Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking
Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of na...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 5; pp. e2104844 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.
Although single‐atom nanozymes have been reported to mimic peroxidases, they undergo the OH radical‐mediated pathway like most of nanozymes. In fact, OH radical generation (from H2O2) over those cationic single‐atom centers is much slower than their metallic counterparts on conventional nanozymes. A cluster nanozyme with optimized site reactivity and utilization is demonstrated here to be a better candidate for peroxidase/oxidase mimicking. |
---|---|
AbstractList | Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H
2
O
2
to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Although single‐atom nanozymes have been reported to mimic peroxidases, they undergo the OH radical‐mediated pathway like most of nanozymes. In fact, OH radical generation (from H2O2) over those cationic single‐atom centers is much slower than their metallic counterparts on conventional nanozymes. A cluster nanozyme with optimized site reactivity and utilization is demonstrated here to be a better candidate for peroxidase/oxidase mimicking. Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H O to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. |
Author | Thang, Ho Viet Wu, Tai‐Sing Xu, Bingshe Peng, Yung‐Kang Hao, Xiaodong Chen, Hsin‐Yi Tiffany Zhang, Jieru Tseng, Kai‐Yu |
Author_xml | – sequence: 1 givenname: Jieru surname: Zhang fullname: Zhang, Jieru organization: City University of Hong Kong – sequence: 2 givenname: Tai‐Sing surname: Wu fullname: Wu, Tai‐Sing organization: National Synchrotron Radiation Research Centre – sequence: 3 givenname: Ho Viet surname: Thang fullname: Thang, Ho Viet organization: National Tsing Hua University – sequence: 4 givenname: Kai‐Yu surname: Tseng fullname: Tseng, Kai‐Yu organization: National Tsing Hua University – sequence: 5 givenname: Xiaodong surname: Hao fullname: Hao, Xiaodong email: hao.xiaodong@sust.edu.cn organization: Shaanxi University of Science and Technology – sequence: 6 givenname: Bingshe surname: Xu fullname: Xu, Bingshe organization: Shaanxi University of Science and Technology – sequence: 7 givenname: Hsin‐Yi Tiffany surname: Chen fullname: Chen, Hsin‐Yi Tiffany email: hsinyi.tiffany.chen@gapp.nthu.edu.tw organization: National Tsing Hua University – sequence: 8 givenname: Yung‐Kang orcidid: 0000-0001-9590-6902 surname: Peng fullname: Peng, Yung‐Kang email: ykpeng@cityu.edu.hk organization: City University of Hong Kong Shenzhen Research Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34825478$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URB-wZYkssSmLBL8y9iyrqDyklCBK15ZjX4PLzDjYHkoifjwzTFukSoiVX-d8su53jA662AFCzymZU0LY69w2zZwRRolQQjxCR7SifFYpVh_c7yk5RMc5XxPCKRPyCTrkQrGFkOoI_Vo2fS6Q8AfTxf2uhYxvQvmK19sS2rAHhz-BsSX8CGWHTefwVQlN2JsSYoejx2fjG-DLUAbTx4TPvYfp7iOk-DM4kwGfjuZ6OrzCF0Oy_Ra6L0_RY2-aDM9u1xN09eb88_LdbLV--355tppZLrmYcWIIr7lc1F5snHeWV6Yi3jpVV1apSlrHlRNELvwGpJS1Aik2zAvnfe3rip-g0yl3m-L3HnLRbcgWmsZ0EPusWUUEYZIqMaAvH6DXsU_d8LuBYkItJOMj9eKW6jctOL1NoTVpp-_mOgBiAmyKOSfw2obyZ2glmdBoSvRYnx7r0_f1Ddr8gXaX_E-hnoSb0MDuP7S-vFit_rq_Aacorjk |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_2c02331 crossref_primary_10_1002_ange_202307133 crossref_primary_10_1016_j_foodchem_2023_137019 crossref_primary_10_1002_smll_202200178 crossref_primary_10_1186_s12951_024_02478_5 crossref_primary_10_1186_s40580_023_00390_6 crossref_primary_10_1002_smll_202401032 crossref_primary_10_1021_acsnano_2c12698 crossref_primary_10_1021_acsnano_3c05409 crossref_primary_10_1002_smll_202305539 crossref_primary_10_1002_ejic_202200202 crossref_primary_10_1360_SSC_2021_0257 crossref_primary_10_1021_acs_langmuir_2c00070 crossref_primary_10_1039_D2NR05281D crossref_primary_10_1002_smll_202203283 crossref_primary_10_1021_acsanm_2c03340 crossref_primary_10_1002_anie_202307133 crossref_primary_10_1002_adfm_202209399 crossref_primary_10_1002_adma_202211041 crossref_primary_10_1007_s12274_022_4371_x crossref_primary_10_1038_s41467_025_57188_9 crossref_primary_10_1039_D3NR01262J crossref_primary_10_1021_acs_chemmater_3c03018 crossref_primary_10_1016_j_cej_2022_139411 crossref_primary_10_1007_s40843_022_2280_6 crossref_primary_10_1016_j_apcatb_2022_121461 crossref_primary_10_1039_D3TA02486E crossref_primary_10_1002_smll_202408609 crossref_primary_10_1021_acsanm_5c00043 crossref_primary_10_1039_D2NR01375D crossref_primary_10_1039_D3CS00087G |
Cites_doi | 10.1002/ange.201813994 10.1002/smll.201901485 10.1021/acsami.5b01271 10.1039/C8CS00718G 10.1038/s41467-017-00619-z 10.1038/nnano.2007.260 10.1021/acs.analchem.9b02901 10.1039/c2cc17013b 10.1002/chem.202001597 10.1007/s11434-016-1193-9 10.1016/0304-3991(89)90173-3 10.1002/anie.201806936 10.1038/s41467-019-12459-0 10.1039/C9CC00199A 10.1021/jacs.5b12080 10.1021/acs.jpclett.0c01557 10.1021/acscatal.0c00014 10.1039/C6AN02722A 10.1021/acs.chemrev.8b00672 10.1021/acsnano.5b03525 10.1007/s12274-020-2755-3 10.1002/ppsc.201700386 10.1002/adma.201805368 10.1039/C2CY20373A 10.1016/j.ultramic.2017.03.020 10.1016/S1872-2067(20)63543-4 10.1039/C8CS00457A 10.1021/acscatal.0c00954 10.1002/ange.201905645 10.1016/j.chempr.2020.10.023 10.1021/acscatal.7b04469 10.1016/j.talanta.2019.05.070 10.1021/acsnano.9b05075 10.1002/adfm.201001302 10.1021/acsami.0c07886 10.1038/s41929-021-00609-x 10.1126/sciadv.aav5490 10.1021/acscentsci.0c00512 10.1016/j.biomaterials.2010.11.004 10.1039/D0CC02351E 10.1016/j.sintl.2020.100031 10.1016/j.chempr.2019.10.004 10.1038/s41570-018-0010-1 10.1039/c2an35700c 10.1039/C7SC04828A |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202104844 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 34825478 10_1002_smll_202104844 SMLL202104844 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council funderid: 21301719; 11300020; 11305721 – fundername: National Center for High‐Performance Computing – fundername: National Natural Science Foundation of China funderid: 21902138 – fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED) funderid: 104.06‐2020.50 – fundername: Chow Sang Sang Holdings International Limited for funding support – fundername: Natural Science Fund of Guangdong Province funderid: 2021A1515010064 – fundername: Chow Sang Sang Group Research Fund funderid: 9229063 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3734-30a0393759f4bdfdc36a60fcd896c8867cd38d4075fbe77798e74b2f4dff9f963 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 02:58:32 EDT 2025 Fri Jul 25 11:43:24 EDT 2025 Mon Jul 21 06:08:13 EDT 2025 Tue Jul 01 02:54:05 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Wed Jan 22 16:27:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | peroxidase/oxidase mimicking atom utilization single-atom nanozymes active site reactivity cluster nanozymes |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-30a0393759f4bdfdc36a60fcd896c8867cd38d4075fbe77798e74b2f4dff9f963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9590-6902 |
PMID | 34825478 |
PQID | 2624857234 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2604027184 proquest_journals_2624857234 pubmed_primary_34825478 crossref_citationtrail_10_1002_smll_202104844 crossref_primary_10_1002_smll_202104844 wiley_primary_10_1002_smll_202104844_SMLL202104844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 91 2017; 8 2013; 3 2021; 4 2019; 5 2019; 31 2020; 41 2019; 55 2019; 10 2019; 13 2019; 15 2019; 203 2011; 32 2020; 13 2020; 56 2020; 12 2020; 11 2020; 10 2015; 9 2015; 7 2020; 7 1989; 30 2020; 6 2018; 9 2018; 8 2018; 2 2020; 1 2020; 132 2019; 48 2017; 180 2019 2020; 26 2011; 21 2019; 119 2016; 61 2016; 138 2007; 2 2017; 142 2012; 48 2012; 137 2019; 131 2018; 57 2018; 35 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Uzun M. (e_1_2_7_9_1) 2019 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Huo M. (e_1_2_7_21_1) 2019; 13 |
References_xml | – volume: 180 start-page: 22 year: 2017 publication-title: Ultramicroscopy – volume: 56 start-page: 7897 year: 2020 publication-title: Chem. Commun. – volume: 91 year: 2019 publication-title: Anal. Chem. – volume: 41 start-page: 1161 year: 2020 publication-title: Chin. J. Catal. – volume: 7 start-page: 8233 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2643 year: 2019 publication-title: ACS Nano – volume: 1 year: 2020 publication-title: Sens. Int. – volume: 8 start-page: 6203 year: 2018 publication-title: ACS Catal. – volume: 35 year: 2018 publication-title: Part. Part. Syst. Charact. – volume: 5 start-page: 2733 year: 2019 publication-title: Chem – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1611 year: 2011 publication-title: Biomaterials – volume: 10 start-page: 4500 year: 2019 publication-title: Nat. Commun. – volume: 61 start-page: 1739 year: 2016 publication-title: Sci. Bull. – volume: 142 start-page: 911 year: 2017 publication-title: Analyst – volume: 48 start-page: 2540 year: 2012 publication-title: Chem. Commun. – volume: 21 start-page: 501 year: 2011 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 9994 year: 2015 publication-title: ACS Nano – volume: 13 year: 2019 publication-title: ACS Nano – volume: 2 start-page: 577 year: 2007 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 1288 year: 2020 publication-title: ACS Cent. Sci. – volume: 203 start-page: 227 year: 2019 publication-title: Talanta – volume: 30 start-page: 58 year: 1989 publication-title: Ultramicroscopy – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 137 start-page: 4552 year: 2012 publication-title: Analyst – volume: 4 start-page: 407 year: 2021 publication-title: Nat. Catal. – volume: 26 year: 2020 publication-title: Chem. ‐ Eur. J. – volume: 10 start-page: 4003 year: 2020 publication-title: ACS Catal. – volume: 131 start-page: 4965 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 119 start-page: 4357 year: 2019 publication-title: Chem. Rev. – volume: 48 start-page: 3683 year: 2019 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 2493 year: 2018 publication-title: Chem. Sci. – volume: 8 start-page: 675 year: 2017 publication-title: Nat. Commun. – volume: 48 start-page: 1004 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 1842 year: 2020 publication-title: Nano Res. – volume: 132 start-page: 2585 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 900 year: 2013 publication-title: Catal. Sci. Technol. – volume: 2 start-page: 65 year: 2018 publication-title: Nat. Rev. Chem. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 11 start-page: 5390 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 436 year: 2020 publication-title: Chem – volume: 138 start-page: 2225 year: 2016 publication-title: J. Am. Chem. Soc. – year: 2019 – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 2285 year: 2019 publication-title: Chem. Commun. – volume: 10 start-page: 5614 year: 2020 publication-title: ACS Catal. – volume: 13 start-page: 2643 year: 2019 ident: e_1_2_7_21_1 publication-title: ACS Nano – ident: e_1_2_7_17_1 doi: 10.1002/ange.201813994 – ident: e_1_2_7_20_1 doi: 10.1002/smll.201901485 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.5b01271 – ident: e_1_2_7_3_1 doi: 10.1039/C8CS00718G – ident: e_1_2_7_25_1 doi: 10.1038/s41467-017-00619-z – ident: e_1_2_7_1_1 doi: 10.1038/nnano.2007.260 – ident: e_1_2_7_19_1 doi: 10.1021/acs.analchem.9b02901 – ident: e_1_2_7_32_1 doi: 10.1039/c2cc17013b – ident: e_1_2_7_6_1 doi: 10.1002/chem.202001597 – ident: e_1_2_7_35_1 doi: 10.1007/s11434-016-1193-9 – ident: e_1_2_7_44_1 doi: 10.1016/0304-3991(89)90173-3 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201806936 – ident: e_1_2_7_28_1 doi: 10.1038/s41467-019-12459-0 – ident: e_1_2_7_18_1 doi: 10.1039/C9CC00199A – ident: e_1_2_7_24_1 doi: 10.1021/jacs.5b12080 – ident: e_1_2_7_8_1 doi: 10.1021/acs.jpclett.0c01557 – ident: e_1_2_7_27_1 doi: 10.1021/acscatal.0c00014 – ident: e_1_2_7_38_1 doi: 10.1039/C6AN02722A – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.8b00672 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.5b03525 – ident: e_1_2_7_13_1 doi: 10.1007/s12274-020-2755-3 – ident: e_1_2_7_40_1 doi: 10.1002/ppsc.201700386 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201805368 – ident: e_1_2_7_42_1 doi: 10.1039/C2CY20373A – ident: e_1_2_7_45_1 doi: 10.1016/j.ultramic.2017.03.020 – ident: e_1_2_7_46_1 doi: 10.1016/S1872-2067(20)63543-4 – ident: e_1_2_7_5_1 doi: 10.1039/C8CS00457A – ident: e_1_2_7_43_1 doi: 10.1021/acscatal.0c00954 – volume-title: Horseradish Peroxidase: Structure, Functions and Applications year: 2019 ident: e_1_2_7_9_1 – ident: e_1_2_7_14_1 doi: 10.1002/ange.201905645 – ident: e_1_2_7_22_1 doi: 10.1016/j.chempr.2020.10.023 – ident: e_1_2_7_29_1 doi: 10.1021/acscatal.7b04469 – ident: e_1_2_7_34_1 doi: 10.1016/j.talanta.2019.05.070 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.9b05075 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201001302 – ident: e_1_2_7_33_1 doi: 10.1021/acsami.0c07886 – ident: e_1_2_7_23_1 doi: 10.1038/s41929-021-00609-x – ident: e_1_2_7_47_1 doi: 10.1126/sciadv.aav5490 – ident: e_1_2_7_15_1 doi: 10.1021/acscentsci.0c00512 – ident: e_1_2_7_39_1 doi: 10.1016/j.biomaterials.2010.11.004 – ident: e_1_2_7_7_1 doi: 10.1039/D0CC02351E – ident: e_1_2_7_41_1 doi: 10.1016/j.sintl.2020.100031 – ident: e_1_2_7_12_1 doi: 10.1016/j.chempr.2019.10.004 – ident: e_1_2_7_10_1 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_7_31_1 doi: 10.1039/c2an35700c – ident: e_1_2_7_26_1 doi: 10.1039/C7SC04828A |
SSID | ssj0031247 |
Score | 2.5178857 |
Snippet | Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of... Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2104844 |
SubjectTerms | active site reactivity atom utilization Carbon - chemistry Catalytic Domain cluster nanozymes Clusters Electronegativity Glutathione Hydrogen peroxide Nanotechnology Oxidase Oxidoreductases Peroxidase peroxidase/oxidase mimicking Peroxidases Radicals single‐atom nanozymes Utilization |
Title | Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202104844 https://www.ncbi.nlm.nih.gov/pubmed/34825478 https://www.proquest.com/docview/2624857234 https://www.proquest.com/docview/2604027184 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwGMCDeNKD78d0SgRBPVRdmzbNUcQh4lTUgbeSJwy3Tux2cPjH-31tVzdFBD2mSdq0zffI4_uFkP1GwKzV1nk6lDBAAQPiSS1DT0jlGspYKyTGO7duoss2u3oKnyai-As-RDXhhpKR62sUcKmyk09oaNbr4tIBDFlYzBAIihu20Cu6r_hRARiv_HQVsFkegrfG1MZT_2S6-rRV-uZqTnuuuelpLhI5bnSx4-T5eDhQx3r0hef4n7daIgulX0rPio60TGZsukLmJ2iFq-T9vDtErAIFjdwfvfVsRnEWl96C1ul1RtbQe4thEngaBZWpoe1Bp1uGedK-o2e5aqUP4ORmFHxlWpCT8dqdhXfrGLCo9BBr3haJI9qCO2uczV8j7ebF4_mlVx7e4OmAB7jaIjHsl4fCMWWc0UEko1OnTSwiHccR1yaIDQwnQ6cs51zEljPlO2acEw7UwjqZTfup3SRUCNDmDY70NcZ0JAVoWa3iSEihwJ3lNeKNf16iS7I5HrDRTQoms5_gV02qr1ojB1X5l4Lp8WPJ-rgvJKVsZ4kfIQaO-wFk71XZIJW41CJT2x9iGVCOPth9KLNR9KHqUYgTQopajfh5T_ilDclD6_q6Sm39pdI2mfMxaiPfbF4ns4PXod0BX2qgdnN5-QBjChcy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB8LBYwEgh7Sdh0njg8cqpZqS3db1Hal3oLjh7RiN4vIrlBX_Cn-Cr-ImbxgQQgJqQeOiR0nscfzzdiebwCed0PhnHE-MJFGBwUBJNBGR4HSme9m1jmlKd55cBj3huLtWXS2Al-bWJiKH6JdcKOZUeprmuC0IL35gzW0mIxp7wB9FpEIUZ-rPHDnn9FrK17v7-IQv-B8783pTi-oEwsEJpQh7QRoCkmVkfIis96aMNbxljc2UbFJklgaGyYWXZ3IZ05KqRInRca9sN4rjyKL7V6Cy5RGnOj6d49bxqoQ4bLM54IoGRDVV8MTucU3l793GQd_M26XbeUS7PZuwLemm6ozLh825rNswyx-YZD8r_rxJlyvTW-2Xc2VW7Di8ttw7SdCxjvwZWc8J-YIhqAzXZxPXMFooZodoWKdjBbOsmNHkSCUcIPp3LLhbDSuI1nZ1LPtEj3YCdrxBUN3gFXk0HTvncPOHFk0GtgrevKoulhnA2zZ0IbFXRheyO_fg9V8mrsHwJRCwOpKIpgTwsRaIZCYLImVVhla7LIDQSMtqanJ2ymHyDitaKd5SqOYtqPYgZdt_Y8Vbckfa641wpfW6qtIeUxMd5KHWPysLUbFQ7tJOnfTOdVB_c_RtME69yuhbV9FjElEFNcBXoreX74hPRn0--3Vw3956Clc6Z0O-ml___DgEVzlFKRSnq1fg9XZp7l7jKbjLHtSTlYG7y9aqr8Drmp1rQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE48H4EChgJBBy2TbzOen3gUDVELU3aqiVSb4vXDyki2VRsItSIH8Vf4R8xsy8ICCEh9cBx116v1x7PN7P2fAPwvBMK54zzgelqdFAQQAJtdDdQOvWd1DqnNMU7Dw-i3ZF4d9o9XYOvdSxMyQ_R_HCjlVHoa1rgZ9Zv_SANzacT2jpAl0XEQlTHKvfd-Wd02vI3ez2c4Rec99--39kNqrwCgQllSBsBmiJSZVd5kVpvTRjpqO2NjVVk4jiSxoaxRU-n61MnpVSxkyLlXljvlUeJxXYvwWURtRUli-gdN4RVIaJlkc4FQTIgpq-aJrLNt1b7uwqDv9m2q6ZygXX9G_CtHqXyiMvHzcU83TTLXwgk_6dhvAnXK8ObbZcr5Rasuew2XPuJjvEOfNmZLIg3giHkzJbnU5cz-k3NDlGtTsdLZ9mxozgQSrfBdGbZaD6eVHGsbObZdoEd7ASt-JyhM8BKami6d-RwLMcWTQb2ip48LC9esyG2bGi74i6MLuTz78F6NsvcA2BKIVx1JNHLCWEirRBGTBpHSqsU7XXZgqAWlsRU1O2UQWSSlKTTPKFZTJpZbMHLpv5ZSVryx5obtewllfLKEx4Rz53kIRY_a4pR7dBeks7cbEF1UPtzNGywzv1SZptXEV8S0cS1gBeS95c-JCfDwaC5evgvDz2FK0e9fjLYO9h_BFc5RagUB-s3YH3-aeEeo904T58US5XBh4sW6u-9P3Rc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+Nanozymes+with+Optimized+Reactivity+and+Utilization+of+Active+Sites+for+Effective+Peroxidase+%28and+Oxidase%29+Mimicking&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Jieru&rft.au=Tai%E2%80%90Sing+Wu&rft.au=Ho%2C+Viet+Thang&rft.au=Kai%E2%80%90Yu+Tseng&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1002%2Fsmll.202104844&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |