Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reduci...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 18; pp. e2106704 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs.
A comprehensive overview of natural graphite‐based materials in ongoing lithium‐ion batteries is presented, covering fundamental mechanisms, detailed applications, and an outlook of natural graphite‐based materials, from not only the aspects of structure and properties, modifications, derivatives, and composites, but also perspectives in terms of natural graphite in hybrid lithium‐ion/lithium‐metal cells and all‐solid‐state lithium batteries. |
---|---|
AbstractList | Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs. Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g –1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO 2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs. Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs. A comprehensive overview of natural graphite‐based materials in ongoing lithium‐ion batteries is presented, covering fundamental mechanisms, detailed applications, and an outlook of natural graphite‐based materials, from not only the aspects of structure and properties, modifications, derivatives, and composites, but also perspectives in terms of natural graphite in hybrid lithium‐ion/lithium‐metal cells and all‐solid‐state lithium batteries. Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g and appropriate lithiation/de-lithiation potential, and has been extensively used as the anode of lithium-ion batteries (LIBs). With the requirements of reducing CO emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG-based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high-rate and low-temperature charging performance. Prospects regarding the development orientation as well as future applications of NG-based materials are also considered, which will provide significant guidance for the current and future research of high-energy-density LIBs. |
Author | Yang, Quan‐Hong He, Yan‐Bing Zhao, Liang Qin, Xian‐Ying Wang, Zhijie Lv, Wei Ding, Baichuan Kang, Feiyu |
Author_xml | – sequence: 1 givenname: Liang surname: Zhao fullname: Zhao, Liang organization: Tsinghua University – sequence: 2 givenname: Baichuan surname: Ding fullname: Ding, Baichuan organization: Tsinghua University – sequence: 3 givenname: Xian‐Ying surname: Qin fullname: Qin, Xian‐Ying organization: Tsinghua University – sequence: 4 givenname: Zhijie surname: Wang fullname: Wang, Zhijie organization: Tsinghua University – sequence: 5 givenname: Wei surname: Lv fullname: Lv, Wei organization: Tsinghua University – sequence: 6 givenname: Yan‐Bing surname: He fullname: He, Yan‐Bing organization: Tsinghua University – sequence: 7 givenname: Quan‐Hong surname: Yang fullname: Yang, Quan‐Hong organization: Tianjin University – sequence: 8 givenname: Feiyu orcidid: 0000-0002-3704-4379 surname: Kang fullname: Kang, Feiyu email: fykang@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35032965$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOw0AQRVcIBCHQUiJLNDQOs097y_BGBJAQ1NbGHpNFtjfs2iA6PoFv5EtwFB4SDdU0Z46uziZZbVyDhOxQGFEAdmCK2owYMAoqAbFCBlQyGgvQcpUMQHMZayXSDbIZwiMAaAVqnWxwCZxpJQfk8hafbbCtbR6idobRraswRK6Mrk3beVNFZ97MZ7bFyDbRTfPgFuDEtjPb1R9v7xeuiQ5N26K3GLbIWmmqgNtfd0juT0_ujs7jyc3ZxdF4Euc84SIWXIFkmMuSgZ4qWoqUGw0FmpRhmfOSTVVepGXKE5CF4kUxTUQhE1QoWKIEH5L9pXfu3VOHoc1qG3KsKtOg60LGFANIdCIW6N4f9NF1vunX9ZTUilLabxqS0ZLKvQvBY5nNva2Nf80oZIvM2SJz9pO5f9j90nbTGosf_LtrD-gl8GIrfP1Hl42Pr8a_8k8xzopa |
CitedBy_id | crossref_primary_10_1002_aenm_202300123 crossref_primary_10_1002_aenm_202303876 crossref_primary_10_1021_acs_inorgchem_2c03297 crossref_primary_10_1002_adsu_202300061 crossref_primary_10_1002_ange_202314509 crossref_primary_10_1021_acsaem_3c01875 crossref_primary_10_1016_j_apsusc_2024_159782 crossref_primary_10_3390_batteries9080391 crossref_primary_10_3390_ma16216896 crossref_primary_10_1016_j_ijhydene_2023_11_268 crossref_primary_10_1002_smll_202305639 crossref_primary_10_1063_5_0178707 crossref_primary_10_1002_adsu_202300610 crossref_primary_10_1039_D2CP04032H crossref_primary_10_26599_NRE_2024_9120118 crossref_primary_10_1021_acs_jpclett_3c02714 crossref_primary_10_1149_1945_7111_ad4b5e crossref_primary_10_1002_ente_202400096 crossref_primary_10_1016_j_carbon_2023_118386 crossref_primary_10_1016_j_cej_2023_145017 crossref_primary_10_1016_j_carbon_2023_118664 crossref_primary_10_1039_D3NR02249H crossref_primary_10_1016_j_mssp_2024_108320 crossref_primary_10_1021_acsenergylett_2c02590 crossref_primary_10_1002_anie_202403775 crossref_primary_10_1016_j_jallcom_2023_172365 crossref_primary_10_1016_j_cej_2023_146181 crossref_primary_10_1038_s41467_023_35933_2 crossref_primary_10_1002_adfm_202303810 crossref_primary_10_1002_eem2_12686 crossref_primary_10_1002_smtd_202300708 crossref_primary_10_1002_aenm_202300500 crossref_primary_10_1016_j_matre_2024_100268 crossref_primary_10_1016_j_oneear_2022_11_006 crossref_primary_10_1039_D2TA06038H crossref_primary_10_1002_smll_202205887 crossref_primary_10_1149_1945_7111_ad47d8 crossref_primary_10_1007_s11581_022_04676_3 crossref_primary_10_54097_hset_v73i_13004 crossref_primary_10_1021_acsomega_3c09596 crossref_primary_10_1007_s11837_023_05992_3 crossref_primary_10_1039_D2TA09965A crossref_primary_10_1021_acsaem_2c03333 crossref_primary_10_1002_app_53544 crossref_primary_10_1016_j_apsusc_2023_156805 crossref_primary_10_1021_acsami_3c15484 crossref_primary_10_1039_D3TA07914G crossref_primary_10_1021_acsomega_3c01506 crossref_primary_10_1007_s11814_024_00060_1 crossref_primary_10_1007_s11837_023_06275_7 crossref_primary_10_1002_anie_202314509 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_1039_D3TA05558B crossref_primary_10_1021_acsami_3c10616 crossref_primary_10_1016_j_cej_2023_142128 crossref_primary_10_1016_S1872_5805_23_60724_3 crossref_primary_10_1002_smll_202310633 crossref_primary_10_1016_j_jallcom_2023_169345 crossref_primary_10_1002_aenm_202202253 crossref_primary_10_1007_s11356_023_30884_z crossref_primary_10_1002_tcr_202200131 crossref_primary_10_1021_acs_energyfuels_3c04493 crossref_primary_10_1039_D3YA00561E crossref_primary_10_1002_adfm_202212854 crossref_primary_10_1021_acsaem_3c01034 crossref_primary_10_1016_j_apsusc_2022_154178 crossref_primary_10_1016_j_biomaterials_2024_122498 crossref_primary_10_1002_batt_202400223 crossref_primary_10_1016_j_elecom_2022_107312 crossref_primary_10_1021_acs_langmuir_3c01903 crossref_primary_10_1007_s42823_023_00669_y crossref_primary_10_1016_j_jcis_2022_09_143 crossref_primary_10_1016_j_jcis_2023_09_025 crossref_primary_10_1002_ange_202403775 crossref_primary_10_1016_j_est_2024_112591 crossref_primary_10_3390_ma17010021 crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1016_j_jelechem_2023_117990 crossref_primary_10_1063_5_0191173 crossref_primary_10_1016_j_carbon_2024_119334 crossref_primary_10_1149_1945_7111_ace65c crossref_primary_10_1007_s11814_023_1529_5 crossref_primary_10_3390_batteries9030146 crossref_primary_10_1063_5_0138282 crossref_primary_10_1016_j_cej_2022_139994 crossref_primary_10_1039_D3QI00781B crossref_primary_10_1021_acsmaterialslett_3c00199 crossref_primary_10_1002_adfm_202300460 crossref_primary_10_1021_acs_energyfuels_4c02162 crossref_primary_10_1016_j_jcis_2022_12_140 crossref_primary_10_1016_j_cej_2024_149037 crossref_primary_10_1021_acs_energyfuels_3c04113 crossref_primary_10_1007_s11814_022_1227_8 crossref_primary_10_1016_j_carbon_2023_01_058 crossref_primary_10_1016_j_cej_2023_148047 crossref_primary_10_1016_j_est_2023_109737 crossref_primary_10_1039_D3TA03855F crossref_primary_10_1016_j_heliyon_2024_e25426 crossref_primary_10_1002_advs_202403530 crossref_primary_10_1016_j_jelechem_2024_118467 crossref_primary_10_1016_j_jelechem_2024_118107 crossref_primary_10_1002_aenm_202300495 crossref_primary_10_1016_j_carbon_2023_118004 crossref_primary_10_1016_j_ijoes_2024_100480 crossref_primary_10_1021_acs_langmuir_4c00940 crossref_primary_10_1002_aenm_202202450 crossref_primary_10_1039_D2TA09502E crossref_primary_10_1002_adma_202308193 crossref_primary_10_3390_catal13030499 crossref_primary_10_3390_molecules28062775 crossref_primary_10_1021_acsami_3c00904 |
Cites_doi | 10.1038/35104644 10.1021/cr500207g 10.1016/j.jallcom.2019.152333 10.1016/j.ceramint.2017.04.123 10.1039/C9TA09255B 10.1016/j.jallcom.2019.151870 10.1021/jacs.6b06673 10.1002/aenm.201700071 10.1016/j.carbon.2013.07.089 10.1016/j.carbon.2014.01.027 10.1186/2193-1801-3-585 10.1016/j.joule.2019.01.017 10.1038/nmat3944 10.1016/S0378-7753(98)00220-1 10.1016/j.carbon.2016.06.057 10.1021/nl403943g 10.1016/S1872-5805(09)60018-4 10.1016/j.ensm.2018.03.012 10.1002/aenm.201400753 10.1016/S1388-2481(00)00091-6 10.1016/j.electacta.2014.04.171 10.1021/am200421h 10.1016/j.elecom.2009.10.023 10.1002/adma.200802998 10.1002/adma.200602592 10.1016/j.ssi.2005.03.026 10.1149/1.1545453 10.1016/j.jpcs.2007.10.096 10.1016/j.carbon.2016.03.032 10.1007/s10800-008-9761-6 10.1016/j.nanoen.2021.106510 10.1103/PhysRevLett.103.246804 10.1016/j.jpowsour.2019.226841 10.1021/nn900933u 10.1016/S0008-6223(97)00195-4 10.1002/adma.200901846 10.1021/acs.nanolett.5b02604 10.1016/j.jpcs.2009.12.010 10.1038/nnano.2012.35 10.1039/C3RA45115A 10.1002/advs.201700298 10.1021/nn506955f 10.1016/j.jhazmat.2021.127724 10.1016/j.chempr.2016.07.009 10.1021/nl403631h 10.1016/S0013-4686(99)00194-2 10.1038/nmat2749 10.1021/acs.jpclett.9b03456 10.1039/C7QI00184C 10.1002/adma.201304338 10.1002/marc.200800754 10.1016/j.elecom.2011.07.014 10.1021/jp302265n 10.1039/c1ee01598b 10.1039/C9TA04240G 10.1038/nmat1849 10.1002/prac.18400210117 10.1021/acsnano.8b01617 10.1002/adma.201001068 10.1038/ncomms4415 10.1002/adma.201400280 10.1039/c3ee24163g 10.1038/nenergy.2016.113 10.1021/nl504336h 10.1002/anie.200351203 10.1016/j.joule.2020.12.020 10.1016/j.carbon.2020.11.027 10.1039/c0jm01633k 10.1016/j.electacta.2009.02.012 10.1016/j.jpowsour.2013.10.012 10.1021/jp409668m 10.1073/pnas.1105113108 10.1016/j.ensm.2018.05.020 10.1088/0953-8984/20/32/323202 10.1039/C4TA06186A 10.1002/adma.202006313 10.1016/j.nanoen.2020.104849 10.1073/pnas.0502848102 10.1021/acsnano.9b07706 10.1016/j.carbon.2007.02.034 10.1002/anie.202102593 10.1038/451652a 10.1002/aenm.201400207 10.1016/j.electacta.2016.12.018 10.1016/j.carbon.2014.12.036 10.1039/D0EE02230F 10.1088/1361-6463/aa5583 10.1002/celc.201402212 10.1039/C9TA12651A 10.1021/nl501617j 10.1103/PhysRevB.44.9170 10.1021/acsenergylett.1c00627 10.1016/S0013-4686(02)00845-9 10.1016/j.matchemphys.2018.08.020 10.1016/j.jpowsour.2008.10.041 10.1039/C8TA06670A 10.1002/aenm.201300600 10.1021/acsnano.8b09027 10.1016/S0255-2701(97)00022-6 10.1016/j.jallcom.2017.08.244 10.1016/j.electacta.2012.12.124 10.1021/acsenergylett.8b00453 10.1016/j.ensm.2020.12.027 10.1016/S1872-5805(19)60012-0 10.1021/nl0727157 10.1039/C4EE03825H 10.1149/1.2218163 10.1038/nnano.2008.365 10.1016/j.electacta.2013.11.057 10.1016/j.carbon.2019.08.023 10.1038/nature07872 10.1039/C4TA06332E 10.1021/nl3014814 10.1016/j.elecom.2009.12.024 10.1016/j.electacta.2013.06.032 10.1016/j.electacta.2015.10.087 10.1016/j.jpowsour.2011.12.011 10.1039/C7EE00838D 10.1002/adma.201807243 10.1039/C6TA02442D 10.1021/am301202a 10.1039/C4EE02211D 10.1126/science.1102896 10.1016/S0008-6223(97)00097-3 10.1038/nnano.2008.215 10.1039/D0SE00175A 10.5796/kogyobutsurikagaku.64.922 10.1149/1945-7111/aba36f 10.1002/aenm.201601481 10.1038/s41563-021-00943-2 10.1002/admi.201600798 10.1016/j.jmat.2020.06.009 10.1016/j.electacta.2010.04.101 10.1016/j.jpowsour.2015.01.046 10.1016/S0378-7753(00)00552-8 10.1016/j.nanoen.2012.02.004 10.1016/S0008-6223(97)00065-1 10.1126/science.1212741 10.1002/anie.200802539 10.1002/smll.202102316 10.1002/smll.201803858 10.1016/j.powtec.2007.06.025 10.1088/0957-4484/20/32/325701 10.1016/0008-6223(96)00031-0 10.1016/j.carbon.2019.04.025 10.1016/j.nanoen.2015.03.001 10.1149/2.028302jes 10.1039/C8RA07170E 10.1016/S0008-6223(02)00023-4 10.1016/j.electacta.2019.03.149 10.1016/j.jpowsour.2006.02.064 10.1016/S0008-6223(99)00141-4 10.1021/nl802558y 10.1016/j.mattod.2017.11.001 10.1016/S1388-2481(00)00022-9 10.1016/j.jallcom.2016.07.148 10.1149/1.1838758 10.1021/cm0630800 10.1016/j.carbon.2015.04.064 10.1038/35104596 10.1039/c2ee22292b 10.1016/j.ssi.2021.115789 10.1126/science.1171245 10.1016/S0008-6223(98)00290-5 10.1021/acsnano.5b03166 10.1016/j.jpowsour.2011.07.006 10.1038/nnano.2007.411 10.1149/2.0421714jes 10.1016/S0378-7753(99)00191-3 10.1038/ncomms2705 10.1016/j.joule.2020.04.003 10.1016/j.jpowsour.2009.01.067 10.1038/nchem.2054 10.1039/C7RA03438E 10.1149/1.1836372 10.1016/S0167-2738(02)00823-8 10.1039/c0ee00683a 10.1016/j.jallcom.2012.03.096 10.1002/aenm.201500289 10.1038/nature11458 10.14447/jnmes.v18i3.358 10.1016/j.carbon.2015.11.048 10.1016/j.ssi.2018.04.023 10.1039/c2nr33099g 10.1039/C4TA06044J 10.1016/j.carbon.2021.02.055 10.1038/nnano.2009.58 10.1002/bkcs.10036 10.1002/anie.200804355 10.1016/S0008-6223(00)00155-X 10.1080/01496395.2016.1206933 10.1007/s10008-009-0888-0 10.1038/nmat4170 10.1039/B612422D 10.1039/C1CC14764A 10.1016/j.carbon.2013.01.070 10.1039/b316702j 10.1021/am3005237 10.1021/cm901452z 10.1002/cey2.2 10.1007/s12274-019-2444-2 10.1002/smtd.201600037 10.1016/j.jechem.2020.02.044 10.1021/jacs.1c08606 10.1149/1.1498255 10.1149/1.1851055 10.1149/2.1081706jes 10.1002/adfm.202007630 10.1016/j.electacta.2016.03.014 10.1016/j.cej.2017.05.180 10.1002/aenm.201600426 10.1039/C4FD00079J 10.1038/s41467-017-02479-z 10.1016/0008-6223(88)90227-8 10.1002/anie.200906287 10.1039/C4TA01267D 10.1149/1.1461377 10.1039/C8NJ05835K 10.1021/nl303823k 10.1149/2.1251802jes 10.1002/zaac.19382380102 10.1126/science.aav5842 10.1021/acsami.6b12570 10.1021/cm950304y 10.1126/science.270.5236.590 10.1016/j.carbon.2021.01.128 10.1016/j.elecom.2015.05.001 10.1039/b919738a 10.1038/nature07719 10.1002/anie.201913174 10.1007/s11581-021-03977-3 10.1021/acssuschemeng.0c08964 10.1002/adfm.201203777 10.3390/en13184867 10.1002/adma.201906427 10.1126/science.1125925 10.1021/ja211266m 10.1002/sstr.202000010 10.1016/j.carbon.2013.02.025 10.1149/1.1837571 10.1126/science.1200770 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202106704 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202106704 35032965 ADMA202106704 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Shenzhen All‐Solid‐State Lithium Battery Electrolyte Engineering Research Centre funderid: XMHT20200203006 – fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program funderid: 2017BT01N111 – fundername: National Natural Science Foundation of China funderid: U2001220 – fundername: Shenzhen Technical Plan Project funderid: RCJC20200714114436091; JCYJ20180508152135822 – fundername: National Key Research and Development Program of China funderid: 2021YFF0500600 – fundername: Shenzhen Technical Plan Project grantid: JCYJ20180508152135822 – fundername: Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Centre grantid: XMHT20200203006 – fundername: National Natural Science Foundation of China grantid: U2001220 – fundername: National Key Research and Development Program of China grantid: 2021YFF0500600 – fundername: Shenzhen Technical Plan Project grantid: RCJC20200714114436091 – fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program grantid: 2017BT01N111 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX ACRPL ACYXJ CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3734-436052ec5f209b61f483a90dea82efc3f2b6cd8f83705d63ddb74d57e6e427643 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Wed Dec 04 14:57:23 EST 2024 Tue Nov 19 03:43:12 EST 2024 Fri Dec 06 01:31:32 EST 2024 Sat Sep 28 08:41:13 EDT 2024 Sat Aug 24 00:59:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | microcrystalline graphite lithium-ion batteries flake graphite graphene natural graphite-based anodes |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-436052ec5f209b61f483a90dea82efc3f2b6cd8f83705d63ddb74d57e6e427643 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-3704-4379 |
PMID | 35032965 |
PQID | 2659611137 |
PQPubID | 2045203 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2620079744 proquest_journals_2659611137 crossref_primary_10_1002_adma_202106704 pubmed_primary_35032965 wiley_primary_10_1002_adma_202106704_ADMA202106704 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005; 176 2019; 13 2019; 12 2013; 64 2019; 15 2018; 323 1999; 45 2019; 16 2003; 150 2020; 14 2020; 13 1996; 143 2020; 167 2020; 11 2003; 158 2012; 12 2017; 728 2013; 58 2012; 530 2013; 57 2013; 117 2018; 219 2017; 164 2008; 20 2019; 155 1996; 64 2010; 9 2007; 17 2007; 19 2019; 31 2019; 34 2013; 107 2013; 93 1840; 21 2016; 688 2020; 32 2011; 4 2004; 306 2011; 3 2016; 4 2017; 50 2016; 6 2016; 1 1998 1998 2009; 190 2019; 43 1999; 37 2008; 47 2009; 189 2001; 39 2012; 48 2021; 60 1998; 145 2016; 8 2015; 184 2010; 55 2013; 23 2017; 43 2020; 59 2008; 8 2014; 172 2008; 3 2016; 103 2012; 203 1996; 34 2014; 1 2020; 8 2020; 4 2014; 5 2014; 4 2020; 3 2014; 3 2020; 1 2014; 2 2013; 13 1991; 44 2002; 40 2020; 370 2008; 69 2020; 49 2016; 110 2014; 7 2014; 6 1996; 8 1938; 238 2009; 324 2020; 815 2010; 71 2021; 9 2011; 334 2021; 7 2021; 6 2021; 5 2015; 5 2005; 152 2015; 3 2015; 92 2019; 309 2006 2006; 153 2003 2015; 9 2015; 8 2006; 156 2021; 90 2011; 332 2011; 108 2020; 74 2015; 279 2017; 10 2016; 138 2009; 4 2009; 3 2008; 451 2014; 72 2017; 223 2007; 45 2022; 424 2010; 12 2018; 165 2019; 2019 2013; 4 2010; 14 2014; 26 2011; 196 2013; 5 2013; 6 2014; 135 2010; 22 2018; 6 2014; 248 2018; 9 2018; 8 2010; 20 2018; 3 2010; 25 2012; 134 1969; 268C 2015; 84 2005; 102 1997; 144 2012; 490 2003; 48 2014; 14 2007; 6 2002; 149 2014; 13 2019; 436 2003; 42 2001; 414 2017; 326 2015; 57 2019; 7 2018; 28 2019; 3 2019; 1 2016; 98 1993 1992 2018; 21 1995; 270 2009; 457 2009; 458 2010; 49 2010; 46 1997; 36 1988; 26 1997; 35 2021; 372 2018; 12 2012; 116 2009; 103 2018; 15 2017; 7 2001; 93 2021; 27 2015; 36 2017; 1 2021; 20 2017; 4 2019; 809 2000; 2 2011; 13 1999; 81 2013; 160 2021; 36 2021; 31 2009; 54 2021; 33 2016; 196 2014; 116 2015; 15 2015; 14 2009; 21 2009; 20 2015; 18 2019; 149 2016; 51 2014; 114 2006; 312 2008; 181 2022; 144 2009; 30 2000; 38 2012; 1 2004; 14 2021; 17 2021; 173 2021; 177 2021; 176 2012; 7 2012; 4 2012; 5 1998; 36 2009; 39 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 Ma Y. (e_1_2_9_240_1) 2019; 2019 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 Daumas N. (e_1_2_9_63_1) 1969; 268 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 Akbar S. (e_1_2_9_245_1) 2018; 28 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_90_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_236_1 e_1_2_9_76_1 e_1_2_9_91_1 Yin Y. (e_1_2_9_111_1) 2021; 9 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 Kuratani K. (e_1_2_9_191_1) 2020; 3 e_1_2_9_252_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_24_2 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 Donnet J.‐B. (e_1_2_9_196_1) 1993 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 134 start-page: 2512 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4858 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1427 year: 2017 publication-title: Energy Environ. Sci. – volume: 21 start-page: 129 year: 1840 publication-title: J. Prakt. Chem. – volume: 3 start-page: 5472 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 144 start-page: 212 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 108 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 3930 year: 2009 publication-title: Electrochim. Acta – volume: 110 start-page: 520 year: 2016 publication-title: Carbon – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 36 start-page: 150 year: 2015 publication-title: Bull. Korean Chem. Soc. – volume: 414 start-page: 331 year: 2001 publication-title: Nature – volume: 143 start-page: L4 year: 1996 publication-title: J. Electrochem. Soc. – volume: 44 start-page: 9170 year: 1991 publication-title: Phys. Rev. B – volume: 69 start-page: 1265 year: 2008 publication-title: J. Phys. Chem. Solids – volume: 3 start-page: 1080 year: 2019 publication-title: Joule – volume: 14 start-page: 271 year: 2015 publication-title: Nat. Mater. – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 60 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 93 start-page: 236 year: 2013 publication-title: Electrochim. Acta – volume: 20 year: 2008 publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 307 year: 2008 publication-title: Nano Lett. – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 14 start-page: 1754 year: 2004 publication-title: J. Mater. Chem. – volume: 4 start-page: 1113 year: 2011 publication-title: Energy Environ. Sci. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 47 start-page: 7461 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 329 year: 2007 publication-title: J. Mater. Chem. – volume: 530 start-page: 30 year: 2012 publication-title: J Alloys Compd. – volume: 26 start-page: 3724 year: 2014 publication-title: Adv. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 26 start-page: 357 year: 1988 publication-title: Carbon – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 309 start-page: 264 year: 2019 publication-title: Electrochim. Acta – volume: 3 start-page: 7112 year: 2015 publication-title: J. Mater. Chem. A – volume: 135 start-page: 27 year: 2014 publication-title: Electrochim. Acta – volume: 9 start-page: 3479 year: 2015 publication-title: ACS Nano – volume: 107 start-page: 555 year: 2013 publication-title: Electrochim. Acta – volume: 12 start-page: 3315 year: 2012 publication-title: Nano Lett. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 5 start-page: 9014 year: 2012 publication-title: Energy Environ. Sci. – volume: 152 start-page: A474 year: 2005 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 136 year: 2021 publication-title: J. Materiomics – volume: 4 start-page: 3459 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 393 year: 2021 publication-title: Joule – volume: 3 start-page: 2966 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 89 year: 2010 publication-title: New Carbon Mater. – volume: 176 start-page: 21 year: 2021 publication-title: Carbon – volume: 26 start-page: 2084 year: 2014 publication-title: Adv. Mater. – volume: 156 start-page: 142 year: 2006 publication-title: J. Power Sources – volume: 15 start-page: 1691 year: 2015 publication-title: Nano Lett. – volume: 457 start-page: 706 year: 2009 publication-title: Nature – volume: 436 year: 2019 publication-title: J. Power Sources – volume: 3 start-page: 3144 year: 2015 publication-title: J. Mater. Chem. A – volume: 14 start-page: 951 year: 2010 publication-title: J. Solid State Electrochem. – volume: 728 start-page: 1 year: 2017 publication-title: J Alloys Compd. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 102 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 5519 year: 2010 publication-title: Electrochim. Acta – volume: 145 start-page: 3024 year: 1998 publication-title: J. Electrochem. Soc. – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 3 start-page: 3730 year: 2009 publication-title: ACS Nano – volume: 74 year: 2020 publication-title: Nano Energy – volume: 103 start-page: 356 year: 2016 publication-title: Carbon – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 38 start-page: 183 year: 2000 publication-title: Carbon – volume: 6 start-page: 1831 year: 2021 publication-title: ACS Energy Lett. – volume: 196 start-page: 405 year: 2016 publication-title: Electrochim. Acta – volume: 57 start-page: 27 year: 2015 publication-title: Electrochem. Commun. – volume: 688 start-page: 1072 year: 2016 publication-title: J Alloys Compd. – volume: 150 start-page: A274 year: 2003 publication-title: J. Electrochem. Soc. – volume: 40 start-page: 1575 year: 2002 publication-title: Carbon – volume: 35 start-page: 1167 year: 1997 publication-title: Carbon – volume: 2 start-page: 626 year: 2000 publication-title: Electrochem. Commun. – volume: 13 start-page: 4867 year: 2020 publication-title: Energies – volume: 21 start-page: 231 year: 2018 publication-title: Mater. Today – volume: 92 start-page: 311 year: 2015 publication-title: Carbon – volume: 248 start-page: 721 year: 2014 publication-title: J. Power Sources – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 323 start-page: 123 year: 2018 publication-title: Solid State Ionics – volume: 42 start-page: 4203 year: 2003 publication-title: Angew. Chem. Int Ed. – volume: 21 start-page: 2710 year: 2009 publication-title: Adv. Mater. – volume: 8 start-page: 869 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 start-page: 461 year: 2010 publication-title: Nat. Mater. – volume: 15 start-page: 31 year: 2018 publication-title: Energy Storage Mater. – volume: 4 start-page: 5387 year: 2020 publication-title: Sustainable Energy Fuels – volume: 12 start-page: 303 year: 2010 publication-title: Electrochem. Commun. – volume: 9 start-page: 8059 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 13 start-page: 1116 year: 2011 publication-title: Electrochem. Commun. – volume: 19 start-page: 4396 year: 2007 publication-title: Chem. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 189 start-page: 121 year: 2009 publication-title: J. Power Sources – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 219 start-page: 57 year: 2018 publication-title: Mater. Chem. Phys. – year: 2003 – volume: 5 start-page: 3415 year: 2014 publication-title: Nat. Commun. – volume: 2019 year: 2019 publication-title: J. Nanomater. – volume: 15 year: 2019 publication-title: Small – volume: 815 year: 2020 publication-title: J. Alloys Compd. – volume: 34 start-page: 205 year: 2019 publication-title: New Carbon Mater. – volume: 8 start-page: 389 year: 1996 publication-title: Chem. Mater. – volume: 458 start-page: 872 year: 2009 publication-title: Nature – volume: 36 start-page: 383 year: 1998 publication-title: Carbon – volume: 28 start-page: 1 year: 2018 publication-title: Carbon Lett. – volume: 43 start-page: 9458 year: 2017 publication-title: Ceram. Int. – volume: 1 start-page: 57 year: 2019 publication-title: Carbon Energy – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 20 year: 2009 publication-title: Nanotechnology – volume: 37 start-page: 165 year: 1999 publication-title: Carbon – volume: 4 start-page: 3243 year: 2011 publication-title: Energy Environ. Sci. – volume: 49 start-page: 233 year: 2020 publication-title: J. Energy Chem. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 172 start-page: 223 year: 2014 publication-title: Faraday Discuss. – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 18 start-page: 131 year: 2015 publication-title: J. New Mater. Electrochem. Syst. – volume: 48 start-page: 1073 year: 2003 publication-title: Electrochim. Acta – volume: 64 start-page: 553 year: 2013 publication-title: Carbon – volume: 71 start-page: 457 year: 2010 publication-title: J. Phys. Chem. Solids – volume: 13 start-page: 7536 year: 2019 publication-title: ACS Nano – volume: 20 start-page: 9644 year: 2010 publication-title: J. Mater. Chem. – volume: 34 start-page: 889 year: 1996 publication-title: Carbon – volume: 58 start-page: 238 year: 2013 publication-title: Carbon – volume: 223 start-page: 85 year: 2017 publication-title: Electrochim. Acta – volume: 51 start-page: 2465 year: 2016 publication-title: Sep. Sci. Technol. – volume: 153 year: 2006 publication-title: J. Electrochem. Soc. – volume: 22 start-page: 415 year: 2010 publication-title: Adv. Mater. – volume: 8 start-page: 3498 year: 2008 publication-title: Nano Lett. – volume: 23 start-page: 4345 year: 2013 publication-title: Adv. Funct. Mater. – volume: 268C start-page: 373 year: 1969 publication-title: C. R. Acad. Sci. Paris – volume: 12 start-page: 10 year: 2010 publication-title: Electrochem. Commun. – volume: 49 start-page: 2146 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 196 start-page: 9820 year: 2011 publication-title: J. Power Sources – volume: 6 start-page: 957 year: 2014 publication-title: Nat. Chem. – volume: 809 year: 2019 publication-title: J Alloys Compd. – volume: 312 start-page: 1191 year: 2006 publication-title: Science – volume: 16 start-page: 290 year: 2019 publication-title: Energy Storage Mater. – volume: 13 start-page: 624 year: 2014 publication-title: Nat. Mater. – volume: 270 start-page: 590 year: 1995 publication-title: Science – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 177 start-page: 90 year: 2021 publication-title: Carbon – volume: 15 start-page: 6756 year: 2015 publication-title: Nano Lett. – volume: 20 start-page: 984 year: 2021 publication-title: Nat. Mater. – volume: 181 start-page: 51 year: 2008 publication-title: Powder Technol. – volume: 30 start-page: 316 year: 2009 publication-title: Macromol. Rapid Comm. – year: 1993 – volume: 7 start-page: 3320 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2100 year: 2013 publication-title: Nanoscale – volume: 14 start-page: 153 year: 2014 publication-title: Nano Lett. – volume: 160 start-page: A112 year: 2013 publication-title: J. Electrochem. Soc. – volume: 190 start-page: 553 year: 2009 publication-title: J. Power Sources – volume: 98 start-page: 582 year: 2016 publication-title: Carbon – volume: 47 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 1 start-page: 287 year: 2016 publication-title: Chem – volume: 6 start-page: 1521 year: 2013 publication-title: Energy Environ. Sci. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 3985 year: 2018 publication-title: ACS Nano – volume: 238 start-page: 1 year: 1938 publication-title: Z. Anorg. Allg. Chem. – volume: 176 start-page: 2389 year: 2005 publication-title: Solid State Ionics – volume: 59 start-page: 3638 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 17 year: 2021 publication-title: Small – volume: 4 start-page: 2568 year: 2014 publication-title: RSC Adv. – volume: 9 start-page: 7690 year: 2015 publication-title: ACS Nano – volume: 39 start-page: 1081 year: 2009 publication-title: J. Appl. Electrochem. – year: 1992 – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 36 start-page: 443 year: 1997 publication-title: Chem. Eng. Process. – volume: 4 start-page: 1296 year: 2020 publication-title: Joule – volume: 35 start-page: 1089 year: 1997 publication-title: Carbon – volume: 72 start-page: 38 year: 2014 publication-title: Carbon – volume: 4 start-page: 30 year: 2009 publication-title: Nat. Nanotechnol. – volume: 173 start-page: 477 year: 2021 publication-title: Carbon – year: 1998 1998 – volume: 203 start-page: 130 year: 2012 publication-title: J. Power Sources – volume: 149 year: 2002 publication-title: J. Electrochem. Soc. – volume: 116 start-page: 170 year: 2014 publication-title: Electrochim. Acta – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 144 start-page: 1188 year: 1997 publication-title: J. Electrochem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 372 year: 2021 publication-title: Solid State Ionics – volume: 84 start-page: 434 year: 2015 publication-title: Carbon – volume: 3 start-page: 563 year: 2008 publication-title: Nat. Nanotechnol. – volume: 64 start-page: 922 year: 1996 publication-title: Denki Kagaku – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 45 start-page: 67 year: 1999 publication-title: Electrochim. Acta – volume: 9 start-page: 145 year: 2018 publication-title: Nat. Commun. – volume: 43 start-page: 2766 year: 2019 publication-title: New J. Chem. – volume: 3 start-page: 1212 year: 2018 publication-title: ACS Energy Lett. – volume: 4 start-page: 1687 year: 2013 publication-title: Nat. Commun. – volume: 149 start-page: A499 year: 2002 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 1836 year: 2019 publication-title: Nano Res. – volume: 14 start-page: 277 year: 2014 publication-title: Nano Lett. – volume: 1 start-page: 429 year: 2012 publication-title: Nano Energy – volume: 48 start-page: 1201 year: 2012 publication-title: Chem. Commun. – volume: 2 start-page: 272 year: 2000 publication-title: Electrochem. Commun. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 1 year: 2020 publication-title: Small Struct. – volume: 4 start-page: 1424 year: 2017 publication-title: Inorg. Chem. Front. – volume: 149 start-page: 257 year: 2019 publication-title: Carbon – volume: 39 start-page: 507 year: 2001 publication-title: Carbon – volume: 81 start-page: 368 year: 1999 publication-title: J. Power Sources – volume: 279 start-page: 428 year: 2015 publication-title: J. Power Sources – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 9 start-page: 16 year: 2021 publication-title: J. Mater. Sci. Chem. Eng. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 1 start-page: 1672 year: 2014 publication-title: ChemElectroChem – volume: 326 start-page: 507 year: 2017 publication-title: Chem. Eng. J. – volume: 14 start-page: 1837 year: 2020 publication-title: ACS Nano – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 93 start-page: 123 year: 2001 publication-title: J. Power Sources – volume: 14 start-page: 4573 year: 2014 publication-title: Nano Lett. – volume: 165 start-page: A380 year: 2018 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 2430 year: 2020 publication-title: J. Mater. Chem. A – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 13 start-page: 470 year: 2013 publication-title: Nano Lett. – volume: 57 start-page: 530 year: 2013 publication-title: Carbon – volume: 4 start-page: 217 year: 2009 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 43 year: 2015 publication-title: Nano Energy – volume: 45 start-page: 1558 year: 2007 publication-title: Carbon – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 36 start-page: 147 year: 2021 publication-title: Energy Storage Mater. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 81 start-page: 182 year: 1999 publication-title: J. Power Sources – volume: 158 start-page: 269 year: 2003 publication-title: Solid State Ionics – volume: 1 year: 2017 publication-title: Small Methods – volume: 13 start-page: 3723 year: 2020 publication-title: Energy Environ. Sci. – volume: 3 start-page: 31 year: 2008 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 2465 year: 2007 publication-title: Adv. Mater. – volume: 424 year: 2022 publication-title: J. Hazard. Mater. – volume: 3 start-page: 5572 year: 2015 publication-title: J. Mater. Chem. A – volume: 11 start-page: 900 year: 2020 publication-title: J. Phys. Chem. Lett. – year: 2006 – volume: 7 start-page: 309 year: 2012 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 585 year: 2014 publication-title: SpringerPlus – volume: 370 start-page: 192 year: 2020 publication-title: Science – volume: 184 start-page: 364 year: 2015 publication-title: Electrochim. Acta – volume: 46 start-page: 2025 year: 2010 publication-title: Chem. Commun. – volume: 155 start-page: 9 year: 2019 publication-title: Carbon – volume: 27 start-page: 1957 year: 2021 publication-title: Ionics – ident: e_1_2_9_124_1 doi: 10.1038/35104644 – ident: e_1_2_9_123_1 doi: 10.1021/cr500207g – ident: e_1_2_9_121_1 doi: 10.1016/j.jallcom.2019.152333 – ident: e_1_2_9_91_1 doi: 10.1016/j.ceramint.2017.04.123 – ident: e_1_2_9_33_1 doi: 10.1039/C9TA09255B – ident: e_1_2_9_156_1 doi: 10.1016/j.jallcom.2019.151870 – ident: e_1_2_9_44_1 doi: 10.1021/jacs.6b06673 – ident: e_1_2_9_130_1 doi: 10.1002/aenm.201700071 – ident: e_1_2_9_14_1 doi: 10.1016/j.carbon.2013.07.089 – ident: e_1_2_9_151_1 doi: 10.1016/j.carbon.2014.01.027 – ident: e_1_2_9_244_1 doi: 10.1186/2193-1801-3-585 – ident: e_1_2_9_166_1 doi: 10.1016/j.joule.2019.01.017 – ident: e_1_2_9_203_1 doi: 10.1038/nmat3944 – ident: e_1_2_9_72_1 doi: 10.1016/S0378-7753(98)00220-1 – ident: e_1_2_9_143_1 doi: 10.1016/j.carbon.2016.06.057 – ident: e_1_2_9_136_1 doi: 10.1021/nl403943g – ident: e_1_2_9_29_1 doi: 10.1016/S1872-5805(09)60018-4 – ident: e_1_2_9_182_1 doi: 10.1016/j.ensm.2018.03.012 – ident: e_1_2_9_144_1 doi: 10.1002/aenm.201400753 – ident: e_1_2_9_73_1 doi: 10.1016/S1388-2481(00)00091-6 – ident: e_1_2_9_118_1 doi: 10.1016/j.electacta.2014.04.171 – ident: e_1_2_9_237_1 doi: 10.1021/am200421h – ident: e_1_2_9_226_1 doi: 10.1016/j.elecom.2009.10.023 – ident: e_1_2_9_222_1 doi: 10.1002/adma.200802998 – ident: e_1_2_9_165_1 doi: 10.1002/adma.200602592 – ident: e_1_2_9_188_1 doi: 10.1016/j.ssi.2005.03.026 – volume: 3 start-page: 5472 year: 2020 ident: e_1_2_9_191_1 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Kuratani K. – ident: e_1_2_9_183_1 doi: 10.1149/1.1545453 – ident: e_1_2_9_16_1 doi: 10.1016/j.jpcs.2007.10.096 – ident: e_1_2_9_57_1 doi: 10.1016/j.carbon.2016.03.032 – ident: e_1_2_9_76_1 doi: 10.1007/s10800-008-9761-6 – ident: e_1_2_9_178_1 doi: 10.1016/j.nanoen.2021.106510 – ident: e_1_2_9_214_1 doi: 10.1103/PhysRevLett.103.246804 – ident: e_1_2_9_15_1 doi: 10.1016/j.jpowsour.2019.226841 – ident: e_1_2_9_55_1 doi: 10.1021/nn900933u – ident: e_1_2_9_107_1 doi: 10.1016/S0008-6223(97)00195-4 – ident: e_1_2_9_162_1 doi: 10.1002/adma.200901846 – ident: e_1_2_9_231_1 doi: 10.1021/acs.nanolett.5b02604 – ident: e_1_2_9_26_1 doi: 10.1016/j.jpcs.2009.12.010 – ident: e_1_2_9_125_1 doi: 10.1038/nnano.2012.35 – ident: e_1_2_9_239_1 doi: 10.1039/C3RA45115A – ident: e_1_2_9_153_1 doi: 10.1002/advs.201700298 – ident: e_1_2_9_21_1 – ident: e_1_2_9_163_1 doi: 10.1021/nn506955f – ident: e_1_2_9_96_1 doi: 10.1016/j.jhazmat.2021.127724 – ident: e_1_2_9_47_1 doi: 10.1016/j.chempr.2016.07.009 – ident: e_1_2_9_152_1 doi: 10.1021/nl403631h – ident: e_1_2_9_4_1 doi: 10.1016/S0013-4686(99)00194-2 – ident: e_1_2_9_141_1 doi: 10.1038/nmat2749 – ident: e_1_2_9_190_1 doi: 10.1021/acs.jpclett.9b03456 – ident: e_1_2_9_173_1 doi: 10.1039/C7QI00184C – ident: e_1_2_9_250_1 doi: 10.1002/adma.201304338 – ident: e_1_2_9_51_1 doi: 10.1002/marc.200800754 – ident: e_1_2_9_84_1 doi: 10.1016/j.elecom.2011.07.014 – ident: e_1_2_9_171_1 doi: 10.1021/jp302265n – ident: e_1_2_9_66_1 doi: 10.1039/c1ee01598b – ident: e_1_2_9_92_1 doi: 10.1039/C9TA04240G – ident: e_1_2_9_194_1 doi: 10.1038/nmat1849 – ident: e_1_2_9_98_1 doi: 10.1002/prac.18400210117 – ident: e_1_2_9_206_1 doi: 10.1021/acsnano.8b01617 – ident: e_1_2_9_218_1 doi: 10.1002/adma.201001068 – ident: e_1_2_9_223_1 doi: 10.1038/ncomms4415 – ident: e_1_2_9_89_1 doi: 10.1002/adma.201400280 – volume-title: Carbon Black: Science and Technology year: 1993 ident: e_1_2_9_196_1 contributor: fullname: Donnet J.‐B. – ident: e_1_2_9_229_1 doi: 10.1039/c3ee24163g – volume: 2019 year: 2019 ident: e_1_2_9_240_1 publication-title: J. Nanomater. contributor: fullname: Ma Y. – ident: e_1_2_9_40_1 doi: 10.1038/nenergy.2016.113 – ident: e_1_2_9_167_1 doi: 10.1021/nl504336h – ident: e_1_2_9_53_1 doi: 10.1002/anie.200351203 – volume: 9 start-page: 16 year: 2021 ident: e_1_2_9_111_1 publication-title: J. Mater. Sci. Chem. Eng. contributor: fullname: Yin Y. – ident: e_1_2_9_82_1 doi: 10.1016/j.joule.2020.12.020 – ident: e_1_2_9_71_1 doi: 10.1016/j.carbon.2020.11.027 – ident: e_1_2_9_56_1 doi: 10.1039/c0jm01633k – ident: e_1_2_9_41_1 doi: 10.1016/j.electacta.2009.02.012 – ident: e_1_2_9_39_1 doi: 10.1016/j.jpowsour.2013.10.012 – ident: e_1_2_9_252_1 doi: 10.1021/jp409668m – ident: e_1_2_9_212_1 doi: 10.1073/pnas.1105113108 – ident: e_1_2_9_24_1 – ident: e_1_2_9_174_1 doi: 10.1016/j.ensm.2018.05.020 – ident: e_1_2_9_213_1 doi: 10.1088/0953-8984/20/32/323202 – ident: e_1_2_9_168_1 doi: 10.1039/C4TA06186A – ident: e_1_2_9_102_1 doi: 10.1002/adma.202006313 – ident: e_1_2_9_172_1 doi: 10.1016/j.nanoen.2020.104849 – ident: e_1_2_9_202_1 doi: 10.1073/pnas.0502848102 – ident: e_1_2_9_179_1 doi: 10.1021/acsnano.9b07706 – ident: e_1_2_9_204_1 doi: 10.1016/j.carbon.2007.02.034 – ident: e_1_2_9_180_1 doi: 10.1002/anie.202102593 – ident: e_1_2_9_1_1 doi: 10.1038/451652a – ident: e_1_2_9_135_1 doi: 10.1002/aenm.201400207 – ident: e_1_2_9_185_1 doi: 10.1016/j.electacta.2016.12.018 – ident: e_1_2_9_140_1 doi: 10.1016/j.carbon.2014.12.036 – ident: e_1_2_9_59_1 doi: 10.1039/D0EE02230F – ident: e_1_2_9_175_1 doi: 10.1088/1361-6463/aa5583 – ident: e_1_2_9_86_1 doi: 10.1002/celc.201402212 – ident: e_1_2_9_109_1 doi: 10.1039/C9TA12651A – ident: e_1_2_9_169_1 doi: 10.1021/nl501617j – ident: e_1_2_9_64_1 doi: 10.1103/PhysRevB.44.9170 – ident: e_1_2_9_49_1 doi: 10.1021/acsenergylett.1c00627 – ident: e_1_2_9_54_1 doi: 10.1016/S0013-4686(02)00845-9 – volume: 268 start-page: 373 year: 1969 ident: e_1_2_9_63_1 publication-title: C. R. Acad. Sci. Paris contributor: fullname: Daumas N. – ident: e_1_2_9_209_1 doi: 10.1016/j.matchemphys.2018.08.020 – ident: e_1_2_9_38_1 doi: 10.1016/j.jpowsour.2008.10.041 – ident: e_1_2_9_46_1 doi: 10.1039/C8TA06670A – ident: e_1_2_9_19_1 – ident: e_1_2_9_42_1 doi: 10.1002/aenm.201300600 – ident: e_1_2_9_164_1 doi: 10.1021/acsnano.8b09027 – ident: e_1_2_9_13_1 – ident: e_1_2_9_90_1 doi: 10.1016/S0255-2701(97)00022-6 – ident: e_1_2_9_147_1 doi: 10.1016/j.jallcom.2017.08.244 – ident: e_1_2_9_30_1 doi: 10.1016/j.electacta.2012.12.124 – ident: e_1_2_9_184_1 doi: 10.1021/acsenergylett.8b00453 – ident: e_1_2_9_8_1 doi: 10.1016/j.ensm.2020.12.027 – ident: e_1_2_9_94_1 doi: 10.1016/S1872-5805(19)60012-0 – ident: e_1_2_9_160_1 doi: 10.1021/nl0727157 – ident: e_1_2_9_228_1 doi: 10.1039/C4EE03825H – ident: e_1_2_9_32_1 doi: 10.1149/1.2218163 – ident: e_1_2_9_210_1 doi: 10.1038/nnano.2008.365 – ident: e_1_2_9_93_1 doi: 10.1016/j.electacta.2013.11.057 – ident: e_1_2_9_176_1 doi: 10.1016/j.carbon.2019.08.023 – ident: e_1_2_9_205_1 doi: 10.1038/nature07872 – ident: e_1_2_9_120_1 doi: 10.1039/C4TA06332E – ident: e_1_2_9_138_1 doi: 10.1021/nl3014814 – ident: e_1_2_9_251_1 doi: 10.1016/j.elecom.2009.12.024 – ident: e_1_2_9_23_1 – ident: e_1_2_9_95_1 doi: 10.1016/j.electacta.2013.06.032 – ident: e_1_2_9_148_1 doi: 10.1016/j.electacta.2015.10.087 – ident: e_1_2_9_230_1 doi: 10.1016/j.jpowsour.2011.12.011 – ident: e_1_2_9_149_1 doi: 10.1039/C7EE00838D – ident: e_1_2_9_24_2 – ident: e_1_2_9_58_1 doi: 10.1002/adma.201807243 – ident: e_1_2_9_155_1 doi: 10.1039/C6TA02442D – ident: e_1_2_9_238_1 doi: 10.1021/am301202a – ident: e_1_2_9_254_1 doi: 10.1039/C4EE02211D – ident: e_1_2_9_215_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_104_1 doi: 10.1016/S0008-6223(97)00097-3 – ident: e_1_2_9_20_1 – ident: e_1_2_9_216_1 doi: 10.1038/nnano.2008.215 – ident: e_1_2_9_61_1 doi: 10.1039/D0SE00175A – ident: e_1_2_9_68_1 doi: 10.5796/kogyobutsurikagaku.64.922 – ident: e_1_2_9_192_1 doi: 10.1149/1945-7111/aba36f – ident: e_1_2_9_37_1 doi: 10.1002/aenm.201601481 – ident: e_1_2_9_50_1 doi: 10.1038/s41563-021-00943-2 – ident: e_1_2_9_158_1 doi: 10.1002/admi.201600798 – ident: e_1_2_9_97_1 doi: 10.1016/j.jmat.2020.06.009 – ident: e_1_2_9_28_1 doi: 10.1016/j.electacta.2010.04.101 – ident: e_1_2_9_80_1 doi: 10.1016/j.jpowsour.2015.01.046 – ident: e_1_2_9_88_1 doi: 10.1016/S0378-7753(00)00552-8 – ident: e_1_2_9_234_1 doi: 10.1016/j.nanoen.2012.02.004 – ident: e_1_2_9_105_1 doi: 10.1016/S0008-6223(97)00065-1 – ident: e_1_2_9_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_9_220_1 doi: 10.1002/anie.200802539 – ident: e_1_2_9_132_1 doi: 10.1002/smll.202102316 – ident: e_1_2_9_247_1 doi: 10.1002/smll.201803858 – ident: e_1_2_9_116_1 doi: 10.1016/j.powtec.2007.06.025 – ident: e_1_2_9_22_1 – ident: e_1_2_9_60_1 doi: 10.1088/0957-4484/20/32/325701 – ident: e_1_2_9_106_1 doi: 10.1016/0008-6223(96)00031-0 – ident: e_1_2_9_43_1 doi: 10.1016/j.carbon.2019.04.025 – ident: e_1_2_9_119_1 doi: 10.1016/j.nanoen.2015.03.001 – ident: e_1_2_9_35_1 doi: 10.1149/2.028302jes – ident: e_1_2_9_31_1 doi: 10.1039/C8RA07170E – ident: e_1_2_9_103_1 doi: 10.1016/S0008-6223(02)00023-4 – ident: e_1_2_9_170_1 doi: 10.1016/j.electacta.2019.03.149 – ident: e_1_2_9_25_1 doi: 10.1016/j.jpowsour.2006.02.064 – ident: e_1_2_9_11_1 doi: 10.1016/S0008-6223(99)00141-4 – ident: e_1_2_9_195_1 doi: 10.1021/nl802558y – ident: e_1_2_9_81_1 doi: 10.1016/j.mattod.2017.11.001 – ident: e_1_2_9_67_1 doi: 10.1016/S1388-2481(00)00022-9 – ident: e_1_2_9_146_1 doi: 10.1016/j.jallcom.2016.07.148 – ident: e_1_2_9_5_1 doi: 10.1149/1.1838758 – ident: e_1_2_9_201_1 doi: 10.1021/cm0630800 – ident: e_1_2_9_235_1 doi: 10.1016/j.carbon.2015.04.064 – ident: e_1_2_9_6_1 doi: 10.1038/35104596 – ident: e_1_2_9_150_1 doi: 10.1039/c2ee22292b – ident: e_1_2_9_193_1 doi: 10.1016/j.ssi.2021.115789 – ident: e_1_2_9_207_1 doi: 10.1126/science.1171245 – ident: e_1_2_9_12_1 doi: 10.1016/S0008-6223(98)00290-5 – ident: e_1_2_9_137_1 doi: 10.1021/acsnano.5b03166 – ident: e_1_2_9_85_1 doi: 10.1016/j.jpowsour.2011.07.006 – ident: e_1_2_9_126_1 doi: 10.1038/nnano.2007.411 – ident: e_1_2_9_9_1 doi: 10.1149/2.0421714jes – ident: e_1_2_9_69_1 doi: 10.1016/S0378-7753(99)00191-3 – ident: e_1_2_9_227_1 doi: 10.1038/ncomms2705 – ident: e_1_2_9_48_1 doi: 10.1016/j.joule.2020.04.003 – ident: e_1_2_9_75_1 doi: 10.1016/j.jpowsour.2009.01.067 – ident: e_1_2_9_99_1 doi: 10.1038/nchem.2054 – ident: e_1_2_9_242_1 doi: 10.1039/C7RA03438E – ident: e_1_2_9_7_1 doi: 10.1149/1.1836372 – ident: e_1_2_9_187_1 doi: 10.1016/S0167-2738(02)00823-8 – ident: e_1_2_9_217_1 doi: 10.1039/c0ee00683a – ident: e_1_2_9_18_1 doi: 10.1016/j.jallcom.2012.03.096 – ident: e_1_2_9_145_1 doi: 10.1002/aenm.201500289 – ident: e_1_2_9_199_1 doi: 10.1038/nature11458 – ident: e_1_2_9_236_1 doi: 10.14447/jnmes.v18i3.358 – ident: e_1_2_9_139_1 doi: 10.1016/j.carbon.2015.11.048 – ident: e_1_2_9_189_1 doi: 10.1016/j.ssi.2018.04.023 – ident: e_1_2_9_249_1 doi: 10.1039/c2nr33099g – ident: e_1_2_9_142_1 doi: 10.1039/C4TA06044J – ident: e_1_2_9_113_1 doi: 10.1016/j.carbon.2021.02.055 – ident: e_1_2_9_200_1 doi: 10.1038/nnano.2009.58 – ident: e_1_2_9_112_1 doi: 10.1002/bkcs.10036 – ident: e_1_2_9_128_1 doi: 10.1002/anie.200804355 – ident: e_1_2_9_197_1 doi: 10.1016/S0008-6223(00)00155-X – ident: e_1_2_9_115_1 doi: 10.1080/01496395.2016.1206933 – ident: e_1_2_9_27_1 doi: 10.1007/s10008-009-0888-0 – ident: e_1_2_9_52_1 doi: 10.1038/nmat4170 – ident: e_1_2_9_70_1 doi: 10.1039/B612422D – ident: e_1_2_9_74_1 doi: 10.1039/C1CC14764A – ident: e_1_2_9_233_1 doi: 10.1016/j.carbon.2013.01.070 – ident: e_1_2_9_17_1 doi: 10.1039/b316702j – ident: e_1_2_9_34_1 doi: 10.1021/am3005237 – ident: e_1_2_9_3_1 doi: 10.1021/cm901452z – ident: e_1_2_9_129_1 doi: 10.1002/cey2.2 – ident: e_1_2_9_45_1 doi: 10.1007/s12274-019-2444-2 – ident: e_1_2_9_159_1 doi: 10.1002/smtd.201600037 – ident: e_1_2_9_246_1 doi: 10.1016/j.jechem.2020.02.044 – ident: e_1_2_9_181_1 doi: 10.1021/jacs.1c08606 – ident: e_1_2_9_221_1 doi: 10.1149/1.1498255 – ident: e_1_2_9_77_1 doi: 10.1149/1.1851055 – ident: e_1_2_9_83_1 doi: 10.1149/2.1081706jes – ident: e_1_2_9_225_1 doi: 10.1002/adfm.202007630 – ident: e_1_2_9_79_1 doi: 10.1016/j.electacta.2016.03.014 – ident: e_1_2_9_122_1 doi: 10.1016/j.cej.2017.05.180 – ident: e_1_2_9_232_1 doi: 10.1002/aenm.201600426 – ident: e_1_2_9_114_1 doi: 10.1039/C4FD00079J – ident: e_1_2_9_108_1 doi: 10.1038/s41467-017-02479-z – ident: e_1_2_9_100_1 doi: 10.1016/0008-6223(88)90227-8 – ident: e_1_2_9_127_1 doi: 10.1002/anie.200906287 – ident: e_1_2_9_157_1 doi: 10.1039/C4TA01267D – ident: e_1_2_9_87_1 doi: 10.1149/1.1461377 – ident: e_1_2_9_241_1 doi: 10.1039/C8NJ05835K – ident: e_1_2_9_154_1 doi: 10.1021/nl303823k – ident: e_1_2_9_10_1 doi: 10.1149/2.1251802jes – ident: e_1_2_9_62_1 doi: 10.1002/zaac.19382380102 – ident: e_1_2_9_36_1 doi: 10.1126/science.aav5842 – volume: 28 start-page: 1 year: 2018 ident: e_1_2_9_245_1 publication-title: Carbon Lett. contributor: fullname: Akbar S. – ident: e_1_2_9_248_1 doi: 10.1021/acsami.6b12570 – ident: e_1_2_9_110_1 doi: 10.1021/cm950304y – ident: e_1_2_9_65_1 doi: 10.1126/science.270.5236.590 – ident: e_1_2_9_224_1 doi: 10.1016/j.carbon.2021.01.128 – ident: e_1_2_9_186_1 doi: 10.1016/j.elecom.2015.05.001 – ident: e_1_2_9_134_1 doi: 10.1039/b919738a – ident: e_1_2_9_208_1 doi: 10.1038/nature07719 – ident: e_1_2_9_101_1 doi: 10.1002/anie.201913174 – ident: e_1_2_9_131_1 doi: 10.1007/s11581-021-03977-3 – ident: e_1_2_9_133_1 doi: 10.1021/acssuschemeng.0c08964 – ident: e_1_2_9_253_1 doi: 10.1002/adfm.201203777 – ident: e_1_2_9_243_1 doi: 10.3390/en13184867 – ident: e_1_2_9_177_1 doi: 10.1002/adma.201906427 – ident: e_1_2_9_211_1 doi: 10.1126/science.1125925 – ident: e_1_2_9_161_1 doi: 10.1021/ja211266m – ident: e_1_2_9_78_1 doi: 10.1002/sstr.202000010 – ident: e_1_2_9_117_1 doi: 10.1016/j.carbon.2013.02.025 – ident: e_1_2_9_219_1 doi: 10.1149/1.1837571 – ident: e_1_2_9_198_1 doi: 10.1126/science.1200770 |
SSID | ssj0009606 |
Score | 2.7188783 |
SecondaryResourceType | review_article |
Snippet | Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate... Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g and appropriate... Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g –1 and appropriate... Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2106704 |
SubjectTerms | Anodes Electrochemical analysis Emissions control Energy consumption flake graphite graphene Graphite Lithium-ion batteries Materials science microcrystalline graphite natural graphite‐based anodes |
Title | Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106704 https://www.ncbi.nlm.nih.gov/pubmed/35032965 https://www.proquest.com/docview/2659611137 https://search.proquest.com/docview/2620079744 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYt1BMc2JdCQUZC4pQ29ZbkWFH2Taqo1FsUL4EKkSDaXjjxCDwjT4LHaUMLByS4RIpiJ44ntn87M58ROmBGB5IL46lUSM8qYt-TqQ49LW3HQDSVPIR45-sbcdZlFz3em4riL_gQ5YIbtAzXX0MDT-Sg8QUNTbTjBhFgoDkgaJMG4NPX7nzxo0CeO9ge5V4kWDihNvqkMZt9dlT6ITVnlasbek6WUDIpdOFx8lgfDWVdvX7jOf7nrZbR4liX4lbxIa2gOZOtooUpWuEauuy4SHTwk8ZWNuIOsKBwnuKbxME78CnAr62Exf0M32b3OSS86g8f-qOnj7f38zzDBc3TTs7XUffk-O7ozBvvxeApGlDmMWrnPcQonhI_kqKZspAmka9NEhKTKpoSKZQOU2DpcC2o1jJgmgdGGEYCK3s2UCXLM7OFsB0yaZMrZow9SKtAqfaVYAkTCnY-9qvocGKL-LlAbsQFXJnEUD1xWT1VVJuYKh43vUFMBI-E7cFpUEX75WXbaOBPSJKZfARpYInWTqXsLTYLE5ePotynJBK8iogz1C9liFvt61Z5tv2XTDtonkBQhXOjrKHK8GVkdq3UGco99zl_Asr_9J4 |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefEDsABxgwoIyBkZB2CqT-leRYjbECbZEqkHaL4h-BCpEgaC-c9ifsb9xfMj-nCSscJsElUhQ7cew8-2vnvY8BDrg1kRLSBjqXKnCKOAxUbuLAKNcxUMOUiDHeuT-Q3St-9lPU3oQYC1PxIZoFN7QM31-jgeOC9NEzNTQzHhxEEYKGRNAPzubb6NV1PHwmSKFA97g9JoJE8rjmNob0aDb_7Lj0SmzOalc_-JysgKqLXfmc3B5OxupQP70gOr7rvT7C8lSakk71La3CnC3WYOkfYOE6nA99MDq6ShOnHMkQcVCkzMkg8_wO8gP5107FklFBLorrEhP2RuOb0eTuz6_fp2VBKqCnm59_gquT75ffusF0O4ZAs4jxgDM39aFWi5yGiZLtnMcsS0Jjs5jaXLOcKqlNnCNORxjJjFERNyKy0nIaOeWzAfNFWdgtIG7UZG2hubXuoJwIZSbUkmdcatz8OGzB17ox0vuKupFWfGWaYvWkTfW0YKduq3RqfY8plSKRrhNnUQv2m8vObvBnSFbYcoJpcJXWzabcLTarNm4exUTIaCJFC6hvqf-UIe0c9zvN2fZbMu3BQvey30t7p4Pzz7BIMcbCe1XuwPz4YWK_OOUzVrv-2_4LM4j4vw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePJpCm7QEYbKMMhich7SmQ-pbksaJ0XLupGhJvUXwbFSJB0L7wxEfYZ9wnmY_Tpu32MGm8RIpiJ45Pjv234_MzwB63JlFC2kg7qSKviONIOZNGRvmGgRqmRIrxzhd9eXzJT6_E1VwUf82HaCbc0DNCe40OfmfcwQwaWpjADaLIQEMg6DKXNEN6fncwA0ihPg-0PSaiTPJ0im2M6cFi_sVu6S-tuShdQ9_TW4ViWup6ycnN_nik9vXjH0DH57zWGqxMhCnp1F_SG3hhy3V4PYcr3ICzQQhFx4XSxOtGMkAYFKkc6ReB3kG-IP3aa1gyLMnX8keFCc-Ho-vh-PbX08-TqiQ1ztOPzt_CZe_o--FxNNmMIdIsYTzizA98qNXC0ThTsu14yoosNrZIqXWaOaqkNqlDmI4wkhmjEm5EYqXlNPG65x0slVVpN4H4PpO1hebW-oPyEpSZWEtecKlx6-O4BZ-ntsjvauZGXtOVaY7VkzfV04Ltqanyie895FSKTPomnCUt-NRc9l6Dv0KK0lZjTINztH4s5W_xvjZx8ygmYkYzKVpAg6H-UYa8073oNGdb_5NpF15-6_by85P-2Qd4RTHAIiyp3Ial0f3Y7njZM1Ifw5f9G0b5924 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+Roles+of+Natural+Graphite+in+Ongoing+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Liang&rft.au=Ding%2C+Baichuan&rft.au=Qin%2C+Xian%E2%80%90Ying&rft.au=Wang%2C+Zhijie&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202106704&rft.externalDBID=10.1002%252Fadma.202106704&rft.externalDocID=ADMA202106704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |