon Jul 21 05:42:01 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 00:44:34 EDT 2025 Wed Jan 22 17:06:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | lead-free materials thermal stability energy storage antiferroelectric materials |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-677dee9e8fb875ee331574effb79457490fc75adec6f5c149ef439eebe9257a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28628242 |
PQID | 1928602950 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1911200160 proquest_journals_1928602950 pubmed_primary_28628242 crossref_primary_10_1002_adma_201701824 crossref_citationtrail_10_1002_adma_201701824 wiley_primary_10_1002_adma_201701824_ADMA201701824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Aug |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-Aug |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2010; 55 2013; 4 2012; 100 2006; 73 2015; 523 2015; 622 1987; 8 2015; 204 1983; 3 2015; 98 2014; 26 2007; 90 2013; 102 2017; 29 2015; 106 2006; 313 2016; 36 2003; 76 2014; 137 2016; 4 1976; 32 2010; 22 2009; 79 2016; 2 2009; 92 2000; 56 2015; 41 2011; 94 2001; 37 2011; 23 1960 2012; 335 2014; 94 2014; 34 2014; 585 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Wang T. (e_1_2_5_28_1) 2014; 94 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 Pauling L. (e_1_2_5_40_1) 1960 |
References_xml | – volume: 98 start-page: 1175 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 35 start-page: 2775 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 4 start-page: 13778 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2487 year: 2013 publication-title: Nat. Commun. – volume: 204 start-page: 19 year: 2015 publication-title: Solid State Commun. – volume: 94 start-page: 4352 year: 2014 publication-title: J. Am. Ceram. Soc. – year: 1960 – volume: 37 start-page: 324 year: 2001 publication-title: IEEE Trans. Magn. – volume: 4 start-page: 17279 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1732 year: 2013 publication-title: Nat. Commun. – volume: 76 start-page: 611 year: 2003 publication-title: Phase Transitions – volume: 73 start-page: 23511 year: 2006 publication-title: Phys. Rev. B – volume: 313 start-page: 334 year: 2006 publication-title: Science – volume: 22 start-page: 4987 year: 2010 publication-title: Chem. Mater. – volume: 102 start-page: 172906 year: 2013 publication-title: Appl. Phys. Lett. – volume: 335 start-page: 1326 year: 2012 publication-title: Science – volume: 622 start-page: 162 year: 2015 publication-title: J. Alloys Compd. – volume: 90 start-page: 252907 year: 2007 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 2692 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 8 start-page: 273 year: 1987 publication-title: Phase Transit. – volume: 23 start-page: 1643 year: 2011 publication-title: Chem. Mater. – volume: 94 start-page: 4382 year: 2011 publication-title: J. Am. Ceram. Soc. – volume: 3 start-page: 131 year: 1983 publication-title: Phase Transit. – volume: 34 start-page: 1761 year: 2014 publication-title: J. Eur. Ceram. Soc. – volume: 106 start-page: 262901 year: 2015 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 916 year: 2000 publication-title: Acta Crystallogr., Sect. C – volume: 26 start-page: 6244 year: 2014 publication-title: Adv. Mater. – volume: 36 start-page: 3347 year: 2016 publication-title: J. Eur. Ceram. Soc. – volume: 32 start-page: 751 year: 1976 publication-title: Acta Crystallogr., Sect. A – volume: 29 start-page: 1601727 year: 2017 publication-title: Adv. Mater. – volume: 55 start-page: 840 year: 2010 publication-title: Prog. Mater. Sci. – volume: 41 start-page: 1139 year: 2015 publication-title: Ceram. Int. – volume: 137 start-page: 79 year: 2014 publication-title: Mater. Lett. – volume: 2 start-page: 1 year: 2016 publication-title: J. Materiomics – volume: 92 start-page: 1871 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 523 start-page: 576 year: 2015 publication-title: Nature – volume: 79 start-page: 104113 year: 2009 publication-title: Phys. Rev. B – volume: 100 start-page: 212902 year: 2012 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 8380 year: 2016 publication-title: J. Mater. Chem. C – volume: 585 start-page: 14 year: 2014 publication-title: J. Alloys Compd. – ident: e_1_2_5_10_1 doi: 10.1111/jace.13412 – ident: e_1_2_5_12_1 doi: 10.1016/j.jallcom.2014.09.171 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201402106 – ident: e_1_2_5_6_1 doi: 10.1126/science.1216744 – ident: e_1_2_5_7_1 doi: 10.1038/ncomms3487 – ident: e_1_2_5_25_1 doi: 10.1111/j.1551-2916.2011.04731.x – ident: e_1_2_5_1_1 doi: 10.1002/adma.201601727 – ident: e_1_2_5_29_1 doi: 10.1016/j.jallcom.2013.09.052 – ident: e_1_2_5_9_1 doi: 10.1016/j.ceramint.2014.09.041 – ident: e_1_2_5_34_1 doi: 10.1063/1.4803941 – ident: e_1_2_5_20_1 doi: 10.1016/j.jeurceramsoc.2014.01.016 – ident: e_1_2_5_22_1 doi: 10.1080/01411598308244116 – ident: e_1_2_5_26_1 doi: 10.1039/C6TA04107H – volume: 94 start-page: 4352 year: 2014 ident: e_1_2_5_28_1 publication-title: J. Am. Ceram. Soc. – ident: e_1_2_5_37_1 doi: 10.1107/S0108270100006806 – ident: e_1_2_5_30_1 doi: 10.1111/j.1551-2916.2009.03109.x – ident: e_1_2_5_23_1 doi: 10.1080/01411598708220073 – ident: e_1_2_5_33_1 doi: 10.1016/j.jeurceramsoc.2016.05.017 – ident: e_1_2_5_35_1 doi: 10.1063/1.4720146 – ident: e_1_2_5_4_1 doi: 10.1038/nature14647 – ident: e_1_2_5_24_1 doi: 10.1016/j.ssc.2014.12.004 – ident: e_1_2_5_3_1 doi: 10.1109/20.911847 – ident: e_1_2_5_13_1 doi: 10.1016/j.jmat.2015.12.002 – ident: e_1_2_5_36_1 doi: 10.1016/j.pmatsci.2010.04.004 – ident: e_1_2_5_11_1 doi: 10.1063/1.4923373 – ident: e_1_2_5_31_1 doi: 10.1016/j.matlet.2014.08.133 – ident: e_1_2_5_21_1 doi: 10.1021/cm103389q – volume-title: The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry year: 1960 ident: e_1_2_5_40_1 – ident: e_1_2_5_14_1 doi: 10.1039/C6TC03289C – ident: e_1_2_5_27_1 doi: 10.1111/jace.13737 – ident: e_1_2_5_17_1 doi: 10.1063/1.2751136 – ident: e_1_2_5_2_1 doi: 10.1126/science.1127798 – ident: e_1_2_5_32_1 doi: 10.1016/j.jeurceramsoc.2015.04.007 – ident: e_1_2_5_15_1 doi: 10.1039/C6TA06353E – ident: e_1_2_5_39_1 doi: 10.1103/PhysRevB.73.235111 – ident: e_1_2_5_5_1 doi: 10.1038/ncomms2747 – ident: e_1_2_5_16_1 doi: 10.1080/0141159021000009007 – ident: e_1_2_5_38_1 doi: 10.1107/S0567739476001551 – ident: e_1_2_5_18_1 doi: 10.1103/PhysRevB.79.104113 – ident: e_1_2_5_19_1 doi: 10.1021/cm101263p |
SSID | ssj0009606 |
Score | 2.6841934 |
Snippet | Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | antiferroelectric materials Antiferroelectricity Bulk density Ceramics Dielectric breakdown Dielectric strength Electron diffraction Energy storage Ferroelectric materials Flux density Hysteresis loops Lead free Lead zirconate titanates lead‐free materials Materials science Niobium Tantalum Thermal stability Zirconium |
Title | Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201701824 https://www.ncbi.nlm.nih.gov/pubmed/28628242 https://www.proquest.com/docview/1928602950 https://www.proquest.com/docview/1911200160 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6rbp87ioiwiK-ADBQ2mSCSzKrqy7F0_-BH-jv8SZdLfrKiLoLaUJbTOZyTfpzDcAe0YbiciKJCNJDopCX9Eu6VsV25gcnwCNY_u8SE5vo7O7-O5TFn_FD1EfuLFmOHvNCl6q58MxaWhpHG8Q84lnIROCcsAWo6KrMX8Uw3NHtidjP0-ibMTa2AgPJ4dP7krfoOYkcnVbT2seytFLVxEnDweDvjrQL1_4HP_zVQswN8SlolktpEWYws4SzH5iK1yGey7H-f761uohiiYHGWGv163q6LS1uG5zkLW4aJOF6KO4KTnPklt81Cs4nkScuERDcU1-PpkxcTlOWliB29bJzdGpP6zN4GuZyshP0tQg5phZRR4PSVsGcRqhtYoUnFp5w-o0Lg3qxMaa3DC0BH2QlkxORqKUchWmO90OroMIUpUandkgV0mkApORE6aVssaYNG9g5oE_kk2hh8TlXD_jsagol8OCJ62oJ82D_br_U0XZ8WPPrZGoi6HqPhcEebkuVx43PNitb5PS8Z-UsoPdAfchmOpKdHuwVi2R-lE0mtzYKPQgdIL-5R2K5vF5s77a-MugTZjhdhWWuAXT_d4Atwkq9dWOU4cPl1gLlA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROJQeKJQ-0vJwJSROgU2c53FVWC2vFSqLVKmHKLbH0qrVbrXdvXDiJ_Ab-SXMOJtsl6pCojcnsRXH47G_cWa-Adgz2khEViQZSTJQFPqKdknfqtjGZPgEaBzbZy_pXken3-Lam5BjYSp-iObAjTXDrdes4HwgfThnDS2NIw5iQvEsjF7ACqf15iQGR1_nDFIM0B3dnoz9PImymrexFR4utl_cl_4Cm4vY1W0-ndeg6m5XPic_DqYTdaBvHjE6_td3rcPaDJqKdjWXNmAJh2_g1R-EhZvwnTNy3t_edcaIos1-Rjgej6pUOgMtrgbsZy16A1okJij6JYdacolPewW7lIhjF2sorsjUp5VMXM7jFt7Cdee4_6Xrz9Iz-FqmMvKTNDWIOWZWkdFDApdBnEZorSIdp1LesjqNS4M6sbEmSwwtoR-kWZPTOlFK-Q6Wh6MhfgARpCo1OrNBrpJIBSYjO0wrZY0xad7CzAO_Fk6hZ9zlnELjZ1GxLocFD1rRDJoH-039XxVrxz9rbtWyLmba-7sg1MupufK45cHn5jHpHf9MKYc4mnIdQqouS7cH76s50ryKWpMlG4UehE7ST_ShaB9dtJurj89ptAsvu_2L8-L8pHf2CVb5fuWluAXLk_EUtwk5TdSO040HR-sPrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJqHxwBiDEQbMk5B4CjSx8--xGlSMbRUaICHxEMX2WaqYWtS1L3viI_AZ-STcOW1KN02TxpuT2Irj89m_c-5-B7BnjZWIrEhSSTJQNIaadsnQ6cQlZPhEaD3bZzc9uVSnV8nVkyj-mh-iOXBjzfDrNSv4rXWHM9LQynreIOYTz2O1AC9VShrDsOj7jECK8bln25NJWKQqn9I2tuLD-fbz29IfWHMeuvq9p_Maqmmva5eTm4PxSB-YX78ROj7ns1ZhZQJMRbueSW_gBfbXYPkJXeFbuOZ8nA93950homizlxEOh4M6kU7PiPMee1mLbo-WiBGKi4oDLbnEZ72CHUrEsY80FOdk6NM6Js5mUQvrcNk5vvh0Ek6SM4RGZlKFaZZZxAJzp8nkIXHLKMkUOqdJw6lUtJzJksqiSV1iyA5DR9gHac4UtEpUUm7AYn_Qx00QUaYza3IXFTpVOrI5WWFGa2etzYoW5gGEU9mUZsJczgk0fpQ153Jc8qCVzaAFsN_Uv605O_5ac3sq6nKiuz9LwrycmKtIWgF8bB6T1vGvlKqPgzHXIZzqc3QH8K6eIs2rqDXZsSoOIPaC_kcfyvbRt3ZztfU_jT7A0tlRp_z6ufvlPbzi27WL4jYsjoZj3CHYNNK7XjMeAST7DmY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead-Free+Antiferroelectric+Silver+Niobate+Tantalate+with+High+Energy+Storage+Performance&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Lei&rft.au=Liu%2C+Qing&rft.au=Gao%2C+Jing&rft.au=Zhang%2C+Shujun&rft.date=2017-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.201701824&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |