Large Scale Synthesis of Three‐dimensional Hierarchical Porous Framework with High Conductivity and its Application in Lithium Sulfur Battery

Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conduc...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 27; no. 41; pp. 10628 - 10636
Main Authors Wang, Xu‐Ri, Wang, Xiao, Xu, Xu‐Peng, Wu, Ya‐Qin, Lei, Wei‐Xin, Zou, You‐Lan, Ma, Zeng‐Sheng, Pan, Yong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials. Tremella is utilized as the precursor, a new process method (high‐shear, freeze‐drying and chemical activation are used in turn) is proposed, and an in‐situ doped hierarchical porous biochar materials with adjustable 3D macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge‐discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1.
AbstractList Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2  g-1 and a cumulative pore volume of 1.19 cm3  g-1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g-1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g-1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2  g-1 and a cumulative pore volume of 1.19 cm3  g-1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g-1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g-1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials. Tremella is utilized as the precursor, a new process method (high‐shear, freeze‐drying and chemical activation are used in turn) is proposed, and an in‐situ doped hierarchical porous biochar materials with adjustable 3D macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge‐discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in‐situ doped hierarchical porous biochar materials with high electron‐ion conductivity and adjustable three‐dimensional (3D) macro‐meso‐micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m 2  g −1 and a cumulative pore volume of 1.19 cm 3  g −1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in‐situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g −1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g −1 . This new strategy has provided a new approach to the research and industrial‐scale production of adjustable hierarchical porous biochar materials.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m 2 g -1 and a cumulative pore volume of 1.19 cm 3 g -1 . The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites, and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g -1 at a rate of 5 C. After 400 charge-discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g -1 . This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.
Author Wu, Ya‐Qin
Wang, Xu‐Ri
Zou, You‐Lan
Pan, Yong
Lei, Wei‐Xin
Ma, Zeng‐Sheng
Xu, Xu‐Peng
Wang, Xiao
Author_xml – sequence: 1
  givenname: Xu‐Ri
  surname: Wang
  fullname: Wang, Xu‐Ri
  organization: Xiangtan University
– sequence: 2
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Xiangtan University
– sequence: 3
  givenname: Xu‐Peng
  surname: Xu
  fullname: Xu, Xu‐Peng
  organization: Xiangtan University
– sequence: 4
  givenname: Ya‐Qin
  surname: Wu
  fullname: Wu, Ya‐Qin
  organization: Xiangtan University
– sequence: 5
  givenname: Wei‐Xin
  orcidid: 0000-0003-3021-2787
  surname: Lei
  fullname: Lei, Wei‐Xin
  email: wxlei@xtu.edu.cn
  organization: Xiangtan University
– sequence: 6
  givenname: You‐Lan
  surname: Zou
  fullname: Zou, You‐Lan
  organization: Xiangtan University
– sequence: 7
  givenname: Zeng‐Sheng
  surname: Ma
  fullname: Ma, Zeng‐Sheng
  organization: Xiangtan University
– sequence: 8
  givenname: Yong
  surname: Pan
  fullname: Pan, Yong
  organization: Xiangtan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33837576$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEYhoNU7LZ69SgBL15mTSaZSeZYl9YVVhRaz0NMvnRSZyZrkukyN_-B_kZ_iVm3ViiIl4QPnucLed8TdDT6ERB6TsmSElK-1h0My5KUeeCSP0ILWpW0YKKujtCCNFwUdcWaY3QS4w0hpKkZe4KOGZNMVKJeoO8bFa4BX2rV53MeUwfRRewtvuoCwM9vP4wbYIzOj6rHawdBBd25jOOPPvgp4ougBtj58AXvXOoyct3hlR_NpJO7dWnGajTYpYjPtts-iymvwm7Em0y7acCXU2-ngN-olCDMT9Fjq_oIz-7uU_Tp4vxqtS42H96-W51tCs0E4wVlXBkDUlBDBDO8MZaWxiiQRuqqtga04tQKSmSpBMlDyWsQNZfGMislO0WvDnu3wX-dIKZ2cFFD36sR8q_asqK05Fw0LKMvH6A3fgo5jj1VsSqjlcjUiztq-jyAabfBDSrM7Z-oM7A8ADr4GAPYe4SSdt9lu--yve8yC_yBoF36HV8KyvX_1pqDtnM9zP95pF2tz9__dX8BTA62Rw
CitedBy_id crossref_primary_10_1016_j_ces_2024_121107
crossref_primary_10_1016_j_nanoen_2024_110387
crossref_primary_10_1016_j_est_2023_109087
crossref_primary_10_1016_j_actamat_2023_119309
crossref_primary_10_1016_j_est_2024_114144
crossref_primary_10_1016_j_energy_2022_124474
crossref_primary_10_1016_j_est_2024_113186
crossref_primary_10_1002_celc_202101133
crossref_primary_10_1016_j_apsusc_2023_157080
crossref_primary_10_1039_D2SE01164F
Cites_doi 10.1007/s12274-017-1737-6
10.1021/acs.chemmater.5b01780
10.1038/s41467-017-02088-w
10.1039/C6TA06863D
10.1002/anie.201811291
10.1002/smll.201503133
10.1016/j.jmst.2020.03.001
10.1039/C9NR07388D
10.1021/acsnano.5b06373
10.1021/acsami.5b10300
10.1149/2.096308jes
10.1002/celc.201901826
10.1016/j.nanoen.2018.10.061
10.1039/C6EE00104A
10.1021/acsami.7b09310
10.1016/j.jallcom.2020.157024
10.1002/anie.201704324
10.1016/j.apsusc.2018.04.086
10.1002/ange.201704324
10.1016/j.matlet.2014.01.151
10.1021/nn506394r
10.1016/j.cej.2019.01.178
10.1016/j.jechem.2020.08.011
10.1002/chem.202002822
10.1002/ange.201811291
10.1016/j.cej.2019.122701
10.1038/ncomms13807
10.1002/aenm.201602014
10.1039/c3cp50653c
10.1039/C5NR06279A
10.1021/acssuschemeng.8b05305
10.1016/j.mechmat.2006.08.001
10.1016/j.jpowsour.2017.10.045
10.1021/acsami.7b07746
10.1021/acssuschemeng.9b00564
10.1016/j.jmst.2019.09.012
10.1021/acs.nanolett.7b04425
10.1016/j.jpowsour.2017.12.025
10.1039/C7TA05192A
10.1002/cssc.201700050
10.1002/aenm.201501733
10.1016/j.jechem.2018.01.015
10.1021/nn503220h
10.1007/s12274-014-0601-1
10.1002/aenm.201803477
10.1039/C6RA09338H
10.1016/j.electacta.2018.04.021
10.1016/j.jpowsour.2016.09.130
10.1016/j.cej.2020.124315
10.1002/chem.201803153
10.1016/j.jpowsour.2017.05.066
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202100484
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10636
ExternalDocumentID 33837576
10_1002_chem_202100484
CHEM202100484
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11602213; 11702234; 11872054
– fundername: Scientific Research Foundation of Hunan Provincial Education Department
  funderid: 19A480
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2020JJ5527
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3734-134adde871d073d49df12ddae8d8c56fdeca41f71082a70ca4246e7648df3f883
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 05:59:55 EDT 2025
Fri Jul 25 10:25:34 EDT 2025
Wed Feb 19 02:28:57 EST 2025
Thu Apr 24 23:04:39 EDT 2025
Tue Jul 01 01:30:25 EDT 2025
Wed Jan 22 16:29:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Cathode material
High ion-electron conductivity
Three-dimensional framework
Li-S battery
Hierarchical porous biochar
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3734-134adde871d073d49df12ddae8d8c56fdeca41f71082a70ca4246e7648df3f883
Notes These authors contribute equally to the article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3021-2787
PMID 33837576
PQID 2553525157
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_2511244793
proquest_journals_2553525157
pubmed_primary_33837576
crossref_primary_10_1002_chem_202100484
crossref_citationtrail_10_1002_chem_202100484
wiley_primary_10_1002_chem_202100484_CHEM202100484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 21, 2021
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: July 21, 2021
  day: 21
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 39
2017; 5
2019; 7
2017; 7
2019; 9
2019; 30
2019; 55
2019; 11
2018; 448
2020; 381
2016; 10
2019; 366
2017; 371
2020; 55
2020; 388
2015; 9
2015; 8
2013; 160
2015; 7
2017; 9
2017 2017 2017 2017; 56 129 129 56
2019 2019; 58 131
2016; 12
2017; 359
2016; 4
2020; 7
2018; 273
2018; 18
2018; 9
2016; 6
2016; 7
2013; 15
2015; 27
2021; 56
2021; 853
2017; 10
2019; 25
2018; 378
2016; 332
2020; 26
2020; 48
2014; 121
2018; 11
2014; 8
2016; 8
2016; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
(e_1_2_7_4_2) 2019; 131
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 121
  start-page: 198
  year: 2014
  end-page: 201
  publication-title: Mater. Lett.
– volume: 30
  start-page: 121
  year: 2019
  end-page: 131
  publication-title: J. Energy Chem.
– volume: 27
  start-page: 5080
  year: 2015
  end-page: 5087
  publication-title: Chem. Mater.
– volume: 26
  start-page: 16057
  year: 2020
  end-page: 16065
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 27959
  year: 2015
  end-page: 27967
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 3710
  year: 2019
  end-page: 3725
  publication-title: Chem. Eur. J.
– volume: 9
  start-page: 30626
  year: 2017
  end-page: 30634
  publication-title: ACS Appl. Mater. Interfaces
– volume: 332
  start-page: 305
  year: 2016
  end-page: 311
  publication-title: J. Power Sources
– volume: 359
  start-page: 529
  year: 2017
  end-page: 538
  publication-title: J. Power Sources
– volume: 8
  start-page: 129
  year: 2015
  end-page: 139
  publication-title: Nano Res.
– volume: 273
  start-page: 127
  year: 2018
  end-page: 135
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 64228
  year: 2016
  end-page: 64233
  publication-title: RSC Adv.
– volume: 5
  start-page: 19892
  year: 2017
  end-page: 19900
  publication-title: J. Mater. Chem. A
– volume: 58 131
  start-page: 791 801
  year: 2019 2019
  end-page: 795 795
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1238
  year: 2018
  end-page: 1246
  publication-title: Nano Res.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 388
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 381
  year: 2016
  end-page: 389
  publication-title: Small
– volume: 9
  start-page: 1
  year: 2018
  end-page: 10
  publication-title: Nat. Commun.
– volume: 7
  start-page: 3995
  year: 2019
  end-page: 4003
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 33855
  year: 2017
  end-page: 33862
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1803
  year: 2017
  end-page: 1812
  publication-title: ChemSusChem
– volume: 55
  start-page: 82
  year: 2019
  end-page: 92
  publication-title: Nano Energy
– volume: 8
  start-page: 451
  year: 2016
  end-page: 457
  publication-title: Nanoscale
– volume: 378
  start-page: 73
  year: 2018
  end-page: 80
  publication-title: J. Power Sources
– volume: 160
  start-page: A1256
  year: 2013
  publication-title: J. Electrochem. Soc. Interface
– volume: 371
  start-page: 148
  year: 2017
  end-page: 155
  publication-title: J. Power Sources
– volume: 18
  start-page: 475
  year: 2018
  end-page: 481
  publication-title: Nano Lett.
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 448
  start-page: 16
  year: 2018
  end-page: 22
  publication-title: Appl. Surf. Sci.
– volume: 56 129 129 56
  start-page: 8178 8290 8290 8178
  year: 2017 2017 2017 2017
  end-page: 8182 8294 8182 8182
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Angew. Chem. Angew. Chem. Int. Ed.
– volume: 4
  start-page: 16148
  year: 2016
  end-page: 16156
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 9295
  year: 2014
  end-page: 9303
  publication-title: ACS Nano
– volume: 39
  start-page: 525
  year: 2007
  end-page: 537
  publication-title: Mech. Mater.
– volume: 15
  start-page: 6080
  year: 2013
  end-page: 6087
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 84
  year: 2020
  end-page: 91
  publication-title: J. Mater. Sci. Technol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 10
  publication-title: Nat. Commun.
– volume: 11
  start-page: 21532
  year: 2019
  end-page: 21541
  publication-title: Nanoscale
– volume: 853
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 55
  start-page: 152
  year: 2020
  end-page: 158
  publication-title: J. Mater. Sci. Technol.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 366
  start-page: 622
  year: 2019
  end-page: 630
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 631
  year: 2020
  end-page: 641
  publication-title: ChemElectroChem
– volume: 9
  start-page: 1998
  year: 2016
  end-page: 2004
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 343
  year: 2021
  end-page: 352
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 1050
  year: 2016
  end-page: 1059
  publication-title: ACS Nano
– volume: 7
  start-page: 11241
  year: 2019
  end-page: 11249
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 2556
  year: 2015
  end-page: 2564
  publication-title: ACS Nano
– ident: e_1_2_7_6_1
  doi: 10.1007/s12274-017-1737-6
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemmater.5b01780
– ident: e_1_2_7_17_1
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_7_39_1
  doi: 10.1039/C6TA06863D
– ident: e_1_2_7_4_1
  doi: 10.1002/anie.201811291
– ident: e_1_2_7_14_1
  doi: 10.1002/smll.201503133
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jmst.2020.03.001
– ident: e_1_2_7_49_1
  doi: 10.1039/C9NR07388D
– ident: e_1_2_7_13_1
  doi: 10.1021/acsnano.5b06373
– ident: e_1_2_7_48_1
  doi: 10.1021/acsami.5b10300
– ident: e_1_2_7_7_1
  doi: 10.1149/2.096308jes
– ident: e_1_2_7_23_1
  doi: 10.1002/celc.201901826
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2018.10.061
– ident: e_1_2_7_5_1
  doi: 10.1039/C6EE00104A
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.7b09310
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jallcom.2020.157024
– ident: e_1_2_7_2_4
  doi: 10.1002/anie.201704324
– ident: e_1_2_7_26_1
  doi: 10.1016/j.apsusc.2018.04.086
– ident: e_1_2_7_2_3
  doi: 10.1002/ange.201704324
– ident: e_1_2_7_3_1
  doi: 10.1016/j.matlet.2014.01.151
– ident: e_1_2_7_18_1
  doi: 10.1021/nn506394r
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cej.2019.01.178
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jechem.2020.08.011
– ident: e_1_2_7_1_1
  doi: 10.1002/chem.202002822
– volume: 131
  start-page: 801
  year: 2019
  ident: e_1_2_7_4_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201811291
– ident: e_1_2_7_2_1
  doi: 10.1002/anie.201704324
– ident: e_1_2_7_9_1
  doi: 10.1016/j.cej.2019.122701
– ident: e_1_2_7_45_1
  doi: 10.1038/ncomms13807
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201602014
– ident: e_1_2_7_24_1
  doi: 10.1039/c3cp50653c
– ident: e_1_2_7_10_1
  doi: 10.1039/C5NR06279A
– ident: e_1_2_7_12_1
  doi: 10.1021/acssuschemeng.8b05305
– ident: e_1_2_7_35_1
  doi: 10.1016/j.mechmat.2006.08.001
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jpowsour.2017.10.045
– ident: e_1_2_7_38_1
  doi: 10.1021/acsami.7b07746
– ident: e_1_2_7_2_2
  doi: 10.1002/ange.201704324
– ident: e_1_2_7_16_1
  doi: 10.1021/acssuschemeng.9b00564
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jmst.2019.09.012
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.nanolett.7b04425
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jpowsour.2017.12.025
– ident: e_1_2_7_37_1
  doi: 10.1039/C7TA05192A
– ident: e_1_2_7_31_1
  doi: 10.1002/cssc.201700050
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.201501733
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jechem.2018.01.015
– ident: e_1_2_7_19_1
  doi: 10.1021/nn503220h
– ident: e_1_2_7_21_1
  doi: 10.1007/s12274-014-0601-1
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201803477
– ident: e_1_2_7_28_1
  doi: 10.1039/C6RA09338H
– ident: e_1_2_7_41_1
  doi: 10.1016/j.electacta.2018.04.021
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jpowsour.2016.09.130
– ident: e_1_2_7_46_1
  doi: 10.1016/j.cej.2020.124315
– ident: e_1_2_7_11_1
  doi: 10.1002/chem.201803153
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jpowsour.2017.05.066
SSID ssj0009633
Score 2.4266055
Snippet Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10628
SubjectTerms battery
cathode material
Channel pores
Charcoal
Chemistry
Conductivity
Discharge
Discharge capacity
electrochemistry
Ions
Lithium
Lithium ions
Lithium sulfur batteries
Low conductivity
Polysulfides
Pores
Porous materials
Specific surface
Substrates
Sulfur
Surface area
Title Large Scale Synthesis of Three‐dimensional Hierarchical Porous Framework with High Conductivity and its Application in Lithium Sulfur Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202100484
https://www.ncbi.nlm.nih.gov/pubmed/33837576
https://www.proquest.com/docview/2553525157
https://www.proquest.com/docview/2511244793
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXuilUAol0KKphMQpbePEifdYrVitUKkq2kq9RY5_pIglQZvNoT31DeAZeZLOxJtsF4SQ4BIliv8945mxx98w9g5lgtYyEqE1WUwGikWW4lmYZmjGmUKqURe079N5Or1OPt6Im0e3-D0-xLDhRpzRrdfE4KpojlegodgnuknOCfJMEiAoOWyRVvR5hR-F1OVjySdYu4hHPWrjCT9ez74ulX5TNdc11070TJ4y1Tfae5x8OWoXxZG--wXP8X969YxtL_VSOPWEtMM2bPWcPRn34eB22fcz8hmHS5xTfN5WqDg2ZQO1gyskB_vz_oehQAEe5AOmJV1s7uKszOCintdtA5PeDwxo8xfIwwTGdUWAs10EC1CVgXLRwOnqUB3KCs4wddl-hct25to5eETQ2xfsevLhajwNl9EcQh1ncRJGcUJrKRpoBpcVk4yMi7gxykojtUidsVolkUONR3KVneAHT1KbpYk0LnZSxi_ZZlVX9hUDhUU4h4aiQeFapE4JZ0WqpcBShXZRwMJ-NnO9hDqniBuz3IM085yGOR-GOWDvh_TfPMjHH1Pu98SRL5m9ydEqI1DZSGQBOxx-4_TQ2YuqLA5xTpYcalK4GgZszxPVUFW3S4B2X8B4Rxp_aUNOYBnD1-t_yfSGbdE77VHzaJ9tLuatPUDlalG87RjoAaGEHfc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb2ighUFC4pS2SZzEe6xWXS2wrRDdStyixA8pYpugzeZQTvwD-I38EmbiTVYLQkhwieTEedkz9sx4_H0Ar2hOUEoGsW90GrGDYkilwtRPUnLjdCHzUUfad3aeTC_F249xn03Ie2EcPsQQcGPN6MZrVnAOSB9tUEPpp3greciYZ1LchFtM6915VR82CFIkX45NXtD742jU4zYeh0fb92_PS78Zm9u2azf5TO5C0X-2yzn5dNiuikP15RdEx__6r3twZ22a4omTpftww1QPYHfcM8I9hG8zThvHC-pWOl5XZDs2ZYO1xTlJhPnx9btmrgCH84HTkvc2d1QrC3xfL-u2wUmfCoYc_0VOMsFxXTHmbEdigXmlsVw1eLJZV8eywhnVLtsrvGgXtl2iAwW9fgSXk9P5eOqvCR18FaWR8INI8HBKPpqmkUWLkbZBqHVupJYqTqw2KheBJaNHhnl6TIVQJCZNhNQ2slJGj2GnqiuzB5jTI6wlX1HT_FokNo-tiRMlY3pqrGzggd93Z6bWaOdMurHIHE5zmHEzZ0Mze_B6qP_Z4Xz8seZ-Lx3ZWt-bjBwzxpUN4tSDl8Nl6h5efskrQ02csTNHxhQNiB48cVI1vKoLFJDr50HYycZfviFjvIyh9PRfbnoBu9P52SybvTl_9wxu83kOWYfBPuyslq05IFtrVTzvtOknbBYiEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3i2BAkZC4pR249iJ91htWS2wVBVtpd6srB9SxJJUm82hnPgH8Bv5JcwkmywLQkhwieTEjl8znhl7_A3AS5QJxqhIhs6mMRkoDlmKp2GSohlnZyobNkH73h8nk3Px9kJe_HSLv8WH6DfciDOa9ZoY_NL6gzVoKPaJbpJzgjxT4jrcEMlAEV0ffVgDSCF5tcHkBVYv42EH2zjgB5vlN8XSb7rmpurayJ7xHci6VrcuJx_36-Vs33z-BdDxf7p1F26vFFN22FLSPbjmivtwa9TFg3sAX6fkNM5OcVLxeVWg5ljlFSs9O0N6cN-_fLMUKaBF-WCTnG42N4FW5uykXJR1xcadIxij3V9GLiZsVBaEONuEsGBZYVm-rNjh-lSd5QWbYu68_sRO67mvF6yFBL16COfj12ejSbgK5xCaOI1FGMWCFlO00CyuK1YMrY-4tZlTVhmZeOtMJiKPKo_iWTrABBeJSxOhrI-9UvEObBVl4R4By_AX3qOlaFG6zhKfSe9kYpTEv0rjowDCbja1WWGdU8iNuW5RmrmmYdb9MAfwqs9_2aJ8_DHnXkccesXtlUazjFBlI5kG8KL_jNNDhy9Z4XCINZlyqErhchjAbktUfVXNNgEafgHwhjT-0gZNaBl96vG_FHoON0-Oxnr65vjdE9im17RfzaM92FouavcUFa3l7FnDSz8ACbYgyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Scale+Synthesis+of+Three%E2%80%90dimensional+Hierarchical+Porous+Framework+with+High+Conductivity+and+its+Application+in+Lithium+Sulfur+Battery&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Wang%2C+Xu%E2%80%90Ri&rft.au=Wang%2C+Xiao&rft.au=Xu%2C+Xu%E2%80%90Peng&rft.au=Wu%2C+Ya%E2%80%90Qin&rft.date=2021-07-21&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=27&rft.issue=41&rft.spage=10628&rft.epage=10636&rft_id=info:doi/10.1002%2Fchem.202100484&rft.externalDBID=10.1002%252Fchem.202100484&rft.externalDocID=CHEM202100484
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon