Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries

Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reduci...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 18; pp. e2106704 - n/a
Main Authors Zhao, Liang, Ding, Baichuan, Qin, Xian‐Ying, Wang, Zhijie, Lv, Wei, He, Yan‐Bing, Yang, Quan‐Hong, Kang, Feiyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs. A comprehensive overview of natural graphite‐based materials in ongoing lithium‐ion batteries is presented, covering fundamental mechanisms, detailed applications, and an outlook of natural graphite‐based materials, from not only the aspects of structure and properties, modifications, derivatives, and composites, but also perspectives in terms of natural graphite in hybrid lithium‐ion/lithium‐metal cells and all‐solid‐state lithium batteries.
AbstractList Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs.
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g –1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO 2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs.
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate lithiation/de‐lithiation potential, and has been extensively used as the anode of lithium‐ion batteries (LIBs). With the requirements of reducing CO2 emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG‐based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high‐rate and low‐temperature charging performance. Prospects regarding the development orientation as well as future applications of NG‐based materials are also considered, which will provide significant guidance for the current and future research of high‐energy‐density LIBs. A comprehensive overview of natural graphite‐based materials in ongoing lithium‐ion batteries is presented, covering fundamental mechanisms, detailed applications, and an outlook of natural graphite‐based materials, from not only the aspects of structure and properties, modifications, derivatives, and composites, but also perspectives in terms of natural graphite in hybrid lithium‐ion/lithium‐metal cells and all‐solid‐state lithium batteries.
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g and appropriate lithiation/de-lithiation potential, and has been extensively used as the anode of lithium-ion batteries (LIBs). With the requirements of reducing CO emission to achieve carbon neutral, the market share of NG anode will continue to grow due to its excellent processability and low production energy consumption. NG, which is abundant in China, can be divided into flake graphite (FG) and microcrystalline graphite (MG). In the past 30 years, many researchers have focused on developing modified NG and its derivatives with superior electrochemical performance, promoting their wide applications in LIBs. Here, a comprehensive overview of the origin, roles, and research progress of NG-based materials in ongoing LIBs is provided, including their structure, properties, electrochemical performance, modification methods, derivatives, composites, and applications, especially the strategies to improve their high-rate and low-temperature charging performance. Prospects regarding the development orientation as well as future applications of NG-based materials are also considered, which will provide significant guidance for the current and future research of high-energy-density LIBs.
Author Yang, Quan‐Hong
He, Yan‐Bing
Zhao, Liang
Qin, Xian‐Ying
Wang, Zhijie
Lv, Wei
Ding, Baichuan
Kang, Feiyu
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: Tsinghua University
– sequence: 2
  givenname: Baichuan
  surname: Ding
  fullname: Ding, Baichuan
  organization: Tsinghua University
– sequence: 3
  givenname: Xian‐Ying
  surname: Qin
  fullname: Qin, Xian‐Ying
  organization: Tsinghua University
– sequence: 4
  givenname: Zhijie
  surname: Wang
  fullname: Wang, Zhijie
  organization: Tsinghua University
– sequence: 5
  givenname: Wei
  surname: Lv
  fullname: Lv, Wei
  organization: Tsinghua University
– sequence: 6
  givenname: Yan‐Bing
  surname: He
  fullname: He, Yan‐Bing
  organization: Tsinghua University
– sequence: 7
  givenname: Quan‐Hong
  surname: Yang
  fullname: Yang, Quan‐Hong
  organization: Tianjin University
– sequence: 8
  givenname: Feiyu
  orcidid: 0000-0002-3704-4379
  surname: Kang
  fullname: Kang, Feiyu
  email: fykang@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35032965$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOw0AQRVcIBCHQUiJLNDQOs097y_BGBJAQ1NbGHpNFtjfs2iA6PoFv5EtwFB4SDdU0Z46uziZZbVyDhOxQGFEAdmCK2owYMAoqAbFCBlQyGgvQcpUMQHMZayXSDbIZwiMAaAVqnWxwCZxpJQfk8hafbbCtbR6idobRraswRK6Mrk3beVNFZ97MZ7bFyDbRTfPgFuDEtjPb1R9v7xeuiQ5N26K3GLbIWmmqgNtfd0juT0_ujs7jyc3ZxdF4Euc84SIWXIFkmMuSgZ4qWoqUGw0FmpRhmfOSTVVepGXKE5CF4kUxTUQhE1QoWKIEH5L9pXfu3VOHoc1qG3KsKtOg60LGFANIdCIW6N4f9NF1vunX9ZTUilLabxqS0ZLKvQvBY5nNva2Nf80oZIvM2SJz9pO5f9j90nbTGosf_LtrD-gl8GIrfP1Hl42Pr8a_8k8xzopa
CitedBy_id crossref_primary_10_1002_aenm_202300123
crossref_primary_10_1002_aenm_202303876
crossref_primary_10_1021_acs_inorgchem_2c03297
crossref_primary_10_1002_adsu_202300061
crossref_primary_10_1002_ange_202314509
crossref_primary_10_1021_acsaem_3c01875
crossref_primary_10_1016_j_apsusc_2024_159782
crossref_primary_10_3390_batteries9080391
crossref_primary_10_3390_ma16216896
crossref_primary_10_1016_j_ijhydene_2023_11_268
crossref_primary_10_1002_smll_202305639
crossref_primary_10_1063_5_0178707
crossref_primary_10_1002_adsu_202300610
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_26599_NRE_2024_9120118
crossref_primary_10_1021_acs_jpclett_3c02714
crossref_primary_10_1149_1945_7111_ad4b5e
crossref_primary_10_1002_ente_202400096
crossref_primary_10_1016_j_carbon_2023_118386
crossref_primary_10_1016_j_cej_2023_145017
crossref_primary_10_1016_j_carbon_2023_118664
crossref_primary_10_1039_D3NR02249H
crossref_primary_10_1016_j_mssp_2024_108320
crossref_primary_10_1021_acsenergylett_2c02590
crossref_primary_10_1002_anie_202403775
crossref_primary_10_1016_j_jallcom_2023_172365
crossref_primary_10_1016_j_cej_2023_146181
crossref_primary_10_1038_s41467_023_35933_2
crossref_primary_10_1002_adfm_202303810
crossref_primary_10_1002_eem2_12686
crossref_primary_10_1002_smtd_202300708
crossref_primary_10_1002_aenm_202300500
crossref_primary_10_1016_j_matre_2024_100268
crossref_primary_10_1016_j_oneear_2022_11_006
crossref_primary_10_1039_D2TA06038H
crossref_primary_10_1002_smll_202205887
crossref_primary_10_1149_1945_7111_ad47d8
crossref_primary_10_1007_s11581_022_04676_3
crossref_primary_10_54097_hset_v73i_13004
crossref_primary_10_1021_acsomega_3c09596
crossref_primary_10_1007_s11837_023_05992_3
crossref_primary_10_1039_D2TA09965A
crossref_primary_10_1021_acsaem_2c03333
crossref_primary_10_1002_app_53544
crossref_primary_10_1016_j_apsusc_2023_156805
crossref_primary_10_1021_acsami_3c15484
crossref_primary_10_1039_D3TA07914G
crossref_primary_10_1021_acsomega_3c01506
crossref_primary_10_1007_s11814_024_00060_1
crossref_primary_10_1007_s11837_023_06275_7
crossref_primary_10_1002_anie_202314509
crossref_primary_10_1016_j_est_2023_107419
crossref_primary_10_1039_D3TA05558B
crossref_primary_10_1021_acsami_3c10616
crossref_primary_10_1016_j_cej_2023_142128
crossref_primary_10_1016_S1872_5805_23_60724_3
crossref_primary_10_1002_smll_202310633
crossref_primary_10_1016_j_jallcom_2023_169345
crossref_primary_10_1002_aenm_202202253
crossref_primary_10_1007_s11356_023_30884_z
crossref_primary_10_1002_tcr_202200131
crossref_primary_10_1021_acs_energyfuels_3c04493
crossref_primary_10_1039_D3YA00561E
crossref_primary_10_1002_adfm_202212854
crossref_primary_10_1021_acsaem_3c01034
crossref_primary_10_1016_j_apsusc_2022_154178
crossref_primary_10_1016_j_biomaterials_2024_122498
crossref_primary_10_1002_batt_202400223
crossref_primary_10_1016_j_elecom_2022_107312
crossref_primary_10_1021_acs_langmuir_3c01903
crossref_primary_10_1007_s42823_023_00669_y
crossref_primary_10_1016_j_jcis_2022_09_143
crossref_primary_10_1016_j_jcis_2023_09_025
crossref_primary_10_1002_ange_202403775
crossref_primary_10_1016_j_est_2024_112591
crossref_primary_10_3390_ma17010021
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1016_j_jelechem_2023_117990
crossref_primary_10_1063_5_0191173
crossref_primary_10_1016_j_carbon_2024_119334
crossref_primary_10_1149_1945_7111_ace65c
crossref_primary_10_1007_s11814_023_1529_5
crossref_primary_10_3390_batteries9030146
crossref_primary_10_1063_5_0138282
crossref_primary_10_1016_j_cej_2022_139994
crossref_primary_10_1039_D3QI00781B
crossref_primary_10_1021_acsmaterialslett_3c00199
crossref_primary_10_1002_adfm_202300460
crossref_primary_10_1021_acs_energyfuels_4c02162
crossref_primary_10_1016_j_jcis_2022_12_140
crossref_primary_10_1016_j_cej_2024_149037
crossref_primary_10_1021_acs_energyfuels_3c04113
crossref_primary_10_1007_s11814_022_1227_8
crossref_primary_10_1016_j_carbon_2023_01_058
crossref_primary_10_1016_j_cej_2023_148047
crossref_primary_10_1016_j_est_2023_109737
crossref_primary_10_1039_D3TA03855F
crossref_primary_10_1016_j_heliyon_2024_e25426
crossref_primary_10_1002_advs_202403530
crossref_primary_10_1016_j_jelechem_2024_118467
crossref_primary_10_1016_j_jelechem_2024_118107
crossref_primary_10_1002_aenm_202300495
crossref_primary_10_1016_j_carbon_2023_118004
crossref_primary_10_1016_j_ijoes_2024_100480
crossref_primary_10_1021_acs_langmuir_4c00940
crossref_primary_10_1002_aenm_202202450
crossref_primary_10_1039_D2TA09502E
crossref_primary_10_1002_adma_202308193
crossref_primary_10_3390_catal13030499
crossref_primary_10_3390_molecules28062775
crossref_primary_10_1021_acsami_3c00904
Cites_doi 10.1038/35104644
10.1021/cr500207g
10.1016/j.jallcom.2019.152333
10.1016/j.ceramint.2017.04.123
10.1039/C9TA09255B
10.1016/j.jallcom.2019.151870
10.1021/jacs.6b06673
10.1002/aenm.201700071
10.1016/j.carbon.2013.07.089
10.1016/j.carbon.2014.01.027
10.1186/2193-1801-3-585
10.1016/j.joule.2019.01.017
10.1038/nmat3944
10.1016/S0378-7753(98)00220-1
10.1016/j.carbon.2016.06.057
10.1021/nl403943g
10.1016/S1872-5805(09)60018-4
10.1016/j.ensm.2018.03.012
10.1002/aenm.201400753
10.1016/S1388-2481(00)00091-6
10.1016/j.electacta.2014.04.171
10.1021/am200421h
10.1016/j.elecom.2009.10.023
10.1002/adma.200802998
10.1002/adma.200602592
10.1016/j.ssi.2005.03.026
10.1149/1.1545453
10.1016/j.jpcs.2007.10.096
10.1016/j.carbon.2016.03.032
10.1007/s10800-008-9761-6
10.1016/j.nanoen.2021.106510
10.1103/PhysRevLett.103.246804
10.1016/j.jpowsour.2019.226841
10.1021/nn900933u
10.1016/S0008-6223(97)00195-4
10.1002/adma.200901846
10.1021/acs.nanolett.5b02604
10.1016/j.jpcs.2009.12.010
10.1038/nnano.2012.35
10.1039/C3RA45115A
10.1002/advs.201700298
10.1021/nn506955f
10.1016/j.jhazmat.2021.127724
10.1016/j.chempr.2016.07.009
10.1021/nl403631h
10.1016/S0013-4686(99)00194-2
10.1038/nmat2749
10.1021/acs.jpclett.9b03456
10.1039/C7QI00184C
10.1002/adma.201304338
10.1002/marc.200800754
10.1016/j.elecom.2011.07.014
10.1021/jp302265n
10.1039/c1ee01598b
10.1039/C9TA04240G
10.1038/nmat1849
10.1002/prac.18400210117
10.1021/acsnano.8b01617
10.1002/adma.201001068
10.1038/ncomms4415
10.1002/adma.201400280
10.1039/c3ee24163g
10.1038/nenergy.2016.113
10.1021/nl504336h
10.1002/anie.200351203
10.1016/j.joule.2020.12.020
10.1016/j.carbon.2020.11.027
10.1039/c0jm01633k
10.1016/j.electacta.2009.02.012
10.1016/j.jpowsour.2013.10.012
10.1021/jp409668m
10.1073/pnas.1105113108
10.1016/j.ensm.2018.05.020
10.1088/0953-8984/20/32/323202
10.1039/C4TA06186A
10.1002/adma.202006313
10.1016/j.nanoen.2020.104849
10.1073/pnas.0502848102
10.1021/acsnano.9b07706
10.1016/j.carbon.2007.02.034
10.1002/anie.202102593
10.1038/451652a
10.1002/aenm.201400207
10.1016/j.electacta.2016.12.018
10.1016/j.carbon.2014.12.036
10.1039/D0EE02230F
10.1088/1361-6463/aa5583
10.1002/celc.201402212
10.1039/C9TA12651A
10.1021/nl501617j
10.1103/PhysRevB.44.9170
10.1021/acsenergylett.1c00627
10.1016/S0013-4686(02)00845-9
10.1016/j.matchemphys.2018.08.020
10.1016/j.jpowsour.2008.10.041
10.1039/C8TA06670A
10.1002/aenm.201300600
10.1021/acsnano.8b09027
10.1016/S0255-2701(97)00022-6
10.1016/j.jallcom.2017.08.244
10.1016/j.electacta.2012.12.124
10.1021/acsenergylett.8b00453
10.1016/j.ensm.2020.12.027
10.1016/S1872-5805(19)60012-0
10.1021/nl0727157
10.1039/C4EE03825H
10.1149/1.2218163
10.1038/nnano.2008.365
10.1016/j.electacta.2013.11.057
10.1016/j.carbon.2019.08.023
10.1038/nature07872
10.1039/C4TA06332E
10.1021/nl3014814
10.1016/j.elecom.2009.12.024
10.1016/j.electacta.2013.06.032
10.1016/j.electacta.2015.10.087
10.1016/j.jpowsour.2011.12.011
10.1039/C7EE00838D
10.1002/adma.201807243
10.1039/C6TA02442D
10.1021/am301202a
10.1039/C4EE02211D
10.1126/science.1102896
10.1016/S0008-6223(97)00097-3
10.1038/nnano.2008.215
10.1039/D0SE00175A
10.5796/kogyobutsurikagaku.64.922
10.1149/1945-7111/aba36f
10.1002/aenm.201601481
10.1038/s41563-021-00943-2
10.1002/admi.201600798
10.1016/j.jmat.2020.06.009
10.1016/j.electacta.2010.04.101
10.1016/j.jpowsour.2015.01.046
10.1016/S0378-7753(00)00552-8
10.1016/j.nanoen.2012.02.004
10.1016/S0008-6223(97)00065-1
10.1126/science.1212741
10.1002/anie.200802539
10.1002/smll.202102316
10.1002/smll.201803858
10.1016/j.powtec.2007.06.025
10.1088/0957-4484/20/32/325701
10.1016/0008-6223(96)00031-0
10.1016/j.carbon.2019.04.025
10.1016/j.nanoen.2015.03.001
10.1149/2.028302jes
10.1039/C8RA07170E
10.1016/S0008-6223(02)00023-4
10.1016/j.electacta.2019.03.149
10.1016/j.jpowsour.2006.02.064
10.1016/S0008-6223(99)00141-4
10.1021/nl802558y
10.1016/j.mattod.2017.11.001
10.1016/S1388-2481(00)00022-9
10.1016/j.jallcom.2016.07.148
10.1149/1.1838758
10.1021/cm0630800
10.1016/j.carbon.2015.04.064
10.1038/35104596
10.1039/c2ee22292b
10.1016/j.ssi.2021.115789
10.1126/science.1171245
10.1016/S0008-6223(98)00290-5
10.1021/acsnano.5b03166
10.1016/j.jpowsour.2011.07.006
10.1038/nnano.2007.411
10.1149/2.0421714jes
10.1016/S0378-7753(99)00191-3
10.1038/ncomms2705
10.1016/j.joule.2020.04.003
10.1016/j.jpowsour.2009.01.067
10.1038/nchem.2054
10.1039/C7RA03438E
10.1149/1.1836372
10.1016/S0167-2738(02)00823-8
10.1039/c0ee00683a
10.1016/j.jallcom.2012.03.096
10.1002/aenm.201500289
10.1038/nature11458
10.14447/jnmes.v18i3.358
10.1016/j.carbon.2015.11.048
10.1016/j.ssi.2018.04.023
10.1039/c2nr33099g
10.1039/C4TA06044J
10.1016/j.carbon.2021.02.055
10.1038/nnano.2009.58
10.1002/bkcs.10036
10.1002/anie.200804355
10.1016/S0008-6223(00)00155-X
10.1080/01496395.2016.1206933
10.1007/s10008-009-0888-0
10.1038/nmat4170
10.1039/B612422D
10.1039/C1CC14764A
10.1016/j.carbon.2013.01.070
10.1039/b316702j
10.1021/am3005237
10.1021/cm901452z
10.1002/cey2.2
10.1007/s12274-019-2444-2
10.1002/smtd.201600037
10.1016/j.jechem.2020.02.044
10.1021/jacs.1c08606
10.1149/1.1498255
10.1149/1.1851055
10.1149/2.1081706jes
10.1002/adfm.202007630
10.1016/j.electacta.2016.03.014
10.1016/j.cej.2017.05.180
10.1002/aenm.201600426
10.1039/C4FD00079J
10.1038/s41467-017-02479-z
10.1016/0008-6223(88)90227-8
10.1002/anie.200906287
10.1039/C4TA01267D
10.1149/1.1461377
10.1039/C8NJ05835K
10.1021/nl303823k
10.1149/2.1251802jes
10.1002/zaac.19382380102
10.1126/science.aav5842
10.1021/acsami.6b12570
10.1021/cm950304y
10.1126/science.270.5236.590
10.1016/j.carbon.2021.01.128
10.1016/j.elecom.2015.05.001
10.1039/b919738a
10.1038/nature07719
10.1002/anie.201913174
10.1007/s11581-021-03977-3
10.1021/acssuschemeng.0c08964
10.1002/adfm.201203777
10.3390/en13184867
10.1002/adma.201906427
10.1126/science.1125925
10.1021/ja211266m
10.1002/sstr.202000010
10.1016/j.carbon.2013.02.025
10.1149/1.1837571
10.1126/science.1200770
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202106704
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202106704
35032965
ADMA202106704
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Shenzhen All‐Solid‐State Lithium Battery Electrolyte Engineering Research Centre
  funderid: XMHT20200203006
– fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program
  funderid: 2017BT01N111
– fundername: National Natural Science Foundation of China
  funderid: U2001220
– fundername: Shenzhen Technical Plan Project
  funderid: RCJC20200714114436091; JCYJ20180508152135822
– fundername: National Key Research and Development Program of China
  funderid: 2021YFF0500600
– fundername: Shenzhen Technical Plan Project
  grantid: JCYJ20180508152135822
– fundername: Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Centre
  grantid: XMHT20200203006
– fundername: National Natural Science Foundation of China
  grantid: U2001220
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0500600
– fundername: Shenzhen Technical Plan Project
  grantid: RCJC20200714114436091
– fundername: Local Innovative Research Teams Project of Guangdong Pearl River Talents Program
  grantid: 2017BT01N111
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3734-436052ec5f209b61f483a90dea82efc3f2b6cd8f83705d63ddb74d57e6e427643
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Wed Dec 04 14:57:23 EST 2024
Tue Nov 19 03:43:12 EST 2024
Fri Dec 06 01:31:32 EST 2024
Sat Sep 28 08:41:13 EDT 2024
Sat Aug 24 00:59:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords microcrystalline graphite
lithium-ion batteries
flake graphite
graphene
natural graphite-based anodes
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-436052ec5f209b61f483a90dea82efc3f2b6cd8f83705d63ddb74d57e6e427643
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-3704-4379
PMID 35032965
PQID 2659611137
PQPubID 2045203
PageCount 32
ParticipantIDs proquest_miscellaneous_2620079744
proquest_journals_2659611137
crossref_primary_10_1002_adma_202106704
pubmed_primary_35032965
wiley_primary_10_1002_adma_202106704_ADMA202106704
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005; 176
2019; 13
2019; 12
2013; 64
2019; 15
2018; 323
1999; 45
2019; 16
2003; 150
2020; 14
2020; 13
1996; 143
2020; 167
2020; 11
2003; 158
2012; 12
2017; 728
2013; 58
2012; 530
2013; 57
2013; 117
2018; 219
2017; 164
2008; 20
2019; 155
1996; 64
2010; 9
2007; 17
2007; 19
2019; 31
2019; 34
2013; 107
2013; 93
1840; 21
2016; 688
2020; 32
2011; 4
2004; 306
2011; 3
2016; 4
2017; 50
2016; 6
2016; 1
1998 1998
2009; 190
2019; 43
1999; 37
2008; 47
2009; 189
2001; 39
2012; 48
2021; 60
1998; 145
2016; 8
2015; 184
2010; 55
2013; 23
2017; 43
2020; 59
2008; 8
2014; 172
2008; 3
2016; 103
2012; 203
1996; 34
2014; 1
2020; 8
2020; 4
2014; 5
2014; 4
2020; 3
2014; 3
2020; 1
2014; 2
2013; 13
1991; 44
2002; 40
2020; 370
2008; 69
2020; 49
2016; 110
2014; 7
2014; 6
1996; 8
1938; 238
2009; 324
2020; 815
2010; 71
2021; 9
2011; 334
2021; 7
2021; 6
2021; 5
2015; 5
2005; 152
2015; 3
2015; 92
2019; 309
2006
2006; 153
2003
2015; 9
2015; 8
2006; 156
2021; 90
2011; 332
2011; 108
2020; 74
2015; 279
2017; 10
2016; 138
2009; 4
2009; 3
2008; 451
2014; 72
2017; 223
2007; 45
2022; 424
2010; 12
2018; 165
2019; 2019
2013; 4
2010; 14
2014; 26
2011; 196
2013; 5
2013; 6
2014; 135
2010; 22
2018; 6
2014; 248
2018; 9
2018; 8
2010; 20
2018; 3
2010; 25
2012; 134
1969; 268C
2015; 84
2005; 102
1997; 144
2012; 490
2003; 48
2014; 14
2007; 6
2002; 149
2014; 13
2019; 436
2003; 42
2001; 414
2017; 326
2015; 57
2019; 7
2018; 28
2019; 3
2019; 1
2016; 98
1993
1992
2018; 21
1995; 270
2009; 457
2009; 458
2010; 49
2010; 46
1997; 36
1988; 26
1997; 35
2021; 372
2018; 12
2012; 116
2009; 103
2018; 15
2017; 7
2001; 93
2021; 27
2015; 36
2017; 1
2021; 20
2017; 4
2019; 809
2000; 2
2011; 13
1999; 81
2013; 160
2021; 36
2021; 31
2009; 54
2021; 33
2016; 196
2014; 116
2015; 15
2015; 14
2009; 21
2009; 20
2015; 18
2019; 149
2016; 51
2014; 114
2006; 312
2008; 181
2022; 144
2009; 30
2000; 38
2012; 1
2004; 14
2021; 17
2021; 173
2021; 177
2021; 176
2012; 7
2012; 4
2012; 5
1998; 36
2009; 39
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
Ma Y. (e_1_2_9_240_1) 2019; 2019
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
Daumas N. (e_1_2_9_63_1) 1969; 268
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
Akbar S. (e_1_2_9_245_1) 2018; 28
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_90_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_236_1
e_1_2_9_76_1
e_1_2_9_91_1
Yin Y. (e_1_2_9_111_1) 2021; 9
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
Kuratani K. (e_1_2_9_191_1) 2020; 3
e_1_2_9_252_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_24_2
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
Donnet J.‐B. (e_1_2_9_196_1) 1993
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 134
  start-page: 2512
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4858
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1427
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 129
  year: 1840
  publication-title: J. Prakt. Chem.
– volume: 3
  start-page: 5472
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 144
  start-page: 212
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 108
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 3930
  year: 2009
  publication-title: Electrochim. Acta
– volume: 110
  start-page: 520
  year: 2016
  publication-title: Carbon
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 36
  start-page: 150
  year: 2015
  publication-title: Bull. Korean Chem. Soc.
– volume: 414
  start-page: 331
  year: 2001
  publication-title: Nature
– volume: 143
  start-page: L4
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 9170
  year: 1991
  publication-title: Phys. Rev. B
– volume: 69
  start-page: 1265
  year: 2008
  publication-title: J. Phys. Chem. Solids
– volume: 3
  start-page: 1080
  year: 2019
  publication-title: Joule
– volume: 14
  start-page: 271
  year: 2015
  publication-title: Nat. Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 60
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 93
  start-page: 236
  year: 2013
  publication-title: Electrochim. Acta
– volume: 20
  year: 2008
  publication-title: J. Phys.: Condens. Matter
– volume: 8
  start-page: 307
  year: 2008
  publication-title: Nano Lett.
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 14
  start-page: 1754
  year: 2004
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1113
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 47
  start-page: 7461
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 329
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 530
  start-page: 30
  year: 2012
  publication-title: J Alloys Compd.
– volume: 26
  start-page: 3724
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 357
  year: 1988
  publication-title: Carbon
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 309
  start-page: 264
  year: 2019
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 7112
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 27
  year: 2014
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 3479
  year: 2015
  publication-title: ACS Nano
– volume: 107
  start-page: 555
  year: 2013
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 3315
  year: 2012
  publication-title: Nano Lett.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9014
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 152
  start-page: A474
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 136
  year: 2021
  publication-title: J. Materiomics
– volume: 4
  start-page: 3459
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 393
  year: 2021
  publication-title: Joule
– volume: 3
  start-page: 2966
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 89
  year: 2010
  publication-title: New Carbon Mater.
– volume: 176
  start-page: 21
  year: 2021
  publication-title: Carbon
– volume: 26
  start-page: 2084
  year: 2014
  publication-title: Adv. Mater.
– volume: 156
  start-page: 142
  year: 2006
  publication-title: J. Power Sources
– volume: 15
  start-page: 1691
  year: 2015
  publication-title: Nano Lett.
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 436
  year: 2019
  publication-title: J. Power Sources
– volume: 3
  start-page: 3144
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 951
  year: 2010
  publication-title: J. Solid State Electrochem.
– volume: 728
  start-page: 1
  year: 2017
  publication-title: J Alloys Compd.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 102
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 5519
  year: 2010
  publication-title: Electrochim. Acta
– volume: 145
  start-page: 3024
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 3
  start-page: 3730
  year: 2009
  publication-title: ACS Nano
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 103
  start-page: 356
  year: 2016
  publication-title: Carbon
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 38
  start-page: 183
  year: 2000
  publication-title: Carbon
– volume: 6
  start-page: 1831
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 196
  start-page: 405
  year: 2016
  publication-title: Electrochim. Acta
– volume: 57
  start-page: 27
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 688
  start-page: 1072
  year: 2016
  publication-title: J Alloys Compd.
– volume: 150
  start-page: A274
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 40
  start-page: 1575
  year: 2002
  publication-title: Carbon
– volume: 35
  start-page: 1167
  year: 1997
  publication-title: Carbon
– volume: 2
  start-page: 626
  year: 2000
  publication-title: Electrochem. Commun.
– volume: 13
  start-page: 4867
  year: 2020
  publication-title: Energies
– volume: 21
  start-page: 231
  year: 2018
  publication-title: Mater. Today
– volume: 92
  start-page: 311
  year: 2015
  publication-title: Carbon
– volume: 248
  start-page: 721
  year: 2014
  publication-title: J. Power Sources
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 323
  start-page: 123
  year: 2018
  publication-title: Solid State Ionics
– volume: 42
  start-page: 4203
  year: 2003
  publication-title: Angew. Chem. Int Ed.
– volume: 21
  start-page: 2710
  year: 2009
  publication-title: Adv. Mater.
– volume: 8
  start-page: 869
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 461
  year: 2010
  publication-title: Nat. Mater.
– volume: 15
  start-page: 31
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 5387
  year: 2020
  publication-title: Sustainable Energy Fuels
– volume: 12
  start-page: 303
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 8059
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 13
  start-page: 1116
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 19
  start-page: 4396
  year: 2007
  publication-title: Chem. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 189
  start-page: 121
  year: 2009
  publication-title: J. Power Sources
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 219
  start-page: 57
  year: 2018
  publication-title: Mater. Chem. Phys.
– year: 2003
– volume: 5
  start-page: 3415
  year: 2014
  publication-title: Nat. Commun.
– volume: 2019
  year: 2019
  publication-title: J. Nanomater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 815
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 34
  start-page: 205
  year: 2019
  publication-title: New Carbon Mater.
– volume: 8
  start-page: 389
  year: 1996
  publication-title: Chem. Mater.
– volume: 458
  start-page: 872
  year: 2009
  publication-title: Nature
– volume: 36
  start-page: 383
  year: 1998
  publication-title: Carbon
– volume: 28
  start-page: 1
  year: 2018
  publication-title: Carbon Lett.
– volume: 43
  start-page: 9458
  year: 2017
  publication-title: Ceram. Int.
– volume: 1
  start-page: 57
  year: 2019
  publication-title: Carbon Energy
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 20
  year: 2009
  publication-title: Nanotechnology
– volume: 37
  start-page: 165
  year: 1999
  publication-title: Carbon
– volume: 4
  start-page: 3243
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 233
  year: 2020
  publication-title: J. Energy Chem.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 172
  start-page: 223
  year: 2014
  publication-title: Faraday Discuss.
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 18
  start-page: 131
  year: 2015
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 48
  start-page: 1073
  year: 2003
  publication-title: Electrochim. Acta
– volume: 64
  start-page: 553
  year: 2013
  publication-title: Carbon
– volume: 71
  start-page: 457
  year: 2010
  publication-title: J. Phys. Chem. Solids
– volume: 13
  start-page: 7536
  year: 2019
  publication-title: ACS Nano
– volume: 20
  start-page: 9644
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 34
  start-page: 889
  year: 1996
  publication-title: Carbon
– volume: 58
  start-page: 238
  year: 2013
  publication-title: Carbon
– volume: 223
  start-page: 85
  year: 2017
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 2465
  year: 2016
  publication-title: Sep. Sci. Technol.
– volume: 153
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 22
  start-page: 415
  year: 2010
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3498
  year: 2008
  publication-title: Nano Lett.
– volume: 23
  start-page: 4345
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 268C
  start-page: 373
  year: 1969
  publication-title: C. R. Acad. Sci. Paris
– volume: 12
  start-page: 10
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 49
  start-page: 2146
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 196
  start-page: 9820
  year: 2011
  publication-title: J. Power Sources
– volume: 6
  start-page: 957
  year: 2014
  publication-title: Nat. Chem.
– volume: 809
  year: 2019
  publication-title: J Alloys Compd.
– volume: 312
  start-page: 1191
  year: 2006
  publication-title: Science
– volume: 16
  start-page: 290
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 624
  year: 2014
  publication-title: Nat. Mater.
– volume: 270
  start-page: 590
  year: 1995
  publication-title: Science
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 177
  start-page: 90
  year: 2021
  publication-title: Carbon
– volume: 15
  start-page: 6756
  year: 2015
  publication-title: Nano Lett.
– volume: 20
  start-page: 984
  year: 2021
  publication-title: Nat. Mater.
– volume: 181
  start-page: 51
  year: 2008
  publication-title: Powder Technol.
– volume: 30
  start-page: 316
  year: 2009
  publication-title: Macromol. Rapid Comm.
– year: 1993
– volume: 7
  start-page: 3320
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2100
  year: 2013
  publication-title: Nanoscale
– volume: 14
  start-page: 153
  year: 2014
  publication-title: Nano Lett.
– volume: 160
  start-page: A112
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 190
  start-page: 553
  year: 2009
  publication-title: J. Power Sources
– volume: 98
  start-page: 582
  year: 2016
  publication-title: Carbon
– volume: 47
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 1
  start-page: 287
  year: 2016
  publication-title: Chem
– volume: 6
  start-page: 1521
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 3985
  year: 2018
  publication-title: ACS Nano
– volume: 238
  start-page: 1
  year: 1938
  publication-title: Z. Anorg. Allg. Chem.
– volume: 176
  start-page: 2389
  year: 2005
  publication-title: Solid State Ionics
– volume: 59
  start-page: 3638
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 4
  start-page: 2568
  year: 2014
  publication-title: RSC Adv.
– volume: 9
  start-page: 7690
  year: 2015
  publication-title: ACS Nano
– volume: 39
  start-page: 1081
  year: 2009
  publication-title: J. Appl. Electrochem.
– year: 1992
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 36
  start-page: 443
  year: 1997
  publication-title: Chem. Eng. Process.
– volume: 4
  start-page: 1296
  year: 2020
  publication-title: Joule
– volume: 35
  start-page: 1089
  year: 1997
  publication-title: Carbon
– volume: 72
  start-page: 38
  year: 2014
  publication-title: Carbon
– volume: 4
  start-page: 30
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 173
  start-page: 477
  year: 2021
  publication-title: Carbon
– year: 1998 1998
– volume: 203
  start-page: 130
  year: 2012
  publication-title: J. Power Sources
– volume: 149
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 116
  start-page: 170
  year: 2014
  publication-title: Electrochim. Acta
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 144
  start-page: 1188
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 372
  year: 2021
  publication-title: Solid State Ionics
– volume: 84
  start-page: 434
  year: 2015
  publication-title: Carbon
– volume: 3
  start-page: 563
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 64
  start-page: 922
  year: 1996
  publication-title: Denki Kagaku
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 45
  start-page: 67
  year: 1999
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 145
  year: 2018
  publication-title: Nat. Commun.
– volume: 43
  start-page: 2766
  year: 2019
  publication-title: New J. Chem.
– volume: 3
  start-page: 1212
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1687
  year: 2013
  publication-title: Nat. Commun.
– volume: 149
  start-page: A499
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 1836
  year: 2019
  publication-title: Nano Res.
– volume: 14
  start-page: 277
  year: 2014
  publication-title: Nano Lett.
– volume: 1
  start-page: 429
  year: 2012
  publication-title: Nano Energy
– volume: 48
  start-page: 1201
  year: 2012
  publication-title: Chem. Commun.
– volume: 2
  start-page: 272
  year: 2000
  publication-title: Electrochem. Commun.
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 4
  start-page: 1424
  year: 2017
  publication-title: Inorg. Chem. Front.
– volume: 149
  start-page: 257
  year: 2019
  publication-title: Carbon
– volume: 39
  start-page: 507
  year: 2001
  publication-title: Carbon
– volume: 81
  start-page: 368
  year: 1999
  publication-title: J. Power Sources
– volume: 279
  start-page: 428
  year: 2015
  publication-title: J. Power Sources
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 9
  start-page: 16
  year: 2021
  publication-title: J. Mater. Sci. Chem. Eng.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1672
  year: 2014
  publication-title: ChemElectroChem
– volume: 326
  start-page: 507
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 1837
  year: 2020
  publication-title: ACS Nano
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 93
  start-page: 123
  year: 2001
  publication-title: J. Power Sources
– volume: 14
  start-page: 4573
  year: 2014
  publication-title: Nano Lett.
– volume: 165
  start-page: A380
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2430
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 470
  year: 2013
  publication-title: Nano Lett.
– volume: 57
  start-page: 530
  year: 2013
  publication-title: Carbon
– volume: 4
  start-page: 217
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 43
  year: 2015
  publication-title: Nano Energy
– volume: 45
  start-page: 1558
  year: 2007
  publication-title: Carbon
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 36
  start-page: 147
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 81
  start-page: 182
  year: 1999
  publication-title: J. Power Sources
– volume: 158
  start-page: 269
  year: 2003
  publication-title: Solid State Ionics
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 13
  start-page: 3723
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 31
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 2465
  year: 2007
  publication-title: Adv. Mater.
– volume: 424
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 5572
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 900
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– year: 2006
– volume: 7
  start-page: 309
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 585
  year: 2014
  publication-title: SpringerPlus
– volume: 370
  start-page: 192
  year: 2020
  publication-title: Science
– volume: 184
  start-page: 364
  year: 2015
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 2025
  year: 2010
  publication-title: Chem. Commun.
– volume: 155
  start-page: 9
  year: 2019
  publication-title: Carbon
– volume: 27
  start-page: 1957
  year: 2021
  publication-title: Ionics
– ident: e_1_2_9_124_1
  doi: 10.1038/35104644
– ident: e_1_2_9_123_1
  doi: 10.1021/cr500207g
– ident: e_1_2_9_121_1
  doi: 10.1016/j.jallcom.2019.152333
– ident: e_1_2_9_91_1
  doi: 10.1016/j.ceramint.2017.04.123
– ident: e_1_2_9_33_1
  doi: 10.1039/C9TA09255B
– ident: e_1_2_9_156_1
  doi: 10.1016/j.jallcom.2019.151870
– ident: e_1_2_9_44_1
  doi: 10.1021/jacs.6b06673
– ident: e_1_2_9_130_1
  doi: 10.1002/aenm.201700071
– ident: e_1_2_9_14_1
  doi: 10.1016/j.carbon.2013.07.089
– ident: e_1_2_9_151_1
  doi: 10.1016/j.carbon.2014.01.027
– ident: e_1_2_9_244_1
  doi: 10.1186/2193-1801-3-585
– ident: e_1_2_9_166_1
  doi: 10.1016/j.joule.2019.01.017
– ident: e_1_2_9_203_1
  doi: 10.1038/nmat3944
– ident: e_1_2_9_72_1
  doi: 10.1016/S0378-7753(98)00220-1
– ident: e_1_2_9_143_1
  doi: 10.1016/j.carbon.2016.06.057
– ident: e_1_2_9_136_1
  doi: 10.1021/nl403943g
– ident: e_1_2_9_29_1
  doi: 10.1016/S1872-5805(09)60018-4
– ident: e_1_2_9_182_1
  doi: 10.1016/j.ensm.2018.03.012
– ident: e_1_2_9_144_1
  doi: 10.1002/aenm.201400753
– ident: e_1_2_9_73_1
  doi: 10.1016/S1388-2481(00)00091-6
– ident: e_1_2_9_118_1
  doi: 10.1016/j.electacta.2014.04.171
– ident: e_1_2_9_237_1
  doi: 10.1021/am200421h
– ident: e_1_2_9_226_1
  doi: 10.1016/j.elecom.2009.10.023
– ident: e_1_2_9_222_1
  doi: 10.1002/adma.200802998
– ident: e_1_2_9_165_1
  doi: 10.1002/adma.200602592
– ident: e_1_2_9_188_1
  doi: 10.1016/j.ssi.2005.03.026
– volume: 3
  start-page: 5472
  year: 2020
  ident: e_1_2_9_191_1
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Kuratani K.
– ident: e_1_2_9_183_1
  doi: 10.1149/1.1545453
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jpcs.2007.10.096
– ident: e_1_2_9_57_1
  doi: 10.1016/j.carbon.2016.03.032
– ident: e_1_2_9_76_1
  doi: 10.1007/s10800-008-9761-6
– ident: e_1_2_9_178_1
  doi: 10.1016/j.nanoen.2021.106510
– ident: e_1_2_9_214_1
  doi: 10.1103/PhysRevLett.103.246804
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jpowsour.2019.226841
– ident: e_1_2_9_55_1
  doi: 10.1021/nn900933u
– ident: e_1_2_9_107_1
  doi: 10.1016/S0008-6223(97)00195-4
– ident: e_1_2_9_162_1
  doi: 10.1002/adma.200901846
– ident: e_1_2_9_231_1
  doi: 10.1021/acs.nanolett.5b02604
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jpcs.2009.12.010
– ident: e_1_2_9_125_1
  doi: 10.1038/nnano.2012.35
– ident: e_1_2_9_239_1
  doi: 10.1039/C3RA45115A
– ident: e_1_2_9_153_1
  doi: 10.1002/advs.201700298
– ident: e_1_2_9_21_1
– ident: e_1_2_9_163_1
  doi: 10.1021/nn506955f
– ident: e_1_2_9_96_1
  doi: 10.1016/j.jhazmat.2021.127724
– ident: e_1_2_9_47_1
  doi: 10.1016/j.chempr.2016.07.009
– ident: e_1_2_9_152_1
  doi: 10.1021/nl403631h
– ident: e_1_2_9_4_1
  doi: 10.1016/S0013-4686(99)00194-2
– ident: e_1_2_9_141_1
  doi: 10.1038/nmat2749
– ident: e_1_2_9_190_1
  doi: 10.1021/acs.jpclett.9b03456
– ident: e_1_2_9_173_1
  doi: 10.1039/C7QI00184C
– ident: e_1_2_9_250_1
  doi: 10.1002/adma.201304338
– ident: e_1_2_9_51_1
  doi: 10.1002/marc.200800754
– ident: e_1_2_9_84_1
  doi: 10.1016/j.elecom.2011.07.014
– ident: e_1_2_9_171_1
  doi: 10.1021/jp302265n
– ident: e_1_2_9_66_1
  doi: 10.1039/c1ee01598b
– ident: e_1_2_9_92_1
  doi: 10.1039/C9TA04240G
– ident: e_1_2_9_194_1
  doi: 10.1038/nmat1849
– ident: e_1_2_9_98_1
  doi: 10.1002/prac.18400210117
– ident: e_1_2_9_206_1
  doi: 10.1021/acsnano.8b01617
– ident: e_1_2_9_218_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_9_223_1
  doi: 10.1038/ncomms4415
– ident: e_1_2_9_89_1
  doi: 10.1002/adma.201400280
– volume-title: Carbon Black: Science and Technology
  year: 1993
  ident: e_1_2_9_196_1
  contributor:
    fullname: Donnet J.‐B.
– ident: e_1_2_9_229_1
  doi: 10.1039/c3ee24163g
– volume: 2019
  year: 2019
  ident: e_1_2_9_240_1
  publication-title: J. Nanomater.
  contributor:
    fullname: Ma Y.
– ident: e_1_2_9_40_1
  doi: 10.1038/nenergy.2016.113
– ident: e_1_2_9_167_1
  doi: 10.1021/nl504336h
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.200351203
– volume: 9
  start-page: 16
  year: 2021
  ident: e_1_2_9_111_1
  publication-title: J. Mater. Sci. Chem. Eng.
  contributor:
    fullname: Yin Y.
– ident: e_1_2_9_82_1
  doi: 10.1016/j.joule.2020.12.020
– ident: e_1_2_9_71_1
  doi: 10.1016/j.carbon.2020.11.027
– ident: e_1_2_9_56_1
  doi: 10.1039/c0jm01633k
– ident: e_1_2_9_41_1
  doi: 10.1016/j.electacta.2009.02.012
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jpowsour.2013.10.012
– ident: e_1_2_9_252_1
  doi: 10.1021/jp409668m
– ident: e_1_2_9_212_1
  doi: 10.1073/pnas.1105113108
– ident: e_1_2_9_24_1
– ident: e_1_2_9_174_1
  doi: 10.1016/j.ensm.2018.05.020
– ident: e_1_2_9_213_1
  doi: 10.1088/0953-8984/20/32/323202
– ident: e_1_2_9_168_1
  doi: 10.1039/C4TA06186A
– ident: e_1_2_9_102_1
  doi: 10.1002/adma.202006313
– ident: e_1_2_9_172_1
  doi: 10.1016/j.nanoen.2020.104849
– ident: e_1_2_9_202_1
  doi: 10.1073/pnas.0502848102
– ident: e_1_2_9_179_1
  doi: 10.1021/acsnano.9b07706
– ident: e_1_2_9_204_1
  doi: 10.1016/j.carbon.2007.02.034
– ident: e_1_2_9_180_1
  doi: 10.1002/anie.202102593
– ident: e_1_2_9_1_1
  doi: 10.1038/451652a
– ident: e_1_2_9_135_1
  doi: 10.1002/aenm.201400207
– ident: e_1_2_9_185_1
  doi: 10.1016/j.electacta.2016.12.018
– ident: e_1_2_9_140_1
  doi: 10.1016/j.carbon.2014.12.036
– ident: e_1_2_9_59_1
  doi: 10.1039/D0EE02230F
– ident: e_1_2_9_175_1
  doi: 10.1088/1361-6463/aa5583
– ident: e_1_2_9_86_1
  doi: 10.1002/celc.201402212
– ident: e_1_2_9_109_1
  doi: 10.1039/C9TA12651A
– ident: e_1_2_9_169_1
  doi: 10.1021/nl501617j
– ident: e_1_2_9_64_1
  doi: 10.1103/PhysRevB.44.9170
– ident: e_1_2_9_49_1
  doi: 10.1021/acsenergylett.1c00627
– ident: e_1_2_9_54_1
  doi: 10.1016/S0013-4686(02)00845-9
– volume: 268
  start-page: 373
  year: 1969
  ident: e_1_2_9_63_1
  publication-title: C. R. Acad. Sci. Paris
  contributor:
    fullname: Daumas N.
– ident: e_1_2_9_209_1
  doi: 10.1016/j.matchemphys.2018.08.020
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jpowsour.2008.10.041
– ident: e_1_2_9_46_1
  doi: 10.1039/C8TA06670A
– ident: e_1_2_9_19_1
– ident: e_1_2_9_42_1
  doi: 10.1002/aenm.201300600
– ident: e_1_2_9_164_1
  doi: 10.1021/acsnano.8b09027
– ident: e_1_2_9_13_1
– ident: e_1_2_9_90_1
  doi: 10.1016/S0255-2701(97)00022-6
– ident: e_1_2_9_147_1
  doi: 10.1016/j.jallcom.2017.08.244
– ident: e_1_2_9_30_1
  doi: 10.1016/j.electacta.2012.12.124
– ident: e_1_2_9_184_1
  doi: 10.1021/acsenergylett.8b00453
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ensm.2020.12.027
– ident: e_1_2_9_94_1
  doi: 10.1016/S1872-5805(19)60012-0
– ident: e_1_2_9_160_1
  doi: 10.1021/nl0727157
– ident: e_1_2_9_228_1
  doi: 10.1039/C4EE03825H
– ident: e_1_2_9_32_1
  doi: 10.1149/1.2218163
– ident: e_1_2_9_210_1
  doi: 10.1038/nnano.2008.365
– ident: e_1_2_9_93_1
  doi: 10.1016/j.electacta.2013.11.057
– ident: e_1_2_9_176_1
  doi: 10.1016/j.carbon.2019.08.023
– ident: e_1_2_9_205_1
  doi: 10.1038/nature07872
– ident: e_1_2_9_120_1
  doi: 10.1039/C4TA06332E
– ident: e_1_2_9_138_1
  doi: 10.1021/nl3014814
– ident: e_1_2_9_251_1
  doi: 10.1016/j.elecom.2009.12.024
– ident: e_1_2_9_23_1
– ident: e_1_2_9_95_1
  doi: 10.1016/j.electacta.2013.06.032
– ident: e_1_2_9_148_1
  doi: 10.1016/j.electacta.2015.10.087
– ident: e_1_2_9_230_1
  doi: 10.1016/j.jpowsour.2011.12.011
– ident: e_1_2_9_149_1
  doi: 10.1039/C7EE00838D
– ident: e_1_2_9_24_2
– ident: e_1_2_9_58_1
  doi: 10.1002/adma.201807243
– ident: e_1_2_9_155_1
  doi: 10.1039/C6TA02442D
– ident: e_1_2_9_238_1
  doi: 10.1021/am301202a
– ident: e_1_2_9_254_1
  doi: 10.1039/C4EE02211D
– ident: e_1_2_9_215_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_104_1
  doi: 10.1016/S0008-6223(97)00097-3
– ident: e_1_2_9_20_1
– ident: e_1_2_9_216_1
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_9_61_1
  doi: 10.1039/D0SE00175A
– ident: e_1_2_9_68_1
  doi: 10.5796/kogyobutsurikagaku.64.922
– ident: e_1_2_9_192_1
  doi: 10.1149/1945-7111/aba36f
– ident: e_1_2_9_37_1
  doi: 10.1002/aenm.201601481
– ident: e_1_2_9_50_1
  doi: 10.1038/s41563-021-00943-2
– ident: e_1_2_9_158_1
  doi: 10.1002/admi.201600798
– ident: e_1_2_9_97_1
  doi: 10.1016/j.jmat.2020.06.009
– ident: e_1_2_9_28_1
  doi: 10.1016/j.electacta.2010.04.101
– ident: e_1_2_9_80_1
  doi: 10.1016/j.jpowsour.2015.01.046
– ident: e_1_2_9_88_1
  doi: 10.1016/S0378-7753(00)00552-8
– ident: e_1_2_9_234_1
  doi: 10.1016/j.nanoen.2012.02.004
– ident: e_1_2_9_105_1
  doi: 10.1016/S0008-6223(97)00065-1
– ident: e_1_2_9_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_9_220_1
  doi: 10.1002/anie.200802539
– ident: e_1_2_9_132_1
  doi: 10.1002/smll.202102316
– ident: e_1_2_9_247_1
  doi: 10.1002/smll.201803858
– ident: e_1_2_9_116_1
  doi: 10.1016/j.powtec.2007.06.025
– ident: e_1_2_9_22_1
– ident: e_1_2_9_60_1
  doi: 10.1088/0957-4484/20/32/325701
– ident: e_1_2_9_106_1
  doi: 10.1016/0008-6223(96)00031-0
– ident: e_1_2_9_43_1
  doi: 10.1016/j.carbon.2019.04.025
– ident: e_1_2_9_119_1
  doi: 10.1016/j.nanoen.2015.03.001
– ident: e_1_2_9_35_1
  doi: 10.1149/2.028302jes
– ident: e_1_2_9_31_1
  doi: 10.1039/C8RA07170E
– ident: e_1_2_9_103_1
  doi: 10.1016/S0008-6223(02)00023-4
– ident: e_1_2_9_170_1
  doi: 10.1016/j.electacta.2019.03.149
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jpowsour.2006.02.064
– ident: e_1_2_9_11_1
  doi: 10.1016/S0008-6223(99)00141-4
– ident: e_1_2_9_195_1
  doi: 10.1021/nl802558y
– ident: e_1_2_9_81_1
  doi: 10.1016/j.mattod.2017.11.001
– ident: e_1_2_9_67_1
  doi: 10.1016/S1388-2481(00)00022-9
– ident: e_1_2_9_146_1
  doi: 10.1016/j.jallcom.2016.07.148
– ident: e_1_2_9_5_1
  doi: 10.1149/1.1838758
– ident: e_1_2_9_201_1
  doi: 10.1021/cm0630800
– ident: e_1_2_9_235_1
  doi: 10.1016/j.carbon.2015.04.064
– ident: e_1_2_9_6_1
  doi: 10.1038/35104596
– ident: e_1_2_9_150_1
  doi: 10.1039/c2ee22292b
– ident: e_1_2_9_193_1
  doi: 10.1016/j.ssi.2021.115789
– ident: e_1_2_9_207_1
  doi: 10.1126/science.1171245
– ident: e_1_2_9_12_1
  doi: 10.1016/S0008-6223(98)00290-5
– ident: e_1_2_9_137_1
  doi: 10.1021/acsnano.5b03166
– ident: e_1_2_9_85_1
  doi: 10.1016/j.jpowsour.2011.07.006
– ident: e_1_2_9_126_1
  doi: 10.1038/nnano.2007.411
– ident: e_1_2_9_9_1
  doi: 10.1149/2.0421714jes
– ident: e_1_2_9_69_1
  doi: 10.1016/S0378-7753(99)00191-3
– ident: e_1_2_9_227_1
  doi: 10.1038/ncomms2705
– ident: e_1_2_9_48_1
  doi: 10.1016/j.joule.2020.04.003
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jpowsour.2009.01.067
– ident: e_1_2_9_99_1
  doi: 10.1038/nchem.2054
– ident: e_1_2_9_242_1
  doi: 10.1039/C7RA03438E
– ident: e_1_2_9_7_1
  doi: 10.1149/1.1836372
– ident: e_1_2_9_187_1
  doi: 10.1016/S0167-2738(02)00823-8
– ident: e_1_2_9_217_1
  doi: 10.1039/c0ee00683a
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jallcom.2012.03.096
– ident: e_1_2_9_145_1
  doi: 10.1002/aenm.201500289
– ident: e_1_2_9_199_1
  doi: 10.1038/nature11458
– ident: e_1_2_9_236_1
  doi: 10.14447/jnmes.v18i3.358
– ident: e_1_2_9_139_1
  doi: 10.1016/j.carbon.2015.11.048
– ident: e_1_2_9_189_1
  doi: 10.1016/j.ssi.2018.04.023
– ident: e_1_2_9_249_1
  doi: 10.1039/c2nr33099g
– ident: e_1_2_9_142_1
  doi: 10.1039/C4TA06044J
– ident: e_1_2_9_113_1
  doi: 10.1016/j.carbon.2021.02.055
– ident: e_1_2_9_200_1
  doi: 10.1038/nnano.2009.58
– ident: e_1_2_9_112_1
  doi: 10.1002/bkcs.10036
– ident: e_1_2_9_128_1
  doi: 10.1002/anie.200804355
– ident: e_1_2_9_197_1
  doi: 10.1016/S0008-6223(00)00155-X
– ident: e_1_2_9_115_1
  doi: 10.1080/01496395.2016.1206933
– ident: e_1_2_9_27_1
  doi: 10.1007/s10008-009-0888-0
– ident: e_1_2_9_52_1
  doi: 10.1038/nmat4170
– ident: e_1_2_9_70_1
  doi: 10.1039/B612422D
– ident: e_1_2_9_74_1
  doi: 10.1039/C1CC14764A
– ident: e_1_2_9_233_1
  doi: 10.1016/j.carbon.2013.01.070
– ident: e_1_2_9_17_1
  doi: 10.1039/b316702j
– ident: e_1_2_9_34_1
  doi: 10.1021/am3005237
– ident: e_1_2_9_3_1
  doi: 10.1021/cm901452z
– ident: e_1_2_9_129_1
  doi: 10.1002/cey2.2
– ident: e_1_2_9_45_1
  doi: 10.1007/s12274-019-2444-2
– ident: e_1_2_9_159_1
  doi: 10.1002/smtd.201600037
– ident: e_1_2_9_246_1
  doi: 10.1016/j.jechem.2020.02.044
– ident: e_1_2_9_181_1
  doi: 10.1021/jacs.1c08606
– ident: e_1_2_9_221_1
  doi: 10.1149/1.1498255
– ident: e_1_2_9_77_1
  doi: 10.1149/1.1851055
– ident: e_1_2_9_83_1
  doi: 10.1149/2.1081706jes
– ident: e_1_2_9_225_1
  doi: 10.1002/adfm.202007630
– ident: e_1_2_9_79_1
  doi: 10.1016/j.electacta.2016.03.014
– ident: e_1_2_9_122_1
  doi: 10.1016/j.cej.2017.05.180
– ident: e_1_2_9_232_1
  doi: 10.1002/aenm.201600426
– ident: e_1_2_9_114_1
  doi: 10.1039/C4FD00079J
– ident: e_1_2_9_108_1
  doi: 10.1038/s41467-017-02479-z
– ident: e_1_2_9_100_1
  doi: 10.1016/0008-6223(88)90227-8
– ident: e_1_2_9_127_1
  doi: 10.1002/anie.200906287
– ident: e_1_2_9_157_1
  doi: 10.1039/C4TA01267D
– ident: e_1_2_9_87_1
  doi: 10.1149/1.1461377
– ident: e_1_2_9_241_1
  doi: 10.1039/C8NJ05835K
– ident: e_1_2_9_154_1
  doi: 10.1021/nl303823k
– ident: e_1_2_9_10_1
  doi: 10.1149/2.1251802jes
– ident: e_1_2_9_62_1
  doi: 10.1002/zaac.19382380102
– ident: e_1_2_9_36_1
  doi: 10.1126/science.aav5842
– volume: 28
  start-page: 1
  year: 2018
  ident: e_1_2_9_245_1
  publication-title: Carbon Lett.
  contributor:
    fullname: Akbar S.
– ident: e_1_2_9_248_1
  doi: 10.1021/acsami.6b12570
– ident: e_1_2_9_110_1
  doi: 10.1021/cm950304y
– ident: e_1_2_9_65_1
  doi: 10.1126/science.270.5236.590
– ident: e_1_2_9_224_1
  doi: 10.1016/j.carbon.2021.01.128
– ident: e_1_2_9_186_1
  doi: 10.1016/j.elecom.2015.05.001
– ident: e_1_2_9_134_1
  doi: 10.1039/b919738a
– ident: e_1_2_9_208_1
  doi: 10.1038/nature07719
– ident: e_1_2_9_101_1
  doi: 10.1002/anie.201913174
– ident: e_1_2_9_131_1
  doi: 10.1007/s11581-021-03977-3
– ident: e_1_2_9_133_1
  doi: 10.1021/acssuschemeng.0c08964
– ident: e_1_2_9_253_1
  doi: 10.1002/adfm.201203777
– ident: e_1_2_9_243_1
  doi: 10.3390/en13184867
– ident: e_1_2_9_177_1
  doi: 10.1002/adma.201906427
– ident: e_1_2_9_211_1
  doi: 10.1126/science.1125925
– ident: e_1_2_9_161_1
  doi: 10.1021/ja211266m
– ident: e_1_2_9_78_1
  doi: 10.1002/sstr.202000010
– ident: e_1_2_9_117_1
  doi: 10.1016/j.carbon.2013.02.025
– ident: e_1_2_9_219_1
  doi: 10.1149/1.1837571
– ident: e_1_2_9_198_1
  doi: 10.1126/science.1200770
SSID ssj0009606
Score 2.7188783
SecondaryResourceType review_article
Snippet Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate...
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g and appropriate...
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g –1 and appropriate...
Graphite, commonly including artificial graphite and natural graphite (NG), possesses a relatively high theoretical capacity of 372 mA h g–1 and appropriate...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2106704
SubjectTerms Anodes
Electrochemical analysis
Emissions control
Energy consumption
flake graphite
graphene
Graphite
Lithium-ion batteries
Materials science
microcrystalline graphite
natural graphite‐based anodes
Title Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106704
https://www.ncbi.nlm.nih.gov/pubmed/35032965
https://www.proquest.com/docview/2659611137
https://search.proquest.com/docview/2620079744
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYt1BMc2JdCQUZC4pQ29ZbkWFH2Taqo1FsUL4EKkSDaXjjxCDwjT4LHaUMLByS4RIpiJ44ntn87M58ROmBGB5IL46lUSM8qYt-TqQ49LW3HQDSVPIR45-sbcdZlFz3em4riL_gQ5YIbtAzXX0MDT-Sg8QUNTbTjBhFgoDkgaJMG4NPX7nzxo0CeO9ge5V4kWDihNvqkMZt9dlT6ITVnlasbek6WUDIpdOFx8lgfDWVdvX7jOf7nrZbR4liX4lbxIa2gOZOtooUpWuEauuy4SHTwk8ZWNuIOsKBwnuKbxME78CnAr62Exf0M32b3OSS86g8f-qOnj7f38zzDBc3TTs7XUffk-O7ozBvvxeApGlDmMWrnPcQonhI_kqKZspAmka9NEhKTKpoSKZQOU2DpcC2o1jJgmgdGGEYCK3s2UCXLM7OFsB0yaZMrZow9SKtAqfaVYAkTCnY-9qvocGKL-LlAbsQFXJnEUD1xWT1VVJuYKh43vUFMBI-E7cFpUEX75WXbaOBPSJKZfARpYInWTqXsLTYLE5ePotynJBK8iogz1C9liFvt61Z5tv2XTDtonkBQhXOjrKHK8GVkdq3UGco99zl_Asr_9J4
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefEDsABxgwoIyBkZB2CqT-leRYjbECbZEqkHaL4h-BCpEgaC-c9ifsb9xfMj-nCSscJsElUhQ7cew8-2vnvY8BDrg1kRLSBjqXKnCKOAxUbuLAKNcxUMOUiDHeuT-Q3St-9lPU3oQYC1PxIZoFN7QM31-jgeOC9NEzNTQzHhxEEYKGRNAPzubb6NV1PHwmSKFA97g9JoJE8rjmNob0aDb_7Lj0SmzOalc_-JysgKqLXfmc3B5OxupQP70gOr7rvT7C8lSakk71La3CnC3WYOkfYOE6nA99MDq6ShOnHMkQcVCkzMkg8_wO8gP5107FklFBLorrEhP2RuOb0eTuz6_fp2VBKqCnm59_gquT75ffusF0O4ZAs4jxgDM39aFWi5yGiZLtnMcsS0Jjs5jaXLOcKqlNnCNORxjJjFERNyKy0nIaOeWzAfNFWdgtIG7UZG2hubXuoJwIZSbUkmdcatz8OGzB17ox0vuKupFWfGWaYvWkTfW0YKduq3RqfY8plSKRrhNnUQv2m8vObvBnSFbYcoJpcJXWzabcLTarNm4exUTIaCJFC6hvqf-UIe0c9zvN2fZbMu3BQvey30t7p4Pzz7BIMcbCe1XuwPz4YWK_OOUzVrv-2_4LM4j4vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bT9swFMePJpCm7QEYbKMMhich7SmQ-pbksaJ0XLupGhJvUXwbFSJB0L7wxEfYZ9wnmY_Tpu32MGm8RIpiJ45Pjv234_MzwB63JlFC2kg7qSKviONIOZNGRvmGgRqmRIrxzhd9eXzJT6_E1VwUf82HaCbc0DNCe40OfmfcwQwaWpjADaLIQEMg6DKXNEN6fncwA0ihPg-0PSaiTPJ0im2M6cFi_sVu6S-tuShdQ9_TW4ViWup6ycnN_nik9vXjH0DH57zWGqxMhCnp1F_SG3hhy3V4PYcr3ICzQQhFx4XSxOtGMkAYFKkc6ReB3kG-IP3aa1gyLMnX8keFCc-Ho-vh-PbX08-TqiQ1ztOPzt_CZe_o--FxNNmMIdIsYTzizA98qNXC0ThTsu14yoosNrZIqXWaOaqkNqlDmI4wkhmjEm5EYqXlNPG65x0slVVpN4H4PpO1hebW-oPyEpSZWEtecKlx6-O4BZ-ntsjvauZGXtOVaY7VkzfV04Ltqanyie895FSKTPomnCUt-NRc9l6Dv0KK0lZjTINztH4s5W_xvjZx8ygmYkYzKVpAg6H-UYa8073oNGdb_5NpF15-6_by85P-2Qd4RTHAIiyp3Ial0f3Y7njZM1Ifw5f9G0b5924
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+Roles+of+Natural+Graphite+in+Ongoing+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Liang&rft.au=Ding%2C+Baichuan&rft.au=Qin%2C+Xian%E2%80%90Ying&rft.au=Wang%2C+Zhijie&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202106704&rft.externalDBID=10.1002%252Fadma.202106704&rft.externalDocID=ADMA202106704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon