Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking

Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of na...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 5; pp. e2104844 - n/a
Main Authors Zhang, Jieru, Wu, Tai‐Sing, Thang, Ho Viet, Tseng, Kai‐Yu, Hao, Xiaodong, Xu, Bingshe, Chen, Hsin‐Yi Tiffany, Peng, Yung‐Kang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Although single‐atom nanozymes have been reported to mimic peroxidases, they undergo the OH radical‐mediated pathway like most of nanozymes. In fact, OH radical generation (from H2O2) over those cationic single‐atom centers is much slower than their metallic counterparts on conventional nanozymes. A cluster nanozyme with optimized site reactivity and utilization is demonstrated here to be a better candidate for peroxidase/oxidase mimicking.
AbstractList Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H 2 O 2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.
Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.
Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single‐atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical‐mediated pathway like most of the reported nanozymes. Their positively charged single‐atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection. Although single‐atom nanozymes have been reported to mimic peroxidases, they undergo the OH radical‐mediated pathway like most of nanozymes. In fact, OH radical generation (from H2O2) over those cationic single‐atom centers is much slower than their metallic counterparts on conventional nanozymes. A cluster nanozyme with optimized site reactivity and utilization is demonstrated here to be a better candidate for peroxidase/oxidase mimicking.
Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H O to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.
Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of product distribution in some catalytic reactions. Recently, this idea has been extended to single-atom nanozymes (SAzymes) for the mimicking of natural enzymes such as horseradish peroxidase (HRP) often used in bioanalytical applications. Herein, it is demonstrated that those SAzymes without constructing the reaction pocket of HRP still undergo the OH radical-mediated pathway like most of the reported nanozymes. Their positively charged single-atom centers resulting from support electronegative oxygen/nitrogen hinder the reductive conversion of H2 O2 to OH radicals and hence display low activity per site. In contrast, it is found that this step can be facilitated over their metallic counterparts on cluster nanozymes with much higher site activity and atom efficiency (cf. SAzymes with 100% atom utilization). Besides the mimicking of HRP in glucose detection, cluster nanozymes are also demonstrated as a better oxidase mimetic for glutathione detection.
Author Thang, Ho Viet
Wu, Tai‐Sing
Xu, Bingshe
Peng, Yung‐Kang
Hao, Xiaodong
Chen, Hsin‐Yi Tiffany
Zhang, Jieru
Tseng, Kai‐Yu
Author_xml – sequence: 1
  givenname: Jieru
  surname: Zhang
  fullname: Zhang, Jieru
  organization: City University of Hong Kong
– sequence: 2
  givenname: Tai‐Sing
  surname: Wu
  fullname: Wu, Tai‐Sing
  organization: National Synchrotron Radiation Research Centre
– sequence: 3
  givenname: Ho Viet
  surname: Thang
  fullname: Thang, Ho Viet
  organization: National Tsing Hua University
– sequence: 4
  givenname: Kai‐Yu
  surname: Tseng
  fullname: Tseng, Kai‐Yu
  organization: National Tsing Hua University
– sequence: 5
  givenname: Xiaodong
  surname: Hao
  fullname: Hao, Xiaodong
  email: hao.xiaodong@sust.edu.cn
  organization: Shaanxi University of Science and Technology
– sequence: 6
  givenname: Bingshe
  surname: Xu
  fullname: Xu, Bingshe
  organization: Shaanxi University of Science and Technology
– sequence: 7
  givenname: Hsin‐Yi Tiffany
  surname: Chen
  fullname: Chen, Hsin‐Yi Tiffany
  email: hsinyi.tiffany.chen@gapp.nthu.edu.tw
  organization: National Tsing Hua University
– sequence: 8
  givenname: Yung‐Kang
  orcidid: 0000-0001-9590-6902
  surname: Peng
  fullname: Peng, Yung‐Kang
  email: ykpeng@cityu.edu.hk
  organization: City University of Hong Kong Shenzhen Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34825478$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URB-wZYkssSmLBL8y9iyrqDyklCBK15ZjX4PLzDjYHkoifjwzTFukSoiVX-d8su53jA662AFCzymZU0LY69w2zZwRRolQQjxCR7SifFYpVh_c7yk5RMc5XxPCKRPyCTrkQrGFkOoI_Vo2fS6Q8AfTxf2uhYxvQvmK19sS2rAHhz-BsSX8CGWHTefwVQlN2JsSYoejx2fjG-DLUAbTx4TPvYfp7iOk-DM4kwGfjuZ6OrzCF0Oy_Ra6L0_RY2-aDM9u1xN09eb88_LdbLV--355tppZLrmYcWIIr7lc1F5snHeWV6Yi3jpVV1apSlrHlRNELvwGpJS1Aik2zAvnfe3rip-g0yl3m-L3HnLRbcgWmsZ0EPusWUUEYZIqMaAvH6DXsU_d8LuBYkItJOMj9eKW6jctOL1NoTVpp-_mOgBiAmyKOSfw2obyZ2glmdBoSvRYnx7r0_f1Ddr8gXaX_E-hnoSb0MDuP7S-vFit_rq_Aacorjk
CitedBy_id crossref_primary_10_1021_acs_jpclett_2c02331
crossref_primary_10_1002_ange_202307133
crossref_primary_10_1016_j_foodchem_2023_137019
crossref_primary_10_1002_smll_202200178
crossref_primary_10_1186_s12951_024_02478_5
crossref_primary_10_1186_s40580_023_00390_6
crossref_primary_10_1002_smll_202401032
crossref_primary_10_1021_acsnano_2c12698
crossref_primary_10_1021_acsnano_3c05409
crossref_primary_10_1002_smll_202305539
crossref_primary_10_1002_ejic_202200202
crossref_primary_10_1360_SSC_2021_0257
crossref_primary_10_1021_acs_langmuir_2c00070
crossref_primary_10_1039_D2NR05281D
crossref_primary_10_1002_smll_202203283
crossref_primary_10_1021_acsanm_2c03340
crossref_primary_10_1002_anie_202307133
crossref_primary_10_1002_adfm_202209399
crossref_primary_10_1002_adma_202211041
crossref_primary_10_1007_s12274_022_4371_x
crossref_primary_10_1038_s41467_025_57188_9
crossref_primary_10_1039_D3NR01262J
crossref_primary_10_1021_acs_chemmater_3c03018
crossref_primary_10_1016_j_cej_2022_139411
crossref_primary_10_1007_s40843_022_2280_6
crossref_primary_10_1016_j_apcatb_2022_121461
crossref_primary_10_1039_D3TA02486E
crossref_primary_10_1002_smll_202408609
crossref_primary_10_1021_acsanm_5c00043
crossref_primary_10_1039_D2NR01375D
crossref_primary_10_1039_D3CS00087G
Cites_doi 10.1002/ange.201813994
10.1002/smll.201901485
10.1021/acsami.5b01271
10.1039/C8CS00718G
10.1038/s41467-017-00619-z
10.1038/nnano.2007.260
10.1021/acs.analchem.9b02901
10.1039/c2cc17013b
10.1002/chem.202001597
10.1007/s11434-016-1193-9
10.1016/0304-3991(89)90173-3
10.1002/anie.201806936
10.1038/s41467-019-12459-0
10.1039/C9CC00199A
10.1021/jacs.5b12080
10.1021/acs.jpclett.0c01557
10.1021/acscatal.0c00014
10.1039/C6AN02722A
10.1021/acs.chemrev.8b00672
10.1021/acsnano.5b03525
10.1007/s12274-020-2755-3
10.1002/ppsc.201700386
10.1002/adma.201805368
10.1039/C2CY20373A
10.1016/j.ultramic.2017.03.020
10.1016/S1872-2067(20)63543-4
10.1039/C8CS00457A
10.1021/acscatal.0c00954
10.1002/ange.201905645
10.1016/j.chempr.2020.10.023
10.1021/acscatal.7b04469
10.1016/j.talanta.2019.05.070
10.1021/acsnano.9b05075
10.1002/adfm.201001302
10.1021/acsami.0c07886
10.1038/s41929-021-00609-x
10.1126/sciadv.aav5490
10.1021/acscentsci.0c00512
10.1016/j.biomaterials.2010.11.004
10.1039/D0CC02351E
10.1016/j.sintl.2020.100031
10.1016/j.chempr.2019.10.004
10.1038/s41570-018-0010-1
10.1039/c2an35700c
10.1039/C7SC04828A
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202104844
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 34825478
10_1002_smll_202104844
SMLL202104844
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  funderid: 21301719; 11300020; 11305721
– fundername: National Center for High‐Performance Computing
– fundername: National Natural Science Foundation of China
  funderid: 21902138
– fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED)
  funderid: 104.06‐2020.50
– fundername: Chow Sang Sang Holdings International Limited for funding support
– fundername: Natural Science Fund of Guangdong Province
  funderid: 2021A1515010064
– fundername: Chow Sang Sang Group Research Fund
  funderid: 9229063
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3734-30a0393759f4bdfdc36a60fcd896c8867cd38d4075fbe77798e74b2f4dff9f963
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 02:58:32 EDT 2025
Fri Jul 25 11:43:24 EDT 2025
Mon Jul 21 06:08:13 EDT 2025
Tue Jul 01 02:54:05 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Wed Jan 22 16:27:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords peroxidase/oxidase mimicking
atom utilization
single-atom nanozymes
active site reactivity
cluster nanozymes
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-30a0393759f4bdfdc36a60fcd896c8867cd38d4075fbe77798e74b2f4dff9f963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9590-6902
PMID 34825478
PQID 2624857234
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2604027184
proquest_journals_2624857234
pubmed_primary_34825478
crossref_citationtrail_10_1002_smll_202104844
crossref_primary_10_1002_smll_202104844
wiley_primary_10_1002_smll_202104844_SMLL202104844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
2017; 8
2013; 3
2021; 4
2019; 5
2019; 31
2020; 41
2019; 55
2019; 10
2019; 13
2019; 15
2019; 203
2011; 32
2020; 13
2020; 56
2020; 12
2020; 11
2020; 10
2015; 9
2015; 7
2020; 7
1989; 30
2020; 6
2018; 9
2018; 8
2018; 2
2020; 1
2020; 132
2019; 48
2017; 180
2019
2020; 26
2011; 21
2019; 119
2016; 61
2016; 138
2007; 2
2017; 142
2012; 48
2012; 137
2019; 131
2018; 57
2018; 35
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Uzun M. (e_1_2_7_9_1) 2019
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Huo M. (e_1_2_7_21_1) 2019; 13
References_xml – volume: 180
  start-page: 22
  year: 2017
  publication-title: Ultramicroscopy
– volume: 56
  start-page: 7897
  year: 2020
  publication-title: Chem. Commun.
– volume: 91
  year: 2019
  publication-title: Anal. Chem.
– volume: 41
  start-page: 1161
  year: 2020
  publication-title: Chin. J. Catal.
– volume: 7
  start-page: 8233
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2643
  year: 2019
  publication-title: ACS Nano
– volume: 1
  year: 2020
  publication-title: Sens. Int.
– volume: 8
  start-page: 6203
  year: 2018
  publication-title: ACS Catal.
– volume: 35
  year: 2018
  publication-title: Part. Part. Syst. Charact.
– volume: 5
  start-page: 2733
  year: 2019
  publication-title: Chem
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1611
  year: 2011
  publication-title: Biomaterials
– volume: 10
  start-page: 4500
  year: 2019
  publication-title: Nat. Commun.
– volume: 61
  start-page: 1739
  year: 2016
  publication-title: Sci. Bull.
– volume: 142
  start-page: 911
  year: 2017
  publication-title: Analyst
– volume: 48
  start-page: 2540
  year: 2012
  publication-title: Chem. Commun.
– volume: 21
  start-page: 501
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 9994
  year: 2015
  publication-title: ACS Nano
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 2
  start-page: 577
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1288
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 203
  start-page: 227
  year: 2019
  publication-title: Talanta
– volume: 30
  start-page: 58
  year: 1989
  publication-title: Ultramicroscopy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 137
  start-page: 4552
  year: 2012
  publication-title: Analyst
– volume: 4
  start-page: 407
  year: 2021
  publication-title: Nat. Catal.
– volume: 26
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 10
  start-page: 4003
  year: 2020
  publication-title: ACS Catal.
– volume: 131
  start-page: 4965
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  start-page: 4357
  year: 2019
  publication-title: Chem. Rev.
– volume: 48
  start-page: 3683
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 2493
  year: 2018
  publication-title: Chem. Sci.
– volume: 8
  start-page: 675
  year: 2017
  publication-title: Nat. Commun.
– volume: 48
  start-page: 1004
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1842
  year: 2020
  publication-title: Nano Res.
– volume: 132
  start-page: 2585
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 900
  year: 2013
  publication-title: Catal. Sci. Technol.
– volume: 2
  start-page: 65
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 11
  start-page: 5390
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 436
  year: 2020
  publication-title: Chem
– volume: 138
  start-page: 2225
  year: 2016
  publication-title: J. Am. Chem. Soc.
– year: 2019
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 2285
  year: 2019
  publication-title: Chem. Commun.
– volume: 10
  start-page: 5614
  year: 2020
  publication-title: ACS Catal.
– volume: 13
  start-page: 2643
  year: 2019
  ident: e_1_2_7_21_1
  publication-title: ACS Nano
– ident: e_1_2_7_17_1
  doi: 10.1002/ange.201813994
– ident: e_1_2_7_20_1
  doi: 10.1002/smll.201901485
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.5b01271
– ident: e_1_2_7_3_1
  doi: 10.1039/C8CS00718G
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-017-00619-z
– ident: e_1_2_7_1_1
  doi: 10.1038/nnano.2007.260
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.analchem.9b02901
– ident: e_1_2_7_32_1
  doi: 10.1039/c2cc17013b
– ident: e_1_2_7_6_1
  doi: 10.1002/chem.202001597
– ident: e_1_2_7_35_1
  doi: 10.1007/s11434-016-1193-9
– ident: e_1_2_7_44_1
  doi: 10.1016/0304-3991(89)90173-3
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201806936
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-019-12459-0
– ident: e_1_2_7_18_1
  doi: 10.1039/C9CC00199A
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.5b12080
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.jpclett.0c01557
– ident: e_1_2_7_27_1
  doi: 10.1021/acscatal.0c00014
– ident: e_1_2_7_38_1
  doi: 10.1039/C6AN02722A
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.8b00672
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.5b03525
– ident: e_1_2_7_13_1
  doi: 10.1007/s12274-020-2755-3
– ident: e_1_2_7_40_1
  doi: 10.1002/ppsc.201700386
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201805368
– ident: e_1_2_7_42_1
  doi: 10.1039/C2CY20373A
– ident: e_1_2_7_45_1
  doi: 10.1016/j.ultramic.2017.03.020
– ident: e_1_2_7_46_1
  doi: 10.1016/S1872-2067(20)63543-4
– ident: e_1_2_7_5_1
  doi: 10.1039/C8CS00457A
– ident: e_1_2_7_43_1
  doi: 10.1021/acscatal.0c00954
– volume-title: Horseradish Peroxidase: Structure, Functions and Applications
  year: 2019
  ident: e_1_2_7_9_1
– ident: e_1_2_7_14_1
  doi: 10.1002/ange.201905645
– ident: e_1_2_7_22_1
  doi: 10.1016/j.chempr.2020.10.023
– ident: e_1_2_7_29_1
  doi: 10.1021/acscatal.7b04469
– ident: e_1_2_7_34_1
  doi: 10.1016/j.talanta.2019.05.070
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.9b05075
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201001302
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.0c07886
– ident: e_1_2_7_23_1
  doi: 10.1038/s41929-021-00609-x
– ident: e_1_2_7_47_1
  doi: 10.1126/sciadv.aav5490
– ident: e_1_2_7_15_1
  doi: 10.1021/acscentsci.0c00512
– ident: e_1_2_7_39_1
  doi: 10.1016/j.biomaterials.2010.11.004
– ident: e_1_2_7_7_1
  doi: 10.1039/D0CC02351E
– ident: e_1_2_7_41_1
  doi: 10.1016/j.sintl.2020.100031
– ident: e_1_2_7_12_1
  doi: 10.1016/j.chempr.2019.10.004
– ident: e_1_2_7_10_1
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_7_31_1
  doi: 10.1039/c2an35700c
– ident: e_1_2_7_26_1
  doi: 10.1039/C7SC04828A
SSID ssj0031247
Score 2.5178857
Snippet Single‐atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of...
Single-atom catalysts have attracted attention in the past decade since they maximize the utilization of active sites and facilitate the understanding of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104844
SubjectTerms active site reactivity
atom utilization
Carbon - chemistry
Catalytic Domain
cluster nanozymes
Clusters
Electronegativity
Glutathione
Hydrogen peroxide
Nanotechnology
Oxidase
Oxidoreductases
Peroxidase
peroxidase/oxidase mimicking
Peroxidases
Radicals
single‐atom nanozymes
Utilization
Title Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202104844
https://www.ncbi.nlm.nih.gov/pubmed/34825478
https://www.proquest.com/docview/2624857234
https://www.proquest.com/docview/2604027184
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwGMCDeNKD78d0SgRBPVRdmzbNUcQh4lTUgbeSJwy3Tux2cPjH-31tVzdFBD2mSdq0zffI4_uFkP1GwKzV1nk6lDBAAQPiSS1DT0jlGspYKyTGO7duoss2u3oKnyai-As-RDXhhpKR62sUcKmyk09oaNbr4tIBDFlYzBAIihu20Cu6r_hRARiv_HQVsFkegrfG1MZT_2S6-rRV-uZqTnuuuelpLhI5bnSx4-T5eDhQx3r0hef4n7daIgulX0rPio60TGZsukLmJ2iFq-T9vDtErAIFjdwfvfVsRnEWl96C1ul1RtbQe4thEngaBZWpoe1Bp1uGedK-o2e5aqUP4ORmFHxlWpCT8dqdhXfrGLCo9BBr3haJI9qCO2uczV8j7ebF4_mlVx7e4OmAB7jaIjHsl4fCMWWc0UEko1OnTSwiHccR1yaIDQwnQ6cs51zEljPlO2acEw7UwjqZTfup3SRUCNDmDY70NcZ0JAVoWa3iSEihwJ3lNeKNf16iS7I5HrDRTQoms5_gV02qr1ojB1X5l4Lp8WPJ-rgvJKVsZ4kfIQaO-wFk71XZIJW41CJT2x9iGVCOPth9KLNR9KHqUYgTQopajfh5T_ilDclD6_q6Sm39pdI2mfMxaiPfbF4ns4PXod0BX2qgdnN5-QBjChcy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB8LBYwEgh7Sdh0njg8cqpZqS3db1Hal3oLjh7RiN4vIrlBX_Cn-Cr-ImbxgQQgJqQeOiR0nscfzzdiebwCed0PhnHE-MJFGBwUBJNBGR4HSme9m1jmlKd55cBj3huLtWXS2Al-bWJiKH6JdcKOZUeprmuC0IL35gzW0mIxp7wB9FpEIUZ-rPHDnn9FrK17v7-IQv-B8783pTi-oEwsEJpQh7QRoCkmVkfIis96aMNbxljc2UbFJklgaGyYWXZ3IZ05KqRInRca9sN4rjyKL7V6Cy5RGnOj6d49bxqoQ4bLM54IoGRDVV8MTucU3l793GQd_M26XbeUS7PZuwLemm6ozLh825rNswyx-YZD8r_rxJlyvTW-2Xc2VW7Di8ttw7SdCxjvwZWc8J-YIhqAzXZxPXMFooZodoWKdjBbOsmNHkSCUcIPp3LLhbDSuI1nZ1LPtEj3YCdrxBUN3gFXk0HTvncPOHFk0GtgrevKoulhnA2zZ0IbFXRheyO_fg9V8mrsHwJRCwOpKIpgTwsRaIZCYLImVVhla7LIDQSMtqanJ2ymHyDitaKd5SqOYtqPYgZdt_Y8Vbckfa641wpfW6qtIeUxMd5KHWPysLUbFQ7tJOnfTOdVB_c_RtME69yuhbV9FjElEFNcBXoreX74hPRn0--3Vw3956Clc6Z0O-ml___DgEVzlFKRSnq1fg9XZp7l7jKbjLHtSTlYG7y9aqr8Drmp1rQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VIiE48H4EChgJBBy2TbzOen3gUDVELU3aqiVSb4vXDyki2VRsItSIH8Vf4R8xsy8ICCEh9cBx116v1x7PN7P2fAPwvBMK54zzgelqdFAQQAJtdDdQOvWd1DqnNMU7Dw-i3ZF4d9o9XYOvdSxMyQ_R_HCjlVHoa1rgZ9Zv_SANzacT2jpAl0XEQlTHKvfd-Wd02vI3ez2c4Rec99--39kNqrwCgQllSBsBmiJSZVd5kVpvTRjpqO2NjVVk4jiSxoaxRU-n61MnpVSxkyLlXljvlUeJxXYvwWURtRUli-gdN4RVIaJlkc4FQTIgpq-aJrLNt1b7uwqDv9m2q6ZygXX9G_CtHqXyiMvHzcU83TTLXwgk_6dhvAnXK8ObbZcr5Rasuew2XPuJjvEOfNmZLIg3giHkzJbnU5cz-k3NDlGtTsdLZ9mxozgQSrfBdGbZaD6eVHGsbObZdoEd7ASt-JyhM8BKami6d-RwLMcWTQb2ip48LC9esyG2bGi74i6MLuTz78F6NsvcA2BKIVx1JNHLCWEirRBGTBpHSqsU7XXZgqAWlsRU1O2UQWSSlKTTPKFZTJpZbMHLpv5ZSVryx5obtewllfLKEx4Rz53kIRY_a4pR7dBeks7cbEF1UPtzNGywzv1SZptXEV8S0cS1gBeS95c-JCfDwaC5evgvDz2FK0e9fjLYO9h_BFc5RagUB-s3YH3-aeEeo904T58US5XBh4sW6u-9P3Rc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+Nanozymes+with+Optimized+Reactivity+and+Utilization+of+Active+Sites+for+Effective+Peroxidase+%28and+Oxidase%29+Mimicking&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Jieru&rft.au=Tai%E2%80%90Sing+Wu&rft.au=Ho%2C+Viet+Thang&rft.au=Kai%E2%80%90Yu+Tseng&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=5&rft_id=info:doi/10.1002%2Fsmll.202104844&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon