Large Scale Synthesis of Three‐dimensional Hierarchical Porous Framework with High Conductivity and its Application in Lithium Sulfur Battery
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conduc...
Saved in:
Published in | Chemistry : a European journal Vol. 27; no. 41; pp. 10628 - 10636 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials.
Tremella is utilized as the precursor, a new process method (high‐shear, freeze‐drying and chemical activation are used in turn) is proposed, and an in‐situ doped hierarchical porous biochar materials with adjustable 3D macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge‐discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. |
---|---|
AbstractList | Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g-1 and a cumulative pore volume of 1.19 cm3 g-1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g-1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g-1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g-1 and a cumulative pore volume of 1.19 cm3 g-1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g-1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g-1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials. Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials. Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials. Tremella is utilized as the precursor, a new process method (high‐shear, freeze‐drying and chemical activation are used in turn) is proposed, and an in‐situ doped hierarchical porous biochar materials with adjustable 3D macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge‐discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m 2 g −1 and a cumulative pore volume of 1.19 cm 3 g −1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g −1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g −1 . This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials. Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m 2 g -1 and a cumulative pore volume of 1.19 cm 3 g -1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites, and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g -1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g -1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials. |
Author | Wu, Ya‐Qin Wang, Xu‐Ri Zou, You‐Lan Pan, Yong Lei, Wei‐Xin Ma, Zeng‐Sheng Xu, Xu‐Peng Wang, Xiao |
Author_xml | – sequence: 1 givenname: Xu‐Ri surname: Wang fullname: Wang, Xu‐Ri organization: Xiangtan University – sequence: 2 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Xiangtan University – sequence: 3 givenname: Xu‐Peng surname: Xu fullname: Xu, Xu‐Peng organization: Xiangtan University – sequence: 4 givenname: Ya‐Qin surname: Wu fullname: Wu, Ya‐Qin organization: Xiangtan University – sequence: 5 givenname: Wei‐Xin orcidid: 0000-0003-3021-2787 surname: Lei fullname: Lei, Wei‐Xin email: wxlei@xtu.edu.cn organization: Xiangtan University – sequence: 6 givenname: You‐Lan surname: Zou fullname: Zou, You‐Lan organization: Xiangtan University – sequence: 7 givenname: Zeng‐Sheng surname: Ma fullname: Ma, Zeng‐Sheng organization: Xiangtan University – sequence: 8 givenname: Yong surname: Pan fullname: Pan, Yong organization: Xiangtan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33837576$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrFDEYhoNU7LZ69SgBL15mTSaZSeZYl9YVVhRaz0NMvnRSZyZrkukyN_-B_kZ_iVm3ViiIl4QPnucLed8TdDT6ERB6TsmSElK-1h0My5KUeeCSP0ILWpW0YKKujtCCNFwUdcWaY3QS4w0hpKkZe4KOGZNMVKJeoO8bFa4BX2rV53MeUwfRRewtvuoCwM9vP4wbYIzOj6rHawdBBd25jOOPPvgp4ougBtj58AXvXOoyct3hlR_NpJO7dWnGajTYpYjPtts-iymvwm7Em0y7acCXU2-ngN-olCDMT9Fjq_oIz-7uU_Tp4vxqtS42H96-W51tCs0E4wVlXBkDUlBDBDO8MZaWxiiQRuqqtga04tQKSmSpBMlDyWsQNZfGMislO0WvDnu3wX-dIKZ2cFFD36sR8q_asqK05Fw0LKMvH6A3fgo5jj1VsSqjlcjUiztq-jyAabfBDSrM7Z-oM7A8ADr4GAPYe4SSdt9lu--yve8yC_yBoF36HV8KyvX_1pqDtnM9zP95pF2tz9__dX8BTA62Rw |
CitedBy_id | crossref_primary_10_1016_j_ces_2024_121107 crossref_primary_10_1016_j_nanoen_2024_110387 crossref_primary_10_1016_j_est_2023_109087 crossref_primary_10_1016_j_actamat_2023_119309 crossref_primary_10_1016_j_est_2024_114144 crossref_primary_10_1016_j_energy_2022_124474 crossref_primary_10_1016_j_est_2024_113186 crossref_primary_10_1002_celc_202101133 crossref_primary_10_1016_j_apsusc_2023_157080 crossref_primary_10_1039_D2SE01164F |
Cites_doi | 10.1007/s12274-017-1737-6 10.1021/acs.chemmater.5b01780 10.1038/s41467-017-02088-w 10.1039/C6TA06863D 10.1002/anie.201811291 10.1002/smll.201503133 10.1016/j.jmst.2020.03.001 10.1039/C9NR07388D 10.1021/acsnano.5b06373 10.1021/acsami.5b10300 10.1149/2.096308jes 10.1002/celc.201901826 10.1016/j.nanoen.2018.10.061 10.1039/C6EE00104A 10.1021/acsami.7b09310 10.1016/j.jallcom.2020.157024 10.1002/anie.201704324 10.1016/j.apsusc.2018.04.086 10.1002/ange.201704324 10.1016/j.matlet.2014.01.151 10.1021/nn506394r 10.1016/j.cej.2019.01.178 10.1016/j.jechem.2020.08.011 10.1002/chem.202002822 10.1002/ange.201811291 10.1016/j.cej.2019.122701 10.1038/ncomms13807 10.1002/aenm.201602014 10.1039/c3cp50653c 10.1039/C5NR06279A 10.1021/acssuschemeng.8b05305 10.1016/j.mechmat.2006.08.001 10.1016/j.jpowsour.2017.10.045 10.1021/acsami.7b07746 10.1021/acssuschemeng.9b00564 10.1016/j.jmst.2019.09.012 10.1021/acs.nanolett.7b04425 10.1016/j.jpowsour.2017.12.025 10.1039/C7TA05192A 10.1002/cssc.201700050 10.1002/aenm.201501733 10.1016/j.jechem.2018.01.015 10.1021/nn503220h 10.1007/s12274-014-0601-1 10.1002/aenm.201803477 10.1039/C6RA09338H 10.1016/j.electacta.2018.04.021 10.1016/j.jpowsour.2016.09.130 10.1016/j.cej.2020.124315 10.1002/chem.201803153 10.1016/j.jpowsour.2017.05.066 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.202100484 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 10636 |
ExternalDocumentID | 33837576 10_1002_chem_202100484 CHEM202100484 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11602213; 11702234; 11872054 – fundername: Scientific Research Foundation of Hunan Provincial Education Department funderid: 19A480 – fundername: Natural Science Foundation of Hunan Province funderid: 2020JJ5527 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c3734-134adde871d073d49df12ddae8d8c56fdeca41f71082a70ca4246e7648df3f883 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 05:59:55 EDT 2025 Fri Jul 25 10:25:34 EDT 2025 Wed Feb 19 02:28:57 EST 2025 Thu Apr 24 23:04:39 EDT 2025 Tue Jul 01 01:30:25 EDT 2025 Wed Jan 22 16:29:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Cathode material High ion-electron conductivity Three-dimensional framework Li-S battery Hierarchical porous biochar |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3734-134adde871d073d49df12ddae8d8c56fdeca41f71082a70ca4246e7648df3f883 |
Notes | These authors contribute equally to the article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3021-2787 |
PMID | 33837576 |
PQID | 2553525157 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2511244793 proquest_journals_2553525157 pubmed_primary_33837576 crossref_primary_10_1002_chem_202100484 crossref_citationtrail_10_1002_chem_202100484 wiley_primary_10_1002_chem_202100484_CHEM202100484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 21, 2021 |
PublicationDateYYYYMMDD | 2021-07-21 |
PublicationDate_xml | – month: 07 year: 2021 text: July 21, 2021 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 39 2017; 5 2019; 7 2017; 7 2019; 9 2019; 30 2019; 55 2019; 11 2018; 448 2020; 381 2016; 10 2019; 366 2017; 371 2020; 55 2020; 388 2015; 9 2015; 8 2013; 160 2015; 7 2017; 9 2017 2017 2017 2017; 56 129 129 56 2019 2019; 58 131 2016; 12 2017; 359 2016; 4 2020; 7 2018; 273 2018; 18 2018; 9 2016; 6 2016; 7 2013; 15 2015; 27 2021; 56 2021; 853 2017; 10 2019; 25 2018; 378 2016; 332 2020; 26 2020; 48 2014; 121 2018; 11 2014; 8 2016; 8 2016; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 (e_1_2_7_4_2) 2019; 131 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 121 start-page: 198 year: 2014 end-page: 201 publication-title: Mater. Lett. – volume: 30 start-page: 121 year: 2019 end-page: 131 publication-title: J. Energy Chem. – volume: 27 start-page: 5080 year: 2015 end-page: 5087 publication-title: Chem. Mater. – volume: 26 start-page: 16057 year: 2020 end-page: 16065 publication-title: Chem. Eur. J. – volume: 7 start-page: 27959 year: 2015 end-page: 27967 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 3710 year: 2019 end-page: 3725 publication-title: Chem. Eur. J. – volume: 9 start-page: 30626 year: 2017 end-page: 30634 publication-title: ACS Appl. Mater. Interfaces – volume: 332 start-page: 305 year: 2016 end-page: 311 publication-title: J. Power Sources – volume: 359 start-page: 529 year: 2017 end-page: 538 publication-title: J. Power Sources – volume: 8 start-page: 129 year: 2015 end-page: 139 publication-title: Nano Res. – volume: 273 start-page: 127 year: 2018 end-page: 135 publication-title: Electrochim. Acta – volume: 6 start-page: 64228 year: 2016 end-page: 64233 publication-title: RSC Adv. – volume: 5 start-page: 19892 year: 2017 end-page: 19900 publication-title: J. Mater. Chem. A – volume: 58 131 start-page: 791 801 year: 2019 2019 end-page: 795 795 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1238 year: 2018 end-page: 1246 publication-title: Nano Res. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 388 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 381 year: 2016 end-page: 389 publication-title: Small – volume: 9 start-page: 1 year: 2018 end-page: 10 publication-title: Nat. Commun. – volume: 7 start-page: 3995 year: 2019 end-page: 4003 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 33855 year: 2017 end-page: 33862 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1803 year: 2017 end-page: 1812 publication-title: ChemSusChem – volume: 55 start-page: 82 year: 2019 end-page: 92 publication-title: Nano Energy – volume: 8 start-page: 451 year: 2016 end-page: 457 publication-title: Nanoscale – volume: 378 start-page: 73 year: 2018 end-page: 80 publication-title: J. Power Sources – volume: 160 start-page: A1256 year: 2013 publication-title: J. Electrochem. Soc. Interface – volume: 371 start-page: 148 year: 2017 end-page: 155 publication-title: J. Power Sources – volume: 18 start-page: 475 year: 2018 end-page: 481 publication-title: Nano Lett. – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 448 start-page: 16 year: 2018 end-page: 22 publication-title: Appl. Surf. Sci. – volume: 56 129 129 56 start-page: 8178 8290 8290 8178 year: 2017 2017 2017 2017 end-page: 8182 8294 8182 8182 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Angew. Chem. Int. Ed. – volume: 4 start-page: 16148 year: 2016 end-page: 16156 publication-title: J. Mater. Chem. A – volume: 8 start-page: 9295 year: 2014 end-page: 9303 publication-title: ACS Nano – volume: 39 start-page: 525 year: 2007 end-page: 537 publication-title: Mech. Mater. – volume: 15 start-page: 6080 year: 2013 end-page: 6087 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 84 year: 2020 end-page: 91 publication-title: J. Mater. Sci. Technol. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1 year: 2016 end-page: 10 publication-title: Nat. Commun. – volume: 11 start-page: 21532 year: 2019 end-page: 21541 publication-title: Nanoscale – volume: 853 year: 2021 publication-title: J. Alloys Compd. – volume: 55 start-page: 152 year: 2020 end-page: 158 publication-title: J. Mater. Sci. Technol. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 366 start-page: 622 year: 2019 end-page: 630 publication-title: Chem. Eng. J. – volume: 7 start-page: 631 year: 2020 end-page: 641 publication-title: ChemElectroChem – volume: 9 start-page: 1998 year: 2016 end-page: 2004 publication-title: Energy Environ. Sci. – volume: 56 start-page: 343 year: 2021 end-page: 352 publication-title: J. Energy Chem. – volume: 10 start-page: 1050 year: 2016 end-page: 1059 publication-title: ACS Nano – volume: 7 start-page: 11241 year: 2019 end-page: 11249 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 2556 year: 2015 end-page: 2564 publication-title: ACS Nano – ident: e_1_2_7_6_1 doi: 10.1007/s12274-017-1737-6 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemmater.5b01780 – ident: e_1_2_7_17_1 doi: 10.1038/s41467-017-02088-w – ident: e_1_2_7_39_1 doi: 10.1039/C6TA06863D – ident: e_1_2_7_4_1 doi: 10.1002/anie.201811291 – ident: e_1_2_7_14_1 doi: 10.1002/smll.201503133 – ident: e_1_2_7_34_1 doi: 10.1016/j.jmst.2020.03.001 – ident: e_1_2_7_49_1 doi: 10.1039/C9NR07388D – ident: e_1_2_7_13_1 doi: 10.1021/acsnano.5b06373 – ident: e_1_2_7_48_1 doi: 10.1021/acsami.5b10300 – ident: e_1_2_7_7_1 doi: 10.1149/2.096308jes – ident: e_1_2_7_23_1 doi: 10.1002/celc.201901826 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2018.10.061 – ident: e_1_2_7_5_1 doi: 10.1039/C6EE00104A – ident: e_1_2_7_25_1 doi: 10.1021/acsami.7b09310 – ident: e_1_2_7_27_1 doi: 10.1016/j.jallcom.2020.157024 – ident: e_1_2_7_2_4 doi: 10.1002/anie.201704324 – ident: e_1_2_7_26_1 doi: 10.1016/j.apsusc.2018.04.086 – ident: e_1_2_7_2_3 doi: 10.1002/ange.201704324 – ident: e_1_2_7_3_1 doi: 10.1016/j.matlet.2014.01.151 – ident: e_1_2_7_18_1 doi: 10.1021/nn506394r – ident: e_1_2_7_42_1 doi: 10.1016/j.cej.2019.01.178 – ident: e_1_2_7_43_1 doi: 10.1016/j.jechem.2020.08.011 – ident: e_1_2_7_1_1 doi: 10.1002/chem.202002822 – volume: 131 start-page: 801 year: 2019 ident: e_1_2_7_4_2 publication-title: Angew. Chem. doi: 10.1002/ange.201811291 – ident: e_1_2_7_2_1 doi: 10.1002/anie.201704324 – ident: e_1_2_7_9_1 doi: 10.1016/j.cej.2019.122701 – ident: e_1_2_7_45_1 doi: 10.1038/ncomms13807 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201602014 – ident: e_1_2_7_24_1 doi: 10.1039/c3cp50653c – ident: e_1_2_7_10_1 doi: 10.1039/C5NR06279A – ident: e_1_2_7_12_1 doi: 10.1021/acssuschemeng.8b05305 – ident: e_1_2_7_35_1 doi: 10.1016/j.mechmat.2006.08.001 – ident: e_1_2_7_22_1 doi: 10.1016/j.jpowsour.2017.10.045 – ident: e_1_2_7_38_1 doi: 10.1021/acsami.7b07746 – ident: e_1_2_7_2_2 doi: 10.1002/ange.201704324 – ident: e_1_2_7_16_1 doi: 10.1021/acssuschemeng.9b00564 – ident: e_1_2_7_32_1 doi: 10.1016/j.jmst.2019.09.012 – ident: e_1_2_7_15_1 doi: 10.1021/acs.nanolett.7b04425 – ident: e_1_2_7_29_1 doi: 10.1016/j.jpowsour.2017.12.025 – ident: e_1_2_7_37_1 doi: 10.1039/C7TA05192A – ident: e_1_2_7_31_1 doi: 10.1002/cssc.201700050 – ident: e_1_2_7_20_1 doi: 10.1002/aenm.201501733 – ident: e_1_2_7_30_1 doi: 10.1016/j.jechem.2018.01.015 – ident: e_1_2_7_19_1 doi: 10.1021/nn503220h – ident: e_1_2_7_21_1 doi: 10.1007/s12274-014-0601-1 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201803477 – ident: e_1_2_7_28_1 doi: 10.1039/C6RA09338H – ident: e_1_2_7_41_1 doi: 10.1016/j.electacta.2018.04.021 – ident: e_1_2_7_40_1 doi: 10.1016/j.jpowsour.2016.09.130 – ident: e_1_2_7_46_1 doi: 10.1016/j.cej.2020.124315 – ident: e_1_2_7_11_1 doi: 10.1002/chem.201803153 – ident: e_1_2_7_33_1 doi: 10.1016/j.jpowsour.2017.05.066 |
SSID | ssj0009633 |
Score | 2.4266055 |
Snippet | Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10628 |
SubjectTerms | battery cathode material Channel pores Charcoal Chemistry Conductivity Discharge Discharge capacity electrochemistry Ions Lithium Lithium ions Lithium sulfur batteries Low conductivity Polysulfides Pores Porous materials Specific surface Substrates Sulfur Surface area |
Title | Large Scale Synthesis of Three‐dimensional Hierarchical Porous Framework with High Conductivity and its Application in Lithium Sulfur Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202100484 https://www.ncbi.nlm.nih.gov/pubmed/33837576 https://www.proquest.com/docview/2553525157 https://www.proquest.com/docview/2511244793 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXuilUAol0KKphMQpbePEifdYrVitUKkq2kq9RY5_pIglQZvNoT31DeAZeZLOxJtsF4SQ4BIliv8945mxx98w9g5lgtYyEqE1WUwGikWW4lmYZmjGmUKqURe079N5Or1OPt6Im0e3-D0-xLDhRpzRrdfE4KpojlegodgnuknOCfJMEiAoOWyRVvR5hR-F1OVjySdYu4hHPWrjCT9ez74ulX5TNdc11070TJ4y1Tfae5x8OWoXxZG--wXP8X969YxtL_VSOPWEtMM2bPWcPRn34eB22fcz8hmHS5xTfN5WqDg2ZQO1gyskB_vz_oehQAEe5AOmJV1s7uKszOCintdtA5PeDwxo8xfIwwTGdUWAs10EC1CVgXLRwOnqUB3KCs4wddl-hct25to5eETQ2xfsevLhajwNl9EcQh1ncRJGcUJrKRpoBpcVk4yMi7gxykojtUidsVolkUONR3KVneAHT1KbpYk0LnZSxi_ZZlVX9hUDhUU4h4aiQeFapE4JZ0WqpcBShXZRwMJ-NnO9hDqniBuz3IM085yGOR-GOWDvh_TfPMjHH1Pu98SRL5m9ydEqI1DZSGQBOxx-4_TQ2YuqLA5xTpYcalK4GgZszxPVUFW3S4B2X8B4Rxp_aUNOYBnD1-t_yfSGbdE77VHzaJ9tLuatPUDlalG87RjoAaGEHfc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb2ighUFC4pS2SZzEe6xWXS2wrRDdStyixA8pYpugzeZQTvwD-I38EmbiTVYLQkhwieTEedkz9sx4_H0Ar2hOUEoGsW90GrGDYkilwtRPUnLjdCHzUUfad3aeTC_F249xn03Ie2EcPsQQcGPN6MZrVnAOSB9tUEPpp3greciYZ1LchFtM6915VR82CFIkX45NXtD742jU4zYeh0fb92_PS78Zm9u2azf5TO5C0X-2yzn5dNiuikP15RdEx__6r3twZ22a4omTpftww1QPYHfcM8I9hG8zThvHC-pWOl5XZDs2ZYO1xTlJhPnx9btmrgCH84HTkvc2d1QrC3xfL-u2wUmfCoYc_0VOMsFxXTHmbEdigXmlsVw1eLJZV8eywhnVLtsrvGgXtl2iAwW9fgSXk9P5eOqvCR18FaWR8INI8HBKPpqmkUWLkbZBqHVupJYqTqw2KheBJaNHhnl6TIVQJCZNhNQ2slJGj2GnqiuzB5jTI6wlX1HT_FokNo-tiRMlY3pqrGzggd93Z6bWaOdMurHIHE5zmHEzZ0Mze_B6qP_Z4Xz8seZ-Lx3ZWt-bjBwzxpUN4tSDl8Nl6h5efskrQ02csTNHxhQNiB48cVI1vKoLFJDr50HYycZfviFjvIyh9PRfbnoBu9P52SybvTl_9wxu83kOWYfBPuyslq05IFtrVTzvtOknbBYiEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3i2BAkZC4pR249iJ91htWS2wVBVtpd6srB9SxJJUm82hnPgH8Bv5JcwkmywLQkhwieTEjl8znhl7_A3AS5QJxqhIhs6mMRkoDlmKp2GSohlnZyobNkH73h8nk3Px9kJe_HSLv8WH6DfciDOa9ZoY_NL6gzVoKPaJbpJzgjxT4jrcEMlAEV0ffVgDSCF5tcHkBVYv42EH2zjgB5vlN8XSb7rmpurayJ7xHci6VrcuJx_36-Vs33z-BdDxf7p1F26vFFN22FLSPbjmivtwa9TFg3sAX6fkNM5OcVLxeVWg5ljlFSs9O0N6cN-_fLMUKaBF-WCTnG42N4FW5uykXJR1xcadIxij3V9GLiZsVBaEONuEsGBZYVm-rNjh-lSd5QWbYu68_sRO67mvF6yFBL16COfj12ejSbgK5xCaOI1FGMWCFlO00CyuK1YMrY-4tZlTVhmZeOtMJiKPKo_iWTrABBeJSxOhrI-9UvEObBVl4R4By_AX3qOlaFG6zhKfSe9kYpTEv0rjowDCbja1WWGdU8iNuW5RmrmmYdb9MAfwqs9_2aJ8_DHnXkccesXtlUazjFBlI5kG8KL_jNNDhy9Z4XCINZlyqErhchjAbktUfVXNNgEafgHwhjT-0gZNaBl96vG_FHoON0-Oxnr65vjdE9im17RfzaM92FouavcUFa3l7FnDSz8ACbYgyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Scale+Synthesis+of+Three%E2%80%90dimensional+Hierarchical+Porous+Framework+with+High+Conductivity+and+its+Application+in+Lithium+Sulfur+Battery&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Xu%E2%80%90Ri&rft.au=Wang%2C+Xiao&rft.au=Xu%2C+Xu%E2%80%90Peng&rft.au=Wu%2C+Ya%E2%80%90Qin&rft.date=2021-07-21&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=41&rft.spage=10628&rft.epage=10636&rft_id=info:doi/10.1002%2Fchem.202100484&rft.externalDBID=10.1002%252Fchem.202100484&rft.externalDocID=CHEM202100484 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |